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A recently presented general procedure to find static and axially symmetric, interior solutions to the
Einstein equations is extended to the stationary case, and applied to find an interior solution for the Kerr
metric. The solution, which is generated by an anisotropic fluid, verifies the energy conditions for a wide
range of values of the parameters, and matches smoothly to the Kerr solution, thereby representing a globally
regular model describing a nonspherical and rotating source of gravitational field. In the spherically
symmetric limit, our model converges to the well-known incompressible perfect fluid solution. The key stone
of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric
functions evaluated at the boundary source. The physical variables of the energy-momentum tensor are
calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments.
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I. INTRODUCTION

Since the discovery of the Kerr metric [1] there have
been many attempts to find a physically meaningful matter
distribution that could serve as its source (see [2—17] and
references therein). However, no satisfactory solution has
yet been found to this problem.

It is the purpose of this work to provide an interior
solution to Einstein equations, satisfying all the usual
physical conditions, and smoothly matched on the boundary
surface of the fluid distribution, to the Kerr metric. With this
aim we shall generalize a procedure, recently proposed to
find sources of the Weyl metrics [18], to the stationary case.

As a particular example we shall find a source for the
Kerr metric which consists in an anisotropic fluid, satisfy-
ing the Darmois matching conditions on the boundary
surface of the matter distribution, thereby excluding the
presence of thin shells, and exhibiting a well behavior of all
physical variables, for a wide range of values of the
parameters of the solution. These include values which
are commonly assumed in realistic models of rotating
neutron stars and white dwarfs.

II. THE GLOBAL MODEL OF A SELF-
GRAVITATING STATIONARY SOURCE

A. The exterior metric

The line element for a vacuum stationary and axially
symmetric space-time in Weyl canonical coordinates may
be written as
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dst = —e® (dt —wd)? + e 2 2L (dp? + dz?)
+e ¥ p2dg?, (1)
where w =w(p,z), T=T(p,z) and w=w(p,z) are
functions of their arguments.

For vacuum space-times, Einstein’s field equations
imply for the metric functions

F(fpp+07 g+ foe) = 5= F2+ 072 (WS 4+ wh)
=0, (2)

fw,+p7w,+w ) +2f ,w,+2f w, =0, (3)

with f = e¢* and

1 1
L, = of (= £2) - 1 0% =)
1 1
Fﬁz = ipf_Qf,pf,z - Ep_lfzw,pw,z' (4)

Notice that (2) and (3) are precisely the integrability
condition of (4); that is, given any y and w satistying (2)
and (3), a function I" satisfying (4) always exists.

We can write the line element above, in Erez-Rosen [19],
or standard Schwarzschild-type coordinates {r, y = cos 0}
or in spheroidal prolate coordinates {x =5, y} [20]:

pr=r(r=2M)(1-y*).  z=(-M)y (5

where M is a constant which will be identified later.

In terms of the above coordinates the line element (1)
may be written as
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ds% _ _621//(r,y)(dt _ wd¢)2 4 e—2y/+2[F(r,y)—FS]dr2
+ e—2[l//—l/f]+2[r(r,y)—rx] r2d92 + e_z[V/—V’S] rzsinzgdd)z’
(6)

where y* and I"* are the metric functions corresponding to
the Schwarzschild solution, namely,

e I
(7)

where the parameter M is easily identified as the
Schwarzschild mass.

B. The interior metric

We shall now assume for the interior axially symmetric
line element

A 25-2a o
ds} = =€ Z(r)?(dt - Q) + Gy A e
r

+ e~ r2sin’0dgp?, (8)
with
a=a(r,0)—a*(r), g=9(r,0) —g¢(r,0), (9)

where Q = Q(r,0), and a*(r) and ¢*(r, ) are functions
that, on the boundary surface, equal the metric functions
corresponding to the Schwarzschild solution (7), i.e.
a*(ry) = ws and ¢*(rg) =T5. Also, A(r) =1— pr? and
Z=3\/A(rs) —1\/A(r), where p is an arbitrary constant
and the boundary surface of the source is defined
by r = ry = const.

The case w = 0, § = a = 0, corresponds to a spherically
symmetric distribution, more specifically to the well-
known incompressible (homogeneous energy density) per-
fect fluid sphere, and hence the matching of (8) with the
Schwarzschild solution implies p = Zr—%” The simple con-
dition w = O recovers, of course, the static case.

It should be noticed that for simplicity we consider here
only matching surfaces of the form r = ry = const, of
course more general surfaces with axial symmetry could
however be considered as well.

C. The matching conditions

We shall now turn to the matching (Darmois) conditions
[21]. Thus the continuity of the first and the second
fundamental form across the boundary surface implies
the continuity of the metric functions and the continuity
of the first derivatives 0,9, 0,909, 0,944, Producing
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as =VYs, ag =y, gs =T%, gs =T%,

ag =yy.  (a)y=)s

=T (9= s

Qs =ws.,  Qp =k, (10)

where prime denotes partial derivative with respect to r and
subscript X indicates that the quantity is evaluated on the
boundary surface. It is important to keep in mind that
we are using global coordinates {r, 8} on both sides of the
boundary.

Thus, our line element (8) matches smoothly with
any stationary exterior (6), provided conditions (10) are
satisfied.

In the particular case when we want to match our interior
with the Schwarzschild exterior (the static limit), then
w =y and ' =T7, and the source is a perfect fluid
ifa=g=Q=0.

We shall now see how the field equations constrain
further our possible interiors.

D. The field equations and constraints

Let us first analyze the well-known case when the
interior is spherically symmetric, then a = § =0, and
the physical variables are obtained from the field equations
for a perfect fluid, the result is well known and reads (in
relativistic units)

3p
—nglu:g,

T}zT%zT%EPz/A(

VA - VAx
)

with A =1 _ZmT(r): 1—pr2=1-2M2 \where y and P
)

denote the energy density and the isotropic pressure

respectively, and for the mass function m(r) we have

m(r) = —471'Ar rTydr, (12)
implying

, 3
M=m(rg) = —47:/ ’ rPTodr = % (13)
0

This model, which describes the well-known incom-
pressible perfect fluid sphere, is further restricted by the
requirement that the pressure be regular and positive
everywhere within the fluid distribution, which implies
T= rMZ > % As it is evident from (11) the pressure vanishes
at the boundary surface.
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Finally, if we impose the strong energy condition P < u, we should further restrict our model with the condition 7 > §

We shall now proceed to consider the general, nonspherical case. Thus, for our line element (8) we have
the following nonvanishing components of the energy-momentum tensor:

—T) = k(8zu + p.. — E + 38/, + 6QI),
T =«(82P — p,. — 8J_),
T3 = k(87P + py +6J_),
T3 = k(8zP — p.. +6QI +6J ),

T3 = —«dl, (14)
0 3 (1-A) Q0
T2 — T, — 2848 — §f cost _ 90 20— 00) —6=———=|» 15
! 12 { 9sin0 " r rVA(3\/As —VA) ( ~Go) 2r2sin%6 (15)
with k = "2§ 1 5=e%72, Q , denotes derivative of Q with respect to y = cos ¢, and
—Q\2 Q' \2
Jo=(=3) =4 :
* < 2r? > <2r sin 9)
QA 2AA Q, Q4 (1-A)Q (4/A; —3VA
T 272%in20 | PZsin0 | 2t rt 2r3in’0 \ 3/A; — A )’
a'o 4
E:_ZAH“_A)[ VAz-4VA A,,_gﬂ],
r 3A; — VA
A&:&”—I-Za—/—l—ﬁ agcosé’
ro2 2 sing’
a2 5 0 a A J3 -2
b _;29_1+&,2+g_§c?s —|—(1—A){2— VA ol /A \/_}
r?oor r* sin@ r3/As — VA r 3\/_ VA
A2 A A '\/
A a9 .d A2 999 /\// \/Z A2 g
—_28_ 9 4o 90 1-A)|—2% 27 16
Pzz 2 , a 2 +( ) r3\/—- \/—+a + , ( )

From the expressions above, using (14)—(16) and introducing the dimensionless parameter s = r/ry, we can now obtain
the explicit expressions for the physical variables [with A = 1 — (2s?)/7, Ay = A(s = 1)]:

k(6 a2 . . ) g s a, 2/(. _ cosf
1= 5 {2 a7 + ) 200 - 22+ (-2 20 =30 %4 (an Sy ) |

2 T sin 6
LRI AR | [ QA 2084 Q08 (1-A)Q, (4y/A; ~3VA
e l4\ s* s2sin%0 2s52sin%6 s2s1n29 254 s 253sin?0 \ 3/Ay — VA ’
(17)
0| Q. A 2Q.a A Q Q.a., 1-A)Q . /[4\/As — 3VA
TS:—’Z{ ot e+ 2 ’yf"+( 3 .)2 < 2 \/_)] (18)
¥ |2s%sin%0  ssin?0  2s* s 2s7sin’0 \ 3,/Ay — VA
- :5{9 VA — /Ay +a_?9_(& e _Ggc0st a, VA(L-A) g, {(1 —A)(3\/_A2—2\/Z)_1”
P T3 /As — VA s . 52 sin@ s 3/Ax —VA s 3As — VA
kS [1(Q,)°  AQ,)? (19)
4\ st s%sin?) 7
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6 VAs @ g
T3 = { VA - + 6’+(& )2A+@”)+_2+2a_ ‘/-( A) (1—2A)}
I"): 73\/ \/_ ' N § \/ \/_ S
K_(s - ( ,y)z A(Q,S)2 Q Q,SSA zg,sa s Q,yy Q (1 B A)Q,S 4VAZ - 3\/Z 20
+ 4\ st + s2sin%6 2s2sin%0 = s%sin?9 @ 2s* 54 St 25%sin?0 \ 3./A, — VA + (20)
po s —
K n n cos @ gg 2S(2El9 - 99) ) QﬂQ,
T?=—ﬁ[2a‘”_* 0 3 [2s%sin?0)" 2!
sers, sin s V=223V —2-Vr—2s%)] 13 [25"sin°0

Obviously for any specific (nonspherical) model we
need to provide explicit forms for a, § and Q, however even
at this level of generality we can assure that the junction
conditions (10) imply (P,, = g,,T})z = 0.

We shall first proceed to prove the above statement, and
then we shall provide a general procedure to choose a and §
producing physically meaningful models.

|

(Pt 57} = [—w/,g); (P

ree®

. cos @

<o + 2Myry + re(rs = 2M )95

|

It is always possible to choose the metric functions a
and ¢ such that, once the junction conditions (10) are
satisfied, the angular derivatives of such functions are
continuous; i.e. (dg)y = (Wo)s and (§o)s = (Fp)s, as
well as (Qg)y = (Wy)s.

rz—ZM

Then, using Ay = in (14), we obtain for p,, + 6J_

on the boundary surface

A

— (rg = M)I'y

s 2
Wy /\2 ry — 2M
e (W (T A 2
T 4l — 2M)sin6 < 2~ ) = )] (22)

where Iy = s —

ys and fz = Iy —TI% and dot also denotes partial derivative with respect to 6.

Taking into account the Einstein’s vacuum equations (G, = 0), we find the following relation for the derivatives of the

metric function w, from the Einstein tensor component G; = 0:
N ) L A P 1) WLy iy ) Y
——— |5 = (W =- r(r— - (r— ,
4(r —2M)sin’@ | r? r Ve 9 sin6 v r(r—2M)

implying the vanishing of (7})s.

In a similar way it can be shown that 72 vanishes on the boundary surface, if we take into account that the Einstein

vacuum equation G, = 0 produces

whw o, .
v = 4r(r — 2M)jry’ —

and from (15), we have the following expression for 72 on
the boundary:

. ., cosd
(T%)z = 2(‘/’ 9)2Wz ind
re—M . oM
- " (T ==
}/_Z(r2 _ 2M) ( VG)Z + }/_Z(r2 _ 2M) (WVG)Z
W/Z(wﬂ)ze‘h//x (25)

 2rs(rg — 2M)sin?0’

This last condition (T7)y = 0, which follows from the
Darmois conditions, and therefore is necessary, in order to

2(r— M)F —r(r—2M)21"

cos 6
sin@’

(24)

|
avoid the presence of shells on the boundary surface, can be

obtained at once from a simple inspection of Eq. (22)
in [22].

E. The ansatz for the metric functions

We shall provide a general procedure to choose a, g
and Q producing physically meaningful models. With
this aim, besides the fulfillment of the junction conditions
(10), we shall require that all physical variables be
regular within the fluid distribution and the energy
density to be positive.

To ensure the fulfillment of the junction conditions (10),
we may write without loss of generality,
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a=1rs(0) +Ws(0)(r = rs) + A(r.0)(r = r5)*,
§="5(0) +T5(0)(r = rs) + E(r,0)(r = ry)*,
Q= ws(0) +ws(0)(r — rs) +T(r.0)(r —ry)*.  (26)

where A(r,0), Z(r,0) and I1(r, 0) are so far two arbitrary
functions of their arguments.

On the other hand, to guarantee a good behavior of the
physical variables at the center of the distribution we shall
demand

A/ . A _ A . A/ . A/ .
g =agy = Agao = dgg = A ggy = 0

@6 = 900 = G000 :Qfao :@{090 =0

90 = G0 = 0. (27)
Q=Q=Q=Q=0

Q= =0

Qy = = Qf = =0, (28)

where (15) and (16) have been used, and the subscript 0
indicates that the quantity is evaluated at the center of the
distribution.

Using the conditions above in (26) we may write for A, =
and IT

A(r,0)

Ao(0) + AL(O)r + F(r,0)

E(r,0) = Z(0) + E((0)r + =4 (0)r* + G(r,0)
M(r. 0) = y(0) + I (0) r + 1 (0) >

+ 11y (0)r* + H(r,0) (29)
with F(0,6) = F/(0.0) =0 and G(0.0) = G'(0,6) =
G"(0,0) =0, as well as H(0,0) = H'(0,0) = H"(0,0) =

H"(0,0) = 0. Then we can finally write for a and § [please
notice that there is a misprint in Eq. (43) in [18], there it
should read I, instead of y in the two terms within the
round brackets for the metric function §(r, 8)]

&(V,G):r2< WZ+3—> r3< 2—>
I's rs rz ”2

+(r- rz)zF(r, 0) (30)
+ (r - rz)zG(r 0). (31)
+(r- rz)zH(r 0). (32)

The metric functions obtained so far satisfy the junction
conditions (10) and produce physical variables which are
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regular within the fluid distribution. Furthermore the
vanishing of § on the axis of symmetry, as required by
the regularity conditions, necessary to ensure elementary
flatness in the vicinity of the axis of symmetry, and in
particular at the center (see [23-25]), is assured by the
fact that Iy and Iy vanish on the axis of symmetry.
Furthermore, the good behavior of the function € on the
symmetry axis is fulfilled since wy and wg vanish when
y = %1. Finally, let us note that the energy-momentum
tensor components (14) and (15) do not diverge on the
symmetry axis because the first derivative with respect to
the angular variable 0 of both Q' and Q" vanishes on the
symmetry axis since not only wy and w¥ vanish there but
their first derivatives with respect to @ vanish as well.

So far we have presented the general procedure to build
up sources for any stationary metric; in what follows, we
shall illustrate the method with the example of Kerr metric.

III. PARTICULAR SOLUTION

A. A source for the exterior Kerr’s solution

The Kerr metric in Weyl coordinates is given by the
following metric functions:

(ri 4+ r)*(1 = j%) —4M>(1 = j2) + j*(ry — r)?

/= (r1 4 r4+2M)*(1 = j2) + j*(r; = rp)? ’
(33)
r_ (r = ) =AM = ) + Py = )
driry(1—j ) ’
(34)
__JCM A4+ ) (4M?(1 = j2) = (r; — r2)?)
(r1+12)* (1= j%) =4M>*(1 = j2) + j2(ry = r2)*
(35)

where j E#: a/M denotes the dimensionless para-

meter representing the angular momentum of the source,
and is related to the rotation parameter a of Kerr in
its well-known Boyer-Lindquist representation. Also,

ra2= \/P2+(ZiM\/1—J'2)29

Rosen coordinates becomes

Ry = [(r = M) = My(r = M)\J1 = 2 = M22(1 = ).

(36)

which in the Erez-

As is well known, the relativistic multipole moments
(RMM) [26-30], of the Kerr solution, are easily given in
terms of the rotation parameter j (as well as a). In fact,
using the Fodor-Hoenselaers-Perjés (FHP) method [31] in
order to calculate the RMM, these are expressed in terms of
the expansion coefficients (m1;) of the Ernst potential on the
axis of symmetry, but the Kerr solution is the only one
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verifying that each RMM (M},) at any order £ is just equal
to the corresponding coefficient m; for such order, which
implies

m, = My = M(ia)*. (37)

Therefore, the massive RMM (even orders) and the rota-
tional RMM (odd orders) can be expressed as follows:

le — (—1>ZM21+1j21, M2l+1 — i(-l)lMZH_zsz_l.

(38)
In particular let us remind that a first conclusion

derived from these RMM (38) is that the rotation of
|

T
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the object leads to a negative quadrupole massive
moment, g E% = —j2, ie. all the possible sources of
Kerr solution are oblate.

Let us next consider the line element (8) with metric

functions given by (30) and (31):

D

(r,0) = rss®(3 = 25) + refpys®(s = 1),
(r,0) =Tgs3(4 = 3s) + rel%s3 (s — 1),
Q(r,0) = wes*(5 — 4s) + rewlhs*(s — 1), (39)

o

with s = r/rg € [0, 1].
For the Kerr solution we may write

N+ rir¥(2j - 1)

R o1
WZEV’E_W%:EIH{

FzEFE—FSEZ*IH

T=2N + 5 (27 = 1) =2(1 = ) (r} + r§+2)}’

2 (r—2)

1)
(N+rr)2+rE+1r3)

wy = Mj

with

i, = \/(T -1 iym>2 =/ (1=y%), (41)

N=—t(z=2)+(1-y) -/ (42)

A straightforward calculation, using (17)—(21), allows us
to find the explicit expressions for the physical variables;
these are displayed in Figs. 3—7. However, before entering
into a detailed discussion of these figures, we shall carry

1,001 - N
: - ~_
e
e
-~
L
0,999 -
0,998 -
0,997 -
0 0.2 0.4 s 0,6 058 1
[—ep(als, 1) — — explgls, 0) — als, 0))]
FIG. 1. Functions exp(g(s,y =0)—a(s,y=0)) and

exp(—a(s,y = 1)) for values of the rotation parameter j =
+0.1 and 7 = 2.7.

(2 = DI = W +r§ry) +2(N + )]

(40)

|
out some calculations with the purpose of providing some
information about the “shape” of the source. In particular
we shall see how it is related with the rotation parameter j
of the source.

For doing so, using our interior metric, we shall calculate
the proper length [, of the object along the axis z, and the
proper equatorial radius

ry edly=1)-a(y=1)

0 VA

rs @d(y=0)=a(y=0) J
- p’
0 VA
(43)

[, =

dz, l,=

0
-0,01
-0,02
-0,03

e
-0,04 -

-0,05 -

-0,06 \

-0,07 \

[ —1=27 =28 =3 1=4] '

FIG. 2. Relation between the ellipticity of the source e and its
rotation parameter j for different values of 7.
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0,08y T 0,08 =7

0,074 0,074

0,061 0,06

0,051 0,057

0,04

0,04+
0,034
0,031

\ 0,024
0,021 \

0,01+
0,011

0 T T T T
0 0,2 0,4 0,6 0,8

S
[J=0j=01 j=0.2-~j=0.25]

\
|
0 1

02 04 06 08 1
S

(a) (b)

FIG. 3. Four profiles of r%P,, = r% g, T}, as a function of s, for
vy =0.3(a),and y = 1 (b) with z = 2.7, and different values of ;.

where p, z are the cylindrical coordinates associated to the
Erez-Rosen coordinates.

Obviously in the spherical case (a = § = Q = 0), both
lengths are identical:

s dé T . 2
IS =105 = / — = \/7arcs1n \/7 44
z 14 0 1= p§2 z D) T ( )

where the fact that p = % has been taken into account and
z

where [, [; denote the lengths corresponding to the
spherical case.

It would be convenient to introduce here the concept of
ellipticity (e), which in terms of /. and [, is defined as

! .
e =1—+. The two extreme values of this parameter are

e = 0, which corresponds to a spherical object, and e = 1
for the limiting case when the source is represented by a
disk. In between of these two extremes we have e > 0 for a
prolate source and e < O for an oblate one.

In the general (nonspherical case) we must compare
function e~@0=1) with I0=00-40=0) " gince g(y = +1)
vanishes along the axis. It can be seen that the sign of
both functions is positive, and their relative magnitudes
verify the inequality e=40=1) > £00=0)-20=0) for a1l values

250
IXRIN
RIS
CSRTSIRIIN

R
RN

FIG. 4. —riTJ (a), and r2T} (b), as functions of y = cos & and
s, with j = 0.1 and 7 = 2.7.
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295055827777
38553 7

% 27
"o, 'l'

FIG. 5. (a) r3T3 and (b) r3T7 as functions of y and s.

of s in the range s € [0, 1], no matter the sign of the
parameter j, leading to the well-known result that the
rotation of the object always generates an oblate source
(¢ <0) since I, < [,. In Fig. 1, one example is shown.

Figure 2 shows the ellipticity e of the source as a
function of the rotation parameter j, for different values of
the parameter 7. As can be seen, the relation between e and
Jj for any value of = shows that the greater is j, the greater is
e, and therefore the shape of the source is more oblate. Of
course, for j = 0 (static case) we recover the sphericity
(e = 0). It is also observed from Fig. 2 that the deformation
of the source with respect to the spherical case, for any
fixed value of j, is smaller for larger values of z (less
compact object).

Let us now turn back to the physical variables of our
model. Figure 3 exhibits the behavior of the radial pressure
P,.= g, T! for different values of j.

In it, we observe the variation of the radial pressure with
respect to the spherically symmetric case (j = 0). This
variation is smaller for angle values close to the equator, as
it is apparent for y = 0.3. Notice that the radial pressure is
positive, with negative pressure gradient, and vanishes on
the boundary surface.

11

FIG. 6. r%[(—-T)) — T!] as a function of y and s, with j = 0.1
and 7 = 2.7.
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FIG.7. r3T3 asafunction of y and s, with j = 0.1 and 7 = 2.7.

Figures 4 and 5 depict the behavior of different energy
momentum components, for a specific choice of the
parameters g and 7.

Figure 6 shows the verification of the strong energy
condition (=79) — T} > 0 (also for a specific choice of the
parameters j and 7).

Figure 7 shows the component Tg.

IV. DISCUSSION

By extending the general procedure developed in [18] to
the stationary case, we have been able to build up a
physically meaningful source for the Kerr metric, satisfying
the matching conditions on the boundary surface of the
matter distribution. In spite of the fact that a perfect fluid
source for the Kerr metric might exist [32], our source is
necessarily anisotropic in the pressure.

Particular attention deserves the presence of a non-
vanishing 73 component of the energy-momentum tensor.

PHYSICAL REVIEW D 95, 024003 (2017)

Indeed, defining as usual an energy-momentum flux vector
as F¥ = —VHT,, (where V¥ denotes the four velocity of the
fluid), it appears that, in the equatorial plane of our system,
energy flows round in circles around the symmetry axis.
This result is a reminiscence of an effect appearing in
stationary Finstein-Maxwell systems. Indeed, in all sta-
tionary Einstein-Maxwell systems, there is a nonvanishing
component of the Poynting vector describing a similar
phenomenon [33,34] (of electromagnetic nature, in this
latter case). Thus, the appearance of such a component
seems to be a distinct physical property of rotating fluids,
which has been overlooked in previous studies of these
sources.

We have carried out a systematic search for the range of
values of 7 and j for which our models exhibit acceptable
physical properties. We have focused on the fulfillment of
positive energy density (P.E.D.) (—Tg > (), strong energy
condition (S.E.C.) ((-T9)—Ti > 0) and positive radial
pressure (PR.P.) (P,, = g,; T} > 0). The results of this
search are shown in Table I. It appears evident that
physically meaningful sources exist for a wide range of
values of the parameters.

On the other hand, the chosen range of values of the
parameters incorporates values considered in the existing
literature, to describe realistic models of rotating neutron
stars and white dwarfs. Let us elaborate on this issue with
some detail.

The rotation of the source is determined by the param-
eters a, M of the exterior solution. Indeed, the rotation
parameter j = J/M? = a/M stands for the dimensionless
angular momentum of the rotating source. So, if we
restrict ourselves to a subextreme Kerr solution (a < M),
then j < 1.

In [35] numerical models of rotating neutron stars are
constructed for different equations of state (EOSs). For
each EOS the star’s angular momentum ranges from J = 0

TABLE 1. Fulfillment (F) or violation (V) of different criteria for good physical behavior: positive energy density (P.E.D.) (—Tg > 0),
strong energy condition (S.E.C.) [(-=T9) — T% > 0] and positive radial pressure (P.R.P.) (P,, = g;;T} > 0). The symbol * over F means
that although the criterion is fulfilled, nevertheless O,P,, changes its sign in the interval s € [0, 1] within the source. This table
corresponds to an oblate source (due to the rotation) of the Kerr solution for different values of j and a sequence of different values of the
parameter 7.

PE.D./S.E.C./PR.P.
7\j 0.9 0.8 0.7 0.5 0.3 0.1 0.05 0.03
2.67 \AAY VAR VV F* VVF FVF FVF FVF FFF
2.7 \VAA'AY VvVy VVF* VVF FVF FFF FFF FFF
2.8 A% V'V F* VVF* VVF FVF FFF FFF FFF
2.9 \AAY VVF* VVF* FVF FFF FFF FFF FFF
3 VVF* VVF* VVF* FVF FFF FFF FFF FFF
3.1 VV F* VV F* VV F* FVF FFF FFF FFF FFF
35 VV F* FV F* FF F* FFF FFF FFF FFF FFF
4 FF F* FF F* FFF FFF FFF FFF FFF FFF
4.5 FF F* FFF FFF FFF FFF FFF FFF FFF
5 FFF FFF FFF FFF FFF FFF FFF FFF
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to the Keplerian limit J = J,,,, and the dependence of the
quadrupole moment on the rotation parameter j is estab-
lished. Within the interval 1.0 to 1.8 solar masses for the
mass M, the parameter j is in the interval between 0.1
and 0.8.

In [36] upper limits on the parameter j are found for
representative  EOSs; uniformly rotating neutron star
models with maximum mass for various equations of
state are studied, and the parameter j does not exceed the
value 0.7.

In [37] realistic equations of state for rapidly rotating
neutron stars are explored, including a wider range of
values for j.

PHYSICAL REVIEW D 95, 024003 (2017)

Finally, we would like to conclude with the following
comment. In some static sources it may occur that [, <[,
does not imply that the source is oblate (g < 0) (see [18,38]
for a discussion on this issue). However, as we have seen,
this is not the case of our source.
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