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The phantom brane has several important distinctive features: (i) Its equation of state is
phantomlike, but there is no future “big rip” singularity, and (ii) the effective cosmological constant
on the brane is dynamically screened, because of which the expansion rate is smaller than that in
ΛCDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures
such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic
microwave background (CMB) data. We find that the simplest braneworld models provide a good fit
to the data. For instance, BAOþ SNeIa data can be accommodated by the braneworld for a large
region in parameter space 0 ≤ Ωl ≲ 0.3 at 1σ. The Hubble parameter can be as high as
H0 ≲ 78 km s−1 Mpc−1, and the effective equation of state at present can show phantomlike behavior
with w0 ≲ −1.2 at 1σ. We note a correlation between H0 and w0, with higher values of H0 leading to
a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints
Ωl ≲ 0.1. (Here Ωl encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble
parameter in this case is more tightly constrained to H0 ≲ 71 km s−1 Mpc−1, and the effective
equation of state to w0 ≲ −1.1. Interestingly, we find that the Universe is allowed to be closed or
open, with −0.5≲ Ωκ ≲ 0.5, even on including the compressed CMB data. There appears to be some
tension in the low and high-z BAO data which may either be resolved by future data, or act as a
pointer to interesting new cosmology.
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I. INTRODUCTION

The unexpected faintness of distant supernova type Ia, as
observed concurrently by the Supernova Cosmology
Project and the High Redshift Search Team [1,2] in the
late 1990s, has led to the postulation of one of the most
mystifying cosmological phenomena—the accelerated
expansion of the Universe. One way to explain this
observational result is to theorize the existence of a new
form of energy, with negative pressure, often called “dark
energy.” Many different models have been suggested for
this dark energy, some of which are reviewed in [3,4].
Current cosmological observations are commensurate with
the cosmological constant [5], where the dark energy
equation of state is −1 and its energy density is constant.
However, other dark energy models are by no means ruled
out [6], and the search for the true nature of dark energy is a
continuing process.
A different approach to the problem of cosmological

acceleration consists of introducing new physics in the
gravitational sector. Einsteinian gravity is very well tested
within the Solar System, but may be modified on larger
scales. Different models of modified gravity have been
suggested to explain the accelerated expansion of the

Universe [7], including fðRÞ models, galileons etc. We
consider here a braneworld scenario, where our observable
Universe is situated in a four-dimensional brane embedded
in a fifth dimension, the “bulk,” and the accelerated
expansion of the Universe is a consequence of this
modification of gravity. Braneworld scenarios could have
important cosmological consequences. For instance, (i) the
Randall-Sundrum (RS) model [8], which modifies gravity
at small scales, could potentially explain the galaxy rotation
curves in lieu of dark matter [9]; (ii) an RS-type brane-
world, but with a timelike extra dimension, makes the
Universe bounce at early times, alleviating thereby the big
bang singularity [10]. The braneworld models which
produce accelerated expansion of the Universe tend to
modify gravity on large scales. An early example, the Dvali
Gabadadze Porrati Model, was constructed in [11] while a
more general braneworld model containing the induced
gravity term as well as cosmological constants in the bulk
and on the brane, has been studied in [12–15].
In this work we study a braneworld model for the

accelerated expansion of the Universe that was introduced
in [15] and discussed in greater detail in [16,17]. We revisit
this model in the context of observations of the cosmo-
logical distance and attempt to constrain it from the latest
data. In the following sections, we first define our brane-
world model in Sec. II, discuss the data and methodology in
Sec. III, show the results of our analysis in Sec. IV, and
present our conclusions in Sec. V.
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II. COSMOLOGICAL EVOLUTION OF THE
BRANEWORLD MODEL

We consider a braneworld scenario where the equations
of motion are derived from the action [15]

S ¼ M3

�Z
bulk

ðR5 − 2ΛbÞ − 2

Z
brane

K

�

þ
Z
brane

ðm2R4 − 2σÞ þ
Z
brane

Lðhαβ;ϕÞ; ð1Þ

where R5 is the scalar curvature of the metric gab in the five-
dimensional bulk, and R4 is the scalar curvature of the
induced metric hαβ on the brane. The quantity K ¼ Kαβhαβ

is the trace of the extrinsic curvature Kαβ on the brane
defined with respect to its inner normal. Lðhαβ;ϕÞ is the
four-dimensional matter field Lagrangian,M andm denote,
respectively, the five-dimensional and four-dimensional
Planck masses, Λb is the bulk cosmological constant,
and σ is the brane tension. Integrations in Eq. (1) are
performed with respect to the natural volume elements on
the bulk and brane. The presence of the brane curvature
term m2

R
brane R4 in Eq. (1) introduces the length scale

l ¼ 2m2=M3. On short length scales r ≪ l (early times)
one recovers general relativity, whereas on large length
scales r ≫ l (late times) brane-specific effects begin to
play an important role, leading to the acceleration of the
Universe at late times.
The cosmological evolution of the braneworld is

described by the Hubble parameter
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where H ¼ _a=a is the Hubble parameter, ρ ¼ ρðtÞ is the
energy density of matter and radiation on the brane, C=a4

represents the dark radiation term and κ, the curvature of the
Universe. The underlined terms make the braneworld models
different from standard Friedmann-Lemaître-Robertson-
Walker cosmology. The � signs in Eq. (2) correspond to
the two separate ways in which the brane can be embedded
in the higher dimensional bulk. The two signs represent two
branches of cosmological solutions, the þ sign denoting the
"self-accelerating” branch which can model late-time accel-
eration without cosmological constant in the bulk or on the
brane, while the − sign represents the normal branch where
at least a brane tension is required to accelerate the
expansion. It has been shown that the self-accelerating
branch is plagued by ghost instability issues at least in
the DGP model of braneworlds [18]. In this paper, we limit
ourselves to the the − sign, or the normal branch, which
exhibits phantomlike behavior. A version of this model has
been previously studied in the context of an older data set in
[19], and we now extend this analysis for the newest data
using all the different braneworld parameters.
The reduced Hubble parameter hðzÞ ¼ HðzÞ=H0 can be

calculated from (2) to be

h2ðzÞ ¼ Ω0rð1þ zÞ4 þ Ω0mð1þ zÞ3 þ Ωκð1þ zÞ2 þΩσ þ 2Ωl

− 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

; ð3Þ

with the additional constraint relation

Ωσ ¼ 1−Ω0r−Ω0m −Ωκ þ 2
ffiffiffiffiffiffi
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Here
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are dimensionless parameters. In the limit Ωl → 0, the
braneworld reduces to the ΛCDM model. The parameters

to be constrained are Ω0m, Ωl, ΩΛb
, Ωκ, ΩC and H0 [Ωσ is

constrained by Eq. (4)]. The value of the radiation density
can be calculated from the cosmic microwave background
(CMB) temperature or from big bang nucleosynthesis
(BBN) considerations to a high degree of accuracy.
A simpler variant of the above model is obtained by

settingΩκ ¼ ΩC ¼ ΩΛb
¼ 0 and neglecting the presence of

radiation at low redshifts. In this case (3) and (4) reduce to

h2ðzÞ ¼ Ω0mð1þ zÞ3 þΩσ þ 2Ωl

− 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þ Ωσ þ Ωl

q
; ð6Þ

Ωσ ¼ 1 −Ω0m þ 2
ffiffiffiffiffiffi
Ωl

p
: ð7Þ

This model has several interesting features which hold
for the entire normal-branch Braneworld family.
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(1) First and foremost is the fact that the current value of
the effective equation of state is phantomlike, i.e.,
weff < −1. To appreciate this let us define the energy
density and pressure of dark energy on the brane as
follows [4],

ρDE ¼ 3H2

8πG
ð1 − ΩmÞ;

pDE ¼ H2

4πG

�
q −

1

2

�
; ð8Þ

where

q≡ −ä=aH2 ¼ x
H0ðxÞ
HðxÞ − 1; x ¼ 1þ z; ð9Þ

is the deceleration parameter (the prime denotes
differentiation with respect to x or z) and Ωm is the
total density of nonrelativistic matter in terms of its
critical value

ΩmðzÞ ¼
Ω0mð1þ zÞ3

h2ðzÞ : ð10Þ

The effective equation of state (EOS) of dark energy,
weff ¼ pDE=ρDE, is then given by

weffðzÞ ¼
2qðzÞ − 1

3ð1 − ΩmðzÞÞ
: ð11Þ

Substituting from (9), (10) and (6) into (11) we get
weffðzÞ for the Phantom braneworld as

weffðzÞ ¼ −1 −
ΩmðzÞ

1 − ΩmðzÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωl

Ω0mð1þ zÞ3 þΩσ þΩl

s
: ð12Þ

At the present epoch (z ¼ 0),

w0 ≡ weffðz ¼ 0Þ ¼ −1 −
Ω0m

1 − Ω0m

� ffiffiffiffiffiffi
Ωl

p
1þ ffiffiffiffiffiffi

Ωl
p

�
;

ð13Þ

demonstrating that the present value of the effective
equation of state of the dark energy is phantomlike,
i.e. w0 < −1. Figure 1 shows w0 as a function ofΩl.
We find that w0 → −1=ð1 − Ω0mÞ asymptotically,
as Ωl → ∞.

(2) A second important feature of the phantom brane is
that the effective cosmological constant on the brane
can be screened. This can easily be seen by rewriting
(6) in the more suggestive form

h2ðzÞ ¼ Ω0mð1þ zÞ3 þ ΩΛ − fðzÞ ð14Þ

where ΩΛ ¼ Ωσ þ 2Ωl and fðzÞ is the screening
term fðzÞ ¼ −2

ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mð1þ zÞ3 þ Ωσ þ Ωl

p
whose value increases with redshift. The presence
of this term permits the expansion rate to fall below
the ΛCDM value of h2ðzÞ ¼ Ω0mð1þ zÞ3 þΩΛ at
high redshifts [6,15,20]. The screening mechanism,
operational in the braneworld,1 can potentially be
tested by observations of hðzÞ. As pointed out in [6],
the phantom brane may provide a better fit to high-z
baryon acoustic oscillations (BAO) data than
ΛCDM. Future BAO data are likely to improve
on this result by providing very accurate measure-
ments of the expansion history of the Universe.
Combining observations of hðzÞ with the Om
diagnostic [6,22], and eventually with the State-
finder [23], would allow one to assess the nature of
dark energy in a model-independent manner [24].
As noted in [6], a key feature of screened dark

energy models is that if fðzÞ increases monotoni-
cally with redshift, then eventually the cosmological
constant, ΩΛ, is canceled by fðzÞ, so that
h2ðzpÞ ¼ Ω0mð1þ zpÞ3. At this redshift, zp, the
effective equation of state of dark energy develops
a pole at which weffðzpÞ → ∞ [6,16]. In the context
of the phantom brane, the pole in weffðzÞ is shown in
Fig. 2. It is easy to see that the presence of the pole
is generic and arises when ΩmðzpÞ ¼ 1 in the

FIG. 1. The current value of the effective equation of state of
dark energy (w0) in the braneworld model (16) is shown as a
function of Ωl (Ω0m ¼ 0.28 is assumed). For Ωl → 0, one
recovers ΛCDM limit.

1The cosmological constant can also be dynamically screened
in other cosmological scenarios, some of which are discussed
in [21].
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denominator of (12). ActuallyΩmðzÞ in the phantom
braneworld possesses a maximum and remains
greater than unity for z > zp, as shown in Fig. 3.
This figure informs us that, for increasing values of
Ωl, ΩmðzÞ reaches unity at lower redshifts. This
implies that zp decreases with increasing Ωl. The
redshift of the pole, zp, is given by

ð1þ zpÞ3 ¼
Ω2

σ

4Ω0mΩl
: ð15Þ

The value of zp is plotted againstΩl in Fig. 4. Using
the closure relation (17), we find that ð1þ zpÞ3 →
1=Ω0m asymptotically as Ωl → ∞. The presence of
a pole in the EOS of dark energy therefore emerges

as a smoking gun test for this class of braneworld
models. We note that such a pole may also be present
for other dark energy models in which the dark
energy density crosses 0.

The above characteristics for this subset of phantom
brane also hold true for other subsets of this model which
are considered in this work.

(i) Our base braneworld model is a flat universe without
dark radiation, i.e., κ ¼ 0, C ¼ 0. This is very
similar to the simplest variant for the phantom brane
considered above, except that the radiation density is
explicitly considered as well, since high redshift data
are also considered. The reduced Hubble parameter
has the form

h2ðzÞ ¼ Ω0rð1þ zÞ4 þ Ω0mð1þ zÞ3 þΩσ þ 2Ωl

− 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0rð1þ zÞ4 þ Ω0mð1þ zÞ3 þΩσ þΩl þ ΩΛb

q
; ð16Þ

with the additional constraint relation

Ωσ ¼ 1 −Ω0r −Ω0m þ 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛb

q
: ð17Þ

The effective equation of state at present is given by

w0 ¼ −1 −
1

3

ffiffiffiffiffiffi
Ωl

p ð4Ω0r þ 3Ω0mÞ
ð1 −Ω0r − Ω0mÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛb

p þ ffiffiffiffiffiffi
Ωl

p Þ : ð18Þ

The parameters to be fitted are Ω0m, Ωl, ΩΛb
and H0.

FIG. 3. ΩmðzÞ, given by (10), is plotted against the redshift z for
various Ωl, assuming Ω0m ¼ 0.28. During matter domination
(large z), ΩmðzÞ approaches unity. In the phantom braneworld
ΩmðzÞ possesses a maximum and ΩmðzÞ > 1 while z > zp. The
pole in weffðzÞ occurs at z ¼ zp when ΩmðzpÞ ¼ 1. As Ωl

increases, ΩmðzÞ becomes unity at lower redshift, i.e. zp
decreases, which is explicitly shown in Fig. 4. For Einstein de
Sitter universe ΩmðzÞ ¼ 1 always.

FIG. 2. The effective equation of state of dark energy (weff ) is
shown as a function of redshift for Ωl ¼ 0.025, assuming
Ω0m ¼ 0.28. A pole occurs at zp ≈ 2.372. At large redshift,
weffðzÞ → −1=2 for any nonzero value of Ωl and Ω0m. For
Ωl ¼ 0, i.e. in the ΛCDM limit, the pole disappears as shown by
the dashed line.
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(ii) We also study the phantom brane including dark radiation as a parameter, in a flat universe, i.e., κ ¼ 0, C ≠ 0.
The reduced Hubble parameter is therefore given by

h2ðzÞ ¼ Ω0rð1þ zÞ4 þΩ0mð1þ zÞ3 þ Ωσ þ 2Ωl

− 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0rð1þ zÞ4 þΩ0mð1þ zÞ3 þ ΩCð1þ zÞ4 þ Ωσ þ Ωl þΩΛb

q
; ð19Þ

with the additional constraint relation

Ωσ ¼ 1 − Ω0r − Ω0m þ 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩΛb

þ ΩC

q
: ð20Þ

Here the effective equation of state at present takes the form

w0 ¼ −1 −
1

3

ffiffiffiffiffiffi
Ωl

p ð4Ω0r þ 3Ω0m þ 4ΩCÞ
ð1 −Ω0r −Ω0mÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩΛb

þ ΩC
p þ ffiffiffiffiffiffi

Ωl
p Þ : ð21Þ

The parameters to be fitted are Ω0m, Ωl, ΩΛb
, ΩC and H0. The dark radiation term appears to act almost like a

curvature term.
(iii) We free up the curvature of space, but exclude dark radiation, i.e., κ ≠ 0, C ¼ 0.

In this case, the reduced Hubble parameter is given by

h2ðzÞ ¼ Ω0rð1þ zÞ4 þ Ω0mð1þ zÞ3 þ Ωκð1þ zÞ2 þ Ωσ þ 2Ωl

−2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0rð1þ zÞ4 þΩ0mð1þ zÞ3 þ Ωσ þ Ωl þ ΩΛb

q
; ð22Þ

with the additional constraint relation

Ωσ ¼ 1 − Ω0r −Ω0m −Ωκ þ 2
ffiffiffiffiffiffi
Ωl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛb

−Ωκ

q
: ð23Þ

The effective equation of state at present is now given by

w0 ¼ −1 −
1

3

ffiffiffiffiffiffi
Ωl

p ð4Ω0r þ 3Ω0mÞ
ð1 −Ω0r −Ω0m −ΩκÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛb

−Ωκ

p þ ffiffiffiffiffiffi
Ωl

p Þ : ð24Þ

The parameters to be fitted are Ω0m, Ωl, ΩΛb
, Ωκ

and H0. Current CMB measurements show that the
Universe is practically flat, with Ωκ ∼ 0, for the
cosmological constant, as we see this strong con-
straint may not hold in the braneworld scenario.

It is possible to consider a model including both the dark
radiation and curvature terms, but since both terms have a
similar effect on the expansion of the Universe [both being
proportional to ∼ð1þ zÞ2], we expect them to be somewhat
degenerate with each other, so it would not be possible to
easily discriminate them using distance measures alone.

III. DATA AND METHODOLOGY

We use here the cosmological data that give quasimodel-
independent information on the background expansion of
the Universe. The most commonly used data for this
purpose are the supernova type Ia [25,26]. There are also
the baryon acoustic oscillations [27–29], the comoving size

of the sound horizon at last scattering surface from
CMB data [5], the value of the Hubble parameter derived
from various independent sources [30], gamma ray
bursts [31], direct measurements of the Hubble constant
H0 [32–34] etc.
Not all the data are regarded with the same degree of

confidence, e.g., the gamma ray burst observations meet
with some scepticism from the community due to the large
scatter in their intrinsic properties. We therefore choose not
to utilize these data in our analysis.
Direct measurements of H0 are also subject to various

tensions. The HST Cepheidþ supernovae (SNe)-based
estimate from [32] gives H0¼ð73.8�2.4Þ kms−1Mpc−1.
The same Cepheid data have been reanalyzed in [33]
using revised geometric maser distance to NGC 4258.
Using NGC 4258 as a distance anchor, they find H0 ¼
ð70.6� 3.3Þ km s−1Mpc−1. A recent paper, [34], obtains a
2.4% determination of the Hubble constant at H0 ¼
73.24� 1.74 km s−1Mpc−1 combining the anchor NGC
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4258, Milky Way and LMC Cepheids. This value disagrees
at 3σ with that predicted by Planck for the ΛCDM
three-neutrino model in [5], which is H0 ¼ 67.3 �
1.0 km s−1Mpc−1. The Milky Way Cepheid solutions for
H0 may be unstable [33], which could go some way in
explaining this inconsistency. Recent strong lensing obser-
vations, [35], give the value H0 ¼ 71.9þ2.4

−3.0 km s−1Mpc−1.
On the other hand, the Planck results appear to favor a
lower value of H0 [5]. Hubble parameter measurements
from SNe and red giant halo populations [36] give
H0 ¼ 63.7� 2.3 km s−1 Mpc−1. A recent Hubble param-
eter measurement by [37] prefers a value of H0 ¼
68.3þ2.7

−2.6 km s−1Mpc−1. The most recent Sloan Digital
Sky Survey DR12 BAO data [29] also appear to favor a
somewhat low value of H0 ¼ 67.8� 1.2 km s−1Mpc−1.
Historically, direct measurements ofH0 have often resulted
in widely discrepant values. Even today, some measure-
ments find comparatively higher values of H0 than others.
There are also issues with the reliability of analysis for the
different data sets. In our analysis, we do not use any priors
onH0 and let the analysis choose the preferred value ofH0.

The cosmic chronometer data sets, which estimate the
Hubble parameter with different evolution of cosmic
chronometers in the redshift range 0 < z < 2, have been
recently used in [38] to constrain the equation of state.
These data sets may be somewhat dependent on the
assumptions of evolutionary stellar population synthesis
models; they also rely on the correct identification of
tracers and reliable age dating. The constraints obtained
from these data sets in conjunction with other data appear to
favor phantom behavior over w > −1 models; therefore
these data sets may well fit our phantom braneworld models
successfully. For the moment we leave this data set out,
since the assumption dependence of these data sets is still
being studied.
We create here a base data set comprising those

observations whose systematics are well constrained, or
which have already been used with some success in
conjunction with each other.

A. Supernova data

We use the Union2.1 type-Ia supernovae (SNeIa) data set
[25] comprising 580 SNe between z ∼ 0.01 and 1.4, with
average errors σμ ∼ 0.1–0.6. One can also use the JLA data
set [26] which combines the SNLS and SDSS SNe to create
an extended sample of 740 SNe, with apparently better
calibration quality, but this does not appreciably change
results. We use the full SNe error covariance matrices for
the analysis. The data are in the form

μðzÞ ¼ 5log10

�
cð1þ zÞ

H0

Z
z

0

dz
hðzÞ

�
; ð25Þ

with hðzÞ given by Eq. (3). It should be noted that at the
redshifts considered, the radiation density is negligible, and
that the only effect of the parameter H0 is as an additive
constant. Thus marginalizing over H0 does not affect the
SNe results.

B. BAO data

The current BAO data may be divided into the low
redshift galaxy BAO data, and the higher redshift Lyα data
(see Table I, following [27] and [29]). The low redshift data
typically measure a combination of the angular diameter

TABLE I. BAO data from different surveys. The two high-z Lyα points have a distinct character to the low redshift data, and the data
are often divided into two sets—low redshift galaxy BAO data and high redshift Lyα data.

Source z DV=rd σ DM=rd σ DH=rd σ

6dFGS 0.106 3.047 0.137 � � � � � � � � � � � �
SDSS-MGS 0.15 4.480 0.168 � � � � � � � � � � � �
BOSS-LOWz 0.32 8.594 0.095 8.774 0.142 25.89 0.76
BOSS-CMASS 0.57 13.757 0.142 14.745 0.237 21.02 0.52
LyaFauto 2.34 � � � � � � 37.675 2.171 9.18 0.28
LyaF-QSOcross 2.36 � � � � � � 36.288 1.344 9.00 0.30

FIG. 4. The redshift of the pole in weffðzÞ is shown as a function
of Ωl. The dashed line corresponds to the asymptotic value of zp:
zp → ½ð1=Ω0mÞ1=3 − 1� for Ωl → ∞. For Ω0m ¼ 0.28 the asymp-
tote is at zp ≈ 0.53.
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distance and the Hubble parameter, while the BOSS survey
is able to get separate measurements on both the angular
diameter distance and the Hubble parameter. For the galaxy
data, we use the latest SDSS 12th data release [29], while
for the high redshift Lyα data we use the SDSS 11th data
release [28], since the 12th release is not yet available for
these. In their most model-independent form, the observa-
tions are presented as a ratio of the distance between
measure (DM, DH, DV) and the quantity rd, which is the
comoving sound horizon at the end of the baryon drag
epoch. Therefore the quantities measured model independ-
ently are DV=rd, DM=rd, DH=rd, which are given by

rd ¼
1

H0

Z
∞

zd

csðzÞdz
hðzÞ ; csðzÞ ¼

cffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.75 Ω0bh2

Ω0γh2ð1þzÞ
q ;

ð26Þ

DHðzÞ ¼
c

H0hðzÞ
; ð27Þ

DMðzÞ ¼
c
H0

Z
z

0

dz
hðzÞ ; ð28Þ

DVðzÞ ¼½zDHðzÞD2
MðzÞ�1=3; ð29Þ

where h ¼ H0=100, Ω0b is the baryon energy density,
and Ω0γ is the photon energy density. Typically, for the
observations where DM, DH are available separately, we
use these directly, taking into account the covariance
between them. Where separately measurements are not
available (6dFGS and SDSS-MGS), we use the combina-
tion of these two, i.e., DV .
There are two points to note in the above equations. First,

in rd, we have the sound speed csðzÞ which depends on the
ratio of baryon energy density and photon energy density.
We may input Ω0bh2 from BBN considerations and Ω0γh2

from CMB temperature using the standard scenario, which
are both independent of braneworld parameters or other
cosmological parameters except the radiation era physics.
Secondly, note that, due to the ratios taken, the quantity

h ¼ H0=100doesnot appearasamultiplicativeoradditive in
the BAO data. It only appears inside hðzÞ, as part of the
radiation term, since the CMB constraint on this term is on
Ω0γh2, rather than onΩ0γ. For all the quantities at low z, the
effect of the radiation term is negligible, as in the SNe data;
however, for the drag distance, rd, it is significant and
neglecting the radiation termfor rd leads to erroneous results.
One can assume the rd obtained from Planck, or use an
approximation for it, however, since these are usually
obtained for ΛCDM with typical values of Ω0m, h etc., so
inananalysiswherebothΩ0m andhareparameters, thiscould
change/bias the resultsby several percent.SeeFig.5 for some
illustrativeexamplesof thevariation inrdwithΩ0m andh (the
braneworld parameters are not relevant at these early times).

Therefore the correctway to dealwith this term is to calculate
it analytically at each step, for each value of Ω0m, and
marginalize over h. We assume the Planck value for the drag
redshiftzd ¼ 1059.68 for this, aswedonotexpect thatzd is as
sensitive to the cosmology as rd.
We also note here that, when interpreting the BAO

results in the framework of braneworlds, we implicitly
assume that the acoustic sound in the baryon-photon
plasma propagates until recombination with the same speed
as in general relativity. This assumption holds as long as the
brane effects are negligible during homogeneous cosmo-
logical evolution prior to recombination. Since recombi-
nation occurs at high redshift, we expect that all possible
brane effects on the BAO prior to recombination can safely
be neglected. A comparison of results obtained from the
BAO and from the matter power spectrum data for similar
surveys using a self-consistent perturbation theory for the
braneworlds would give us a good handle on the brane
effects prior to recombination.

C. CMB data

It is often the practice in cosmological circles to reduce
the full CMB likelihood information to a few background
expansion parameters (e.g., as discussed in [39] and [40]).
It is possible to compress a large part of the information
contained in the CMB power spectrum into just a few
numbers: specifically the CMB shift parameter R ([41]),
and the angular scale of the sound horizon at last scattering
lA, dependent on the baryon density Ω0bh2 and the scalar
spectral index ns,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0mH2

0

q
DAðz⋆Þ=c; ð30Þ

FIG. 5. Variation of rd with h, Ω0m. The black line represents
the base model with Ω0m ¼ 0.3, h ¼ 0.7, Ωl ¼ ΩΛb

¼ 0; the
orange line represents the variation of rd with Ω0m, and the green
line represents the variation of rd with h.
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lA ¼ πDAðz⋆Þ=rsðz⋆Þ; ð31Þ

where DAðzÞ is the comoving angular diameter distance,
and rsðzÞ the comoving sound horizon at redshift z, where
z⋆ is the redshift for which the optical depth is unity.
The conservative Planck estimates for these quantities

are given as [42] R ¼ 1.7382� 0.0088; lA ¼ 301.63�
0.15, at z⋆ ¼ 1089.9. These numbers are effectively
observables and they can be applied to models with either
nonzero curvature or a smooth dark energy component
[43]. However, it has been shown in [44] that the
constraints on these quantities, especially on R, are sensi-
tive to changes in the growth of perturbations. Therefore, as
also mentioned in [42], one needs to be careful when using
these parameters on modified gravity models which are
expected to have very different perturbations to the stan-
dard dark energy models. We therefore use these observ-
ables, but also show the results without them for
comparison. We first use the observables lA and R
separately, fixing z⋆, to see how they differ. Then for
comparison, as in some recent work on modified gravity
([45]), we also use the Planck 2015 priors on wCDM
cosmology and the full polarization data for these param-
eters, which involve the priors flA ¼ 301.787�
0.089; R ¼ 1.7492� 0.0049; z⋆ ¼ 1089.99� 0.29g and
the inverse covariance matrix

C−1 ¼

0
B@

162.48 −1529.4 2.0688

−1529.4 207232 −2866.8
2.0688 −2866.8 53.572

1
CA:

IV. RESULTS

We first study our base braneworld model, namely the
spatially flat phantom brane model with no dark radiation
(i.e., Ωκ ¼ 0, ΩC ¼ 0) using various combinations of the
different data sets to determine the biases in the observa-
tions and to determine which combination of the data to use
for the full analysis. In our analyses we find that the
parameter ΩΛb

has negligible effect for all the different
scenarios; indeed the constraints on the other parameters
are practically the same irrespective of the value of ΩΛb

in
all cases. Therefore, although we mention its best-fit and 1σ
error levels, we do not depict it in any of the figures that
follow.

A. Low and high-z BAO data

Unlike the SNe data, the BAO data can be affected by the
value of of the Hubble parameter, due to the effect on rd, as
illustrated in Fig. 5. We attempt to study the effect ofH0 on
both high and low redshift BAOdata. For low redshift galaxy
BAO data, high values of H0 lead to correspondingly high
values forΩ0m, which would naturally be ruled out by other
observations, while for high redshift Lyα BAO data, high

values of H0 lead to slightly lower values of Ω0m. This
obvious discrepancy has also been be noted in Fig. 4 of [27]
for the ΛCDM model, and for the older SDSS DR11 data.
We find here that the newDR12galaxy data continue to have
the same discrepancy with the Lyα data. This has the
interesting consequence that, for the galaxy BAO data, high
values ofH0 are ruled out simply because theywould lead to
unacceptably high values of Ω0m, i.e., a high value for the
combination Ω0mh2, which would come into conflict with
most other measurements. But for the Lyα BAO data, even
for a high value ofH0, the combinationΩ0mh2 would still be
acceptable, and ruling out high values of H0 would rest on
other, more direct observations of H0. This inconsistency
may be due to some systematics in the data itself, or a true
high redshift effect. First reported in [27] for SDSS DR11,
this apparent discrepancy has also recently been studied in
[46] for the same data set and it has been claimed that the
BAO data at z > 0.43 is discrepant withΛCDMat 2.8σ. Our
findings for the SDSSDR12 data set are commensuratewith
these results and show the about 2.3σ discrepancy between
high and low redshift BAO data. Thus, although somewhat
mitigated due to the degeneracy with braneworld parame-
ters, the disparity that was seen in the ΛCDM model is not
entirely removed in the braneworld model either. This then
also raises the question whether one should use all the BAO
data available together, or use the galaxy BAO data and Lyα
BAO data separately, since there is clearly some tension
between them. In this paper, we use the entire BAO data set
for final results, while also showing the results for the galaxy
and Lyα data separately when required. No assumptions or
priors are set on the value of H0.
We first check the results for the BAO data for the

phantom brane scenario, with Ωκ ¼ 0, ΩC ¼ 0 both at high
and low redshifts separately, and in conjunction. The results
are shown Fig. 6. We see that both the high and low redshift
BAO data appear to favor higher values ofH0 but where the
low redshift data also prefer high values for Ω0m, the high
redshift data favor lower values for Ω0m. When taken
together, constraints are much tighter, and commensurate
with other measurements of Ω0m, H0, due to the tension
between the two data sets which rules out a fair part of the
parameter space. (One also notes a correlation between H0

and w0, with higher values of H0 being more supportive of
a lower, and more phantomlike, value of w0.) Interestingly,
both the low and high redshift BAO data appear to rule out
w0 ¼ −1 at 2σ albeit at very high values of H0. When the
two data sets are taken in conjunction, w0 ¼ −1 is allowed
at 2σ, as the value ofH0 also becomes low for the total data
set. Ωl can have a fairly wide range of values for both data
sets, for differing values of Ω0m. Thus, despite the tension
in H0, the constraining power of the BAO on the brane-
world parameters does not change to a large extent for
different subsets of the data. For further analysis, we use the
entire BAO data set, keeping in mind the tension between
the high and low redshift data.
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B. Compressed CMB data

We now look at the compressed CMB data for the base
phantom brane scenario, with Ωκ ¼ 0, ΩC ¼ 0. We use the
BAO data in conjunction with the CMB since typically a
single CMB data point is not strong enough to constrain
parameters. We see in Fig. 7 that the parameters R and lA
give rather different results at 2σ, with R ruling out a much
larger portion of the braneworld parameter space than lA,
and also that R prefers slightly lower values of H0. This
also means that lA allows for more negative values of the
effective equation of state today, i.e., w0 ≪ −1, as there is a
correlation between higher values of H0 and lower values
of w0. We also see that when using the flA; R; z⋆g data set,
we obtain confidence levels with degeneracies entirely
different from either the lA or R observation, especially in
the Ω0m, H0 parameter space; e.g., these data appear to
favor a larger value ofΩ0m at lowerH0. This may be simply
a pointer to the fact that these quantities as derived from the

standard wCDM model are not compatible with the brane-
world models for which perturbations have not been
considered. As has been mentioned in [5], the compressed
data are dependent on the perturbations, and so, for
braneworld models which are obviously expected to have
very different perturbations than the standard cosmological
constant or scalar field scenario, the values quoted may not
be ideal for use. R can be especially sensitive to the
perturbations. Therefore we do not use the single obser-
vation R in further analysis. We do use lA to better constrain
the degeneracies in the parameters, and we alternatively use
the flA; R; z⋆g data; however, we also simultaneously show
the results without the compressed CMB data so that one
can observe the difference made by this CMB.

C. Analysis of all data sets

In our final analysis of all the three brane scenarios, we
now use the Union 2.1 SNeIa data set, the CMB lA data (or

FIG. 7. 1; 2σ confidence levels in the Ω0m −H0 (left panel), Ω0m − Ωl (middle panel), w0 −H0 (right panel) parameter space for the
base phantom brane withΩκ ¼ 0,ΩC ¼ 0, using compressed CMBþ BAO data. The red contours represent results for the R parameter,
blue contours those for the lA parameter, and the green contours those for flA; R; z⋆g. Ωl ¼ 0 represents ΛCDM.

FIG. 6. 1; 2σ confidence levels in the Ω0m −H0 (left panel), Ω0m − Ωl (middle panel), w0 −H0 (right panel) parameter space for the
base phantom brane with Ωκ ¼ 0, ΩC ¼ 0, using BAO data. The blue contours represent results for the full BAO data, the red contours
those for low-z galaxy data only, and the green contours those for the high-z Lyα data only. The high and low-z BAO data are discrepant
at 2σ:Ωl ¼ 0 represents ΛCDM.
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alternatively the flA; R; z⋆g data), and the full BAO data.
For the base phantom brane scenario with Ωκ ¼ 0, ΩC ¼ 0,
the results are shown in Fig. 8. We see that the presence of
the CMB data severely limits the allowed values of the Ωl
parameter. At 1σ, Ωl ∼ 0.13 for the SNeþ BAO data,

while including the CMB lA data limits Ωl ∼ 0.08 at 1σ,
while the flA; R; z⋆g data give the constraints Ωl ≲ 0.05 at
1σ. The CMB data also put much tighter constraints on the
Ω0m, H0 parameters. In the absence of CMB, the SNe data
typically do not in effect constrain these parameters well,

FIG. 8. 1; 2σ confidence levels in the Ω0m −H0 (left panel), Ω0m − Ωl (middle panel), w0 −H0 (right panel) parameter space for the
base phantom brane withΩκ ¼ 0,ΩC ¼ 0, using SNe Union2.1þ BAO high and low-z dataþ compressed CMB lA or flA; R; z⋆g data.
The red contours represent results for just the SNeþ BAO data, and the blue contours use lA in addition, while the green contours use
flA; R; z⋆g in addition. Ωl ¼ 0 represents ΛCDM.

FIG. 9. 1; 2σ confidence levels in the Ω0m −H0 (top left panel), Ω0m − Ωl (top right panel), Ω0m − ΩC (bottom left panel), w0 −H0

(bottom right panel) parameter space for phantom brane including dark radiation, using SNe Union2.1þ BAO high and low-z dataþ
compressed CMB lA or flA; R; z⋆g data. The red contours represent results for just the SNeþ BAO data, and the blue contours use lA in
addition, while the green contours use flA; R; z⋆g in addition. Ωl ¼ 0 represents ΛCDM.
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while the low redshift BAO data, as shown in the previous
section, favor somewhat higher values of Ω0m and H0 than
would be allowed by the CMB observations. These values
are ruled out when the CMB data point is added, thus
tightening the constraints. The higher the values of H0

allowed, the more the effective equation of state shows
phantomlike behavior. Thus the constraints without CMB
allow for w0 ≲ −1.19, for H0 ≲ 78 km s−1Mpc−1 at 1σ,
while the addition of CMB lA constrains the effective
equation of state to w0 ≃ −1.09 and the Hubble parameter
to H0 ≲ 71 km s−1Mpc−1 at 1σ. The CMB flA; R; z⋆g data
constrain w0 ≲ −1.09 and H0 ≲ 72 km s−1Mpc−1 at 1σ.
For the case where dark radiation is considered, the

results are shown in Fig. 9. In this case we find that the
presence of the added ΩC parameter constrains the Ωl
parameter quite strongly, andΩl in this case is smaller than
in the previous case. With CMB data, Ωl ∼ 0.04 at 1σ,
while for just the SNeþ BAO data,Ωl ∼ 0.13 at 1σ. This is
because the term Ωl is present in two terms in Eq. (3), one
positive and the other negative. The best fit in the ΩC ¼ 0
case holds for some ratio of these two terms. A nonzeroΩC
changes this ratio by increasing the negative, square-rooted
term, thus necessitating a corresponding reduction in Ωl to

offset this increase. As previously, the Hubble parameter
for the SNeþ BAO analysis is allowed to be as high as
H0 ≲ 80 km s−1 Mpc−1, and the corresponding effective
equation of state is w0 ≲ −1.2 at 1σ. The addition of CMB
lA constrains the parameters to H0 ≲ 70 km s−1Mpc−1,
w0 ≲ −1.1 at 1σ, while the addition of flA; R; z⋆g data
gives w0 ≲ −1.08 and H0 ≲ 72 km s−1Mpc−1 at 1σ.
The results for the case where the curvature of the

Universe is left as a free parameter are shown in Fig. 10. We
find in this case that the allowed values of Ωl for SNeþ
BAO are roughly the same as in the first case, Ωl ∼ 0.3 at
1σ; the addition of a new parameter Ωκ does not afford
much more flexibility in parameter space. In the case where
the CMB is considered, given that the CMB is expected to
constrain the curvature of the Universe quite strongly,Ωl is
slightly better constrained than the flat case, withΩl ∼ 0.08
at 1σ. However, even with these small values of Ωl, the
curvature of the Universe is allowed to be nonzero, and the
Universe at 1σ could either be closed or open, with −0.5≲
Ωκ ≲ 0.5 even when CMB data are considered. The Hubble
parameter is constrained toH0 ∼ 78 km s−1Mpc−1, and the
effective equation of state to wo ∼ −1.24 at 1σ for SNeþ
BAO data; and the addition of CMB lA brings these

FIG. 10. 1; 2σ confidence levels in the Ω0m −H0 (top left panel), Ω0m − Ωl (top right panel), Ω0m − ΩC (bottom left panel), w0 −H0

(bottom right panel) parameter space for phantom brane including curvature, using SNe Union2.1þ BAO high and low-z dataþ
compressed CMB lA or flA; R; z⋆g data. The red contours represent results for just the SNeþ BAO data, and the blue contours use lA in
addition, while the green contours use flA; R; z⋆g in addition. Ωl ¼ 0 represents ΛCDM.
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numbers down to H0 ∼ 70 km s−1Mpc−1, w0 ∼ −1.1. For
the flA; R; z⋆g data, constraints are weaker, w0 ≲ −1.15
and H0 ≲ 73 km s−1Mpc−1 at 1σ.
Table II shows the best-fit and 1σ errors on the various

parameters H0, w0, Ω0m, Ωl, ΩΛb
, ΩC, Ωκ in all the cases

considered. We note, first of all, that the five-dimensional
cosmological constant at 1σ basically encompasses its
entire parameter space and also that the results are fairly
insensitive to the value of ΩΛb

. Thus for most such
analyses, we may neglect the effects of ΩΛb

. We note also
that without the CMB data, a slightly higher value of Ω0m,
H0, and a lower, more phantomlike w0, are preferred, and
also that the presence of the CMB data puts quite strong
constraints on theΩl parameter which represents the length
scale at which the bulk affects the brane. Using just the SNe
and BAO data, we can constrain Ωl ∼ 0.13–0.3 at 1σ for
the different models. Including the CMB data brings down
these numbers toΩl ∼ 0.04–0.10. We also note that, for the
case where the restriction on the curvature of the Universe
is lifted, even the inclusion of the CMB data does not
appear to rule out closed or open universes for braneworld
models.
We should be cautious, however, about our interpretation

of these results. As we have mentioned in the previous
sections, the low and high-z BAO data are discrepant at 2σ;
thus results from the joint analysis of both data sets severely
constrain the parameter space due to the tension between
the data sets. Thus the tight constraints we obtain on the
braneworld parameters may very well change as more BAO
data become available and this tension between low and
high-z data is resolved. We also note that the compressed
CMB data may not be completely appropriate to use for
modified gravity models. Therefore, the correct way to
include the CMB in this analysis would be by doing a
complete self-consistent perturbative analysis, rather than
using a single number lA or R or a combination thereof
which has been calculated for the Einsteinian gravity
framework rather than for modified gravity. The severe
constraining of the parameter space thus may be a spurious
effect of simply using data inappropriately.

V. CONCLUSIONS

In this work, we have used primarily the SNe type-Ia and
BAO observations, as well as compressed CMB data to
constrain braneworld parameters. We find that for the
analysis using SNeþ BAO data, we are faced with some
tension between low and high redshift BAO observations,
mainly due to their apparently favoring very different
values of the Hubble parameter today. Both data sets
considered jointly, in conjunction with the SNe allow Ωl ≲
0.3 at 1σ for our base phantom brane model with ΩC ¼ 0,
Ωκ ¼ 0. Including the dark radiation term, we find the 1σ
constraint of Ωl ≲ 0.13, ΩC ≲ 0.4. For the case where
curvature is left to be a free parameter, the results are not
very different for Ωl, but closed and open universes are
allowed at 1σ, with −0.5≲ Ωκ ≲ 0.5. When the com-
pressed CMB data are added, the constraints become much
stronger. For the simplest case of phantom brane with
ΩC ¼ 0, Ωκ ¼ 0, using the CMB parameter lA the Ωl
parameter is constrained at 1σ toΩl ≲ 0.1; for the case with
dark radiation, we have Ωl ≲ 0.04, ΩC ≲ 0.4, while for the
case with nonzero curvature, we obtain Ωl ≲ 0.08, while
the curvature remains as unconstrained as just the SNeþ
BAO data. When utilizing CMB data, the constraints on the
Hubble parameter are naturally very close to the Planck
values for ΛCDM, while BAOþ SNe data by themselves
allow quite higher values for H0 which are more in line
with some direct measurements of H0. Consequently, the
effective equation of state for the SNeþ BAO case shows
marked phantomlike behavior, with w0 ≲ −1.2, whereas
the addition of CMB constrains it somewhat more, to
w0 ≲ −1.1. We should remember that while the compressed
CMB data are ideally suited for use in the cosmological
constant or scalar field scenarios, they may not be as
suitable for modified gravity, which is expected to have
noticeably different perturbations from these scenarios.
Therefore, an analysis of the full CMB data with self-
consistent perturbations may give entirely different results.
In conclusion, we find that phantom braneworld models

are well constrained by current distance measures but by no
means ruled out. It is possible to construct braneworld

TABLE II. Best-fit and 1σ confidence levels on cosmological parameters for various braneworld models for different data sets.

H0 w0 Ω0m Ωl ΩΛb
ΩC Ωκ

Phantom brane w lA 69.04þ2.55
−1.42 −1.06þ0.04

−0.03 0.289þ0.010
−0.009 0.047þ0.031

−0.047 0.552þ0.441
−0.552 � � � � � �

Phantom brane, ΩC w lA 69.02þ1.44
−1.80 −1.05þ0.04

−0.05 0.291þ0.016
−0.010 0.015þ0.025

−0.015 0.537þ0.461
−0.537 0.253þ0.147

−0.253 � � �
Phantom brane, Ωκ w lA 69.06þ1.42

−1.79 −1.07þ0.09
−0.03 0.289þ0.010

−0.009 0.047þ0.034
−0.047 0.552þ0.439

−0.552 � � � −0.242þ0.472
−0.207

Phantom brane w flA; R; z⋆g 70.75þ1.30
−1.30 −1.05þ0.03

−0.02 0.303þ0.011
−0.011 0.025þ0.023

−0.025 0.549þ0.449
−0.549 � � � � � �

Phantom brane, ΩC w flA; R; z⋆g 70.63þ1.35
−1.55 −1.04þ0.04

−0.02 0.304þ0.013
−0.012 0.012þ0.029

−0.012 0.525þ0.456
−0.525 0.265þ0.315

−0.265 � � �
Phantom brane, Ωκ w flA; R; z⋆g 70.78þ2.30

−1.43 −1.06þ0.09
−0.04 0.302þ0.012

−0.011 0.045þ0.032
−0.025 0.542þ0.457

−0.542 � � � −0.179þ0.679
−0.321

Phantom brane w/o CMB 75.03þ3.09
−7.11 −1.12þ0.09

−0.07 0.332þ0.032
−0.043 0.222þ0.077

−0.222 0.576þ0.413
−0.576 � � � � � �

Phantom brane, ΩC w/o CMB 75.33þ4.44
−7.67 −1.12þ0.08

−0.08 0.334þ0.031
−0.047 0.098þ0.031

−0.098 0.569þ0.410
−0.569 0.220þ0.272

−0.220 � � �
Phantom brane, Ωκ w/o CMB 74.89þ3.23

−7.05 −1.14þ0.16
−0.10 0.331þ0.031

−0.043 0.218þ0.091
−0.218 0.574þ0.417

−0.574 � � � −0.185þ0.423
−0.416
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models compatible with the current observations in which
brane-specific effects can cause the acceleration of the
cosmological expansion, thus offering a complementary
approach to the dark energy problem. We note the
discrepancy between high and low-z BAO data and quote
the most conservative results using both data sets. Analysis
with future BAO data should make it clearer if this
inconsistency is in the data itself, or requires a more
fundamental change in the cosmological modeling of dark
energy. Final constraints on such models can only be
obtained if we are able to self-consistently include the
perturbative effects of the braneworld models. We note here
that perturbations on the braneworld are not expected to
modify the transfer function to a great extent, since it is
mostly determined by high-z physics which remains similar

to the cosmological constant in our model. However, self-
consistent perturbations on the brane are expected to affect
(i) low-z growth rate through fðzÞ and σ8, (ii) the Integrated
Sachs Wolfe effect, since Φ differs from the ΛCDM value,
and (iii) weak lensing, since Φ ≠ Ψ. A companion paper
will explore these issues in further detail.
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