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Cosmic acceleration may be due to modifications of cosmic gravity and to test this we need robust
connections between theory and observations. However, in a model independent approach like effective
field theory or a broad class like Horndeski gravity, several free functions of time enter the theory. We show
that simple parametrizations of these functions are unlikely to be successful; in particular the
approximation αiðtÞ ∝ ΩdeðtÞ drastically misestimates the observables. This holds even in simple modified
gravity theories like fðRÞ. Indeed, oversimplified approximations to the property functions αiðtÞ can even
miss the signature of modified gravity. We also consider the question of consistency relations and the role
of tensor (gravitational wave) perturbations.
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I. INTRODUCTION

The origin of cosmic acceleration is an extraordinary
mystery in modern physics. The observation of cosmic
acceleration [1–4] must be connected to some fundamental
theory beyond the current standard model of particle
physics, but we do not know whether its origin lies in
the structure of the quantum vacuum or an extension to
Einstein’s theory of gravitation. Considerable progress has
occurred in the last decade in exploring aspects of modified
gravity [5–7] but the ability to connect theory and obser-
vations in a manner not highly dependent on a specific
model is lacking in essential aspects.
Here we examine the challenges for such a connection,

and caution against oversimplification. Modified gravity is
a much more complex arena than scalar field dark energy,
with its one free function of time [e.g. the equation of state
wðaÞ]. In large part this is because of the role played by
perturbations and the tensor sector.
To begin, consider the case for cosmic acceleration not

arising from modified gravity, e.g. quintessence dark
energy. Here we also have challenges in connecting
essential theory to observations, with perhaps the most
information arising from the thawing vs freezing classi-
fication of scalar fields [8]. This at least describes the
steepness of the potential relative to the Hubble friction,
and has distinct implications for whether the theory is
approaching or departing from a cosmological constantlike
(or sometimes de Sitter) state. Beyond that, the expansion
history from dark energy, whether from quintessence or
modified gravity, is extremely accurately characterized
phenomenologically by two numbers [9], w0 and wa,
measures of the present and time variation of the dark
energy equation of state. Indeed, this characterization has
been shown valid to the 0.1% level in the observables of
distances and Hubble parameters for a wide range of
quintessence, k-essence, modified gravity, etc. models.

On the cosmic structure, i.e. perturbative, side of
observations, dark energy not arising from modified gravity
(or nonstandard couplings) has little to add: quintessence
perturbations are small inside the Hubble scale and
k-essence (noncanonical kinetic energy model) perturba-
tions have little observational effect since they are sup-
pressed by equations of state near w ¼ −1, as observations
indicate. For modified gravity effects, a successful, if
limited, phenomenological parametrization is the gravita-
tional growth index γ [10], again accurately describing
observables at the subpercent level for a variety of modified
gravity models [11]. However, this has very restricted
interpretable connection to fundamental theory. Better
(pseudo)observables include effects not only on growth
of structure, but on the deflection of light. These come from
the nonrelativistic and relativistic modified Poisson equa-
tions [12], and can be written as effective gravitational
coupling strengths Gmatterðk; aÞ and Glightðk; aÞ, where we
explicitly show their scale dependence (e.g. on the Fourier
wave number k) and time dependence (e.g. on the cosmic
scale factor a). The gravitational growth index γ is directly
related to Gmatter in the scale independent limit.
To connect with theory, however, we need to relate the

scale and time dependences of these “observables” (we
henceforth refer to these quantities Gmatter, Glight, and their
ratio, related to the gravitational slip function, as observ-
ables because, while not directly observable, they are so
closely connected to observations, i.e. structure growth and
gravitational lensing) to the theory—or at least to phe-
nomenological property functions αi [13].
The functional form of the scale dependence is a ratio of

k0 þ k2 polynomials in many cases (see [14–16] and the
especially clear [17], but see [18,19] for exceptions), and
one simplification is that on scales below the Hubble scale
(or more generally the sound horizon or braiding scale [13])
the scale dependence (k2 terms) is subdominant and one
essentially has purely functions of time.
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While this seems to be considerable progress, the
problem is that in order to know whether Gmatter and
Glight have any simple parametrization of their time
dependence one has to evaluate them from the underlying
theory, ideally in as model independent a fashion as
possible. An excellent framework for this is the effective
field theory (EFT) of dark energy [20–23]. Within EFT at
quadratic (lowest) order there are seven free functions of
time, and within the Horndeski class of gravity there are
four free functions. The challenge of connecting such
theory functions to realistically parametrized observables
was highlighted in [23], which examined various limits.
Here we go into greater depth and quantify the problems
with oversimplification of the parametrization.
In Sec. II we start with the workhorse of modified

gravity, fðRÞ theory. This corresponds to only one inde-
pendent free function of time in the EFT formalism and so
is a basic place to start in assessing parametrizations. We
expand in Sec. III to the four functions of Horndeski gravity
and examine the motivation for a potential simplification in
the early time (matter dominated) limit, deriving the
asymptotic behavior of the property functions and observ-
ables. In Sec. IV we identify how extending these limiting
behaviors to the epoch of cosmological structure observa-
tions raises foundational issues, and we quantify the
dramatic deviations that actually arise in generic circum-
stances. Section V discusses the reasons why simplified
parametrizations appear generally unviable, and solving a
problem like modified gravity is so difficult. We conclude
in Sec. VI with some thoughts on further progress, while
the Appendix explores the possibility of proving broad
consistency relations that an entire class of modified gravity
theories must obey.

II. A ONE FUNCTION CASE: f ðRÞ GRAVITY

There are four free functions of time within the
Horndeski class of gravity theories [apart from the
Hubble expansion itself, HðaÞ or aðtÞ, which can also
be phrased in terms of an effective dark energy equation of
state wðaÞ]. It is convenient to take these functions to be
treated in terms of property functions [13]. The property
functions describe the structure of the scalar kinetic sector
of the theory via the kineticity αK, the tensor sector via
speed of tensor perturbation propagation αT ¼ c2T − 1, the
mixing of the scalar and tensor sectors via the braiding αB,
and the running of the Planck mass αM. Translations
between these and the EFT functions and the observable
functions are given in, e.g., [23]. Explicit expressions for αi
in terms of Horndeski functions are given in [13], and in
terms of covariant Galileon κ’s in, e.g., [24].
In specific theories some of these functions can be 0 and

some can be redundant. In general relativity all are 0. We
can start by considering the simplest nontrivial situation
where the theory has one independent free function of time;
fðRÞ is one such theory, with the only nonzero property

function being αM ¼ −αB [13]. Note that αM is closely
related to the fðRÞ function BðaÞ, the square of the effective
Compton wavelength of the scalaron in units of the
Hubble scale.
The property function αM ¼ d lnM2⋆=d ln a describes the

running of the Planck mass M⋆. Note that the strength of
gravity is proportional to M−2⋆ just as Newton’s constant
GN ¼ M−2

Pl . We can write

M2⋆ðaÞ ¼ M2
Ple

R
a

0
d ln a0αMða0Þ ð1Þ

¼ M2
Ple

R
a

0
d ln a0Ωdeða0Þ½αMða0Þ=Ωdeða0Þ�; ð2Þ

where the second line is in a form suggestive of an
approximation where αMðaÞ ∝ ΩdeðaÞ.
We can immediately see the unfortunate consequences of

such a proportionality approximation if it holds into the late
Universe. As dark energy dominates, Ωde → 1, the quantity
in brackets remains constant, but a is unbounded. Thus the
running Planck mass either goes to infinity or to 0,
depending on the sign of the proportionality constant.
Indeed we see in the next section that if we match the early
time behavior to evaluate the constant, then it is negative,
forcing M2⋆ → 0 at late times. Thus the strength of gravity
blows up to infinity in this approximation.
More quantitatively, if we take a ΛCDM background

expansion history, or a constant w dark energy equation of
state, we can do the integral analytically to find

M2⋆ðaÞ ¼ m2
p

�
1þΩde;0

Ωm;0
a−3w

�
ᾱM=ð−3wÞ

; ð3Þ

where ᾱM denotes the proportionality constant and sub-
scripts 0 indicate the present densities of dark energy and
matter (and w ¼ −1 for the cosmological constant case). As
a gets large,M2⋆ is driven to 0 or infinity, depending on the
sign of ᾱM.
The way out of this unphysical catastrophe is to break the

proportionality

αpropi ¼ ᾱiΩdeðaÞ ð4Þ

at some epoch. Indeed, physically we know this must
happen: as the Universe approaches a de Sitter state the
running of the Planck mass must freeze, i.e. αM → 0.
Let us explore through the exact numerical solution of

the fðRÞ gravity model when the approximation that the
property function (deviation from general relativity) is
proportional to the effective dark energy, which we
abbreviate as prop, breaks down. Figure 1 shows the
numerical solutions for αMðaÞ and αMðaÞ=ΩdeðaÞ, for
the exponential fðRÞ gravity model with c ¼ 3, compatible
with current observations, given in [25].
We see that even for the simple fðRÞ model that αM ∝

ΩdeðaÞ is a poor approximation. Indeed, αM ≈ 10−10 at
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a ¼ 0.3 while αM ≈ 10−2 at a ¼ 1, while Ωde only changes
by 1 order of magnitude over this range. This should be no
surprise: fðRÞ gravity involves a function of the Ricci
scalar R, which has a steep time dependence. Indeed, we
want fðRÞ to restore to general relativity rapidly in the high
curvature regime. Due to this very steep dependence, it is
difficult to see that any reasonable, model independent
function of ΩdeðaÞ will approximate αM during the observ-
able epoch z ≈ 0–3 (a ≈ 0.25–1).
Recall that prop, i.e. that αiðaÞ=ΩdeðaÞ ¼ constant, has

the problematic feature that it forces M2⋆ → 0 at late times,
with the consequence that the strength of gravity, Geff ,
blows up to infinity. Let us attempt to heal this pathology
at least.
We take as our ansatz instead

M2⋆ ¼ m2
p½1þ μΩdeðaÞ�; ð5Þ

where μ is a constant. That is, instead of αi deviating from
general relativity at early times proportional to the effective
dark energy density, instead it is the running Planck mass
that has such a linear deviation. So at early times the Planck
mass restores to general relativity, and at late times it
freezes to a constant. The latter is what we expect
physically in the de Sitter phase. Moreover, now M2⋆ðaÞ

is a function of the background expansion only at that scale
factor, rather than an integral over all past history as in the
prop case.
From this we find that

αMðaÞ≡ d lnM2⋆
d ln a

¼ −3μwðaÞΩdeðaÞ½1 − ΩdeðaÞ�
1þ μΩdeðaÞ

; ð6Þ

where wðaÞ is the effective dark energy equation of state
function. At early times, for many modified gravity models
wðaÞ is constant so to first order in ΩdeðaÞ we do have
αM;early ∝ ΩdeðaÞ. At late times, in the de Sitter phase
Ωde → 1 and hence αM → 0, exactly as physically
expected. Equation (6) for αM, coming from Eq. (5), is
plotted as the dotted red curve in Fig. 1.
While Eq. (5) leads to a remarkably good approximation

to αM for times after the present, it too fails at early times.
Indeed this rapid evolution for the gravitational coupling
strength was discussed in terms of the “paths of gravity”—
the phase space diagram of the gravitational strength—
in [26].
Thus, while we managed to remove a pathology and

found a parametrization suitable for the latter half of
evolution, we still do not see the way to a reliable
parametrization for αiðaÞ for observational data, even in
this simplest case of a single free function of time in the
modified gravity theory.

III. EARLY TIME LIMIT

Let us back up and understand why the simplified
parametrization αiðaÞ ∝ ΩdeðaÞ seemed to be an attractive
first attempt. We focus on what physics can lead to such a
relation, and what physics breaks it.
In the early time limit we expect general relativity to be

an excellent description of gravity, as seen from observa-
tional constraints from primordial nucleosynthesis and the
cosmic microwave background recombination epoch. Not
only should deviations from general relativity be small,
but also any contributions of the effective dark energy
density—i.e. observations indicate that the Universe was
matter dominated (including radiation dominated). The
impact of this on the behavior of modified gravity functions
was discussed qualitatively by [23] in terms of all the EFT
functions being of the same order, as well as showing how
this arises within the specific case of covariant Galileons.
Some quantitative behaviors for the time dependence of
the observables and the property functions αiðtÞ were also
derived in [24,27].
Within the framework of EFT, or the property functions

(we now consider all four within the full Horndeski class as
independent functions of time), each function is made up of
an array of terms from the theory Lagrangian (see, e.g.,
[28]). That is, each contains terms depending on different
numbers of times the field enters and different numbers of
derivatives. Since each term has different dependences on

FIG. 1. The property function αM (solid black) and its ratio
relative to the effective dark energy density, αM=Ωde (dashed
blue), is plotted vs scale factor a. It is well behaved and physical,
with the expected early and late time limits. Note that the quantity
αM=Ωde is definitely not well approximated by a constant in the
recent Universe (or the late time Universe). We also show the
result (dotted red) when calculating αM using Eq. (5). It gives an
excellent approximation at late times but not at early times; the
text explains why any function of Ωde is likely to fail during the
observational epoch.
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the Hubble parameter H=H0, which is large at early times,
generically one term dominates at early times. However, as
just stated, this term generally contributes to all the
property functions, the observables, and the effective dark
energy density. Since these are thus proportional to each
other and the dark energy density, one has

αi;early ∝ ΩdeðaÞ: ð7Þ

We make this relation explicit in the following, and
derive the constants of proportionality for various
Horndeski cases. However, we emphasize strongly that
Eq. (7) is only the early time limit—some specific con-
ditions for when this proportionality breaks down are given
in [23] and we elaborate on them here (in particular see
Sec. IV), as well as show when this whole ansatz is invalid
even at early times.
To calculate the early time relations, recall that for

Horndeski gravity the Lagrangian consists of a sum of
terms with the scalar field ϕ (and its derivatives) entering
two through five times. The prefactors of these operators
are functions Gi, with i ¼ 2;…5, and their derivatives, and
these Horndeski functions depend on ϕ and its kinetic
energy X ¼ _ϕ2=2, i.e. Giðϕ; XÞ. The early time behavior of
Gi is determined by the leading order “pole” behavior, e.g.
the lowest power of X (or ϕ) that enters. Thus we treat the
early time limit in terms of Gi ∝ Xn or ϕm. (In the
uncoupled covariant Galileon case of Horndeski gravity,
G2, G3 ∝ X and G4, G5 ∝ X2, with G4 also having a
constant part.)
We can use the generalized Klein-Gordon equation for

the scalar field evolution to define

β≡ 2ϕ̈

H _ϕ
¼

_X
HX

: ð8Þ

In the early time limit, β goes to a constant. We can evaluate
this constant using that in general the G5 term dominates at
early times due to the number of products of the (large)
Hubble parameter from its associated operators. Thus
initially we consider G5 ∝ Xn (we consider powers of ϕ
later). In this case

β ¼ −3ð1þ _H=H2Þð2nþ 1Þ
2nþ 1þ ðn − 1Þ½5þ 2ðn − 1Þðn − 2Þ� : ð9Þ

Note that since terms like n − 2 come from G5XX, i.e. two
derivatives with respect to X, if n ¼ 0 these terms will not
actually exist. For a background equation of state wb, then
_H=H2 ¼ −ð3=2Þð1þ wbÞ, i.e. −3=2 for nonrelativistic
matter domination.
Using the known expressions for the property functions

αj in terms of Gi, and for Ωde in terms of Gi, we can solve
for the early time limits of the property functions,

αB
Ωde

→
3ð2nþ 1Þ
2nþ 3

→
15

7
; ð10Þ

αK
Ωde

→
6½7n − 4þ 2ðn − 1Þðn − 2Þ�

2nþ 3
→

60

7
; ð11Þ

αM
Ωde

→
−3

2nþ 3

�
_H
H2

þ β

�
nþ 1

2

��
→

−9
56

; ð12Þ

αT
Ωde

→
−3
2

β − 2

2nþ 3
→

15

56
: ð13Þ

Here the short arrow denotes the early time limit, and the
long arrow denotes the further specialization to the covar-
iant Galileon case (where β ¼ 3=4 in nonrelativistic matter
domination). These constants agree with our numerical
computation of the full evolution. Note that the first two
lines do not depend on β while the last two lines do; one can
use Eq. (9) to write those expressions wholly in terms of n.
For the metric

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1 − 2ΦÞd~x2; ð14Þ

we can consider the effective gravitational coupling
strengths appearing in the modified Poisson equations
for nonrelativistic and relativistic particles, e.g. galaxies
and light,

∇2Ψ ¼ 4πa2GΨ
effρmδm; ð15Þ

∇2ðΨþ ΦÞ ¼ 8πa2GΨþΦ
eff ρmδm: ð16Þ

The quantity GΨ
eff is also called Gmatter and the quantity

GΨþΦ
eff is also called Glight.
The property functions can then be propagated to these

and other “observables” such as the gravitational slip η and
tensor wave speed cT [24]; using the above early time
limits, and specializing to the covariant Galileon limit for
simplicity,

GΨ
eff;early ¼ 1þ 759

224
Ωde; ð17Þ

ηearly ¼ 1þ 111

32
Ωde; ð18Þ

c2T;early ¼ 1þ 15

56
Ωde: ð19Þ

Now let us consider the case where the ϕ dependence of
G5 is the dominant contribution. In this case one can readily
find that

αB
Ωde

→
4

3
; ð20Þ
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αK
Ωde

→ 2; ð21Þ

αM
Ωde

→ −
1

3

�
β þ ðm − 1Þ

_ϕ

Hϕ

�
→ −

β

3
; ð22Þ

αT
Ωde

→
2

3
: ð23Þ

Here the long arrow denotes specialization to the deriva-
tively coupled covariant Galileon, where G5 ∼ cGϕ.
However in this case β is no longer given by Eq. (9).
Instead, β ¼ 6wb. Indeed, from Eq. (50) of [27] we find that
in the nonrelativistic matter early time limit with the cG
term dominating, X ¼ constant and hence β ¼ 0, so
αM ¼ 0.
One can carry out the same analysis if another term than

the expected G5 dominates the Horndeski Lagrangian at
early times.
The basic rule is that as long as the same term dominates

for both αi and Ωde, one obtains their proportionality in the
early time limit. The next section goes beyond the early
time limit, but first we should look for any exceptions to the
early time proportionality arising from a mismatch between
the terms entering Ωde and each αi. We find that indeed αB,
αK , and αT all lack certain terms that Ωde has, while αM has
a term that Ωde lacks.
For example, αB is lacking the term G3ϕ that Ωde has, so

if the theory is arranged (possibly fine-tuned) to make this
dominant at early times, then αB=Ωde → 0. A similar
situation occurs for αK and αT when G4ϕ is dominant
(and for αT when any G3 term dominates). These results
have important implications in the next section.
For αM, there is an extra term involving _ϕ3G5ϕϕ. For a

leading order behavior of G5 ∼ ϕm, this term involves
mðm − 1Þð _ϕ3=ϕ2ÞG5 and so one can have

αM
Ωde

∼
_ϕ

Hϕ
or

�
_ϕ

Hϕ

�2

; ð24Þ

whichever is dominant, unlessm ¼ 0, 1. The ratio therefore
in general either goes to 0, if _ϕ=ðHϕÞ is small, giving a
similar problem as with the other αi, or diverges, if _ϕ=ðHϕÞ
is large, giving a new problem.
Thus, prop proportionality is not even guaranteed at

early times, while we found in Sec. II that it fails during the
observational epoch in the recent Universe for the well-
known, simple case of fðRÞ gravity. We investigate further
in the next section.

IV. PARAMETRIZING PROPERTY FUNCTIONS

A. Limits to linear proportionality

The early time limit is the only case where the behavior
of the property functions, and observables, can be

calculated analytically. As seen in the previous section,
this showed that at early times αi was almost always
proportional to Ωde. However, there are three important
caveats:

(i) We saw in Sec. III that for some theories the constant
of proportionality was either 0 or infinity. These give
behavior at later times that is clearly invalid (or
trivial) within the proportionality approximation.

(ii) In the de Sitter limit one must have αM ¼ 0 so
proportionality must break down for this function.

(iii) The behavior actually deviates from the early time
asymptote at quite early times.

The discussion in [23] makes clear that linear propor-
tionality breaks down not when Ωde becomes appreciable
compared to unity (i.e. at redshift z≲ 1) but when H=H0 is
no longer much greater than 1, i.e. at redshift z ≈ 10 (for a
ΛCDM background, H=H0 ¼ 20 at z ¼ 10). Remember,
the physics comes from the interrelation of the multiple
terms in the Lagrangian with different powers of H.
Furthermore, we see that even at z ¼ 10, the observable
functions Gmatter and Glight calculated from the combina-
tions of the property functions are poorly approximated by
using a linear αi ∝ Ωde relation. Note though that the very
useful modified gravity Boltzmann code hi_class [29]
provides Eq. (4) as a default parametrization.

B. Tracker trajectories

Can we force the linear proportionality to hold longer,
despite the strong physical basis for the breakdown? If we
can freeze the relation between the Lagrangian terms,
preventing their natural evolution relative to each other,
then this may be possible (although such a construction
certainly breaks model independence and raises the specter
of fine-tuning). While the terms differ in powers of H, they
also differ in powers of other dynamical variables, and so
one could impose conditions on their combination to force
the terms in lockstep.
This is what “tracker” models do: they fix H2X ¼

constant for all times. When this holds, then all the
Horndeski Gi are the same order, despite their differing
powers of H=H0. This certainly gives up model independ-
ence by narrowing to a specific subclass.1 Moreover this
then implies that H2ρde ¼ constant [31]. That is a dramatic
imposition.
Recall that

ΩdeðaÞ ∝
ρde
H2

; ð25Þ

so the tracker condition forces

1Note that [30] claims that all other regions of covariant
Galileons are observationally unviable but their analysis only
concerns cubic Galileons, which have only a single term other
than the kinetic one and so lack the freedom of the full covariant
Galileon, let alone the Horndeski class.
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ΩdeðaÞ ∝
�
HðaÞ
H0

�
−4
: ð26Þ

By contrast,

ΩΛðaÞ ∝
ρΛ
H2

∝
�
HðaÞ
H0

�
−2
: ð27Þ

Figure 2 illustrates the implications of this. The tracker
model is more fine-tuned than even a cosmological con-
stant, by ðH0=HÞ2. We see that if one extended this
behavior back to the Planck scale, then the tracker model
has a fine-tuning of 10−240 in contrast to the cosmological
constant’s 10−120. Some articles in the literature, e.g.
[30,32], use this condition back to z ¼ 1014, where
Fig. 2 shows the fine-tuning is at the level of 10−104, or
1052 times more severe than the cosmological constant at
that redshift. These results agree completely with Fig. 11 of
[30], which only plots the density back to a ¼ 10−3.
The physics behind the approach to the H2X ¼ constant

behavior is the same as that causing cosmic acceleration.
One can immediately recognize that when this is written in
the form H2ρde ¼ constant this is merely the de Sitter
attractor, when H and ρde become constant. The natural
epoch for the approach to the tracker behavior of H2X ¼
constant is simply z ≈ 0; the general physics says that,
barring fine-tuning, one would expect the behavior not to

hold before the present. This is borne out by numerical
solution of the evolution equations.
Suppose one did allow the severe fine-tuning required by

Fig. 2. This not only gives up model independence by
narrowing to a highly specific subregion of theory space,
but also has theoretical issues: the condition H2X ¼
constant [which motivates Eq. (4)] forces the tensor
perturbation propagation speed (for the uncoupled or
derivatively coupled Galileon) to be less than the speed
of light, c2T < 1, leading to a gravi-Cherenkov catastrophe
[33–36].
Thus the means of preventing the early breakdown of

linear proportionality by forcing H2X ¼ constant does not
appear to be a generally viable solution.

C. Numerical solutions of evolution

Let us examine the exact numerical solutions of the
property functions and observable functions to investigate
the question of reasonable parametrizations. The relations
between the property and observable functions are [13]

GΦ
eff

GN
¼ 2m2

p

M2⋆
½αBð1þ αTÞ þ 2ðαM − αTÞ� þ α0B

ð2 − αBÞ½αBð1þ αTÞ þ 2ðαM − αTÞ� þ 2α0B
;

ð28Þ

where prime denotes d=d ln a. The gravitational slip η̄ ¼
Gmatter=Glight ¼ GΨ

eff=G
ΨþΦ
eff [note that η ¼ GΨ

eff=G
Φ
eff ¼ η̄=

ð2 − η̄Þ] is given by

η̄ ¼ ð2þ 2αMÞ½αBð1þ αTÞ þ 2ðαM − αTÞ� þ ð2þ 2αTÞα0B
ð2þ αMÞ½αBð1þ αTÞ þ 2ðαM − αTÞ� þ ð2þ αTÞα0B

;

ð29Þ

and the tensor wave speed is

c2T ¼ 1þ αT: ð30Þ

For definiteness in the numerical exploration, we here
work with uncoupled covariant Galileon gravity; recall that
we showed the results for fðRÞ gravity in Sec. II. We
calculate for the models of Figs. 6 and 4 of [27] (slightly
adjusting c2 to obtain Ωde;0 ¼ 0.713), which exhibit very
different de Sitter limits for the observable functions. We
call these case 1 and case 2. Figure 3 plots the property
functions αiðaÞ, divided by ΩdeðaÞ to examine whether
such a ratio is really constant for all times. The vertical
shaded region highlights the region z ¼ 0–3 where cosmic
structure data exist, and we are particularly interested in an
accurate parametrization (taking the constant of propor-
tionality to be a fit parameter, rather than fixed to its
analytic, early time value). The quantities αi=Ωde are
certainly seen to be not well approximated as constant
(regardless of the value of the constant), especially over
this range.

FIG. 2. The fractional energy density in dark energy is plotted
vs the log of the scale factor from a ¼ 1014 to the present, for the
tracker assumption (thick, black curve) and the cosmological
constant (thin, blue curve). Assuming that the behavior follows
the tracker at early times (rather than only at late times as in the
generic physics scenario) imposes severe fine-tuning, well
beyond the fine-tuning of the cosmological constant problem.
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Trying to define a constant of proportionality by taking
the early time (high redshift) value—where proportionality
does hold—can even give the wrong sign during the
observational epoch: see the αM and αT curves. Note that
the physics of Horndeski gravity requires αM ¼ 0 in the de
Sitter limit, while the linear proportionality approximation
of Eq. (4) violates this for any nonzero constant. Finally,
defining the constant of proportionality by an average over
cosmic history (hence not obeying either the early time or
late time limits) could greatly reduce the sensitivity to
observing deviations from general relativity, as we see next.
In Fig. 4 we calculate the gravitational slip observable

function η. In addition to the numerical solution we show
the predictions for the same models using the linear
proportionality approximation. Note that because the back-
ground expansion histories for cases 1 and 2 are very
similar, the prop approximation, which is a function only of
the background, delivers nearly the same observable
function for each. However the true solutions show highly
differing behaviors for the two cases. Moreover, at z≳ 1,
prop shows almost no deviation from general relativity
(below 1% for z > 2 and below 3% for z ¼ 1–2), while the
true solutions have considerably larger deviations. Thus,
using the linear proportionality assumption can miss even
quite dramatic signatures of modified gravity. Finally, as
we saw for αM, the prop approximation does not give
the physically required de Sitter property that η ¼ 1 for
Horndeski gravity.

Next we consider the gravitational couplingGeff . The left
panel of Fig. 5 shows the true, numerical solutions and prop
predictions for the two cases. The right panel zooms in on
the detail within the observational epoch. Again we see that
prop almost entirely misses the modified gravity signal,
cannot distinguish between the two different cases, and has
a pathological late time limit where Geff → −∞.

V. FITTING MODIFIED GRAVITY

If linear proportionality as a method for parametrizing
the time dependence of the property functions is not
generically valid, is there some other low dimensional
(few parameter) approximation?
Figures 3–5 exhibit the challenge of parametrizing

modified gravity with a simple time dependence for either
the property functions or observational functions. Even at
early times when αi=Ωde does not appear to be far from
constant, the small deviations have a large impact on the
observables. For example, at a ¼ 0.1 (z ¼ 9) the property
functions αi=Ωde deviate from prop by 5%, 4%, 9%, and
24% for subscripts B, K, M, and T. Deviations from general
relativity in the observable functions η and GΦ

eff of 7% and
32% respectively—just for case 2, the smaller variation

FIG. 3. The time dependence of the property functions divided
by the effective dark energy, αiðaÞ=ΩdeðaÞ, is exhibited for exact
solutions corresponding to case 1 (the thicker curves, with larger
variation) and case 2 (the thinner curves, with smaller variation).
They are not constant, as the prop approximation of Eq. (4)
assumes. Such an approximation is particularly inaccurate during
the key observational epoch z ¼ 0–3 (log a ≈ −0.6–0, shaded).

FIG. 4. The time dependence of the gravitational slip η is
compared for the exact solution (solid curves) and the αi ∝ ΩdeðtÞ
approximation (dashed curves). The prop approximation gives
completely different and inaccurate results for the physics. While
the true behavior depends on the differing parameters of the
theory (shown for the same two cases as Fig. 3), the prop
approximation has nearly identical behavior since the models
have nearly the same expansion history. The prop approximation
also underestimates the deviation from general relativity, possibly
missing detection of modified gravity, and has an incorrect de
Sitter asymptote.
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case—are missed by the constant proportionality approxi-
mation. Recall that η ¼ 1 to within 1% for z > 2 according
to the prop approximation.
Note that any attempt to make the property functions

αiðaÞ follow the effective dark energy density—whether
through linear proportionality or a more complicated
function—has a disadvantage from a physics perspective.
One hallmark of modified gravity is that growth does not
follow expansion, so attempting to make the growth purely
a function of expansion does not seem to follow this. The
four (or more) free functions of time within EFT are in
addition to HðaÞ, or ΩdeðaÞ, and it restricts highly the
physics if they are all forced to be strictly dependent on it.
Within the observational epoch the behavior tends to be

quite complicated. Also, note that in general we need to
know values of the property functions or observable
functions at all times before the present. The quantity
M2⋆ that enters the gravitational strengthGeff , and hence the
growth, requires an integral over all past history (hence the
deviations discussed above at z ≥ 2 are important for lower
redshift observations as well). Thus even a three parameter
parametrization for each αi such as using binned values for
z ∈ ½0; 1� and [1, 3] and constant proportionality at earlier
times does not work well. Approximate functional forms,
bins, or principal components all fall short because of the
complexity of the relation between the theory and observ-
ables; as stated in [23], these relations are at best the ratios
of sums of products of ratios of sums of functions.

The failure of parametrizations should not be a huge
surprise. The degrees of freedom in a general model are too
manifold. For example, although all Horndeski models
with a de Sitter late time behavior have the same back-
ground expansion and η ¼ 1 there, the values of Geff can
widely vary, as seen in Fig. 5. Similarly, while any
Horndeski models with the same dominant function, e.g.
G5ðϕ; XÞ, and functional form at early times have the same
values of αi=Ωde then, at observable times the interplay
between all the terms is important and cannot be made
model independent. Modified gravity cannot be forced into
a few simple numbers without restricting to a specific
model or perhaps the benefit of some new theoretical
insight.
Even for the simplest case of one function of time, as

seen in Fig. 1 for fðRÞ gravity, the form of the numerical
solutions gives no expectation that a simple low order
polynomial can capture the richness of the theory, let alone
be model independent. We emphasize that this case was
wholly observationally viable, so the complicated time
dependence is not a matter of a bizarre area of model space,
but rather is generic.

VI. CONCLUSIONS

Modified gravity leading to cosmic acceleration is a
much richer field than envisioned even a few years ago. The
early models like Dvali-Gabadadze-Porrati (DGP) gravity

FIG. 5. The time dependence of the gravitational coupling Geff is compared for the exact solution (solid curves) and the αi ∝ ΩdeðtÞ
approximation (dashed curves). The left panel shows the global behavior of GΦ

eff while the right panel zooms in on the detail around the
observational epoch and also shows Gmatter (dotted curves) and Glight (dot-dashed curves). The linear proportionality approximation
gives completely different and inaccurate results for the physics. While the true behavior depends on the parameters of the theory (shown
for the same two cases as Fig. 3), the prop approximation has nearly identical behavior since the models have nearly the same expansion
history. The prop approximation also underestimates the deviation from general relativity during the observable epoch, possibly missing
detection of modified gravity, and has an incorrect, and divergent, de Sitter asymptote.
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with a single number (the crossover scale) or fðRÞ gravity
with a time dependent scalaron mass as described by a
single power law index of scale factor have much less
freedom compared to even the quite restricted covariant
Galileon theories with constant coefficients, let alone the
Horndeski class or EFT with their several free functions
of time.
This complexity, in both the theory and its connections to

observables, means that accurate approximations to the
observables—being ratios of sums of products of ratios of
sums of functions—are rare. We derive analytic limits in
the early time, matter dominated regime for general classes
of Horndeski gravity, and show under what conditions they
appear.
These early time approximations, however, break down

dramatically even at redshifts z ≈ 10, let alone in the heart
of the observable epoch. Even percent level deviations in
the property functions αiðaÞ can lead to large misestima-
tions in observable properties. In particular, we demonstrate
that taking them proportional to the effective dark energy
density, αiðaÞ=ΩdeðaÞ ∝ constant can lead to unphysical
behavior and fine-tuning and can miss significant signa-
tures of departure from general relativity. This last property
is perhaps most damaging: misestimation could just give a
false alert, but lack of an alert misses essential physics [37].
To meet the challenge of connecting theory and obser-

vations, we need some parametrization that can prove itself
accurate on at least broad swathes of theories in the
literature. The numerical solutions we have shown for
fðRÞ and covariant Galileon gravity, demonstrating the
complexity of the evolution, indicate that this may be a
difficult task. In a real sense this is no surprise: the hallmark
of modified gravity is that the physics of growth does not
simply follow the expansion history, e.g. ΩdeðaÞ.
If a nearer term goal is merely an alert that general

relativity may not be matching observations, then bins in
scale and time of Gmatter and Glight, proposed in [38,39],
work well. Moreover, they would give some indication of
how the breakdown occurs, i.e. the trend in space and time
variation. While the lack of an elegant parametrization such
as exists for the background expansion (e.g. dark energy
equation of state) or even simple linear growth (e.g. the
gravitational growth index) is disappointing, it also points
out the richness of the problem of modified gravity. In
Appendix we comment on a conjecture for a general
consistency relation between observables that could apply
to wide classes of modified gravity theories.
At the same time, we should seek new gravitation

theories that are neither overly simplified and so lacking

model independence nor complicated but observationally
unviable.
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APPENDIX: CONSISTENCY RELATIONS

As an alternative method to that taken in the main text, a
broader though less detailed approach is to consider the
observables without any parametrization. Are there any
properties of them, or relations between them, for which an
observational constraint could rule out an entire class of
theories? One interesting conjecture, recently put forth by
[40], was that the deviation from general relativity of one of
the observables (i.e. Gmatter or Glight, which they call μ and
Σ), either positive or negative at some instant of time, could
not have a deviation of opposite sign in the other quantity.
The intriguing concept is that an observational violation of
such a consistency relation would effectively rule out all
Horndeski models. Unfortunately no proof is given but
rather an assertion of likeliness. Let us briefly examine the
expressions for the deviations and see if such unlikelihood
is obvious.
To make the expressions as simple as possible, consider a

subclass of Horndeski theory called covariant Galileons. If
the consistency relation is not obvious for the simple case,
then any obviousness for the general Horndeski class
should be more difficult to see. The expressions for
Gmatter and Glight are given in [27] (there called GΨ

eff and
GΨþΦ

eff ). If the deviations from general relativity Gmatter − 1
and Glight − 1 have the same sign (note that all gravitational
couplings are here normalized by the strength in general
relativity, i.e. Newton’s constant), then their ratio must be
positive,

R≡ Glight − 1

Gmatter − 1
> 0: ðA1Þ

Writing this out for covariant Galileons,

R ¼ κ6ð2κ3 þ κ4Þ − κ1ð2κ1 þ κ5Þ − κ5ðκ4κ1 − κ5κ3Þ þ κ4ðκ4κ6 − κ5κ1Þ
4ðκ3κ6 − κ21Þ − κ5ðκ4κ1 − κ5κ3Þ þ κ4ðκ4κ6 − κ5κ1Þ

; ðA2Þ
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where κi in turn are given by sums of many terms (see [27]).
It does not appear obvious that R > 0 is required, or even
highly likely (and of course the relation in the full
Horndeski class is even more complicated).
While a specific model with R < 0 is not easily

identified, consider instead

RΦ ≡Glight − 1

GΦ
eff − 1

> 0; ðA3Þ

i.e. where GΦ
eff rather than GΨ

eff is used in the denominator.
A violation of this relation is shown in Sec. IV, and the
expression for RΦ is no more complex or substantially
different from that for R.
The consistency relation in terms of Gmatter–Glight may

indeed hold, but nothing in the equations obviously seems
to require this. A firm proof of a consistency condition such
as conjectured in [40] would be highly interesting.
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