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Quantum radiation produced by the entanglement of quantum fields
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We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating
motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the

previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)].

We infer that this quantum radiation

from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state,
which has its origin in the entanglement of the state between the left and the right Rindler wedges.
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I. INTRODUCTION

An accelerated observer sees the Minkowski vacuum
state as a thermally excited state, which is characterized by
the Unruh temperature Ty, = a/2xz, where a is the accel-
eration. By the equivalence principle [1,2], the Unruh effect
can be understood in analogy with the Hawking radiation,
which predicts the thermal radiation from black holes.
Since both relativity and quantum mechanics simultane-
ously play important roles in these effects, detection of the
Unruh effect will have a big impact on the research of
fundamental physics (cf. [3]).

Signals of the Unruh effect will be tiny since the Unruh
temperature is very low, Ty = 4 x 1072%(a/9.8[m/s?]) K
for typical values of acceleration. Chen and Tajima pointed
out a nice idea of testing the Unruh effect using an intense
laser’s electric field for accelerating an electron, which has
inspired many following works [4-7]. However, sub-
sequent investigations demonstrated that naively expected
quantum radiations from thermal random motions induced
by the Unruh effect almost cancel out due to the interfer-
ence effect [8—10]. These works also showed the cancella-
tion is not complete and some quantum radiation remains,
though its physical origin is not well understood.

In order to clarify the possible signature of the Unruh
effect in the quantum radiation, we revisit the problem of
the quantum radiation emanated from an Unruh-De Witt
detector in the uniformly accelerating motion [11-15]. We
find nonvanishing quantum radiation, which is consistent
with the previous calculation by Lin and Hu [13]. We point
out that this quantum radiation is related to the nonlocal
correlation nature of the Minkowski vacuum state, which
has its origin in the entanglement of the state between the
left and the right Rindler wedges.
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This paper is organized as follows. In Sec. II, we review
the model of the Unruh-De Witt detector coupled to a
massless scalar field. In Sec. III, we derive the nonvanish-
ing quantum radiation form the Unruh-De Witt detector. In
Sec. IV, we discuss about the origin of the nonvanishing
quantum radiation. Section V is devoted to the summary
and conclusions. In the Appendix, a mathematical formula
to describe the quantum radiation flux is presented.

II. UNRUH-DE WITT DETECTOR MODEL

We consider the model consisting of a massless scalar
field ¢ and a harmonic oscillator Q, which we call an
Unruh-De Witt detector, described by the action

5(0.¢:) =7 [ ¢(P(6) - %0(0)
—|—;/d4x8"qb(x)(9ﬂ¢(x)

+2 / d*xdrQ(1)p(x)8% (x — z(z)).  (2.1)

where m and € are the mass and the angular frequency of
the harmonic oscillator, respectively, A is the coupling
constant, and 5(3) (x —y) is the 4-dimensional Dirac delta
function. The world line trajectory of the detector is
specified by x* = z¢(r), where 7 is the proper time of
the detector. We consider the trajectory in a uniformly
accelerated motion z#(z) = a~!(sinh ar, coshaz, 0,0).
Equations of motion for Q(z) and ¢(x) are given by

O() +930() = pe(r).  (22)
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Pp(x) = A / drQ()8% (x — z(7)).  (2.3)

The solution of the scalar field is written as a sum of the
homogeneous solution ¢y(x) and the inhomogeneous
solution iy (x), i-e., P(x) = Pp(x) + Pinn(x). Pinn(x) is
given by  ¢in(x) =4 [drQ(z)Gr(x — z(z)), where
Ggr(x —y) is the retarded Green function of the massless
scalar field. Using the regularized retarded Green function,
(2.2) becomes

O(x) +270(2) + Q20(2) = - y(al@)),  (24)

where we introduced y = A%>/8xm and the renormalized
frequency Q (see Ref. [13]).
Using the Fourier transformations,

0(0) =5 [~ dwe (o) 2.5)
@) =5, [ doepw). 26)

Eq. (2.4) is solved as Q(w) = Ah(w)p(w) with h(w) =
1/(—=mw? + mQ? — i2mwy). By inserting this solution
(2.5) into the expression of ¢y, (x), we have

bn) =2 [ dr [ 52 h(@)Galx - 20)olo).

(2.7)
In the present paper, we consider the case Q <y, in
which the poles of i(w) are located at w = —i€Q, where we

defined Q, =y + /7> — Q%

It is useful to verify that the detector is in thermal
equilibrium at the Unruh temperature. The expectation
value of energy of the harmonic oscillator is computed
using the solution (2.5) with h(w) as

m,, . a
E) = —((Q? Q2(0? =—
(B) = 2((Q%) + () = 5=
under the condition Q; < a. Thus the law of the equi-
partition of energy with the Unruh temperature is satisfied
as a consequence of the Unruh effect.

(2.8)

III. RADIATION FROM THE UNRUH-DE
WITT DETECTOR

Since the detector is in the thermal equilibrium, one may
expect that the would-be radiation due to the thermal
fluctuation is cancelled by the quantum interference effect.
Actually that is the case for the 1 4+ 1 dimensional case. The
1 4+ 3 dimensional case has a similar structure of the can-
cellation, and we misconcluded in Ref. [15] that the quantum
radiation from the uniformly accelerating Unruh-De Witt
detector is completely cancelled. But more careful calcula-
tions show that some part of the radiation remains. Our new
conclusion is consistent with that in Ref. [13], in which they
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also demonstrated nonvanishing radiation flux. In the present
paper, we give an analytic expression for the radiation and
some interpretation of the origin of the radiation.

In order to calculate the radiation from the detector, we
evaluate the energy momentum tensor of the quantum field.
First, we consider the two-point function [8,15]. Since the
total radiation rate can be estimated from the flux in the
F-region in Fig. 1, we focus on the two-point function,

(X)) = (#n(x)n(¥))
= {(Pinn (X) b1 (¥)) + (D0 ()i (¥)) + (Pinn (%) Pinn (¥))

- —i)? /+°° do ™/
(47)*po(x)po(¥) J-oo 2 ¥/ — 1
x [h(w)e—im(r{—rfr) _ h(_w)e—iw(z‘i—rﬂ)]’ (31)
for x,y € F-region, where we defined pg(x)

a\/(—x,,xﬂ F1/a2)?/4+ (x°)2 — (x1)?)/a>. Here, 7* is
defined as the proper time at which the detector’s trajectory
intersects with the past lightcone of a spacetime point x. On
the other hand, 7 is the proper time at which the
hypothetical detector’s trajectory in the L-region intersects
with the past lightcone of x for x € F-region. 7, is defined
in the same way. (See Fig. 1.)

After performing the integration of (3.1), the two-
point function symmetrized with respect to x and y is
expressed as

xO
A

F-region

> X1
R-region

FIG. 1. The R region is defined by x' > |x°|, the L region is
—x! > |x°], and the F region is x° > |x'|. The hyperbolic curve
Z*(z) in the R region is the trajectory of a uniformly accelerating
Unruh-De Witt detector, while the hyperbolic curve in the L region
7#(r) is the hypothetical trajectory obtained by an analytic continu-
ation of the trajectory in the R region. ¥ is defined by the proper time
at which the detector’s trajectory intersects with the pastlightcone of
x#. On the other hand, for a point y* in the F region, ’, is defined by
the proper time that the hypothetical detector’s trajectory in the L
region intersects with the past lightcone of y*.
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((x)p(y)) = (n(x)Pn(¥))]s
iA? 1
= —Wzm( (x,y) +1(y,x)), (3.2)

where I(x,y) is defined by
I(x.y)

——io(e: ~=%)

1 a e =) 1

Q,.Q 27r+ Q —-Q, sinzQ_/a

-Q, (-7}) 1 @

e 1)re—nalm=7) g4
+ . +> =) -
Q. —Q_ sinzQ, /a n:l(Q_—na)(Q+—na)n'

a © n na(L—‘rJr) a
0} — 1) .
0~ [ 2ﬂ+; +na ++na)ﬂ]
(3.3)
We are now interested in the energy flux f = =", T;n’,

where T, is the time and space component of the energy
momentum tensor and ' is the unit vector n' = x'/r, which
is computed from the two-point function,

.0 0

Ty = hm@a? [(P(x)p()) = (n(x)n(¥))]s-

Using the expression (3.2), we can derive an exact
expression for the energy flux (cf. [9,10]). The exact
formula (see the Appendix) is very complicated, but in
the case Q < y, it can be very well approximated by the
following formula:

(3.4)

ai?
(47)>mr*sin*0

f= F(q.Q./a.Q_/a),  (3.5)

where we defined

F(q.Q./a,Q_/a)

- 0(q) a1
I RN
L a —g+V1+g"\*/e 1
Q g++/1+¢* sinzQ_/a

roolgas)]

and g = a(t—r—1/(2a*r))/sin@. The upper panel of
Fig. 2 exemplifies the function F(g) adopting y/a =1
and Q/a = 0.01. The lower panel of Fig. 2 shows the
corresponding angular plot of F(g)/sin*8 at 7_ = 0 (see
also Refs. [9,10]).

The order of the energy radiation rate is roughly
estimated as

dE al? ar?  a>
= 1limr? | dQ ~ F ~ .
r o / of 4m 2702

(3.6)

(3.7)

PHYSICAL REVIEW D 95, 023512 (2017)
Fl(g)

00t

100¢

X

FIG. 2. Upper panel: F(g) as function of ¢, where we chose
Q/a =0.01 and y/a = 1. Lower panel: angular distribution of
the flux sin™ 0F (¢(z_,0)) at 7_ = 0, where we chose the same
parameters as those of the upper panel. The coordinates x and y

are x' and /(x?)? + (x*)?, respectively.

This result is consistent with that of Ref. [13], although
their result assumes the weak coupling case Q > y.

IV. INTERPRETATION OF THE RESULT

We will now point out that the physical origin of the
remaining radiation is related to the quantum entanglement
of the vacuum between the left and the right Rindler
wedges. Using the properties of the retarded Green function

J(¥)
4mpo(x)’

/erR(x, () () = (4.1)

for a function J(), the two-point function (3.1) with x, y €
F region can be rewritten as

(@(x)P(y)) = (D (x)n(y))

_ _i/12 / d_a) emu/a

3 T
« / dr / e [Gp (x, 2(2)) G v, 3(2) (@)

= Gp(x,2(7))Gr(y, 2(7) ) 1= w)], (4.2)
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where Z(7) denotes the hypothetical trajectory in the L
region. On the other hand, the correlation of the inhomo-
geneous term, which is canceled by the interference term, is
given by [8,15]

(Pinn (%) Pinn (¥))

- ./12 do eZn’w/a
=t EeZﬂ(u/a -1

/ ‘“/ de'em0C=2) (G (x, 2(2)) Gr(y, 2(7')) (@)
— G(x. 2(2))Gr (v, 2(t') ) (). (43)

These two correlations, (4.2) and (4.3), look very similar
but are different in the following two points, and both of
them indicate that the remaining two-point function (4.2)
reflects the nonlocal correlation of the Minkowski vacuum
state for the following two reasons.

First, Eq. (4.3) expresses the two-point correlation of the
field produced by the detector in the R region, which is
described by the retarded Green function connecting two
points on the trajectory z#(z) in the R region (see Fig. 1). It
is due to the fact that the inhomogeneous part of the field
¢inn 18 determined by the quantum fluctuations on the real
trajectory (2.7). On the other hand, Eq. (4.2) is obtained by
replacing one of the two points on the trajectory z#(z) in the
R region with z#(z) in the L region. This reflects the fact
that the correlation function (¢, (x)¢in(v)) contains the
correlation between the R and the L regions. Namely, the
entanglement of the quantum fluctuations between the R
and the L regions will be responsible for the remaining
radiation in Eq. (4.2).

The second difference between (4.2) and (4.3) is the
numerical factors of /¢ and e?**/¢_ It is also a signature
of the entanglement of fields between the R region and the
L region. By introducing the Rindler coordinates in the R
region and the L region, the quantum field operator is
constructed in each region, respectively, and we may write
the field operator as [2,16]

y = wrl(x' —x°) +y 0(x0 = x), (4.4)

with
WR = Z(“j(h)@' +uj(xp)aj), (4.5)
v = Z(Uj(xﬁi’j + U;(XL)ZA’;)’ (4.6)

J
where y and y; are the quantum field operators uj (xR)

and v;(x,) are the mode functions, and a;(a ) and b; (b )

are the annihilation (creation) operators of Rmdler particles
in the R and the L regions, respectively. Accordingly the
Rindler vacuum states, ) ), are defined by the

annihilation operator, a j or b - The Minkowski vacuum
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state ) is expressed by the superposed state of the
excited states of the Rindler vacuum [2,16],

32 e g R) @ [y, L) |

0,M) = H[N

J n;=0

(4.7)

where [n;, R) and |n;, L) are the nth excited states of the
mode j for the Rindler particles in the R and L regions,
respectively. w; is the energy of a Rindler particle of the

mode j, and N;=VI —e~2;/¢  This expression
describes the entanglement of the Minkowski vacuum
state, as the entangled states of the R and L regions.

Let us consider the field operator of the form (4.5)
but with wu;(xg) being replaced by another function
itj(xg), which we define yr(xg) = ; (it;(xg)a; +it} (xR)a ).
By choosing points, x and y in the R and L
regions, respectively, the correlation function (0,
M|y (x)y(y)|0, M) can be obtained as

(0. Ml (xg )y (y2)]0. M)
ezm)j/a

=D (@) (ve) + & (m) 0 0)) 3y e

(4.8)

Here the factor /¢ /(e?**/4 — 1) appears when the two
points are chosen in the R and L regions. This comes
from the relations (0, M|b;a,/0, M) = (O,M|&;l§; )
e™/@/(e?*@/@ — 1), and the same factor appears in (4.2).
On the other hand, when two points x and y are in the R
region, the two-point correlation function becomes

(0, M|y (xg)w (yr)|0, M)
_ Z(

~ % 1
+ uj(xR)uj(yR)m)

27m} ila

yR) 27‘[(1) i/a _ 1
(4.9)

Note that a different numerical factor e>”®/¢ appears in
the numerator. This comes from the relations (0, M]|
a;a}10.M) « e?/¢/(e2/@ — 1) and (0,M|a}a;]0.M) o
1/(e***/ — 1), and this is nothing but the numerical
factor in (4.3). By changing the integration variable from
w to @' = —w, the function 1/(e**/¢ — 1) is expressed as
e¥@/a /(1 — ¢2"'/4) and becomes the same numerical
factor.

Thus, the above arguments show that the difference in
the numerical factors of ¢#”/¢ and e?**/“ can be interpreted
as an indication of the entanglement of the Minkowski
vacuum between the right Rindler wedge and the left
Rindler wedge as Eq. (4.7).
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V. SUMMARY AND CONCLUSIONS

In summary the influence of the detector in the quantum
vacuum is generated in the R region, which is described by
¢inn(x), and propagates into the F region. However, the
system cannot be closed within the R region. As we showed,
the remaining energy flux in the F region, which can be
calculated from the two-point functions there, depends on
the interference between ¢, (x) and ¢;,(x) in the F region.
Because of the causality, properties of the quantum field
¢n(x) in the F region are influenced by the properties of the
quantum states not only in the R region but also in the L
region. Since the Minkowski vacuum is entangled between
these two regions, the correlation function of ¢;,,(x) and
¢ (x) contains the information of the entanglement of the
Minkowski vacuum. If there was no entanglement, the
energy flux would be completely canceled out and vanish.
Thus, we can conclude that the remaining radiation is a
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consequence of the nonlocal correlation (or the entangle-
ment) of the Minkowski vacuum between the R and L
regions, and it may be called the quantum radiation.
Detectability of the quantum radiation is an interesting
issue, and in order to discuss it, we first need to extend the
present calculation to more realistic systems. It is also
necessary to satisfy the condition that thermalization time
(or the relaxation time) 7x = 87m/A> = y~! [13], with which
the system becomes in an equilibrium phase, must be shorter
than the time during which a uniform acceleration is main-
tained. We hope to discuss these issues in future publications.
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APPENDIX: EXACT FORMULA FOR THE ENERGY FLUX

In the appendix we just show the result of the exact formula for the energy flux (3.5) with

Fla:0.0) = <1+qzqz>3 HQ){QI & zﬁgf_g <g3+ . 959(9) sm;lrsz
b (e (1102 im8(0) - e (L1 - 2= 2 )£
+9(—q){é+é_%+ﬁ‘f__l_(2+ (1 +1Q_ Fi(114+Q_24+Q:-&7(q))
s Fil,L1+Q,2+Q ;¢! (61))) }TH - Zﬁ {—6'((1){—@_%}~2+ Sil”(g)_
_ szjg_ S"jﬂ(gi + é_g(_q)fh <— 1 _1é+ LFI(21-9,,2-Q.;-(q)) + 1 _lé_

X F1(2,1-Q_2-Q_; —g(q))> %} + 9(—61){

L RRI+0.240 —5_1(61))>

1+§2

5_1(‘]) (_ 1 A A . el

fz__fz+ 1+§2+2F1(2,1+Q+,2+Q+, & (q)
W [ fg @
ﬂH (1+q2)2{ G(Q){ Q_ -Q,sinQ. Q, —-Q_

225_2(;;) 1(3.2-9.3-9.; é(q))+22€_2gzz’71(3»2‘é+’3_Q+;_§(‘1))>%}

o= { ( g 21402106 (q))

+1§‘ (g)+ F (2 140, 24+0,;—¢& (q)+iizg_)2F1(3,2+fz_,3+Q_;—5‘1(Q))
2+£~2sz1(3,2+£~2+,3+Q+;—§‘1(q))> %H (A1)

where we defined &(q) = (—g + /1 + ¢?)
well approximated by Eq. (3 6) in the case Q <y.

V(g + 1+ ¢%),

fl+ =Q,/a and Q_=Q_/a. This complicated formula is
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