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We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating
motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the
previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)]. We infer that this quantum radiation
from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state,
which has its origin in the entanglement of the state between the left and the right Rindler wedges.
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I. INTRODUCTION

An accelerated observer sees the Minkowski vacuum
state as a thermally excited state, which is characterized by
the Unruh temperature TU ¼ a=2π, where a is the accel-
eration. By the equivalence principle [1,2], the Unruh effect
can be understood in analogy with the Hawking radiation,
which predicts the thermal radiation from black holes.
Since both relativity and quantum mechanics simultane-
ously play important roles in these effects, detection of the
Unruh effect will have a big impact on the research of
fundamental physics (cf. [3]).
Signals of the Unruh effect will be tiny since the Unruh

temperature is very low, TU ¼ 4 × 10−20ða=9.8½m=s2�Þ K
for typical values of acceleration. Chen and Tajima pointed
out a nice idea of testing the Unruh effect using an intense
laser’s electric field for accelerating an electron, which has
inspired many following works [4–7]. However, sub-
sequent investigations demonstrated that naively expected
quantum radiations from thermal random motions induced
by the Unruh effect almost cancel out due to the interfer-
ence effect [8–10]. These works also showed the cancella-
tion is not complete and some quantum radiation remains,
though its physical origin is not well understood.
In order to clarify the possible signature of the Unruh

effect in the quantum radiation, we revisit the problem of
the quantum radiation emanated from an Unruh-De Witt
detector in the uniformly accelerating motion [11–15]. We
find nonvanishing quantum radiation, which is consistent
with the previous calculation by Lin and Hu [13]. We point
out that this quantum radiation is related to the nonlocal
correlation nature of the Minkowski vacuum state, which
has its origin in the entanglement of the state between the
left and the right Rindler wedges.

This paper is organized as follows. In Sec. II, we review
the model of the Unruh-De Witt detector coupled to a
massless scalar field. In Sec. III, we derive the nonvanish-
ing quantum radiation form the Unruh-De Witt detector. In
Sec. IV, we discuss about the origin of the nonvanishing
quantum radiation. Section V is devoted to the summary
and conclusions. In the Appendix, a mathematical formula
to describe the quantum radiation flux is presented.

II. UNRUH-DE WITT DETECTOR MODEL

We consider the model consisting of a massless scalar
field ϕ and a harmonic oscillator Q, which we call an
Unruh-De Witt detector, described by the action

S½Q;ϕ; z� ¼ m
2

Z
dτð _Q2ðτÞ − Ω2

0Q
2ðτÞÞ

þ 1

2

Z
d4x∂μϕðxÞ∂μϕðxÞ

þ λ

Z
d4xdτQðτÞϕðxÞδð4ÞD ðx − zðτÞÞ; ð2:1Þ

where m and Ω0 are the mass and the angular frequency of
the harmonic oscillator, respectively, λ is the coupling

constant, and δð4ÞD ðx − yÞ is the 4-dimensional Dirac delta
function. The world line trajectory of the detector is
specified by xμ ¼ zμðτÞ, where τ is the proper time of
the detector. We consider the trajectory in a uniformly
accelerated motion zμðτÞ ¼ a−1ðsinh aτ; cosh aτ; 0; 0Þ.
Equations of motion for QðτÞ and ϕðxÞ are given by

Q̈ðτÞ þΩ2
0QðτÞ ¼ λ

m
ϕðzðτÞÞ; ð2:2Þ
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∂2ϕðxÞ ¼ λ

Z
dτQðτÞδð4ÞD ðx − zðτÞÞ: ð2:3Þ

The solution of the scalar field is written as a sum of the
homogeneous solution ϕhðxÞ and the inhomogeneous
solution ϕinhðxÞ, i.e., ϕðxÞ ¼ ϕhðxÞ þ ϕinhðxÞ. ϕinhðxÞ is
given by ϕinhðxÞ ¼ λ

R
dτQðτÞGRðx − zðτÞÞ, where

GRðx − yÞ is the retarded Green function of the massless
scalar field. Using the regularized retarded Green function,
(2.2) becomes

Q̈ðτÞ þ 2γ _QðτÞ þ Ω2QðτÞ ¼ λ

m
ϕhðzðτÞÞ; ð2:4Þ

where we introduced γ ¼ λ2=8πm and the renormalized
frequency Ω (see Ref. [13]).
Using the Fourier transformations,

QðτÞ ¼ 1

2π

Z
∞

−∞
dωe−iωτ ~QðωÞ; ð2:5Þ

ϕhðzðτÞÞ ¼
1

2π

Z
∞

−∞
dωe−iωτφðωÞ; ð2:6Þ

Eq. (2.4) is solved as ~QðωÞ ¼ λhðωÞφðωÞ with hðωÞ ¼
1=ð−mω2 þmΩ2 − i2mωγÞ. By inserting this solution
(2.5) into the expression of ϕinhðxÞ, we have

ϕinhðxÞ ¼ λ2
Z

dτ
Z

dω
2π

e−iωτhðωÞGRðx − zðτÞÞφðωÞ:

ð2:7Þ
In the present paper, we consider the case Ω < γ, in

which the poles of hðωÞ are located at ω ¼ −iΩ� where we
defined Ω� ¼ γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 −Ω2

p
.

It is useful to verify that the detector is in thermal
equilibrium at the Unruh temperature. The expectation
value of energy of the harmonic oscillator is computed
using the solution (2.5) with hðωÞ as

hEi ¼ m
2
ðh _Q2ðτÞi þΩ2hQ2ðτÞiÞ ¼ a

2π
ð2:8Þ

under the condition Ω� ≪ a. Thus the law of the equi-
partition of energy with the Unruh temperature is satisfied
as a consequence of the Unruh effect.

III. RADIATION FROM THE UNRUH-DE
WITT DETECTOR

Since the detector is in the thermal equilibrium, one may
expect that the would-be radiation due to the thermal
fluctuation is cancelled by the quantum interference effect.
Actually that is the case for the 1þ 1 dimensional case. The
1þ 3 dimensional case has a similar structure of the can-
cellation, and we misconcluded in Ref. [15] that the quantum
radiation from the uniformly accelerating Unruh-De Witt
detector is completely cancelled. But more careful calcula-
tions show that some part of the radiation remains. Our new
conclusion is consistent with that in Ref. [13], in which they

also demonstrated nonvanishing radiation flux. In the present
paper, we give an analytic expression for the radiation and
some interpretation of the origin of the radiation.
In order to calculate the radiation from the detector, we

evaluate the energy momentum tensor of the quantum field.
First, we consider the two-point function [8,15]. Since the
total radiation rate can be estimated from the flux in the
F-region in Fig. 1, we focus on the two-point function,

hϕðxÞϕðyÞi − hϕhðxÞϕhðyÞi
¼ hϕinhðxÞϕhðyÞi þ hϕhðxÞϕinhðyÞi þ hϕinhðxÞϕinhðyÞi

¼ −iλ2

ð4πÞ2ρ0ðxÞρ0ðyÞ
Z þ∞

−∞

dω
2π

eπω=a

e2πω=a − 1

× ½hðωÞe−iωðτx−−τyþÞ − hð−ωÞe−iωðτxþ−τy−Þ�; ð3:1Þ
for x; y ∈ F-region, where we defined ρ0ðxÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−xμxμ þ 1=a2Þ2=4þ ððx0Þ2 − ðx1Þ2Þ=a2

q
. Here, τx− is

defined as the proper time at which the detector’s trajectory
intersects with the past lightcone of a spacetime point x. On
the other hand, τxþ is the proper time at which the
hypothetical detector’s trajectory in the L-region intersects
with the past lightcone of x for x ∈ F-region. τy� is defined
in the same way. (See Fig. 1.)
After performing the integration of (3.1), the two-

point function symmetrized with respect to x and y is
expressed as

FIG. 1. The R region is defined by x1 > jx0j, the L region is
−x1 > jx0j, and the F region is x0 > jx1j. The hyperbolic curve
zμðτÞ in the R region is the trajectory of a uniformly accelerating
Unruh-DeWitt detector, while the hyperbolic curve in theL region
~zμðτÞ is the hypothetical trajectory obtained by an analytic continu-
ationof the trajectory in theR region.τx− isdefinedby theproper time
atwhich thedetector’s trajectory intersectswith thepast lightconeof
xμ. On the other hand, for a point yμ in theF region, τyþ is defined by
the proper time that the hypothetical detector’s trajectory in the L
region intersects with the past lightcone of yμ.
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½hϕðxÞϕðyÞi − hϕhðxÞϕhðyÞi�S
¼ −

iλ2

ð4πÞ2ρ0ðxÞρ0ðyÞ
1

2m
ðIðx; yÞ þ Iðy; xÞÞ; ð3:2Þ

where Iðx; yÞ is defined by

Iðx;yÞ

¼−iθðτy− − τxþÞ
�

1

ΩþΩ−

a
2π

þe−Ω−ðτy−−τxþÞ

Ω− −Ωþ

1

sinπΩ−=a

þe−Ωþðτy−−τxþÞ

Ωþ−Ω−

1

sinπΩþ=a
þ
X∞
n¼1

ð−1Þne−naðτy−−τxþÞ
ðΩ− −naÞðΩþ−naÞ

a
π

�

þ iθðτxþ− τy−Þ
�

1

ΩþΩ−

a
2π

þ
X∞
n¼1

ð−1Þnenaðτy−−τxþÞ
ðΩ−þnaÞðΩþþnaÞ

a
π

�
:

ð3:3Þ
We are now interested in the energy flux f ¼ −

P
iT0ini,

where T0i is the time and space component of the energy
momentum tensor and ni is the unit vector ni ¼ xi=r, which
is computed from the two-point function,

T0i ¼ lim
y→x

∂
∂x0

∂
∂yi ½hϕðxÞϕðyÞi − hϕhðxÞϕhðyÞi�S: ð3:4Þ

Using the expression (3.2), we can derive an exact
expression for the energy flux (cf. [9,10]). The exact
formula (see the Appendix) is very complicated, but in
the case Ω < γ, it can be very well approximated by the
following formula:

f ¼ aλ2

ð4πÞ2mr2sin4θ
F ðq;Ωþ=a;Ω−=aÞ; ð3:5Þ

where we defined

F ðq;Ωþ=a;Ω−=aÞ

¼ q2

ð1þ q2Þ3
�
−θðqÞ

�
a2

ΩþΩ−

1

2π

þ a
Ω− −Ωþ

�
−qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
�

Ω−=a 1

sin πΩ−=a

�

þ θð−qÞ
�

a2

ΩþΩ−

1

2π

��
ð3:6Þ

and q ¼ aðt − r − 1=ð2a2rÞÞ= sin θ. The upper panel of
Fig. 2 exemplifies the function F ðqÞ adopting γ=a ¼ 1
and Ω=a ¼ 0.01. The lower panel of Fig. 2 shows the
corresponding angular plot of F ðqÞ= sin4 θ at τ− ¼ 0 (see
also Refs. [9,10]).
The order of the energy radiation rate is roughly

estimated as

dE
dt

¼ lim
r→∞

r2
Z

dΩð2Þf ∼
aλ2

4πm
F ∼

aλ2

4πm
a2

2πΩ2
: ð3:7Þ

This result is consistent with that of Ref. [13], although
their result assumes the weak coupling case Ω > γ.

IV. INTERPRETATION OF THE RESULT

We will now point out that the physical origin of the
remaining radiation is related to the quantum entanglement
of the vacuum between the left and the right Rindler
wedges. Using the properties of the retarded Green function

Z
dτGRðx; zðτÞÞJðτÞ ¼

Jðτx−Þ
4πρ0ðxÞ

; ð4:1Þ

for a function JðτÞ, the two-point function (3.1) with x; y ∈
F region can be rewritten as

hϕðxÞϕðyÞi − hϕhðxÞϕhðyÞi

¼ −iλ2
Z

dω
2π

eπω=a

e2πω=a − 1

×
Z

dτ
Z

dτ0e−iωðτ−τ0Þ½GRðx; zðτÞÞGRðy; ~zðτ0ÞÞhðωÞ

− GRðx; ~zðτÞÞGRðy; zðτ0ÞÞhð−ωÞ�; ð4:2Þ

FIG. 2. Upper panel: F ðqÞ as function of q, where we chose
Ω=a ¼ 0.01 and γ=a ¼ 1. Lower panel: angular distribution of
the flux sin−4 θF ðqðτ−; θÞÞ at τ− ¼ 0, where we chose the same
parameters as those of the upper panel. The coordinates x and y
are x1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2Þ2 þ ðx3Þ2

p
, respectively.
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where ~zðτÞ denotes the hypothetical trajectory in the L
region. On the other hand, the correlation of the inhomo-
geneous term, which is canceled by the interference term, is
given by [8,15]

hϕinhðxÞϕinhðyÞi

¼ −iλ2
Z

dω
2π

e2πω=a

e2πω=a − 1

×
Z

dτ
Z

dτ0e−iωðτ−τ0Þ½GRðx; zðτÞÞGRðy; zðτ0ÞÞhðωÞ

− GRðx; zðτÞÞGRðy; zðτ0ÞÞhð−ωÞ�: ð4:3Þ

These two correlations, (4.2) and (4.3), look very similar
but are different in the following two points, and both of
them indicate that the remaining two-point function (4.2)
reflects the nonlocal correlation of the Minkowski vacuum
state for the following two reasons.
First, Eq. (4.3) expresses the two-point correlation of the

field produced by the detector in the R region, which is
described by the retarded Green function connecting two
points on the trajectory zμðτÞ in the R region (see Fig. 1). It
is due to the fact that the inhomogeneous part of the field
ϕinh is determined by the quantum fluctuations on the real
trajectory (2.7). On the other hand, Eq. (4.2) is obtained by
replacing one of the two points on the trajectory zμðτÞ in the
R region with ~zμðτÞ in the L region. This reflects the fact
that the correlation function hϕhðxÞϕinhðyÞi contains the
correlation between the R and the L regions. Namely, the
entanglement of the quantum fluctuations between the R
and the L regions will be responsible for the remaining
radiation in Eq. (4.2).
The second difference between (4.2) and (4.3) is the

numerical factors of eπω=a and e2πω=a. It is also a signature
of the entanglement of fields between the R region and the
L region. By introducing the Rindler coordinates in the R
region and the L region, the quantum field operator is
constructed in each region, respectively, and we may write
the field operator as [2,16]

ψ ¼ ψRθðx1 − x0Þ þ ψLθðx0 − x1Þ; ð4:4Þ
with

ψR ¼
X
j

ðujðxRÞâj þ u�jðxRÞâ†jÞ; ð4:5Þ

ψL ¼
X
j

ðvjðxLÞb̂j þ v�jðxLÞb̂†jÞ; ð4:6Þ

where ψR and ψL are the quantum field operators, ujðxRÞ
and vjðxLÞ are the mode functions, and âjðâ†jÞ and b̂jðb̂†jÞ
are the annihilation (creation) operators of Rindler particles
in the R and the L regions, respectively. Accordingly the
Rindler vacuum states, j0; Ri and j0; Li, are defined by the
annihilation operator, âj or b̂j. The Minkowski vacuum

state j0;Mi is expressed by the superposed state of the
excited states of the Rindler vacuum [2,16],

j0;Mi ¼
Y
j

�
Nj

X∞
nj¼0

e−πnjωj=ajnj; Ri ⊗ jnj; Li
�
; ð4:7Þ

where jnj; Ri and jnj; Li are the nth excited states of the
mode j for the Rindler particles in the R and L regions,
respectively. ωj is the energy of a Rindler particle of the

mode j, and Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πωj=a

p
. This expression

describes the entanglement of the Minkowski vacuum
state, as the entangled states of the R and L regions.
Let us consider the field operator of the form (4.5)

but with ujðxRÞ being replaced by another function
~ujðxRÞ, whichwe define ~ψðxRÞ¼

P
jð ~ujðxRÞâjþ ~u�jðxRÞâ†jÞ.

By choosing points, x and y in the R and L
regions, respectively, the correlation function h0;
Mj ~ψðxÞψðyÞj0;Mi can be obtained as

h0;Mj ~ψðxRÞψðyLÞj0;Mi

¼
X
j

ð ~ujðxRÞvjðyLÞ þ ~u�jðxRÞv�jðyLÞÞ
eπωj=a

e2πωj=a − 1
:

ð4:8Þ

Here the factor eπω=a=ðe2πω=a − 1Þ appears when the two
points are chosen in the R and L regions. This comes
from the relations h0;Mjb̂jâjj0;Mi ¼ h0;Mjâ†j b̂†j j0;Mi ∝
eπω=a=ðe2πω=a − 1Þ, and the same factor appears in (4.2).
On the other hand, when two points x and y are in the R

region, the two-point correlation function becomes

h0;Mj ~ψðxRÞψðyRÞj0;Mi

¼
X
j

�
~ujðxRÞu�jðyRÞ

e2πωj=a

e2πωj=a − 1

þ ~u�jðxRÞujðyRÞ
1

e2πωj=a − 1

�
: ð4:9Þ

Note that a different numerical factor e2πω=a appears in
the numerator. This comes from the relations h0;Mj
âjâ

†
j j0;Mi ∝ e2πω=a=ðe2πω=a − 1Þ and h0;Mjâ†j âjj0;Mi ∝

1=ðe2πω=a − 1Þ, and this is nothing but the numerical
factor in (4.3). By changing the integration variable from
ω to ω0 ¼ −ω, the function 1=ðe2πω=a − 1Þ is expressed as
e2πω

0=a=ð1 − e2πω
0=aÞ and becomes the same numerical

factor.
Thus, the above arguments show that the difference in

the numerical factors of eπω=a and e2πω=a can be interpreted
as an indication of the entanglement of the Minkowski
vacuum between the right Rindler wedge and the left
Rindler wedge as Eq. (4.7).
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V. SUMMARY AND CONCLUSIONS

In summary the influence of the detector in the quantum
vacuum is generated in the R region, which is described by
ϕinhðxÞ, and propagates into the F region. However, the
system cannot be closed within theR region. Aswe showed,
the remaining energy flux in the F region, which can be
calculated from the two-point functions there, depends on
the interference between ϕinhðxÞ and ϕhðxÞ in the F region.
Because of the causality, properties of the quantum field
ϕhðxÞ in the F region are influenced by the properties of the
quantum states not only in the R region but also in the L
region. Since the Minkowski vacuum is entangled between
these two regions, the correlation function of ϕinhðxÞ and
ϕhðxÞ contains the information of the entanglement of the
Minkowski vacuum. If there was no entanglement, the
energy flux would be completely canceled out and vanish.
Thus, we can conclude that the remaining radiation is a

consequence of the nonlocal correlation (or the entangle-
ment) of the Minkowski vacuum between the R and L
regions, and it may be called the quantum radiation.
Detectability of the quantum radiation is an interesting

issue, and in order to discuss it, we first need to extend the
present calculation to more realistic systems. It is also
necessary to satisfy the condition that thermalization time
(or the relaxation time) τR ¼ 8πm=λ2 ¼ γ−1 [13], withwhich
the system becomes in an equilibrium phase, must be shorter
than the time during which a uniform acceleration is main-
tained.We hope to discuss these issues in future publications.
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APPENDIX: EXACT FORMULA FOR THE ENERGY FLUX

In the appendix we just show the result of the exact formula for the energy flux (3.5) with

F ðq; ~Ωþ; ~Ω−Þ ¼
q2

ð1þ q2Þ3
�
−θðqÞ

�
1

~Ωþ

1

~Ω−

1

2π
þ ξ ~Ω−ðqÞ

~Ω− − ~Ωþ

1

sin π ~Ω−
þ ξ ~ΩþðqÞ

~Ωþ − ~Ω−

1

sin π ~Ωþ

þ ξðqÞ
~Ω− − ~Ωþ

�
1

1 − ~Ωþ
2F1ð1; 1 − ~Ωþ; 2 − ~Ωþ;−ξðqÞÞ −

1

1 − ~Ω−
2F1ð1; 1 − ~Ω−; 2 − ~Ω−;−ξðqÞÞ

�
1

π

�

þ θð−qÞ
�

1

~Ωþ

1

~Ω−

1

2π
þ ξ−1ðqÞ

~Ω− − ~Ωþ

�
1

1þ ~Ω−
2F1ð1; 1þ ~Ω−; 2þ ~Ω−;−ξ−1ðqÞÞ

−
1

1þ ~Ωþ
2F1ð1; 1þ ~Ωþ; 2þ ~Ωþ;−ξ−1ðqÞÞ

�
1

π

��
− 2

q

ð1þ q2Þ5=2
�
−θðqÞ

�
−

~Ω−
~Ω− − ~Ωþ

ξ ~Ω−ðqÞ
sin π ~Ω−

−
~Ωþ

~Ωþ − ~Ω−

ξ ~ΩþðqÞ
sin π ~Ωþ

þ ξðqÞ
~Ω− − ~Ωþ

�
−

1

1 − ~Ωþ
2F1ð2; 1 − ~Ωþ; 2 − ~Ωþ;−ξðqÞÞ þ

1

1 − ~Ω−

× 2F1ð2; 1 − ~Ω−; 2 − ~Ω−;−ξðqÞÞ
�
1

π

�
þ θð−qÞ

�
ξ−1ðqÞ
~Ω− − ~Ωþ

�
−

1

1þ ~Ωþ
2F1ð2; 1þ ~Ωþ; 2þ ~Ωþ;−ξ−1ðqÞÞ

þ 1

1þ ~Ω−
2F1ð2; 1þ ~Ω−; 2þ ~Ω−;−ξ−1ðqÞÞ

�
1

π

��
−

1

ð1þ q2Þ2
�
−θðqÞ

�
−

~Ω2
−

~Ω− − ~Ωþ

ξ ~Ω−ðqÞ
sin π ~Ω−

−
~Ω2
þ

~Ωþ − ~Ω−

×
ξ ~ΩþðqÞ
sin π ~Ωþ

þ 1

~Ω− − ~Ωþ

�
ξðqÞ

1 − ~Ω−
2F1ð2; 1 − ~Ω−; 2 − ~Ω−;−ξðqÞÞ −

ξðqÞ
1 − ~Ωþ

2F1ð2; 1 − ~Ωþ; 2 − ~Ωþ;−ξðqÞÞ

−
2ξ2ðqÞ
2 − ~Ω−

2F1ð3; 2 − ~Ω−; 3 − ~Ω−;−ξðqÞÞ þ
2ξ2ðqÞ
2 − ~Ωþ

2F1ð3; 2 − ~Ωþ; 3 − ~Ωþ;−ξðqÞÞ
�
1

π

�

þ θð−qÞ
�

1

~Ω− − ~Ωþ

�
−

ξ−1ðqÞ
1þ ~Ω−

2F1ð2; 1þ ~Ω−; 2þ ~Ω−;−ξ−1ðqÞÞ

þ ξ−1ðqÞ
1þ ~Ωþ

2F1

�
2; 1þ ~Ωþ; 2þ ~Ωþ;−ξ−1ðqÞ þ

2ξ−2ðqÞ
2þ ~Ω−

2F1ð3; 2þ ~Ω−; 3þ ~Ω−;−ξ−1ðqÞÞ

−
2ξ−2ðqÞ
2þ ~Ωþ

2F1ð3; 2þ ~Ωþ; 3þ ~Ωþ;−ξ−1ðqÞÞ
�
1

π

��
; ðA1Þ

where we defined ξðqÞ ¼ ð−qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
Þ=ðqþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
Þ, ~Ωþ ¼ Ωþ=a and ~Ω− ¼ Ω−=a. This complicated formula is

well approximated by Eq. (3.6) in the case Ω < γ.
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