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We consider PðϕI; XIJÞ theories of multifield inflation and ask the question of how to define the
adiabatic and entropy perturbations, widely used in calculating the curvature and isocurvature power
spectra, in this general context. It is found that when the field perturbations propagate with different speeds,
these adiabatic and entropy modes are not generally the fundamental (most natural to canonically quantize)
degrees of freedom that propagate with a single speed. The alternative fields which do propagate with a
single speed are found to be a rotation in field space of the adiabatic and entropy perturbations. We show
how this affects the form of the horizon-crossing power spectrum, when there is not a single “adiabatic
sound speed” sourcing the curvature perturbation. Special cases of our results are discussed, including
PðXÞ theories where the adiabatic and entropy perturbations are fundamental. We finally look at physical
motivations for considering multispeed models of inflation, particularly showing that disformal couplings
can naturally lead to the kind of kinetic interactions which cause fields to have different sound speeds.
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I. INTRODUCTION

Due to its general success in generating a near-scale-
invariant spectrum of primordial fluctuations, inflationary
cosmology has become a widely-accepted component of
our understanding of the history of the universe. The
accumulation of data from cosmic microwave background
experiments such as WMAP [1] and Planck [2,3] in recent
years has only served to further vindicate the paradigm.
Despite this, the nature of the mechanism behind inflation
—what kind of field or fields drive the expansion, and if
gravity is still well described by general relativity in this
epoch—continues to elude us. A vast range of theoretical
models with similar predictions have been proposed [4],
and with further experimental constraints on these models
appearing to be a somewhat long-term prospect, theorists in
the field are looking for new approaches and tests to
complement and support the process of testing models of
inflation. One such approach is the study of general actions
that encompass a wide range of individual models in the
literature, such as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ PðϕI; XJKÞ

�
;

ðI; J; KÞ ¼ 1…N; ð1Þ

in which general relativity is coupled to an arbitrary
Lagrangian P which depends on N fields ϕI and the
kinetic terms XJK ¼ −∂μϕ

J∂μϕK=2. This kind of action,
studied in [5,6], covers an enormous range of models.

Of course, the special cases of this action include several
physically motivated and extensively studied theories with
scalar sectors possessing nonstandard kinetic structure,
such as braneworld-motivated Dirac-Born-Infeld (DBI)
[7] fields and modified gravity theories in the Einstein
frame, such as Starobinsky inflation [8,9]. In this class of
models, the nonlinear dependence on kinetic terms means
that field perturbations generally propagate at speeds not
equal to unity. In particular, we note that it is possible,
though not extensively studied in the literature [10–12], for
each field to have a different propagation speed in principle.
This may have interesting consequences in, for example,
the calculation of non-Gaussianity [13].
It is common when working with multiple-field theories

to define so-called adiabatic (σ) and entropy (s) fields
[14–18], as the fields which uniquely source the curvature
ðRÞ and isocurvature ðSÞ perturbations, respectively. One
finds, however, that depending on the structure of kinetic
terms in a Lagrangian, the mathematical expressions for
these fields differ in each case. In this work, our primary
goal is to understand how to construct these fields in the
highly general class of models specified by Eq. (1), and
what the implications of this are for studying inflationary
models of this class. Calculations will be explicitly carried
out for the N ¼ 2 case for the sake of simplicity and
minimalism.
In Sec. II we will construct the adiabatic and entropy

fields for a general two-field theory. Following this, in
Sec. III we will turn our attention to quantization of fields
and the calculation of the curvature power spectrum,
sourced by the adiabatic field, particularly in cases with
nonequal propagation speeds of the two fields where this is
nontrivial. Significantly, we will show that the adiabatic*cjlongden1@sheffield.ac.uk
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and entropy perturbations can generally each depend on
multiple sound speeds, and there is hence not always a
single “adiabatic sound speed” sourcing the curvature
power spectrum. Finally, in Sec. IV, we will apply our
results to some physically motivated models and interesting
subsets of the general PðϕI; XIJÞ Lagrangian to give
examples of the applicability of our results, recovering
some known results from the literature as special cases of
our work along the way, before concluding in Sec. V.

II. CONSTRUCTION OF THE ADIABATIC
AND ENTROPY PERTURBATIONS

The second order action in PðϕI; XIJÞ theories can be
expressed in the form

Sð2Þ ¼
1

2

Z
dtd3xa3

�
KIJ

_QI _QJ −
1

a2
PhIJi∂iQI∂iQJ

− NIJ
_QIQJ −MIJQIQJ

�
; ð2Þ

where KIJ ¼ PhIJi þ 2PhMIihJKiXJK is the kinetic structure
matrix, and MIJ and NIJ are mass and interaction terms
whose particular forms can be found in the literature [6],
but are not important for the discussion ahead. This is
because we are interested in the sound speeds in such
theories, which depend only KIJ and PhIJi. In these
expressions, subscripts in angular parenthesis represent
symmetrized derivatives with respect to kinetic terms,
defined such that

PhIJi ¼
1

2

� ∂P
∂XIJ þ

∂P
∂XJI

�
: ð3Þ

One can construct adiabatic and entropy perturbations
ðQσ; QsÞ by finding the linear combination of field per-
turbations QI which meets two conditions. First, the
gradient term in the second order action should be
orthonormal in the adiabatic/entropy basis. That is, for a
field redefinition QI ¼ eII0Q

I0 , then the four free functions
eII0 should satisfy

PhIJieII0e
J
J0 ¼ δI0J0 : ð4Þ

However, because in general PhIJi ¼ PhJIi, we need only
use three of our four degrees of freedom to satisfy this
condition. We can hence set one of the eII0 functions to zero
without loss of generality at this stage. For concreteness,
we choose eϕχ0 ¼ 0. For brevity of notation, we will also

define eϕϕ0 ¼ A, eχχ0 ¼ B, eχϕ0 ¼ −C, so that our field
redefinition looks like

Qϕ ¼ AQϕ0
; ð5Þ

Qχ ¼ BQχ0 − CQϕ0
: ð6Þ

We then solve PhIJieII0e
J
J0 ¼ δI0J0 to find

A ¼
ffiffiffiffiffiffiffi
Pχχ

jPj

s
; B ¼ 1ffiffiffiffiffiffiffi

Pχχ

p ; C ¼ Pϕχffiffiffiffiffiffiffiffiffiffiffiffiffi
Pχχ jPj

p : ð7Þ

Second, our adiabatic and entropy fields Qnðn ¼ σ; sÞ
should respectively be aligned parallel and perpendicular to
the trajectory in (ϕ0; χ0) field space. As we only used three
of our four degrees of reparametrisation freedom so far, we
are free to perform a one-parameter rotation of the fields to
achieve this, that is, the adiabatic and entropy fields are
constructed as

Qσ ¼ Qϕ0
cos θ þQχ0 sin θ; ð8Þ

Qs ¼ Qϕ0
cos θ −Qχ0 sin θ; ð9Þ

where cos θ ¼ _ϕ0= _σ, sin θ ¼ _χ0= _σ and _σ2 ¼ ρþ P ¼
PhIJi _ϕ

I _ϕJ ¼ PhI0J0i _ϕ
I0 _ϕJ0 . As this only amounts to a rota-

tion of the fields, the gradient term δnm ¼ eI
0
n eJ

0
mδI0J0

remains orthonormal. Using Eqs. (5)–(6), we can rewrite
our expressions for Qn as

Qσ ¼ 1

A

�
C
B
sin θ þ cos θ

�
Qϕ þ 1

B
sin θQχ ; ð10Þ

Qs ¼ 1

A

�
C
B
cos θ − sin θ

�
Qϕ þ 1

B
cos θQχ : ð11Þ

These expressions can then be further manipulated by
using Eqs. (5)–(6) to find the time derivatives of the ϕI0

fields in terms of the original fields

_ϕ0

_σ
¼ cos θ ¼ 1

A _σ
_ϕ; ð12Þ

_χ0

_σ
¼ sin θ ¼ 1

B _σ

�
_χ þ C

A
_ϕ

�
: ð13Þ

Using this, it is easy to check for common simple cases
like P ¼ Xϕϕ þ Xχχ [14] or P ¼ Xϕϕ þ e2bðϕÞXχχ [17] that
our results reduce to the usual definitions of the adiabatic
and entropy fields. Putting the time derivatives of the fields
together with Eqs. (10)–(11), we finally obtain a con-
struction of the adiabatic and entropy fields in terms of the
original ϕI basis:

Qσ ¼ PhIJi _ϕ
IQJ

_σ
; ð14Þ

Qs ¼
ffiffiffiffiffiffijPjp
_σ

ð_χQϕ − _ϕQχÞ: ð15Þ
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Importantly, the adiabatic field (14) we have constructed
satisfies

R ¼ H
_σ
Qσ; ð16Þ

that is, it is the lone source of the curvature perturbation.

III. QUANTIZATION AND SOUND SPEEDS

In single-field inflation the second order action contains
the terms

Sð2Þ ⊃
1

2

Z
dηd3x

�
ðv0Þ2 − 1

a2
c2s∂iv∂ivþ…

�
; ð17Þ

such that the equation of motion in conformal time η, for a
Fourier mode k in the large-k limit is

v00k −
c2sk2

a2
v2k ¼ 0; ð18Þ

where cs is the propagation speed of perturbations, given
by the square root of the ratio of the gradient and kinetic
terms in the action. Then, when performing canonical
quantization of the field to fix the boundary conditions
of the solutions, one imposes that the vacuum asymptoti-
cally approaches the Minkowski vacuum for high fre-
quency modes, that is,

vk →
1

2csk
e−icskη: ð19Þ

In two-field theories, a complication in this process
arises. In general, the equations of motions in the large k
limit will take the form

KϕϕQ̈ϕ þ KϕχQ̈χ −
k2

a2
ðPhϕϕiQϕ þ PhϕχiQχÞ þ… ¼ 0

ð20Þ

KϕχQ̈ϕ þ KχχQ̈χ −
k2

a2
ðP<ϕχ>Qϕ þ P<χχ>QχÞ þ… ¼ 0;

ð21Þ

where the omitted terms beyond the ellipses are those
coming from the mass (MIJ) and interaction (NIJ) terms in
the action (2). As in the standard single field case of
Eq. (18), we quantize such that the vacuum is asymptoti-
cally Minkowski and thus assume these terms negligible at
leading order. As there is a mixing of kinetic terms in Qϕ

with gradient terms in Qχ and so on, one cannot assign
propagation speeds to these two variables—they are not the
fundamental propagating degrees of freedom. Instead,
some linear combination of QI fields with diagonalized

gradient and kinetic matrices would be the canonically
quantizable fields, and one would have to set initial
conditions for fields like Qϕ as a linear combination of
the initial conditions for the fundamental degrees of
freedom.
To construct the fields with diagonal kinetic and gradient

matrices, we define another basis Qa ¼ eI
0
aQI0 , a ¼ ðψ ;ωÞ,

in whichKab ¼ eI
0
a eJ

0
b KI0J0 is to be a diagonal matrix. As the

gradient term is already diagonal in the QI0 basis, the
transformation eI

0
a must be a rotation so as to not spoil this,

in which case the components of Kab are

Kψψ ¼ Kϕ0ϕ0 cos2Θ − Kϕ0χ0 sin 2Θþ Kχ0χ0 sin2Θ; ð22Þ

Kψω ¼ 1

2
ð2Kϕ0χ0 cos 2Θþ ðKϕ0ϕ0 − Kχ0χ0 Þ sin 2ΘÞ; ð23Þ

Kωω ¼ Kϕ0ϕ0 sin2Θþ Kϕ0χ0 sin 2Θþ Kχ0χ0 cos2 Θ: ð24Þ

Inspecting the expression for the off-diagonal termsKψω,
it is clear that we need to rotate by an angle

tan 2Θ ¼ 2Kϕ0χ0

Kχ0χ0 − Kϕ0ϕ0
: ð25Þ

This angle is different to the angle θwhich we rotated the
QI0 fields by to obtain the adiabatic and entropy perturba-
tions, and ðQσ; QsÞ are not in general the fundamental
degrees of freedom. A summary of the different fields
defined in this work and their relation to each other is
shown as a diagram in Fig. 1 for convenience.

FIG. 1. Relationships between different fields defined in this
work. The ðϕχÞ basis contains the original fields appearing in the
action (1). The ðϕ0; χ0Þ basis is constructed to diagonalize the
gradient term in the second-order action (2) according to (4).
From this basis, we define two rotations in field space. The first of
these is the entropy/adiabatic basis ðQσ ; QsÞ in which the angle of
rotation orients the fields parallel and perpendicular to the
trajectory in field space (8)–(9). The second is the fundamental
basis ðQψ ; QωÞ in which the angle of rotation is chosen such that
the two fields are fundamental degrees of freedom propagating
with pure, independent sound speeds.
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In the (Qψ , Qω) basis, the equations of motion [again, in
the large k limit, as in Eqs. (18), (20)–(21)] then take the
form

Q̈ψ −
ðcψs Þ2k2

a2
Qψ ¼ 0 ð26Þ

Q̈ω −
ðcωs Þ2k2

a2
Qω ¼ 0; ð27Þ

where ðcas Þ2 ¼ K−1
aa , and the Kaa can be obtained by

substituting Eq. (25) into Eqs. (23)–(24) to find

Kψψ ¼
Kχ0χ0 þ Kϕ0ϕ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKχ0χ0 þ Kϕ0ϕ0 Þ2 − 4jKI0J0 j

q
2

;

ð28Þ

Kωω ¼
Kχ0χ0 þ Kϕ0ϕ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKχ0χ0 þ Kϕ0ϕ0 Þ2 − 4jKI0J0 j

q
2

;

ð29Þ

which are the eigenvalues ofKI0J0 as one would expect from
the structure of the second order action, and of course,
generally not the same. The adiabatic and entropy fields are
then related to the (ψ , ω) fields via a combination of the two
rotations [19], such that

Qσ ¼ cosðθ − ΘÞQψ þ sinðθ − ΘÞQω; ð30Þ

Qs ¼ cosðθ − ΘÞQω − sinðθ − ΘÞQψ ; ð31Þ

and it is from this, canonically quantizing the ðψ ;ωÞ fields
in the spirit of (19), we can obtain the form of the leading
order power spectrum at horizon crossing when the two
sound speeds are distinct:

P�
R ¼ H2

8π2ϵ

��
cosðθ − ΘÞffiffiffiffiffi

cψs
p �

2

þ
�
sinðθ − ΘÞffiffiffiffiffi

cωs
p

�
2
�
: ð32Þ

In the special case when the two sound speeds are equal
(cψs ¼ cωs ¼ cs) this reduces to the usual expression,

P�
R ¼ H2

8π2ϵcs
: ð33Þ

This result is interesting as it shows that the leading order
power spectrum only cares about the difference in angle
between the fundamental fields and the adiabatic field
when the two sound speeds of propagation are unequal.
This makes sense because if the speeds of sound are equal
then in the ðψ ;ωÞ basis, the kinetic matrix Kab is propor-
tional to the identity matrix, and as such any rotation of it
(including the rotation into the adiabatic/entropy basis) will

leave it unchanged, with no off-diagonal elements.
Similarly, if θ ¼ Θ then the ðσ; sÞ basis and the ðψ ;ωÞ
basis are equivalent (the adiabatic/entropy fields are the
fundamental degrees of freedom) and Eq. (32) reduces to

P�
R ¼ H2

8π2ϵcσs
; ð34Þ

and while there may in general be a distinct second sound
speed for entropy modes css, it does not affect the curvature
perturbation. The condition for the adiabatic field being
fundamental in this way can be found by comparing
Eq. (25) to Eqs. (8)–(9), from which one can see that
tan θ ¼ _ϕ0=_χ0, to obtain the condition

θ ¼ Θ ⇒
2Kϕ0χ0

Kχ0χ0 − Kϕ0ϕ0
¼ 2 _ϕ0 _χ0

ð_χ0Þ2 − ð _ϕ0Þ2 : ð35Þ

Finally, there is also the special case where Θ ¼ 0, that
is, the fundamental fields are ðϕ0; χ0Þ. From Eq. (25) it is
clear this occurs when Kϕ0χ0 ¼ 0, which occurs for
Lagrangians whose derivatives fulfill the condition
ðPhχχiPhMϕihχKi − PhϕχiPhMχihχKiÞXMK ¼ 0. We can write
the power spectrum in this case as:

P�
R ¼ H2

8π2 _σ2ϵ

��
_ϕ0ffiffiffiffiffiffi
cϕ

0
s

q �2

þ
�

_χ0ffiffiffiffiffiffi
cχ

0
s

q �
2
�
: ð36Þ

IV. EXAMPLES

A. PðXÞ theories
Awidely studied subclass of the Lagrangian studied here

is the case when the kinetic part of the action is an arbitrary
function of X ¼ GIJXIJ [20] whereGIJðϕKÞ is a field space
metric. Performing the field redefinition (5)–(6), we obtain
a kinetic matrix,

KI0J0 ¼ δI0J0 þ 2
PXX

PX
XI0J0 ¼ δI0J0 þ

PXX

PX

_ϕI0 _ϕJ0 ; ð37Þ

where in the second equality we used the fact that in the
ðI0; J0Þ basis the field space metric is orthonormal, XI0J0 has
the same components as XI0J0 ¼ _ϕI0 _ϕJ0=2. In such theories,
we hence find that the condition (35) is fulfilled. That is, in
this special case, the adiabatic and entropy modes are the
fundamental degrees of freedom. We find that the compo-
nents of the kinetic matrix are

Kσσ ¼ 1þ PXX

PX

�
X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − 4jGjjXj

q �
; ð38Þ

Kss ¼ 1þ PXX

PX

�
X −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − 4jGjjXj

q �
: ð39Þ

Using ðXϕχÞ2 ¼ XϕϕXχχ , or equivalently jXj ¼XϕϕXχχ−
ðXϕχÞ2¼ 0, this reduces to
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ðcσsÞ2 ¼
PX

PX þ 2PXXX
; ð40Þ

ðcssÞ2 ¼ 1: ð41Þ

We hence see that when the function PðXÞ is nonlinear in
X such that PXX ≠ 0, this is a two-sound-speed model
where only the adiabatic mode has a propagation speed
differing from unity. A generalization of this case where
P ¼ PðYÞ where Y ¼ X þ bðX2 − XI

JX
J
I Þ was studied in

[5], and it is found in this case that the adiabatic and entropy
modes are still the fundamental degrees of freedom and the
two sound speeds are still generally different, but the
entropy sound speed need not be 1. Instead, they find

ðcssÞ2 ¼ 1þ bX: ð42Þ

B. PðXϕϕ;Xχ χ Þ theories
Considering theories where the Lagrangian is an arbi-

trary function of the single-field kinetic terms Xϕϕ and Xχχ ,
but not of the explicit kinetic interaction Xϕχ , we find that
the structure of the theory remains highly general as terms
of the form αðXϕϕXχχÞn are permitted, and at the back-
ground level XϕϕXχχ ¼ ðXϕχÞ2. We find explicitly, in this
case, that

Kϕ0χ0 ¼
2XϕχPhϕϕihχχiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PhϕϕiPhχχi
p ; ð43Þ

which is nonzero when interaction terms containing factors
of XϕϕXχχ are present in P. The angle Θ will then be
correspondingly nonzero and the fundamental degrees of
freedom Qψ and Qω will propagate with nontrivial sound
speeds. Kinetic interaction terms are hence still implicitly
present and having an effect on the nature of perturbations
in the theory unless we restrict ourselves further to the
subclass in which

P ¼ fðXϕϕÞ þ gðXχχÞ: ð44Þ

Here Phϕϕihχχi ¼ 0 and hence Θ ¼ 0 such that the Qϕ0

and Qχ0 are the fundamental fields with sound speeds

ðcϕ0
s Þ2 ¼

fhϕϕi
fhϕϕi þ 2fhϕϕihϕϕiXϕϕ ; ð45Þ

ðcχ0s Þ2 ¼ g<χχ>
g<χχ> þ 2g<χχ><χχ>Xχχ : ð46Þ

Note that these are nonequal even when f ¼ g. Cases
like this have been studied in e.g. [10,11].

C. Models from N = 1 supergravity

In N ¼ 1 supergravity, the kinetic part of the scalar
sector Lagrangian is given by [21]

P ¼ ∂2K
∂ϕI∂ðϕJÞ� ∂μϕ

I∂μðϕJÞ�; ð47Þ

where K is the Kähler potential. Irrespective whether
the Kähler potential is minimal or nonminimal, this
Lagrangian contains no nonlinearities in the kinetic terms
(PhMIihJKi ¼ 0), so KIJ ¼ PhIJi. This implies KI0J0 ¼ δI0J0

and hence from Eq. (25), Θ ¼ 0 and the QI0 fields are the
fundamental degrees of freedom. All of the fields will
propagate with sound speeds of 1, as KI0;J0 ¼ PI0J0 ¼ δI0J0 .

D. Disformally coupled inflation

Disformally coupled inflation [12,13] is a two-field
model of inflation in which a scalar field (χ) is confined
to a brane whose induced metric ĝ is disformally related to
the metric of spacetime g. This is equivalent to a PðϕI; XIJÞ
theory with kinetic structure

P ¼ C
D

�
1 −

1

γ

�
þ C

γ
Xχχ þ 2γDðXϕχÞ2; ð48Þ

where C and D are conformal and disformal couplings
relating the two metrics via ĝμν ¼ Cgμν þDϕ;μϕ;ν, and
γ−1 ¼ ð1 − 2 D

C X
ϕϕÞ1=2. Despite the complicated kinetic

structure containing interactions like ðXϕχÞ2 and nonlinear-
ities coming from the factors of γ in each term due to the
presence of a kinetic term (ϕ;μϕ;ν) in the disformal metric,
as well as the DBI-type kinetic term for ϕ (as it is related to
the radial motion of the brane), it turns out that for this
model, Kϕ0χ0 ¼ 0 and so Θ ¼ 0 and the ðϕ0; χ0Þ fields are
the fundamental degrees of freedom, with sound speeds

cϕ
0

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − γDpχ

γ2Cþ γDρχ

s
; cχ

0
s ¼ 1

γ
; ð49Þ

where pχ and ρχ are the pressure and energy density
associated with the χ field. These sound speeds are
nonequal when D ≠ 0. We hence see that disformal
couplings are a possible physical motivation for consider-
ing such multispeed models.

V. CONCLUSIONS

We constructed the adiabatic and entropy field pertur-
bations in general PðϕI; XIJÞ models of inflation and,
significantly, shown that they do not generally correspond
to the fundamental, canonically quantized, degrees of
freedom in scenarios when multiple distinct propagation
speeds are present. While some existing work has com-
puted adiabatic power spectra for special cases in which
there are multiple sound speeds, the results we present here
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clarify how to correctly apply the adiabatic/entropy decom-
position in a model-independent fashion and how these
fields are related to the fundamental fields. Our key result is
that one cannot always define an “adiabatic sound speed”
as, excluding special cases such as where (35) is satisfied,
the adiabatic field will depend on two distinct propagation
speeds associated with the ψ and ω fields. This has
implications for the computation of quantities like the
curvature power spectrum (32), and may lead to interesting
phenomenology. Finally, we considered several special
cases such as PðXÞ and PðXϕϕ; XχχÞ Lagrangians that
have been explored in previous work, recovering their
results as particular limits of our work, and looked at the
kinetic structure in physically motivated scenarios, finding

that supergravity does not easily provide a rich kinetic
structure in which to study multispeed inflation, but
disformal couplings do naturally give rise to interesting
kinetic interactions and nonlinearities.
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