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We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-
form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather
general initial conditions, that in this situation there is a period of exponential inflation combined with
cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll
conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded.
There are Landau levels associated with the four-form gauge field, and these correspond to quantum
excitations of the inflaton field satisfying unconventional dispersion relations.
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I. INTRODUCTION

Braneworld cosmology is a concept that exists in
many variations. There are versions in which the higher
dimensions are compactified, as in the Arkani-Hamed,
Dimopoulous, Dvali proposal [1], or large but warped,
as in the Randall-Sundrum model [2] and string-motivated
Dirac-Born-Infeld inflation [3,4]. There is also the in-
triguing Dvali-Gabadadze-Porrati (DGP) version where
the extra dimension is large but nearly flat [5].
Consideration of the four-dimensional effective theory in
the DGP model has led to a very general class of four-
dimensional galileon models [6] with powers of derivative
terms greater than two, for which there now exists extensive
literature (see, e.g., Refs. [7–10] and references therein).
In this article I would like to describe some interesting

features of the following action, describing a brane with
standard model particle content evolving in a flat higher-
dimensional background, with a coupling of the brane to an
external four-form gauge field in the bulk:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ SSM

−
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μφ

s∂νφ
s þ VðφÞ

�

þ q0
4!

Z
d4xAabcd½ϕðxÞ�ϵαβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d; ð1Þ

where SSM is the action of standard model (and possibly
beyond-standard-model) fields, and

gμν ¼ ∂μϕ
AηAB∂νϕ

B; A; B ¼ 0; 1;…; D ð2Þ

is the induced metric of a three-brane in a Dþ 1-
dimensional Minkowski space. We adopt the convention
that uppercase Latin indices run from 0 to D, indices r, s
run from Dþ 1 to Dþ N, and all other lowercase Latin
indices run from 0 to Dþ N. We also define

ϕs ¼ 1

σ2
φs; ð3Þ

where σ is a constant with dimensions of mass. The φs

fields are a set of N inflaton fields, with VðφÞ the inflaton
potential, and Aabcd is a potential which is totally anti-
symmetric in the indices. It can be thought of as a four-form
gauge field in Dþ 1þ N dimensions. The induced metric
corresponds to Dþ 1 dimensions, however.
The main novelty of this formulation is the interaction of

the braneworld with an external four-form gauge field in
the bulk, and it is the purpose of this article to describe
some possible consequences in an inflationary scenario.
Like the DGP model there are large flat extra dimensions,
but unlike that model there is no Einstein-Hilbert action in
the bulk. Unlike Galileon models, in general, there is no
Galilean invariance, and the external four-form gauge field
singles out special directions in the bulk. Inflation, in the
scenario suggested below, is driven by inflaton fields with
an ordinary VðφÞ potential in the inflaton action, rather than
by Galileon fields.
Without the external gauge field, a model with an

Einstein-Hilbert action and other fields on the brane was
first considered long ago by Regge and Teitelboim [11].
The first question to ask of a model of this type is whether
the equations of motion are equivalent, at the classical level,
to standard general relativity at Aabcd ¼ 0. The answer is,
not quite. Denote

Eμν ≡ δS½A ¼ 0�
δgμν

¼ 1

2

ffiffiffiffiffiffi
−g

p �
−

1

8πG
Gμν þ Tμν

�
; ð4Þ

where Tμν is the stress-energy tensor of the standard model
and inflaton fields. Then the field equations resulting from
variation of the ϕA at Aabcd ¼ 0 are
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ηAB∂μðEμν∂νϕ
BÞ ¼ 0: ð5Þ

These equations are obviously satisfied by the Einstein
field equations Eμν ¼ 0. Moreover, any solution of Eμν ¼ 0
can be embedded locally in a ten-dimensional flat
Minkowski space, although globally an embedding may
require still higher dimensions [12]. But of course there
may also be solutions of (5) which are not solutions of the
Einstein equations. A simple (and intriguing) example is
pure gravity with a cosmological constant, in which case

Eμν ¼ 1

2

ffiffiffiffiffiffi
−g

p �
−

1

8πG
Gμν − λgμν

�
: ð6Þ

In this case the equations of motion are certainly solved by
de Sitter space, for which Eμν ¼ 0. But flat Minkowski
space is also a solution: just choose ϕμ ¼ xμ, μ ¼ 0–3,
and ϕA>3 ¼ constant. Then gμν ¼ ημν, Gμν ¼ 0, and the
equations of motion boil down to □ϕA ¼ 0, which is
satisfied trivially.
A criticism of Deser et al. [13] is that the embedding

of a four-manifold is not unique. Some embeddings of a
four-manifold may satisfy the equations of motion (5), and
some may not. This fact does not necessarily rule out the
embedding formulation of general relativity on experimen-
tal grounds; it could simply be that the Eμν ¼ 0 alternative
is selected by initial conditions on the ϕa.
When the four-form gauge field is included, there will, in

general, be some deviation from the standard Einstein field
equations. The equations of motion in this case are

2ηAB∂μðEμν∂νϕ
BÞ

−
q0
4!

FAabcdϵ
αβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ¼ 0; ð7Þ

and

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφ

sÞ − ffiffiffiffiffiffi
−g

p ∂V
∂φs

þ q0
4!σ2

Fsabcdϵ
αβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ¼ 0; ð8Þ

where Ffabcd is the field strength

Ffabcd ¼
∂Aabcd

∂ϕf −
∂Afbcd

∂ϕa þ ∂Afacd

∂ϕb −
∂Afabd

∂ϕc þ ∂Afabc

∂ϕd

ð9Þ

corresponding to the four-form gauge field. These are
supplemented by the usual equations of motions of the
standard model fields.
In this article I explore the cosmological consequences of

these equations of motion in the simplest nontrivial case,
namely, a constant field strength Ffabcd in a homogeneous

isotropic spacetime. For this purpose it will be sufficient to
work in a five-dimensional embedding space, A ¼ 0;…; 4,
with two inflaton fields φ5;6, and ignoring, at the classical
level, all standard model fields.

II. INFLATION

It is well known that a four-dimensional manifold
described by a Friedmann-Lemaitre metric can be
embedded in five-dimensional space, and for simplicity
we adopt the version with zero spatial curvature. We take
the embedding to be [14,15]

ϕ0 ¼ 1

2

�
aðtÞ þ

Z
t dt0

da=dt0
þ aðtÞr2

�
ϕ1 ¼ aðtÞr cosðθÞ
ϕ2 ¼ aðtÞr sinðθÞ cosðχÞ
ϕ3 ¼ aðtÞr sinðθÞ sinðχÞ

ϕ4 ¼ 1

2

�
aðtÞ −

Z
t dt0

da=dt0
− aðtÞr2

�
; ð10Þ

and it is not hard to see that

ds2 ¼ ηABdϕAdϕB; A; B ¼ 0; 1; 2; 3; 4

¼ −dt2 þ a2ðtÞðdr2 þ r2ðdθ2 þ sin2ðθÞdχ2ÞÞ ð11Þ

is the Friedmann-Lemaitre metric. But let us also suppose
that there is a four-form gauge field dependent on the
coordinates ϕa, whose nonzero components are

A5123½ϕ� ¼ −
1

2
Bϕ6;

A6123½ϕ� ¼
1

2
Bϕ5: ð12Þ

The four-form gauge field Aabcd is antisymmetric under
permutations of indices, but apart from (12) and compo-
nents obtained from (12) by permutation, it is assumed that
all other components vanish. This choice leads to a constant
nonzero field strength F56123 ¼ B, and we are interested in
exploring the consequences for early-Universe dynamics in
a situation of this kind. In this context we also assume the
simplest possible inflaton potential

V½ϕ� ¼ 1

2
m2φsφs: ð13Þ

We begin with the usual simplifying assumptions of
spatial homogeneity and isotropy, taking, in particular,

ϕ5;6ðx; y; z; tÞ ¼ ϕ5;6ðtÞ; ð14Þ

and ϕa ¼ 0 for a > 6. In conjunction with (12), this has the
consequence that
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FAabcdϵ
αβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ¼ 0: ð15Þ

This is because two of the indices abcd must be 5 and 6,
so the expression necessarily includes at least one space
derivative of φs, which vanishes according to (14). Then the
equation of motion (7) is satisfied by Eμν ¼ 0, which are
the standard Einstein field equations. For a Friedmann-
Lemaitre metric, disregarding the other standard model
fields, the Einstein equations are just the conventional
expressions for the aðtÞ scale factor coupled to a pair of
scalar fields:

_a2

a2
¼ 8πG

3

�
1

2
∂tφ

s∂tφ
s þ 1

2
m2φsφs

�
;

ä
a
¼ 8πG

3

�
−∂tφ

s∂tφ
s þ 1

2
m2φsφs

�
: ð16Þ

The equations of motion for the φs, however, involve the
field strength

∂2
tφ

5 − qB∂tφ
6 þ 3

_a
a
∂tφ

5 þm2φ5 ¼ 0;

∂2
tφ

6 þ qB∂tφ
5 þ 3

_a
a
∂tφ

6 þm2φ6 ¼ 0; ð17Þ

where q ¼ q0=σ4. It is not hard to verify consistency of (16)
and (17).
If we set _a=a ¼ 0 and m2 ¼ 0 in Eq. (17), then these

equations are obviously the equations of motion of a
charged particle moving, in the φ5 − φ6 plane, under the
influence of a magnetic field orthogonal to that plane; i.e.,
this is cyclotron motion. If we instead set qB ¼ 0, then
these are the equations used in simple models of inflation.
In models of that type it is normally important to impose
slow roll conditions, which imply either a large initial value
for the inflaton field, or else, unlike (13), a very flat
potential (see, e.g., Chapter 8 in [16]). For the simple
potential (13) these slow roll conditions boil down to

φsφs ≫
1

6πG
; ð18Þ

i.e., a large initial field.
The model we are discussing has a fairly large space of

parameters and initial conditions fqB;m2;φsð0Þ; ∂tφ
sð0Þg,

but the time development is typically a spiral in the φ5-φ6

plane. What may be of interest is the fact that for qB ≠ 0 it
is possible to have a period of approximately exponential
inflation, with a large number of e-foldings, even when
the slow-roll condition (18) is strongly violated.1 A single
example should suffice. Working in Planck units, we
choose parameters and initial conditions

qB ¼ 0.2; m2 ¼ 2 × 10−4;

φ5ð0Þ ¼ 0; φ6ð0Þ ¼ 10−2;

ð∂tφ
5Þt¼0 ¼ 0; ð∂tφ

6Þt¼0 ¼ 0: ð19Þ
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FIG. 1. Numerical solution of the evolution equations (16) and
(17), with parameters and initial conditions (19). (a) Trajectory in
the φ5-φ6 plane; (b) log-log plot of _a=a vs time t; (c) log-log plot
ä=a vs time t. Note that the log-log plots of _a=a and ä=a vs time t
are almost flat in the period 1 < t < 104, indicating a period of
exponential expansion, in this case with about 100 e-foldings.

1It should be noted, however, that there are other mechanisms
for easing the slow roll conditions in the context of a braneworld
cosmology, cf. [17].
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The resulting spiral evolution in the φ5-φ6 plane is shown
in Fig. 1(a), with _a=a and ä=a vs cosmic time t shown in
Figs. 1(b) and 1(c), respectively. The expansion is very
nearly a simple exponential up to t ≈ 104 in Planckian
units, which is evident in the rather flat curves on the
log-log plots, and the fact that

ä
a
≈
�
_a
a

�
2

ð20Þ

in this period. Expansion continues after this period,
however, resulting in a total of about 100 e-foldings by
t ¼ 106.
The potential VðϕÞ is responsible for a force towards the

origin of the φ5-φ6 plane, while the “Lorentz force” due to
the four-form gauge field is directed away from the origin.
Eventually these forces balance to produce a circular motion,
spiraling towards the center. To see this, we plot the initial
stage of the evolution in Fig. 2. In the absence of the gauge
field, the system simply falls to the center, oscillating around

theφ6 axis, and, because slow roll conditions are not satisfied,
there is no inflationary period. The Lorentz force, however,
deflects the initial fall to the center into an arc, and this
interplay between the central potential, the Lorentz force, and
gravitational friction continues until the inward and outward
forces sum to a centripetal force for (roughly) circularmotion,
with gravitational friction causing a gradual spiral to the
origin. The trajectory resulting from a quite different set of
parameters is shown in Fig. 3. While this last example does
not lead to many e-foldings, it does very clearly display the
initial interplay of forces, leading to an eventual spiral towards
the origin.

III. LANDAU LEVELS

After inflation, the constant field strength of the four-
form gauge field still has an effect at the quantum level, in
the form of Landau excitation levels of the quantized φ
fields. We will see that these excitations satisfy a rather
unusual dispersion relation.
We consider the post-inflationary period at some time t0

where _a=a is negligible, aðtÞ ≈ R. With ϕA given by the
embedding (10), and Aabcd as in Eq. (12), we have

q0
4!

Aabcd½ϕðxÞ�ϵαβγδ∂αϕ
a∂βϕ

b∂γϕ
c∂δϕ

d

¼ qAs123ϵ
0ijk∂tφ

s∂iϕ
1∂jϕ

2∂kϕ
3

¼ qAs∂tφ
sðR3r2 sin θÞ; ð21Þ

where As ≡ σ2As123. The factor of R can be absorbed into a
coordinate redefinition, and we then consider quantizing
the action

Sφ ¼
Z

d4x

�
1

2
∂tφ

s∂tφ
s −

1

2
∇φs · ∇φs

−
1

2
m2φsφs þ qAsðφÞ∂tφ

s

�
; ð22Þ

where again the index s ¼ 5, 6. The corresponding
Hamiltonian is

H ¼ 1

2

Z
d3xfðps − qAsÞ2 þ ð∇φsÞ2 þm2φsφsg; ð23Þ

and φs; ps0 have standard quantization conditions. Define

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

4
q2B2 þm2

r

φsðxÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p ðasðkÞeik·x þ a†sðkÞe−ik·xÞ

psðxÞ ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffi
2ωk

p 1

2i
ðasðkÞeik·x − a†sðkÞe−ik·xÞ;

ð24Þ
with the usual commutation relations

0.000 0.001 0.002 0.003 0.004

0.0088
0.0090
0.0092
0.0094
0.0096
0.0098
0.0100

5

6

FIG. 2. The trajectory of Fig. 1(a) at the beginning of the time
evolution, in the period 0 < t < 500, showing the effect of the
“Lorentz force,” directed away from the center of the φ5-φ6 plane.
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FIG. 3. Trajectory in the φ5-φ6 plane for parameters qB ¼ −1,
m2 ¼ 0.5, ϕ6ð0Þ ¼ 0.03.
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½asðk1Þ; a†rðk2Þ� ¼ ð2πÞ3δ3ðk1 − k2Þδrs: ð25Þ

Then

H ¼
Z

d3k
ð2πÞ3

�
ωkða†sðkÞasðkÞ þ δ3ð0ÞÞ

þ i
1

2
qBða†5ðkÞa6ðkÞ − a†6ðkÞa5ðkÞÞ

�
: ð26Þ

Introduce

b1ðkÞ ¼
1ffiffiffi
2

p ða5ðkÞ þ ia6ðkÞÞ

b2ðkÞ ¼
1ffiffiffi
2

p ða5ðkÞ − ia6ðkÞÞ; ð27Þ

which again have the usual commutation relations

½biðk1Þ; b†jðk2Þ� ¼ ð2πÞ3δ3ðk1 − k2Þδij ð28Þ

with indices i, j ¼ 1, 2. The Hamiltonian takes the form

H ¼
Z

d3k

�
ωkðb†i ðkÞbiðkÞ þ δ3ð0ÞÞ

þ 1

2
qBðb†1ðkÞb1ðkÞ − b†2ðkÞb2ðkÞÞ

�
; ð29Þ

and the corresponding spectrum is

E ¼
X
k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

4
q2B2 þm2

r
ðn1ðkÞ þ n2ðkÞÞ

þ 1

2
qBðn1ðkÞ − n2ðkÞÞ

�
þ E0; ð30Þ

where n1ðkÞ; n2ðkÞ are occupation numbers, E0 is the
ground state energy, and the sum runs over momenta with
nonzero occupation numbers. We also find, by standard
manipulations, the conserved total momentum

Pi ¼
X
k

ki

�
n1ðkÞ þ n2ðkÞ

�
: ð31Þ

Were it not for the term proportional to qB in Eq. (30),
the spectrum would simply consist of two types of particles
of mass

M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
q2B2 þm2

r
: ð32Þ

Instead, definingM ¼ 1
2
qB, it is seen that excitations which

are eigenstates of both H and Pi (with momentum
eigenvalues ki) satisfy dispersion relations

E1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
þM and

E2ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
−M; ð33Þ

respectively, which is clearly at odds with the relativistic
expression for a free particle. But of course these excita-
tions are not free particles, and the Lagrangian (22) they
derive from is not Lorentz invariant, or even (unlike
Newtonian mechanics) boost invariant. It is the external
four-form gauge field which singles out a preferred time
direction (much as, e.g., an ordinary background magnetic
field along the z-axis would introduce a preferred spatial
direction for objects sensitive to that field), and the only
remaining space-time symmetries are rotation and space-
time translation invariance. Therefore the breaking of both
Lorentz and boost invariance, so far as these inflaton
excitations are concerned, is not a surprise. The question
is how this breaking might manifest itself.

IV. PROPERTIES OF LANDAU LEVEL
EXCITATIONS

A. Group velocity

To begin with, consider how a wave packet correspond-
ing to a single “heavy” Landau excitation of energy E1ðkÞ,
or a “light” Landau excitation of energy E2ðkÞ, and
momentum k, will propagate in time. Let jk; ji correspond
to a particle eigenstate of energy and momentum EjðkÞ; k,
respectively, with conventional normalization

jk; ji ¼
ffiffiffiffiffiffiffiffi
2ωk

p
bjðkÞj0i

jx; ji ¼
Z

d3k
ð2πÞ3 e

−ik·xjk; ji; ð34Þ

and consider initial wave packets of the form

jψ jit¼0 ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p fðkÞjk; ji

ψ jðx; t ¼ 0Þ ¼ hx; jjψ jit¼0

¼
Z

d3k
ð2πÞ3 fðkÞe

ik·x: ð35Þ

Then at a later time

ψ jðx; tÞ ¼ hx; jje−iHtjψ jit¼0

¼ e−ið3−2jÞMt

Z
d3k
ð2πÞ3 fðkÞe

iðk·x−ωktÞ: ð36Þ

From this we conclude that wave packets of both heavy
and light Landau excitations (we might as well call them
“landons”) propagate with a group velocity ν ¼ dωp=dp
appropriate to a particle of mass M0 ≈M (for m ≪ M). On
the other hand, at low momenta in the frame singled out by
the external four-form gauge field,
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E1ðkÞ ≈
k2

2M
þ 2M þ m2

2M

E2ðkÞ ≈
k2

2M
þ m2

2M
; ð37Þ

which means that the rest energy of the heavy landons is
approximately 2M, while that of the light landons is
approximately m2=2M.

B. Scattering in a gravitational field

Because of the mismatch between the inertial mass in the
momentum-dependent k2=2M term and the rest energy, we
may expect an apparent violation of the principle of
equivalence, if it was possible to somehow observe the
motion of these excitations in a gravitational field. This can
be verified by calculating the differential scattering cross
section of heavy and light landons in the weak gravitational
field of a static massive object of mass M.
Let gμν ¼ ημν þ hμν, with

g00 ¼ −
�
1 −

2GM
r

�
; gii ¼

�
1þ 2GM

r

�
gμν ¼ 0 ðμ ≠ νÞ; ð38Þ
be the metric corresponding to the massive object at the
origin, at distances r such that the gravitational field is
weak. For our purposes it is sufficient to ignore this
restriction on r, unless we are interested in large angle
scattering. We first need the interaction Hamiltonian to
lowest order in GM. For this we consider the part of the
total action S0 ¼ Sφ þ SA containing φ, where

Sφ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μφ

s∂νφ
s þ 1

2
m2φsφs

�

SA ¼
Z

d4xqAsϵ
0ijk∂tφ

s∂iϕ
1∂jϕ

2∂kϕ
3: ð39Þ

Expanding Sφ to first order in GM we have

Sφ ¼
Z

d4x

�
1

2

�
1þ 4GM

r

�
∂tφ

s∂tφ
s −

1

2
ð∇φsÞ · ð∇φsÞ

−
1

2

�
1þ 2GM

r

�
m2φsφs

�
: ð40Þ

To compute SA to leading order in hμν we use

SA ≈ SAðh ¼ 0Þ þ
Z

d4x
δSA
δgμν

hμν: ð41Þ

Now SA depends on the metric through the ∂μϕ
A. As noted

already, there is no unique mapping from the metric to the
three-brane coordinates, but this turns out not to be a
problem. Choose any mapping gμν → ∂μϕ

A and observe
that, acting on any functional of the metric,

δ

δð∂μϕ
AÞ ¼

∂gαβ
∂ð∂μϕ

AÞ
δ

δgαβ

¼ 2ηAB∂αϕ
B δ

δgαμ
; ð42Þ

which can be inverted to give

δ

δgμν
¼ 1

2
gμα∂αϕ

A δ

δð∂νϕ
AÞ : ð43Þ

Applying this operator to SA in Eq. (39), we find

δSA ¼
Z

d4x

�
δSA
δgμν

�
gαβ¼ηαβ

hμν

¼ 3

2

Z
d4x

2GM
r

qAs∂tφ
s: ð44Þ

Altogether

S0 ¼
Z

d4x

�
1

2

�
1þ 4GM

r

�
∂tφ

s∂tφ
s −

1

2
ð∇φsÞ · ð∇φsÞ

−
1

2

�
1þ 2GM

r

�
m2φsφs

þ
�
1þ 3GM

r

�
qAs∂tφ

s

�
: ð45Þ

We go to the Hamiltonian formulation, introducing canoni-
cal momenta conjugate to the φs,

ps ¼
�
1þ 4GM

r

�
∂tφ

s þ
�
1þ 3GM

r

�
qAs∂tφ

s; ð46Þ

leading to a Hamiltonian operator

H ¼
Z

d3x

�
1

2

�
1þ 4GM

r

�
−1
�
ps −

�
1þ 3GM

r

�
qAs

�

×

�
ps −

�
1þ 3GM

r

�
qAs

�

þ 1

2
ð∇φsÞ · ð∇φsÞ þ 1

2

�
1þ 2GM

r

�
m2φsφs

�

¼ H0 þ
Z

d3x

�
−
2GM
r

ðps − gAsÞðps − gAsÞ

þ GM
r

m2φsφs −
3GM
r

qAsðps − gAsÞ
�
: ð47Þ

Then the Hamiltonian density in the interaction picture, to
first order in GM, is2

2Note that in the interaction picture the GM ¼ 0 operator
identification ps ¼ ∂tϕs þ qAs must be used for the interaction
Hamiltonian density.
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HI ¼ −
2GM
r

�
∂tφ

s∂tφ
s −

1

2
m2φsφs

þ 3

2
Mðφ5∂tφ

6 − φ6∂tφ
5Þ
�
: ð48Þ

Using interaction picture operators

φ5ðxÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p 1ffiffiffi
2

p ðb1ðkÞeiðk·x−E1ðkÞtÞ

þ b†1ðkÞe−iðk·x−E1ðkÞtÞ þ b2ðkÞeiðk·x−E2ðkÞtÞ

þ b†2ðkÞe−iðk·x−E2ðkÞtÞÞ

φ6ðxÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p 1ffiffiffi
2

p
i
ðb1ðkÞeiðk·x−E1ðkÞtÞ

− b†1ðkÞe−iðk·x−E1ðkÞtÞ − b2ðkÞeiðk·x−E2ðkÞtÞ

þ b†2ðkÞe−iðk·x−E2ðkÞtÞÞ; ð49Þ

we can compute matrix elements

hp2; jj
Z

d4xHIjp1; ji; ð50Þ

and from there it is a standard exercise to calculate the
differential cross sections for the heavy/light (j ¼ 1, 2)
Landau excitations in the specified gravitational field. The
answer is�
dσ
dΩ

�
grav

type j
¼ ðGMÞ2 ðE

2
jðpÞ − 1

2
m2 ∓ 3

2
MEjðpÞÞ2

p4sin4ðθ=2Þ ;

ð51Þ
where the minus sign is for type 1 and the plus sign for type
2 landons. The type-changing cross sections, in which an
initial type 1 landon scatters into a type 2 final state or vice
versa, both vanish. We note that for normal scalar fields,
i.e., Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, As ¼ M ¼ 0, Eq. (51) agrees with

the gravitational cross section previously obtained by
Golowich et al. [18].
Now let us look at the low momentum p2 ≪ m2 ≪ M2

limit. For comparison, the differential cross section for a
particle of mass m in a potential

VðrÞ ¼ −
λ

r
; ð52Þ

computed via the Born approximation in nonrelativistic
quantum mechanics, is the familiar Rutherford result�

dσ
dΩ

�
Ruth

¼ 1

4
λ2

1

m2v4sin4ðθ=2Þ : ð53Þ

For normal scalar particles (1
2
qB ¼ M ¼ 0), using (51)

with the approximations (37) in the low momentum limit,
the gravitional cross section can be expressed as

�
dσ
dΩ

�
grav

normal
¼ 1

4
ðGMmÞ2 1

m2v4sin4ðθ=2Þ ; ð54Þ

which, comparing to the Rutherford potential, corresponds
to scattering from the potential

VðrÞ ¼ −
GMm

r
: ð55Þ

In other words, the gravitational mass and the inertial mass
are the same. In contrast, for landons of types 1 and 2,
Eq. (51), becomes in the limit p2 ≪ m2 ≪ M2,�

dσ
dΩ

�
grav

type 1
¼ 1

4
ðGM2MÞ2 1

M2v4sin4ðθ=2Þ�
dσ
dΩ

�
grav

type 2
¼ 1

4

�
GM

m2

2M

�
2 1

M2v4sin4ðθ=2Þ : ð56Þ

This is a result that we might have guessed. By comparison
to the Rutherford cross section, the gravitational masses of
both types 1 and 2 landons are equal to their rest energies,
which (for m ≪ M) are 2M and m2=2M, respectively,
while the inertial mass, in accordance with its appearance in
group velocity, is approximately M in both cases.
The principle of equivalence, of course, asserts the

identity of gravitational and inertial mass, which would
seem to be badly violated for both heavy and light landons.
Indeed, in the present scenario, if it were possible to drop a
heavy and a light landon from the top of a tall building and
observe how they propagate, the heavy landon would
accelerate at 2g, while the light landon would drift down-
wards (assuming m ≪ M) only very slowly, with accel-
eration ðm2=2M2Þg. These odd effects should be viewed as
only an apparent violation of the equivalence principle,
arising due to interaction with an external four-form gauge
field that singles out a particular time direction. A rough
analogy might be the retardation in the gravitational
acceleration of a falling conducting ring in the presence
of a constant magnetic field directed parallel to the
gravitational field. If we were unaware of the external
field, this might also seem like a violation of the principle
of equivalence, rather than a manifestation of Lenz’s law.
In the present situation, the external four-form gauge field
makes a contribution to the landon rest energies which
cannot be absorbed into the inertial masses, resulting in
both an unusual dispersion relation and a seeming violation
of the equivalence principle.

C. Energy density in the early Universe

If the inflaton field couples only to gravity and the
external four-form gauge field, as assumed from the
beginning in Eq. (1), then observations of the sort just
mentioned would be difficult to carry out, and it may be
more useful to look for signatures of the unconventional
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dispersion relations in the early Universe, due to an
unconventional equation of state. Since it requires an
energy of at least 4M to pair-create the heavy excitations,
and assumingM isOð1Þ in Planck units, then after inflation
the number density of these objects is fixed. Assuming a
dilute ideal gas, the equation of state is conventional:

ρ ¼ n

�
2M þ m2

2M

�
þ 3

2
P; ð57Þ

where ρ, n are the energy and number density, respectively,
and P is pressure. The result follows from Boltzmann
statistics, plus the fact that, in a nonrelativistic regime
where (37) applies, momentum degrees of freedom enter
quadratically. Hence the equipartition theorem applies,
and the result is no different than that of a monatomic
ideal gas, with particles of rest energy 2M þm2=2M.
Heavy excitations would contribute to deceleration in the
matter-dominated era, but their contribution cannot be
easily distinguished from that of other types of matter.
The situation is more interesting with respect to light

excitations. It is assumed that the rest energy m2=M is so
small that the number of these excitations is not fixed in the
hot environment of the early Universe3 and the chemical
potential can be taken to be zero. In that situation, as with
photons, it is necessary to carry out the analysis in a grand
canonical ensemble. Following the usual analysis, the
logarithm of the grand canonical partition function Z is

logZ ¼ −V
Z

d3k
ð2πÞ3 ln ð1 − e−βE2ðkÞÞ

¼ βVP; ð58Þ

with E2ðkÞ defined in Eq. (37). The energy density is

ρ ¼
Z

d3k
ð2πÞ3

E2ðkÞ
eβE2ðkÞ − 1

: ð59Þ

We assume that in the early Universe m ≪ k ≪ M, and
observe that

d
dk

ln ð1 − e−βE2ðkÞÞ ¼ β

eβE2ðkÞ − 1

d
dk

�
k2 þm2

2M

�

¼ βk
M

1

eβE2ðkÞ − 1
: ð60Þ

Applying this identity we have

ρ ¼ 4π

ð2πÞ3
Z

∞

0

dkk2E2ðkÞ
M
βk

d
dk

ln ð1 − e−βE2ðkÞÞ

¼ 4π

ð2πÞ3
M
β
kE2ðkÞ ln ð1 − e−βE2ðkÞÞj0∞

−
4π

ð2πÞ3
M
β

Z
∞

0

dk
�
d
dk

kE2ðkÞ
�
ln ð1 − e−βE2ðkÞÞ:

ð61Þ

The boundary terms go to zero linearly with k as k → 0,
and exponentially to zero like expð−βk2=2MÞ as k → ∞.
Carrying out the derivative inside the integral we have

ρ ¼ −
4π

ð2πÞ3
3

2β

Z
∞

0

dkk2 ln ð1 − e−βE2ðkÞÞ

−
4π

ð2πÞ3
1

2β

Z
∞

0

dkm2 ln ð1 − e−βE2ðkÞÞ: ð62Þ

The magnitude of the integrand of the second integral only
exceeds the magnitude of the integrand of the first integral
for k < m=

ffiffiffi
3

p
. However, the logarithm is Oð1Þ up to

k ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=β

p
, after which it falls exponentially. Therefore,

if m2=2M ≪ 1=β, then the interval m=
ffiffiffi
3

p
< k <

ffiffiffiffiffiffiffiffiffiffiffiffi
2M=β

p
is far larger than the interval 0 < k < m=

ffiffiffi
3

p
. The second

integral is therefore negligible compared to the first, and,
comparing to (58), we have

ρ ¼ −
3

2β

Z
d3k
ð2πÞ3 ln ð1 − e−βE2ðkÞÞ

¼ 3

2
P: ð63Þ

An equation of state with P ¼ wρ leads, in a FRW
metric, to a dependence ρ ∼ a−3ð1þwÞ. In our case, with
w ¼ 2

3
, that implies ρ ∼ a−5. This raises the interesting

possibility, since ordinary radiation energy density goes as
a−4, that following inflation there might have been a
“Landau level-dominated” era, just prior to the radiation-
dominated era. Of course, to pin down the time of transition
between these two eras, it would be necessary to know
an additional cosmological parameter ΩLandau in the
Friedmann equation, and at the moment this number is
unknown. It is understood that since the light landons only
manifest their effects through gravitation, they could only
be in thermal equilibrium with other particles when gravity
is relatively strong, i.e., near the Planck time.

D. Causality

On a flat gμν ¼ ημν background, the field commutators
are

3At least the number is not fixed if there are any interaction
terms in the inflaton potential. If this is not the case and the
number is fixed, then the analysis is the same as for an ideal gas
with particle rest mass m2

2M. Taking m2=M ≪ P, the result is
ρ ≈ 3

2
P, which, will be seen, is the same as the grand canonical

result derived below.
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½φ5ðxÞ;φ5ðyÞ� ¼ cosðMðx0 − y0ÞÞ
× fDM0 ðx − yÞ −DM0 ðy − xÞg

½φ6ðxÞ;φ6ðyÞ� ¼ cosðMðx0 − y0ÞÞ
× fDM0 ðx − yÞ −DM0 ðy − xÞg

½φ5ðxÞ;φ6ðyÞ� ¼ sinðMðx0 − y0ÞÞ
× fDM0 ðx − yÞ −DM0 ðy − xÞg; ð64Þ

where

DM0 ðx − yÞ ¼
Z

d3k
ð2πÞ3

1

2ωk
eiðk·ðx−yÞ−ωkðx0−y0ÞÞ ð65Þ

and ωk;M0 were defined in Eqs. (24) and (32), respectively.
For spacelike separations x − y, the difference

ΔDM0 ¼ DM0 ðx − yÞ −DM0 ðy − xÞ ð66Þ

vanishes, and hence the field commutators vanish, con-
sistent with causality. It has been assumed that the φs fields
are only observable via their coupling to gravity, i.e.,
through the stress-energy tensor. The commutation rela-
tions (64) also imply that spacelike separated stress-energy
operators commute.

V. CONCLUSIONS

It has been shown that, within a braneworld scenario in
which the three-brane is coupled to a four-form gauge field,
a cosmological version of cyclotron motion can result in a
period of exponential inflation with an appropriate number
of e-foldings, even in the absence of the usual slow-roll
conditions on the inflaton potential. The mechanism is that
the tendency of the inflaton field to fall to the minimum of
the potential is countered by a Lorentz force in the inflaton
field space. We also find a spectrum of quantum excitations
of the inflaton fields, essentially a cosmological version
of Landau levels, satisfying unusual dispersion relations.
One consequence of the unconventional dispersion rela-
tions is the possible existence of a Landau level-dominated
era, with energy density ρ ∼ a−5, preceding the radiation-
dominated era.
So far only the simplest aspects of this scenario have

been discussed. The fluctuation spectrum, production
of standard model particles, and possible observational
signatures in the Cosmic Microwave Background call for
further investigation.
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APPENDIX: NO-BRANE VERSION

We may also consider the action (1) without the
assumption of an embedding (2) and corresponding brane-
world cosmology. In other words, the ϕa are simply taken
to be ordinary scalar fields, which may have a potential of
some kind, and are degrees of freedom completely distinct
from the metric, which is fundamental rather than induced.
While this alternative setup may not be so relevant to
inflationary cosmology, the formulation may still be
interesting as a generalization of the Lorentz force law
to Wheeler-DeWitt superspace.
The action of a charged spinless point particle interacting

with an electromagnetic field is

S ¼ −m
Z

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dτ
dxν

dτ

r
þ q

Z
dxμAμ; ðA1Þ

leading to the equation of motion

gμν
d2xν

ds2
þ 1

2

�∂gμα
∂xβ þ ∂gμβ

∂xα −
∂gαβ
∂xμ

�
dxα

ds
dxβ

ds
¼ q

m
Fμ;

where Fμ ¼ F μν
dxν

ds
; ðA2Þ

and F μν is the electromagnetic field strength tensor. This is
simply the Lorentz force law in curved spacetime.
We restrict the discussion to purely bosonic fields,

including gravity. To fix notation, let fqAðxÞ; pAðxÞ; A ¼
1; 2;…; nfg denote the canonical conjugate variables with
the nongravitational fields scaled by an appropriate power
of Newton’s constant so as to be dimensionless. The index
A now runs over all spatial indices and quantum numbers
carried by the fields. In the absence of the four-form field
Aabcd, the first-order Arnowitt-Deser-Misner action has the
form

SADM ¼
Z

d4x½pA∂tqA − NHx − NiHi
x�;

Hx ¼ κ2GABpApB þ ffiffiffi
g

p
UðqÞ;

Hi
x ¼ OiA½q; ∂x�pA; ðA3Þ

and the dynamics is given by Hamilton’s equations plus the
constraints Hx ¼ Hi

x ¼ 0. In the case of pure gravity, the
correspondence with standard notation is

fA ¼ 1 − 6g ↔ fði; jÞ; i ≤ jg
qAðxÞ ↔ gijðxÞ

pAðxÞ ↔
�
pijðxÞ ði ¼ jÞ
2pijðxÞ ði < jÞ

GABðxÞ ↔ GijnmðxÞ
ffiffiffi
g

p
U ¼ −

1

κ2
ffiffiffi
g

p ð3ÞR

Hi ¼ −2pik
;k; ðA4Þ
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where
ffiffiffi
g

p
is the determinant of the three-metric gij,

κ2 ¼ 16πG, ð3ÞR is the three-dimensional scalar curvature,
Gijkl is the DeWitt superspace metric

Gijkl ¼
1

2
ffiffiffi
g

p ðgikgjl þ gilgjk − gijgklÞ; ðA5Þ

and of course Hamilton’s equations plus constraints are
equivalent to the Einstein field equations for pure gravity.
Now let qAðxÞ ¼ ϕAðxÞ for indices A ∈ C, where C is a

subset of indices. We will denote indices in this subset by
lowercase Latin letters, and the ϕa are a set of scalar fields.
Adding the term

q0
4!

Z
d4xAabcd½ϕðxÞ�ϵαβγδ∂αϕ

a∂βϕ
b∂γϕ

c∂δϕ
d ðA6Þ

to the action, and using the Hamilitonian formulation, it is
readily verified that the expressions forHx;Hi

x are changed
by minimal substitution

paðxÞ → paðxÞ − q0AaðxÞ; ðA7Þ

where

AaðxÞ≡ 1

3!
Aabcdϵ

0ijk∂iϕ
b∂jϕ

c∂kϕ
d: ðA8Þ

In order that the constraint algebra is satisfied, it is
necessary that terms involving δAa=δϕf, which now arise
in the usual Poisson brackets among theHx;Hi

x, all cancel.
With a little more effort, those cancellations can also be
verified.
In the case of a standard action containing only bosonic

fields, i.e., including the metric tensor but not the four-form
Aabcd field, it has been shown [19] that the geodesic
equation derived from the following action,

Sq ¼ −
Z

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−GðAxÞðByÞ

dqðAxÞ

dτ
dqðByÞ

dτ

s

¼ −M
Z

ds ðA9Þ

(reminiscent in some ways of the Baierlein-Sharp-Wheeler
action [20]), is equivalent to the equations of motion of the
standard action in a certain gauge. In other words, bosonic
field equations, in general, relativity can be expressed as
the geodesic motion of a point particle in Wheeler-
DeWitt superspace with a nonstandard supermetric G.
This is of course in close analogy to Jacobi’s principle
in mechanics. The notation is as follows: We define a mixed
discrete/continuous index ðAxÞ as a “coordinate index” in
superspace

qðAxÞ ¼
�
N ðxÞ A ¼ 0

qAðxÞ A ≠ 0
; ðA10Þ

with summation convention

V::ðAxÞ::W::ðAxÞ:: ≡Xnf
A¼0

Z
d3xV::ðAxÞ::W::ðAxÞ::; ðA11Þ

and the nonstandard supermetric is taken to be

GðAxÞðByÞ ¼
�Z

d3x0N
ffiffiffi
g

p
U

�
1

4N ðxÞκ2 GABðxÞδ3ðx − yÞ;

ðA12Þ

while GðAxÞðByÞ ¼ 0 for A ¼ 0 and/or B ¼ 0. With these
definitions, it is found [19] that the equations of motion
which follow from (A9) are the same as those for the
standard action in a shift gauge Ni ¼ 0, with lapse function

N ¼ M
NR

d3xN
ffiffiffi
g

p
UðqÞ ; ðA13Þ

andM is any constant with dimensions of mass. The choice
of M is essentially a choice of affine parameter.
Adding (A6) to (A9), the equations of motion are

GðAxÞðByÞ
d2qðByÞ

ds2
þ 1

2

�
δGðAxÞðByÞ
δqðCzÞ

þ δGðAxÞðCzÞ
δqðByÞ

−
δGðByÞðCzÞ
δqðAxÞ

�

×
dqðByÞ

ds
dqðCzÞ

ds
¼ q0FðAxÞ; ðA14Þ

where FðAxÞ ¼ 0 for indices A∉C, while for A ¼ f ∈ C

FðfxÞ ¼
1

3!
Ffabcd½ϕðxÞ�ϵijk0∂iϕ

a∂jϕ
b∂kϕ

c ∂ϕd

∂s ; ðA15Þ

and Ffabcd is given in Eq. (9). Inserting the supermetric
(A12) in (A14), one finds that these are the equations of
motion that follow from the standard action (1) (excluding
fermionic fields) in the shift gauge Ni ¼ 0 and lapse
function (A13).
Equations (A14) and (A15) are the suggested extension

of the Lorentz force law to Wheeler-DeWitt superspace,
reducing to the usual bosonic field equations (including
gravity) for Aabcd ¼ 0. Of course these equations of motion
are no different from those obtained from the action (1),
only dispensing with (2) and treating the metric compo-
nents as fundamental degrees of freedom. It should be
noted, however, that the ϕa fields in this no-brane formu-
lation have no particular correlation with coordinates in a
Friedmann-Lemaitre metric, and for this reason we do not
expect the kind of cyclotron motion and inflation that is
seen in the braneworld version.
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