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Motivated by recent developments in black hole thermodynamics, we investigate van der Waals phase
transitions of charged black holes in massive gravity. We find that massive gravity theories can exhibit
strikingly different thermodynamic behavior compared to that of Einstein gravity, and that the mass of the
graviton can generate arange of new phase transitions for topological black holes that are otherwise forbidden.
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I. INTRODUCTION

Understanding the quantum behavior of gravity could be
related to the possible mass of the graviton. The consis-
tency of including this in the context of extending general
relativity has been a long-standing basic physical question
of classical field theory. Although the primitive linear
theory of massive gravity [1] contains Boulware-Deser
ghost modes [2], a nonlinear generalization that is ghost-
free to all orders has recently been constructed [3] by de
Rham, Gabadadze, and Tolley (dRGT massive theory).
Note that dRGT is stable, enjoys the absence of a
Boulware-Deser ghost [4], and has yielded a number of
intriguing results in terms of its cosmological behavior and
black hole solutions [5]. The mass terms are produced by
consideration of a reference metric, which plays a crucial
role in the construction of dRGT [6]. Motivated by
applications of gauge-gravity duality, Vegh proposed a
new reference metric in which the graviton behaves like a
lattice excitation and exhibits a Drude peak [7]. This theory
is also ghost-free and stable [8], and d — dimensional
(d > 3) black hole solutions in the presence of linear
and nonlinear electrodynamics with van der Waals-like
behavior have been obtained [9]. Higher curvature gener-
alizations have also been constructed [10]. Although some
classes of nonlinear massive gravity theories are Lorentz
violating and bear a close relation to Horava-Lifshitz
gravity [11], it was shown that there are Lorentz-invariant
versions of nonlinear massive gravity as well [3]. Massive
gravity is also motivated by observation. Obtaining an
empirical upper limit on the mass of graviton an out-
standing challenge (for more details see [12]), one that
should soon be attainable once recent Laser Interferometer
Gravitational Wave Observatory (LIGO) results [13] are
improved and expanded. In this regard, one may use the
results of Refs. [14] and [15] to obtain a bound on
the energy flux emitted from a binary pulsar and on the
propagation speed of the graviton.
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Here, we consider a class of dRGT theories, which we
regard as the minimal modification of general relativity that
yields a massive graviton [3]. We demonstrate that black
holes of nonspherical topology can exhibit van der Waals
phase transitions in dRGT-like gravity. Such transitions are
forbidden in standard Einstein gravity and also higher
curvature theories such as Lovelock gravity.

The study of black hole thermodynamics began with the
pioneering work of Hawking and Page [16] that indicated
anti-de Sitter (AdS) black holes can undergo phase
transitions. Asymptotically AdS black holes have been
of special interest since they admit a gauge-gravity duality
description, and their thermodynamics plays a crucial role
in constructing a consistent theory of quantum gravity [17].
Indeed, this duality can be applied to a qualitative study of
the behavior of various condensed matter phenomena [18].
Substantial progress was recently made when van der
Waals behavior of asymptotically AdS charged black holes
was observed [19]. Based on the canonical ensemble, a
small-large AdS black hole phase transition analogous to
the liquid-gas phase transition in a thermodynamic system
was discovered. A number of significant results were
subsequently obtained, including the existence of triple
points [20], reentrant phase transitions [21], and analogous
Carnot-cycle heat engines [22]. These properties estab-
lished a connection between black hole thermodynamics
and everyday ‘“‘chemical” thermodynamics, known as
“black hole chemistry.” This likewise triggered investiga-
tions into the implications for gauge-gravity duality, such as
holographic superconductors [23], the Kerr/CFT corre-
spondence [24], and holographic entanglement entropy
[25] (see [26] for a review).

However, van der Waals behavior and its applications in
Einstein gravity are seen only for AdS black holes with
spherical horizon topology [19]; no such behavior takes
place for AdS black holes with flat or hyperbolic horizons
(no real critical point). Such reports motivate one to look
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for an extension of Einstein gravity to a modified version,
in which van der Waals behavior is seen not only for
spherical AdS black holes, but for AdS black holes with
different horizon curvature. In what follows, we demon-
strate that black holes in massive gravity exhibit van der
Waals behavior independent of the choice of horizon
curvature. This relaxes the constraint on the topological
structure of the solutions, allowing the possibility of
conducting studies in the context of black hole chemistry,
the AdS/CFT correspondence, and the nonrelativistic AdS/
CMT correspondence, regardless of horizon geometry.

I1. BASIC SETUP

The d-dimensional action of Einstein-A-massive gravity
with a U(1) gauge field is

-1 .
I:E ddx\/—_g<R—2A—f"_mzzciui(g’f))’
(1)

1
in which R is the scalar curvature of the metric g,,, A is
the negative cosmological constant and F = F,, F* is
the Maxwell invariant, where F,, = 0,A, —0,A, is the
electromagnetic tensor with gauge potential A,, m is the
mass parameter, and f,, is a fixed symmetric tensor.
The c¢;’s are constants and the U/;’s are symmetric poly-
nomials of the eigenvalues of the d x d matrix K} =

VG o, Where
U =K, U =K} -[K
Us = [K]? = 3[K][K?] + 2[K3],
Uy = [K]* = 6[KC%][K]? + B[] [K] + 3[K]* — 6[K7].

Variation of the action (1) with respect to the metric
tensor g, and the gauge potential A, leads to

1
G + Mg +m?y,, = -2 <FW,F5 - Zg’“’]:) . (2)

9, (v/=gF") =0, (3)
in which G, is the Einstein tensor and y,, is
=K, -U 2w 20, K, + 2K
)(;w_?( {7 lg;w)_z( 29y — 1 ;41/+ /w)
c
- 53 (U3 g — UK, + 6UL K2, — 6K3,)
C
- 54 (u4g/w - 4u3K/w + 122/[2Kiu
— 24U, [C;, + 24KC;,). (4)

In order to obtain AdS topological static charged black
holes in massive gravity, we consider the metric of
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TABLE 1. Roots of metric function (w(r) =0) for A = =3,
d=4, q=167, c=12, ¢, =-2, ¢, =22, c3=15 and
my = 34.

k m Roots

1 2.1600 3.8955, 9.2446

0 2.1300 3.1305, 9.3969

-1 2.1600 2.6165, 10.2691

1 2.1059 0.51778, 3.8325, 8.4374

0 2.1291 0.5432, 3.1271, 9.3857

-1 2.1530 0.5756, 2.5755, 10.1809

1 2.1000 0.4381, 0.6198, 3.8237, 8.3482
0 2.1000 0.3753, 0.8565, 2.9959, 9.0022
-1 2.1000 0.3449, 1.2545, 2.1028, 9.5275

d = (n + 2)-dimensional spacetime in the following
form:

dr?
ds* = —y(r)df* + el + r*h;jdx;dx;, (5)
where i, j =1,2,3,...,n and h,-.,-dxidxj is a spatial metric
of constant curvature d,dzk and volume V,, where
d; = d — i. The reference metric f,, is related to the spatial
components /;; of the spacetime line element. Accordingly,
we employ the ansatz f,, = diag(0,0, ¢*h;;), yielding

Cj i1
ﬁniizdk’ (6)

where c is a positive constant [27]. This choice of reference
metric preserves general covariance in the temporal and
radial coordinates but not in the transverse spatial coor-
dinates [7], so the graviton mass terms will have a Lorentz-
breaking property.

Setting d = 4, the gauge potential ansatz A, = h(r)&)
yields, from (3), F,, = r% as the only nonzero component of
electromagnetic field tensor, in which ¢ is an integration
constant and is related to the electrical charge.

The field equations then yield

AZ 2
k=20t L, (7)

w(r) = 3

,, 3
where A =Str + ccy + <2

—*. The quantity m, is an
integration constant that is related to the total mass of this
black hole. We note that for zero-graviton mass (m = 0),
the solution (7) reduces to the Reissner-Nordstrom black
hole in four dimensions. Calculations of the Ricci and
Kretschmann scalars indicate a divergence at the origin
(lim,_oR = oo and lim, (R 3,sR?%"® — 0); as r — oo we
find R,z3,5 — %(gaygﬁ(s — 9p,9as)» confirming that the sol-
ution is asymptotically AdS.

To study the effects of the massive terms on our

solutions, we can investigate the roots of the metric
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FIG. 1. w(r) versus r for A=—1,d =4, g = 1.7, ¢ = 1.00,
cy =—-2.00, ¢, =3.18, c3 =4.00 and my = 30. Left panel:
m=2.1, k= -1 (dotted line), kK = 0 (continuous line) and
k =1 (dashed line). Right panel: k = —1, m = 2.16 (dotted
line), m = 2.12 (continuous line) and m = 2.07 (dashed line).

function [y(r) = 0]. In massive gravity, it is possible for
there to be as many as four real roots in all horizon
topologies: spherical (k = 1), flat (k = 0) and hyperbolic
(k = —1); we illustrate sample results in Table I (see also
Fig. 1). The existence of more than two roots for the metric
function is due to the presence of the massive terms. Such
multihorizon solutions have been of interest in under-
standing anti-evaporation processes [28]. We postpone a
discussion of the causal and geodesic structures of this class
of solutions for future work, concentrating on their thermo-
dynamic behavior.

III. THERMODYNAMICS IN THE
EXTENDED PHASE SPACE

In extended phase space, the cosmological constant is
regarded as a thermodynamic variable corresponding to
pressure, with P = —%. This postulate leads to an inter-
pretation of the black hole mass as enthalpy [29]. Using
Gauss’s law and counterterm methods, we compute the
various conserved and thermodynamic quantities of these

solutions, obtaining

ko roA g m?

(cerry + ). (8)

- 4nr,  4rm B dzrd  dmr,
VZV?F qu V2m0
S =, = —, = s 9
4 0 4z 8 ©)

where V), is the area of a unit volume of constant (¢, r)
space (4z for k = 0). Also, the electric potential is

¢ = A/l}(#|r—>oo _Ay)(”|r—>r4r = (10)

With these relations, we find that the solutions obey the
first law of black hole thermodynamics in an extended
phase space (including massive variables):
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dM = TdS + ®dQ + VdP + C,dc,

+Cde2 +C3d€3, (11)

where the conjugate quantities associated with the intensive
parameters S, Q, P, c¢;’s are

(2 ”
0.P.c;
oM
- (30).,. )
3
V= <8_M> — Vary . (14)
P S,Q,C,' 3
M 2.2
C = (8—> = Vzi’;’ T )
C1/ 8,0.P.cy.c5 0
(oM ~ Vactmry
G= <6—c2> S.0.P.ci.c; B 87 ’ (16)
oM V,c3m?
6 () v
€3/ 5.0.Pci.c; r

with T and ® given in Egs. (8) and (10). In addition, the
corresponding Smarr relation can be derived by a scaling
(dimensional) argument as

M:2TS—2PV+©Q+C1C1—C3C3, (18)
where ¢, does not appear since it has scaling weight O.
Since the ¢, term in the metric function is a constant term in
four dimensions with no thermodynamical contribution, we
set dc, = 0.

We note that the thermodynamic volume (14) does not
depend on the graviton mass. This in turn implies that the
isoperimetric ratio

3V /W3
R=(>) () =1,
5 ()

and so the reverse isoperimetric inequality (R > 1) [30] can
be satisfied.

To study critical phenomena and van der Waals behavior,
we compute the equation of state and the Gibbs free
energy,

(19)

p_ 4xT — m?cic k4 mPcyc? q°

. (20)

8xr, 8nrl 8rrd
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G=H-TS=M-TS

_ _P_ri+ m*r, (cyc?ry +2c3¢3) + (kr’ 4+ 34°) e
6 16zr,

using Eqgs. (8) and (9). Computing the inflection point

OP _ ()2_}) _ . .
(E)T = 3’1)T = 0 of the equation of state, we find

kr2 . —6¢> +m?c,c?rk, =0, (22)

where r_ . yields the critical volume V. via Eq. (14). This
leads to the following respective critical horizon radius,
temperature, and pressure:

V6|q|

r ¢ = —_— 23
T VkFmiec” (23)
T (k + m2c,yc?)3/? N m?c,c (24)
¢ 3\/677;q 4n
(k 4+ m*c,c?)?
PC — Tﬂ_qz, (25)

and we see that for all values of k, critical behavior is
possible provided the constraint

k+ m?cyc? >0 (26)

is obeyed. Moreover, taking into account Eq. (20), the
pressure is positive for large volume provided
m?c,c

T > s
dr

(27)

a relationship that is automatically satisfied if (26) holds.
Previous investigations of the critical behavior of black
holes in Einstein gravity have indicated that only spherical
topology (k = 1) admits van der Waals-like behavior, with
the k = 0 case behaving like an ideal gas. The graviton
mass significantly modifies this behavior, opening up new
possibilities: topological black holes (k # 1) can exhibit
second-order phase transitions and van der Waals-like
behavior (see Fig. 2). This admits new prospects for
investigating critical behavior of black holes in the context
of classical gravity, the AdS/CFT correspondence, holo-
graphic interpretation of black holes, and duality with
superconductivity.

The existence of van der Waals-like behavior for non-
spherical black holes provides another reason for consider-
ing modified versions of Einstein gravity to include massive
terms. In other words, a nonzero m admits the possibility of
critical behavior for k # 1. Furthermore, the massive coef-
ficient c¢3 in the Gibbs free energy (absent in pressure and
temperature) makes it possible to modify the energy of
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FIG.2. P —r, (left panel) and G — T (right panel) diagrams for
d=4, g=m=c=cy=c3=1 and ¢, =10. Left panel
T =T,, right panel P =0.5P.: k= —1 (continuous line), k=0
(dotted line) and k = 1 (dashed line).
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FIG.3. P —r, (left panel) and G — T (right panel) diagrams for
d=4, g=m=c=c; =1, k=-1 and ¢, = 10. Left panel
T =T, right panel P = 0.5P_: ¢c; = 0 (continuous line), ¢c3 = 1
(dotted line) and c¢3 = 2 (dashed line).

different phases, without any modification in critical values
and their corresponding diagrams [see Eq. (21) and Fig. 3].
For example, the formation of a second-order phase tran-
sition can take place at the same critical temperature,
pressure, and horizon radius but at differing energies of
the various phases. Such interesting behaviors of Gibbs free
energy and critical values could introduce new phenom-
enology for the phase structure of black holes.

IV. CLOSING REMARKS

In this paper we have demonstrated that topological black
holes in dRGT can exhibit van der Waals behavior and
critical phenomena, in striking contrast to their counterparts
in Einstein gravity. For k = 0, it is sufficient to have any
nonzero value of the graviton mass parameter m, whereas for
k = —1 black holes, this parameter must be sufficiently large.
However, too large a value of m will destabilize the pressure,
causing it to become negative for sufficiently large volume.

Recent progress in gauge-gravity duality in extended phase
space [31] suggests that massive gravity will open up avenues
of investigation in black hole thermodynamics. Since such
theories admit critical behavior of black holes of any horizon
curvature, a range of new phenomena in entanglement
entropy [32], holographic ferromagnetism [33], quasinormal
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modes [34], and confinement-deconfinement phase transi-
tions for heavy quarks [35] can now be explored.
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