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The B — a,£7¢~ decays occur by the electroweak penguin and box diagrams, which can be performed
through the flavor changing neutral current (FCNC). We calculate the form factors of the FCNC B — a,
transitions in the light-cone sum rules approach, up to twist-4 distribution amplitudes of the axial vector
meson a;. Forward-backward asymmetry, as well as branching ratios of B — a,#"¢~, and B — a;y
decays are considered. A comparison is also made between our results and the predictions of other

methods.
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I. INTRODUCTION

The semileptonic B meson decays are helpful tools for
exploring the Cabibbo, Kabayashi, and Maskawa (CKM)
matrix elements and CP violations. These decays usually
occur by two various diagrams: (1) Simple tree diagrams
that can be performed via the weak interaction and
(2) electroweak penguin and box diagrams that can be
fulfilled through the flavor changing neutral current
(FCNC) transitions in the standard model (SM). Future
study of the FCNC decays can improve our information
about the following.

(i) CP violation, T violation, and polarization asym-

metries in penguin diagrams.

(i) Exact values for the CKM matrix elements in the

weak interactions.

(iii) New operators or operators that follow the SM.

(iv) Development of new physics (NP) and flavor phys-

ics beyond the SM.
The FCNC decays of the B meson are sensitive to NP
contributions to penguin operators. So, to estimate the SM
predictions for FCNC decays and compare these results to
the corresponding experimental values, we can check the
SM and search NP.

There is a growing demand for more accurate and
reliable calculations of heavy to light transition form factors
in QCD [1-8]. The transition of heavy B meson to light
meson a; is one of the decays that has attracted much
attention of authors. The form factors of the transition
B — a;7v have been calculated via such different
approaches as the QCD sum rules [9], the covariant quark
model [10], the constituent quark-meson model (CQM)
[11], and the light-cone sum rules (LCSR) [12,13]. Also,
the B — a; decay, as a FCNC process, has been studied in
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the perturbative QCD [14], and three-point QCD sum rules
(3PSR) [15].

In this paper, the FCNC B — a,£7¢~ decays are
considered with the LCSR. The LCSR is one of the most
effective tools used to determine nonperturbative parame-
ters of hadronic states. In this approach, the operator
product expansion is performed near the light cone
x2 ~ 0, while the nonperturbative hadronic matrix elements
are described by the light-cone distribution amplitudes
(LCDAs) of increasing twist instead of the vacuum con-
densates [16-20]. The main purpose of this paper is to
calculate the form factors of the FCNC B — a, transitions
up to twist-4 distribution amplitudes of the axial vector
meson a; and to compare the results of these form factors
with those of other approaches.

The paper is organized as follows: In Sec. I, by using the
LCSR, the form factors of B — a,£"#~ decays are derived.
In Sec. III, we present the numerical analysis of the LCSR
for the form factors and determine the branching ratio
values of the B — a;y and B — a,£"¢~ decays. Also, the
forward-backward asymmetry of these decays is consid-
ered. For a better analysis, a comparison is made between
our results and the predictions of other methods.

II. TRANSITION FORM FACTORS IN THE LCSR

The b — d£ ¢~ transition in quark level is explained by
the effective Hamiltonian in the SM as

HE2d = — —( wVr ch
+thvdZC

VisVia Z Ci(/”)Oi(ﬂ)>a
i=3
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where V ;. are the CKM matrix elements, and C;(u) and
O,(u) are the Wilson coefficients and the local operators,
respectively The local operators are current-current oper-
ators O3, QCD penguin operators O5_g, magnetic penguin
operators O;g, and semileptonic electroweak penguin
operators Oq 1. The explicit expressions of these operators
can be found in [21]. The operators O; and Og;, are
responsible for the short distance (SD) effects in the FCNC
b — d transition, while the current-current and QCD
penguin operators, O;_g, involve both SD and long dis-
tance (LD) contributions in this transition. These SD and
LD contributions have the same form factor dependence as
Cy in the naive factorization approximation and can there-
fore be absorbed into an effective Wilson coefficient CS.
To be more specific, we can decompose CS' into the
following three parts as

Ci" = Cy + Ysp(q?) + Yin(q?). (1)

where Ygp(q?) describes the SD contributions from four-
quark operators far away from the resonance regions, which
can be calculated reliably in perturbative theory as [21,22]

Ysn(q?) = 0.138a(s) + h(ri,, 5)Cy
1
—Eh(l,s)(4C3 +4C4 + 3C5 + C6)
1
- Eh(O, 5)(22,[3C1 + C] + C3 +4Cy)
2
+5(3C; + €y +3C5 + C).
where s = ¢*/m2, M, = m./my, Co = —1.(3C, + C,) +
3C; + Cy +3Cs + Cg, A, = V%:d, Ay =Yy, and
" 1d
2 4
w(s) = —5722 —§L12(s) —=In(s)In(1 =)
5+4 2s(1 1-2
+4s In(1 - 5) - s( +s2)( s)]n(s)
3(1 4 2s) 3(1—s)*(1+2s)
5+ 9s — 652

Tk

represents the O(ay) correction coming from one-gluon
exchange in the matrix element of the operator Oq [23],
while (., s) and h(0, s) represent one-loop corrections to
the four-quark operators O;_¢ [24]. The functional form of
the h(ni.,s) and h(0,s) is as
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8
h(in, s) = —§1n7b—§1nﬁlc +ﬁ+§x

2
—§(Z+x)|1 —x|1/?

(ln‘@‘—in), foer4—’§’%<1

% Vi—x—1
2arctan\/%1, forx_4’s"f > 1,
8 8 4 4
h(0.5) = 7= n @—glns+§m

The LD contributions, Y, (g?), from four-quark oper-
ators near the uii, dd, and c¢ resonances cannot be
calculated from the first principles of QCD and are usually
parametrized in the form of a phenomenological Breit-
Wigner formula as [21,22]

3r LV, > I"l7)m

Yip(q®) = ) { Z )
Vimy(Ls)w(2s) Vi
—j. h(O S)(3C1 + C2)

5 Z v —>z+z—) }

VS Y, q —imy, FV

-q° - imy 'y,

To calculate the form factors of the FCNC B — a4
transition within the LCSR method, two correlation func-
tions are written as

I, —i/d4xeiqx<a1(p’,8)|
x T{d(x)y,(1 - ys)b(x)j;
HZ:i/d4xeiqx<a,(p’,e)|

x T{d(x)o,,q" (1 +75)b(x) ]}

5(0)}10),

5(0)}0),  (2)

where jp = iiiysb is the interpolating current for the B
meson. The transition currents c_z'yﬂ(l —ys)b and
c_l'io-mq”(l + y5)b are derived from Oy ;o and O operators,
respectively. It should be noted that the rest operators are
not contained in the definition of the transition form factors.
According to the general philosophy of the LCSR, the
above correlation functions should be calculated in two
different ways. In phenomenological or physical represen-
tation, it is investigated in terms of hadronic parameters. In
QCD or the theoretical side, it is obtained in terms of
distribution amplitudes and QCD degrees of freedom.
Physical quantities like form factors are found to equate
the coefficient of the same structures from both represen-
tations of the correlation functions through dispersion
relation and apply Borel transformation to suppress the
contributions of the higher states and continuum.
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A. Phenomenological side

By considering phenomenological representation, a complete set of hadrons with the same quantum numbers as the
interpolating current operator jp is inserted in the correlation functions. After isolating the pole mass term of the B meson
and applying Fourier transformation as well as the dispersion relation, we obtain

var s Aai(ple)ldr,(1—y5)bB(p))(B(p)|biysul0) 1 [ ot (s)
L5(p'. p) = = +- | s,
mg —p T Js, s—p
' €)|do, ¥ (1 b|B B(p)|bivsul0) 1 [ D)
H;(p,,p):wl(p £)|do,,q"( +2ys> |2(,,>>< (p)Birsul0) , 1 / <s2> s, o)
mB_p ﬂ: SO S_p

where pl’j shows the spectral density of the higher resonances and the continuum states in the hadronic representation. These
spectral densities are approximated by evoking the quark-hadron duality assumption,

Pa(s) = P (5)8(s = o), 4)

where p,?CD(s) is the perturbative QCD spectral density investigated from the theoretical side of the correlation function.
The threshold s is chosen near the squared mass of the lowest B meson state.

The matrix elements (a;(p’, €)|dy,(1 —ys)b|B(p)) and (a,(p’.€)|do,,q" (1 + y5)b|B(p)) are parametrized in terms of
the form factors as follows:

(a1(p', e)ldr,(1 = r5)b|B(p)) = i%

_ Va(q?)
mp — mal
(ar(p'.€)|do,,q" (1 +75)b|B(p)) = 2T (q*)€ape™ p* PP + iTo(q*)[(m} — m3 ey — (¢7.9)(p + P'),]

2

. q
—iT5(q%)(". - Dl 5
iT5(q%)(€".q) |qy i (p+p), (5)

€ﬂuaﬂ£*ypap/ﬂ - Vl (q2)€;<m8 - mal)

(e.q)(p + ), + 2m, %qﬂ[vgm V(g

where g = p — p’ is the momentum transfer of the Z boson (photon), and &* is the polarization vector of the axial vector
meson a;. It should be noted that V(0) = V5(0). On the other hand, the identity 0,75 = —£€,,,50% implies that
T,(0) = T,(0) [25]. Also, V53 can be written as a linear combination of V; and V,,

mp—m

Vs(qz) = Talvl (612) -
ay

s T My (2. (6)

2m,,

_ me%;

my,

Taking into account the second matrix element in Eq. (3) as (B(pg)|biysu|0) where fp is the B meson decay

constant and m,, is the b quark mass, we can obtain these hadronic representations for Hﬁ'v and H,{ as

2 2A(g?
H;LV = _meB {i (q ) eﬂuaﬂe*ypap/ﬂ - Vl(qz)glj(mB - mal)

my, p*—my | mp—m,
" h(A,V)
V(q?) ) (e".9) 1/°°pu (s)
SRS VA 2m, 10 Vi(q?) - Vo(q? - B g,
P (e".q)(p+p"), +2m,, p qu[V3(a®) = Volg™)] o +— s
T me% 1 2 KU O /[ . 2 2 2 * * /
Hu = - m 2_ 2 2T1(6] )e;waﬁg pip’ + lTZ(q )[(mB - mal)gﬂ - (8 Q)(p +p )/4]
b PT—Mp
2 h(T)
' q 1 [op,(s)
Ty e ) {q - (r+ 1) H+— [ )
’ g m% - 31 : T J)sy S— p2
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B. Theoretical side

Now, the QCD or the theoretical part of the correlation functions should be calculated. The calculation for the defined
correlators in the region of large spacelike momenta is based on the expansion of the 7 -product of the currents near the light
cone x*> = 0. After contracting the b quark field, we get

" = /d4xei"x<al(P’,S)IH(X)Y,,(I —75)8"(x,0)y5u(0)[0),
I, = / d*xe'™(a(p', €)|d(x)o,,q" (1 + 15)S"(x,0)75u(0)[0), (8)
where S”(x,0) is the full propagator of the b quark in the presence of the background gluon field as

'k, K+ m, dk o V[ k4m, ) 1 ,
Sb(x) :/(277:)46 k kz—m’%_gs/(zﬂ)4e k A du EWGW,(MX)O"” +WMXMGﬂ (ux)yy N (9)

where G, is the gluon field strength tensor and g; is the strong coupling constant. In the present work, contributions with
two gluons as well as four quark operators are neglected because their contributions are small. Using the Fierz
rearrangement formula, Eq. (8) can be rewritten as

Y == [ e {1y (1 = 75)S WsT @ AW u(O)0).

1 = = ¢ [ @5 [Te{o, (14795 WLl AT u(0)0) (10

where T, is the full set of the Dirac matrices, Iy = (. 7s.7,.7,/5: 0,,)- In order to calculate the theoretical part of the
correlator functions in Eq. (10), the matrix elements of the nonlocal operators between @; meson and vacuum states are
needed. Two-particle distribution amplitude up to twist 4 for the axial vector meson a; is given in [12]

*

L O R P P IO R R RO

£, €
p.x p.x

* (v)
&.x _ v oon9L (u) 1 o
IR M G3(1) + €upo™ PR == } +fa [E (pe —ep)ys®y (u)

L px = xp s 2 KO ) + (e )iy GO (11)
2 5(}7/.)()2 a| : ay /s 2 50(’

where for x% # 0, we have

7 _ (0

hy' = hy" =52 (u)
In Eq. (11), @, @, are the twist-2 functions, g(f), gi”), h|<|’>, and hl(lp ) are the twist-3 functions, and g5 is the twist-4 function.
The definitions for ‘IDH, P, g<f>, g(f), hflt), hl(lp ), and g5 are given in Appendix A.
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Two-particle chiral-even distribution amplitudes are given by [12]

*

- . 1 o X . X\ (g
<a1(p’,e)ld(X)msu(O)lm=lfa1ma% due’“’”{pLP, ‘1>||(u)+<€,4—1>,2 , >9i>(u)

X p.x
1 & .x _
- E'xﬂ (p/.x)2 malg?)(u) + O(‘xz)}v
/ p — 3 *U 1P .0 ! iup'.x gf)(u) 2y L.
<a1(p ,£>|d()6)7”u(0)|0> - lfalma] e,uupo‘g prx 0 due 4 + O('x ) ’ (12)

also, two-particle chiral-odd distribution amplitudes are defined by

- 1 ., my, €
(a\(p',€)|d(x)0,,75u(0)[0) = fa, A due’“’”‘{(ei;pi—eﬁpL)%(u)+ ;

_ (7 (u
0 arsu0)0) = s 0 [ w1

In these expressions, f, and f; all are decay constants of the
axial vector meson a; defined as

(a1(p', €)ld(0)r,rsu(0)[0) = if o, mq, €5,
(@1(p'.€)|d(0)0,,75u(0)[0) = fa a5 (€.p, — €;py).  (14)

where ap- refers to the zeroth Gegenbauer moments of ® | .
It should be noted that f, is scale independent and
conserves G parity, but fj] is scale dependent and violates
G parity.

Three-particle distribution amplitudes are defined as

(ay(p', €)|d(x)7ay59,Gu (ux)u(0)|0)
= pu(pies = Py foa A+ -+,
(a)(p'.€)|d(x)y 495G, (ux)u(0)[0)
= ipa(pues — PLE) gV + -, (15)

where G, = Le,,,,G*. The value of coupling constants
[, and f5, fora; mesonatyu=1GeVis f3, =(0.0055+
0.0027)GCV2 and fg\,a] = (0.0022 4 0.0009) GeV? [13].

The three-parton chiral-even distribution amplitudes .4 and
V in Eq. (15) are defined as

A = /Dgeipl-x(alJru‘h)A(ai)’

V:/Daeil’""(“l+”“3)V(a,~), (16)

where A(«;) and V(a;) can be approximately written as [13]

2 %

(pmgm%—m%ﬁ$+aﬁ@,

0(x2>}. (13)

A(ai) = 5040(0{1 — az)alaza%

o4
+ 360a,ay03 [/1/2] + % (Taz — 3)} ,

v
V(a[) = 3606‘!1(120% |:1 + w2111 (7(13 — 3):|
+ 5040(a; — a)ayma3oy, . (17)

where a, a,, and a3 are the momentum fractions carried by
the d, i quarks and gluon, respectively, in the axial vector
meson a;. The integration measure is defined as

/Dgz[)ldal/oldaz[)ldaﬁO—Za,). (18)

Diagrammatically, the contributions of two- and three-
particle LCDAs to the correlation functions are depicted
in Fig. 1.

In this step, inserting the full propagator [Eq. (9)]
and two-particle as well as three-particle LCDAs
[Egs. (I11)—(15)] in the correlation functions [Eq. (10)]
traces and then integrals should be calculated. To estimate
these calculations, we have used identities as

q
d
b °
p u p
(a)
FIG. 1. Leading-order terms in the correlation functions involv-

ing the two-particle (a) and three-particle (b).
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TABLEIL The Gegenbauer moments of @, and @ for the a; meson and twist-3 LCDA parameters at u = 1 GeV.
LCDA parameter at al {3, Wy, )
Value —1.04 £0.34 —0.02 £0.02 —0.009 £ 0.001 -3.70 £0.40 -2.90 £0.90
TABLE II. The B — a; form factors at zero momentum transfer.

Form factor A(0) V1(0) V,(0) Vo (0) T,(0) = T,(0) T5(0)
Value 0.42 £0.16 0.68 £0.13 0.31 £0.16 0.30+0.18 044 +£0.28 0.41+0.18

€apro€us = (BupSioOuy = OupdiOuo + 8150040 = 8,50, Oc
=+ 6;4/7'51;/51/0' - 5/4/)’51/y5/10)’

emﬂﬂe"‘ﬂ/”1 = 2(5’{’;5,/3 — L)), (19)

Now, to get the LCSR for the calculations of the B — a,
form factors, we equate the coefficients of the correspond-
ing structures from both phenomenological and theoretical
sides of the correlation functions and apply Borel transform
with respect to the variable p as

1 (=l e
2 G =y~ T

(20)

in order to suppress the contributions of the higher states
and continuum as well as eliminate the subtraction terms.
Thus, the form factors are obtained via the LCSR. The
explicit expressions for the form factors are presented in
Appendix B.

III. NUMERICAL ANALYSIS

In this section, we present our numerical analysis
for the form factors and branching ratios of the
B — a,7¢~ decays. In this work, masses are taken in
GeV as m, =4.81+003, m,=0.11, m, =177,
m,, = 1.23 +0.04, and mp = 5.27 + 0.01 [26]. The f5 =
(0.19 £ 0.02) GeV is in agreement with the QCD sum rule
result with radiative corrections [12]. The G-parity violat-
ing decay constant for the a; meson is defined by fjl and
is equal to f, = (0.2340.01) GeV at the energy scale
1 =1 GeV [12]. The suitable threshold parameter s, is
chosen as sy = (334 1) GeV2, which corresponds to
the sum rule calculation [7]. Also, we need to know
Gegenbauer moments of @, @, and G-parity conserving

TABLE III.  Contribution of the b quark free propagator in the
form factor values at > = 0.

A(0)  Vi(0)  V5(0)  Vp(0)  T,(0)=T,(0) T5(0)
0.41 0.67 0.30 0.29 0.43 0.39

parameters of three-parton LCDAs for the a; meson at the
scale u = 1 GeV given in Table I. It should be noted that
the value of other parameters such as o7 , 6, , 64, 44,, £} >

al, a, and at is 0 for meson a; [13].

We should obtain the region for the Borel mass param-
eter so that our results for the form factors of the B — a;
decays are almost insensitive to variation of M?. We find
that the dependence of the form factors on M? is small in
the interval M? € [6,10] GeV>.

Using all these input values and parameters, we can
present form factor values at the zero transferred momen-
tum square g> = 0 in Table II. The errors in Table II are
estimated by the variation of the Borel parameter M2, the
variation of the continuum threshold s, the variation of b
quark mass, and the parameters of the LCDAs. The main
uncertainty comes from LCDAs ®, (#) and b quark mass
my,, while the other uncertainties are small, constituting a
few percent.

The b quark propagator in Eq. (9) consists of the free
propagator as well as the one-gluon term. Considering only
the free propagator in the QCD calculations, the value of V4

[ * twist-3 — = twist:2 —— A(q?) |

0.6

0.5

0.4+

—

o
= 0.31
<
0.2

0.1

k**********************

0+ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8
a* (Gev?)

FIG. 2. Form factor A on ¢> as well as the contributions of
twist-2 and twist-3 distribution amplitudes in this form factor.
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TABLE IV. Transition form factors of the B — a;£#7¢~ at
g*> = 0 in various theoretical approaches. The results of other
methods have been rescaled according to the form factor
definition in Eq. (2).

Theoretical

approach  A(0) V,(0) V5(0) Vo(0) T,(0) =T,(0) T5(0)
CQM[14] 026 043 0.14 0.34 0.34 0.19
3PSR [15] 031 052 025 0.76 0.37 0.41
This work 042 0.68 031 0.30 0.44 0.41
TABLE V. The parameter values for the fitted form factors.

Parameter A Vi V, Vo T, T, T5

F(0) 042 0.68 031 030 044 044 041
a 1.09 073 0.84 0.77 057 063 040
B 055 035 047 037 038 032 358

at the zero transferred momentum square ¢> = 0 is 0.67,
which is about ~99% of the total value, while the
contribution of the other part of the propagator is about
1%. Table III shows the contribution of the b quark free
propagator in the form factor calculations at g> = 0. As can
be seen in Table III, the main contribution comes from the
free propagator. So by taking into account the full propa-
gator instead of the free propagator, correction made in the
form factor values at the zero transferred momentum square
g*> = 0 is very small.

In this work, the form factors are estimated in the LCSR
approach up to twist-4 distribution amplitudes of the axial
vector meson a;. Our calculations show that the most
contribution comes from twist-2 functions for all form
factors. Also, the LCDAs ¢ play the most important role
in this contribution. Figure 2 depicts the twist-2 and twist-3
contributions in the form factor formula A(g?). In this form
factor, the twist-4 function does not contribute. Several

|—'— Alq?) v (q?) --oeee v,(¢?) — - Vo(qz)|

1

0.8+

“o 0.6

0.2

0 2 4 6 8 10 12 14 16
¢*(Gev?)

PHYSICAL REVIEW D 95, 016009 (2017)

authors have calculated the form factors of the B —
a,¢* ¢~ decay via different approaches. To compare the
different results, we should rescale them according to the
form factor definition in Eq. (2). Table IV shows the values
of the rescaled form factors at g> = 0 according to different
approaches. In order to extend our results to the whole
physical region 4m? < ¢* < (mp—m,)?* we use the
following parametrization of the form factors with respect
to ¢° as

F(0)

Fi(q?) 1 as i ps (21)

where s = ¢*>/m?% and F;(q*) denote for the form factors,
A, Vi(i=0,1,2)and T;(j = 1,2, 3). The values of F;(0),
a, and f for the parametrized form factors are given in
Table V. The fitted form factors with respect to g> are
shown in Fig. 3.

We have calculated the form factor values of the B —
ptT¢~ at g> = 0 in the LCSR model shown in Table VI.
Also, this table contains the results estimated for these
form factors in [5,27]. The predicted values by us and
Refs. [5,27] are very close to each other in many cases.

In the standard model, the rare semileptonic B —
a,7¢” and B — pft¢~ decays are described via the
loop transitions, b — d£+¢~, at quark level. Both mesons
a; and p have the same quark content, but different masses
and parities, i.e., p is a vector (17) and a, is an axial vector
(I7). If a; behaves as an axial vector partner of the p
meson, it is expected that V;(0) for the B — a; decays is
similar to A; (0) for the B — p transitions, for example. The
values obtained for V;(0) in Table IV are larger than those
for A;(0) in Table VI. It appears to us that the transition
form factors of the B — a; decays are quite different from
those for B — p.

Now, we consider the forward-backward asymmetry A2
for the B —» a,£"¢~ (¢ = u,7) decays. The expression of

=@ — (@) ()]

FIG. 3. The form factors A, V;, and T; on ¢°.
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TABLE VI. The form factor values of the B — p£*¢~ at ¢*> = 0.

Model V(0) A,(0) A>(0) Ao (0) T,(0) = T,(0) 75(0)
LCSR [27] 0.32+0.03 0.26 +£0.02 0.22 +0.02 0.36 + 0.04 0.27 £0.02 0.14 £0.01
LCSR [5] 0.34 +£0.05 0.26 + 0.04 0.22 +0.03 0.37 £ 0.05 0.29 £ 0.04 0.20 £0.03
This work 0.39+£0.10 0.30 £ 0.06 0.28 +0.05 0.34 +0.09 0.32 £0.07 0.21 £0.04

the A8 is given in [25]. The dependence of A"? for the
aforementioned decays on ¢> with and without LD effects
is plotted in Fig. 4.

Finally, we can evaluate the branching ratio values for
the FCNC B — a,£%¢~ decays and the radiative B — a,7.
For the radiative B — a;y transition, the exclusive decay
width is given as [28]

2.5
ey Gy,
3274

m2 \ 3 m2
X <1— 2‘) <1—|— ;‘)
mp mp

Also, the ratio of the exclusive-to-inclusive radiative decay
branching ratio is defined as

(B = ay) = [V ViyCq(my,) T (0)]?

(22)

BR(B — ayy)
BR(B - be)
(1 —mg, /mp)*(1 4 mg, /mp)

(1= mg/mp)> (1 mg/mp) -

R =

T1(0) (23)

R is a quantity to test the model dependence of the form
factors for the exclusive decay [28]. Using the value of
T,(0), we estimate the branching ratio Br(B — ay) =
5.6 x 1077 and the corresponding ratio R = 8.81%. Our
prediction means that about 8.81% of the inclusive b — dy
branching ratio goes into the a; channel.

SD —-— LD

ATB (B%aluﬂl‘)

In this paper, we compute the branching ratio values
of B - a, "¢~ decays in leading order, completely. For
this aim, we have to add the contributions of the weak
annihilation amplitude of diagram (c) to the form factor
amplitude related to diagrams (a) and (b) in Fig. 5.
Diagram (c) is related to the nonfactorizable effects in
leading order. They arise from electromagnetic correc-
tions to the matrix elements of purely hadronic operators
in the weak effective Hamiltonian. Since the matrix
elements of the semileptonic operators Og o can be
expressed through B — a; form factors, nonfactorizable
corrections contribute to the decay amplitude only
through the production of a virtual photon, which then
decays into the lepton pair [29].

After calculation of this amplitude, it is straightforward
to derive the differential decay rate for B — a,£1¢~
decays. The explicit expressions of our calculations for
the amplitude and differential decay rate have been pre-
sented in Appendix C.

O e
(b) (c)

(@)

FIG. 5. Factorizable and nonfactorizable contributions in lead-
ing order. The circled cross marks the possible insertions of the
virtual photon line.

I

0.2 |

i

b

0.1 |

— |1

+P 0 |

o I

< II

T -0.11 il

m I+

—— "l

m .

B 021 g
-0.31
,0.4,

13 14 15 16
qz(GeVZ)

FIG.4. The dependence of the forward-backward asymmetry on ¢°. The solid and dash-dotted lines show the results without and with

the LD effects, respectively.
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0.3

).109

0.2

dq2
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0.1
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T .
o\
1 -
=\
|

|

|

1T-T+) 100

dq2

0.5

dBr(B —a

*(Gev?)

FIG. 6. The differential branching ratios of the semileptonic B — a; decays on ¢> with and without LD effects.

We show the dependency of the differential branching
ratios of B — a,£7¢~(¢ = p, 1) decays on ¢?, with and
without LD effects [see Eq. (2)], in Fig. 6. In this figure, the
solid and dash-dotted lines show the results without and
with the LD effects, respectively. To obtain the branching
ratio values of these decays, some cuts around the narrow
resonances of J/y and y' are defined for the muon as

I: 2m, < \/ ¢* <My, —0.20,

: My, +0.04 <1\/¢* <M, —0.10,

r: M, +0.02 < \/q@* <mp—m,, (24)
and for 7, the following two regions are introduced:
I: 2m, <1\/q* < M, —0.02,
0: M, +0.02<1/q> <mp—m,,. (25)

In Table VII, the branching ratio values for B —
a, ¢ ¢~ (¢ = pu,7) have been obtained using the regions
shown in Egs. (24) and (25). The results have been
neglected for the electron since these are very close to
the same as those for the muon.

Our calculation shows that the nonfactorizable correction
is less than 1% in branching ratio values in leading order.
Therefore, it could be easily ignored in our calculations.

In summary, we investigated the form factors of the
FCNC B decays in the a; axial vector meson in the LCSR
approach up to the twist-4 LCDAs. Considering both the
SD and LD effects contributing to the Wilson coefficient
Csit, the dependence of the forward-backward asymmetry
of the decays B — a;u"u~ and B — a;77t~ was plotted
with respect to ¢*. Finally, we calculated the branching
ratio value for the semileptonic decay B — a;y. Also, the
branching ratio values of the B — a;¢7¢ (£ = p,7)
decays were completely estimated in leading order by
using the nonfactorizable effects. We found that the non-
factorizable correction is very small.

APPENDIX A: TWIST FUNCTION DEFINITIONS

In this appendix, we present the definitions for @, @,

a" gl n n, and g,

The functions @ and @ for the a; meson are defined
as [13]

@) (u) = 6ui [ag +3ale+ agg(sg - 1)},

3
O, (u) = 6ua[1 +3ate+at (58 - 1)], (A1)
where £ =2u—1. Also u and =1 —u refer to the
momentum fractions carried by the quark and antiquark,
respectively, in the axial vector meson a;. These LCDAs
are normalized as the normalization conditions

TABLE VII. The branching ratios of the semileptonic B — a,#* ¢~ decays including LD effects in three regions.
Mode I II I I+ 11+ III
Br(B — ajutu~) x 108 221 £0.54 0.25 £ 0.07 0.06 £+ 0.01 2.52+0.62
Br(B — a;tt77) x 10° Undefined 0.14 £0.03 0.17 £0.03 0.31 +£0.06
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Al dudy (u) = 1, Al dud, () = ai. (A2)

Up to conformal spin 9/2, the approximate expressions for g(f), gf), hl(| ), and h< ”) are taken as

a 3 3 3 9 105
000 =30+ @)+ el + (Sabaset, 02 - 1)+ (el + o e - gtk

x (3564 =302 4+ 3) 45 [Igg_alaxl + 35, </12‘1 - 13—66‘21>] E(58% —3) — gal 5,

3 3 9 =
X <2+§2+lnu+lnﬁ> —Eafé_(3§+lnﬁ—lnu),

v _ 1 3
/) =ounf 1+ (a4 et ) + [eb e 5en, (1- ok ) + 3k, |ese -1

35 ~ ~
+7 (Cé/’alagl - %é’?,alog)f(%z - 3)} —18a716, (Buit + ulnii + ulnu) — 18a1-6_(uiné + alnit — ulnu),

L

W) =308+ ate0e - 1)+ [ater e, (5-22) [ese -9+ Det o

(1+6a)(8, &2 + In(@u)] + 5_[1 + Eln(@/u)),

_3
2
1 35
<Zaé_ + €C§a15i>

x (582 —1) - 5d! [ZL: +%S_(1 - ﬁu)} } —3(146a))[5, (@Ina — ulnu) +5_(uit + aln i + ulnu)], (A3)

x (35&+ - 30&% + 3) + 184! {mg—a (3§2—1)]
£+

hflp)(u) = 6m‘t{a0l + {all + 584, (1 _4_10(752 _ 3)@51)]

where

V(A)
% 7]%1 mg+my é,V(A) o f3,a1
+ = = -
fal mal 31 falmal

In the SU(3) limit, the normalization conditions for g(f), gjf), hl(l >, and h< ?) are defined as

Y e @ = [ dua® () — Y un D () — gl Y n® ) — gl 1§
dug|’(u) = [ dug,’(u) =1, duh’ (u) = ay, duh”(u) = ay +6_. (A4)
0 0 0 0

The definition of the function g3(u) is as follows [30]:

g3(u) = 6u(1l —u) + (1 —3&2) [lall 20 f3a, ]

7 2 3 fa] a (AS)
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APPENDIX B: FORM FACTOR EXPRESSIONS

In this appendix, the explicit expressions for the form factors of the FCNC B — a; decays are presented.

L 1 ) 1 (v)r
A(g?) = Sa,mp (mal_ ){ al/ duL(“%m,u_ﬂ/ dugi (u)es(u)
g

4m%f3 fa, u dm,, u

" s L ()00
_ my, \/l du gJ_ §u> |:1 + 51(”) 28m01:| es(ll) _|_‘falrna1/1 du32h”2(u)es(”)},
dmy, Ju, u M far Juy M

- 1 [1 79, (u)6 th
v, (q2) E— my, f I ) {_/ du l(u) l(u) ex(u) + ngzl / du I ( )es(u)
- mal U u Uy

8m%fp (mp 2 u

1 (a)
fa1 almb/ du gy \u) (u) esu) _ 4m131,mb/ du 2 (’;) s(u) —8m(211
fal I u M

X[,:duw " / /D {fga. (o) Mfga (az)} }

fam Vo®y(u) o  Afamem Pa(u
Va(q?) = 4m1 fi;( mal){lg/ du Lu( )e () 4 7= B/ 21(‘42)6
B U a, U

1 P () I AC)
I S ‘ 93
+ 4m3, lﬂ duT(l +2u)e’™ — 8f 4 mi my /uo du Y (u)

16 L) v AP () 12 35
4 e malmb/ du—" (Z>e“‘<“>—16m3,,/ du - 2( ){ ) _ 3, '(”)]e"(")},
o u-M o u

Z uM*  2M?*  AuM*
1l 2 1 P
Vo) = Vo) 4 {0 [ P e o,y [ e
a Up u

8m%fy m w  uM?
t () f 1 g,
I s a 95" (u) S
—4m, A duT(l—u)e()— —a{mglmblo du=s (1= u)e’®

(i) = (1)(ii)
16f,, L (u) o(u 1 hy (u) [285(u) 1
+ I malmblo du P eA()—|—8mgl/u0 du 5 [uM“ —W—l—(l—u)

u
1 81 (u) s(u
. (_W+ZMM4>}6‘( )}’

a a 1 @ ! a
T, (qZ) — _Sf 12n;b { < Ly 8) / du J_(u) es(u) _ 3mal / dugi)(u)es(u)
mgJ B Uy u uo

ap

1 1 (v) ! (v)r
+4mal/ du‘f’a_(”)esm_&/ dumem)_@/ )
1 o “

u my,

M?> 2m?

) 16£+ 1 RWE 4
x/ duLM(Zu)es(”) —%mﬁlmb/ du”TE)e s) 4 %al/ du/Da [ 11‘/([’2()] eS(K)},
u u a U u

X[7_55(u)(8u—1)+u52() 54(u)] @ 4+ 4, /ldu‘bl(f)(") ) _

016009-11



S. MOMENI, R. KHOSRAVI, and F. FALAHATI PHYSICAL REVIEW D 95, 016009 (2017)

Lo 1 1 (a)
Ty() = s Ja Z{m”f“‘/ dumemw_mal/ a9 ®)
M i

a m%fB mgl - fal i u 2 u
1 1 (1’)/ 6 1 1
X [y (u) + 465(u)]e*™) ——m, / duw e 4+ —m, du¢”—(u)
16 7' Ju, u 2% ) u

1 )y, Wo<(u)  us(u y ;
xél(u)es‘(u)+mall duglug )|:56(u)+61(]‘)/[625( ) ubs )<1+%]$42)+57i ))

Sy(u) | Os(u)di(u)\] v g3t (u) Ss(u)]
> + Y e +2m3 uodu - 5— e es)

+u <m§l - 26, (u) +

7 (1)(id)

(i) 0
—2m /1 duwesw — 8 %2 m, /l duh“ (u) [1 + 62(u)] es(t)
ay u aj u2 M2
i a o

14
e o 0t S (1588

A
—];3— / : du / DQA,(C(;") {mz 512‘,([’;) — 4u <m2 +544(LK) +5‘(';)4(522(K)>]e“<">},

famy (8% LoD (u) oW,
T3(q2):—4m‘%f8 fal‘mblodu p e<)—4mallodu p e()—|—2m31

— (ii v)!
Ug ) [ 8 285)] iy 11 g ) [T
X LO du el Ryl (u) _4mm . du lu =6y (u) + m3,

5 1 1 2 1 P, 0
_ l(u) es(u) —m, / du ¢a (2u) 4 M51 (Lt) +2 52(“) eS(M) — 4ma du Il 2(”)
4u " Ju u u M " Juo u

—-(u 1 (v) u u u u) — u
§ [”55(”3”25” )“]e‘“”‘mlalo sl >Fj}éz>_5l< ), 585(u) = 763(u)

0

7 (1))
&(u) 8w ., 16fa vy (u)
T T e()+f—a]mg‘mb L BT

where

(50 =2, = 2+, (= @) = (so = mi, = )|, su) = = [ + i, = g?) +
aj

m, ¢ ms, u—1i 2
51(”):m51(”+2)+7b+71 52(”):”m51_7b+q277 53(”):7— »

m> 2(y—2 7]
) =208, (u+ 1)+ 247, os(u) = umd, =" TUD )~ (1) 4 2

u
2 2 u . u v
s = 2" L 0= [" e, g = [ [ dof().
¢, = /u (@) — g@(v)]dv, K = oy + uas.
0

APPENDIX C: NONFACTORIZABLE CORRECTION

In this appendix, we present the leading-order results of the nonfactorizable corrections for the amplitude and differential
decay rate of the B — a,£" ¢~ decays. The nonfactorizable corrections for the amplitude are obtained by computing matrix
elements of four-quark operators O;_g represented by diagrams (c) in Fig. 5. Using the a; and B meson distribution
amplitudes and after some calculations, we obtain the expression for amplitude M as
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G Pem ! . kU a0 * * *
= 2%” <4p1 / d&{lipr€mape;’ PPP'BP — pP3pu(€* - @) + p3qu(e* - p) — p3(p - )€l @i ($)

+2p3(e* - p)[Qy(Ep - 9),A1(&) + 0u(=¢p + q),A2(5)] + iMy€,05€5 %6 9o (€)
— myps[(e* - CI)(”—)” (e n_ )%]%(f) + mmeP3€Z¢2(f) + 2myps (€ - ”—)[Qb(ép - C])MAz(f)

+ 0u(&p — q),A4(E)]} + 16pyps (e - n_) A 1 du{2[Q4(up’ + q),As(u) + Q,(up’ + q),As(u)] — qup4(u)}

+psliF1(@%)euape;” P + Fo(q?)ey! = F3(q?) (" - q)(p + '), + Fa(q?) (" - q)ﬂl,J) (¢ (g)r"¢" (q1)),

where p; = f“ﬁz 4 pr=P1+ P p3=P1— P ps = fifg’ s =ViaVis b1 =V Vigar = Vi Vigas, o ==V Viae,

=C +& 3 ay = Cy +%, and ag = Cq +T' The functions A;, ¢;, and F are defined as

B ®B, (&)mz? _ ¢s, (&)my? B ®s, (&)mz?

A =gTa-gu+n 9 0cmreaasn MY TEsra-g0+n
¢Bz(§)m32 _ ¢ (u)ymy _ ¢L(”)m32
R o v v SRR )Rl v SRR B i €
?1(8) = 0uA2(8) — QpA(8), ?2(8) = 0pA3(8) — Q,A4(8),
@3(8) = 0pA3(8) + QuAL(S), pa(u) = QqAs(u) + Q,A¢(u),
and
F@) =2 [T (@) = (2 AGD)]. Fa(e?) = KT (a) = b ()
0
2

F3(q*) = Ko [TZ(‘IZ) + jgl—é)T3(qz)] _%VZ(qz)y Fy(q*) = xT3(q%) +2 Com al [V%(CI ) — Vo(‘lz)]v

where § = L, ?:2—%, My = mg(1 =V/F), My = my(1 =), kg = —

2
My

2m

Ild C() Ceff + CIO

Using M, the differential decay rate formula of the semileptonic process of the B — a;£*£~ is estimated as

dl'(B — a,¢1¢7) GFaemmB/1

A AL
dq? =3 AL RS
m2 4m , A2 ~D ~ A A A . e . . .
where m, = %5, v =1-=% and 4 = §° + 7" + 1 — 2§ — 27 — 27 5. The explicit expression of A is given as
C C C3C C3 3
A = |p1[*4 967, 8 |po* + 32|ps*D(8, i) 1 2l + 22 )+ (5-2)(1+2
25 27 25

G B\ ) e, ¢f @ )
T (1452)|mea >}+8rb|p1| sl Dis.ie)[es =92+ 5 (1470 |2

. N C C,C C2C
1600 Pl (1 = AP L) = 1650l PG |52 (€ - 52 ) - E2 72

2F 27
+ 8|p112[ps)*D(3. M) [Qp T4 (q?) + QuZs(q?)] + 327 p1|*|ps|*D(3. riy)
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x [0vZ6(q%) — QuZ7(q%)] - 128’b(ﬂ1/’4)|ﬂ%| CiD(3,1,)[0QuZs(q%) + QuZo(q?)]

3201 Plos? [@(1 _r r;f(l n ) ] _ 641 PlpalPA2(1 = )2

x D(3,mis)T3,(q%) + 3272 |p: [* |,03|2(—S+ ) (8, mi,)I3,(q%) + 320,515 ]?

27

C,C
< Dlsutie) | Tua?) + (€1 = 52 ) Tusa)| + 16Qulos PlosP DS 1) | Tre(a?)
C C
+0,(1-55 ) s(an)] + 160401 Pl (1= ) Dlsurin T ) - 2560, (222 s

C
xD(&n@)[den(q%+Quzlg<q2>}+8Q%,|p1|2|p3|273<s,naf>(1 2 )m 2)

+ 647,0, 10112103 *D(3, 1) (04T 20(q%) + QuZ21(q%)] + 2560, (pll:) p3|*D(8. niy)
X [04T2(q*) + QuZ23(q)] = 327,201 [*D(8, 1) [Qppa P T4 (q%) = Qulps*Tos(4?)]

C,C A
320,10 Pl D5 i) (€14 0 ) Ea) - 12800 (222 (s 1)

N 2 . C, C C
X [Ty7(q*) — (5 — 1) Ips(q*)] + %Re(pgpéFE(q )D(3, niy) [— (C3 21
B

?
o o G2 C(1 =7
e (1 T 8%13)}11@2) + 2pRelpyps 5 ()]D(S, i) K - é) (Cl ‘¥>

cic 8p
|7+ Rl D 1Ol + 0T ()] = 80
mpg
C,C C,C 8p1 7
<Relpp DG |04 €= 57 ) Tae?) - 0 €+ 52 ) Tted)]| - 247
B

A . N G2
< Relpspi (DG G () - 4o rRelps PP 2 | (- )

2

8p1 ¥ C, 8p1Fy . .
- 3] u(a?) - 500, Relpuoi () (1= 325 ) ) + 2 DG
B

2 2
< Relpspi ()] | 2 RS gy Relpupi ()G
2 2
<OTule?) + Tl )] + 15 Relpupi (a7 PG i) | 272 E) = STl
64p,4

+ —Re[,% 1F3(q%)|D(3, miy) [QdI35(q2) + 0.Z36(q%)] + 8p1Re[p2piFi(q%)]75*

XD(S,mf)[I( 2) + Lio(a®)] + 4los 7 * |F1 (a*)PD(S. miy) + 2lps|*|F3(q) P D(8. i)

x(s fﬁ)[ch - (1_;)2} 2")5 K% )+D(§,mf)(1—f;2)]

C A C(1 =7
e ettty D5 1 - (2—} ,
rmB S

+

where 7, = ::—I’;, Ci=1-7+58C=1-7-5,C3=1+7-3, and D(8,ni,) = § + 2ni,. The forms of Z, functions are
expressed as

016009-14



FLAVOR CHANGING NEUTRAL CURRENT TRANSITION OF ... PHYSICAL REVIEW D 95, 016009 (2017)
1 | , | .
L) = [ din® D@ =T [ dnd L@ =T [ desd.
0 0 0
Lo c C ¢ A CoA (&
ne) =) [ dend)] (e + %2) (110 -959) 1 oo (a6 - 259)].
Lo C,C _CiAs( o CAs(é
Ty(e) = 1) [ ains(6)| (- cl+ﬂ>< S60) 4 e (800 - 2559,
. [ .. CiA . A
1) =) [ deno)[ane - 9520 v, (6-229)].

)

)
i) = Ti(a) [ déas®)|ad) - “25@ re(1-6-57)],

0

1) = 1) [ aurs |1 =530 2 =1i(e) [ duagto|1- 257

Tio(q?) = A ‘(8. Tu() = / ' iz (©).

0

Tald®) =Tole?) [ denn®[n (@) + 86 - 952 - 20 s () 4 ey - 2290)].
Tute?) =Tu(e) [ dé@ e+ 557,
Tt = [ azan(e) [ aeasd| ety - 220

Tis(?) = A ' dea, () /) ' dEas(®) | an(e.®) - (;A“@]

1) = [ aennto) [ aén®[en(ae.5 - 2920 1 g, (s - 292,
oy >[All<f )- 229,
@ [ duneto A - =G,

1 1
117(‘12) :A dgA, duAs(u

1
Tis(q?) = A dEA,

Tu(e?) = [ deas(e) [ dean(®)|anie.dy - 2,
Tata?) = [ azas(e) [ aead|antet) - W]
Tt = [ azas(e) [ aeasd|anie.dy- 2550,

Izz(qz) - A' déA, (&) /)l duAs(u) [A14(§, u) _%?7(”)}
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Ix(q*) = /OldéAz(f)/old“Ad”) [Als(e&’ u) =

sl

1 p p
Tos?) =Tu(e?) [ auns(®)|1 -+ 555

127(6]2) = 111(612)(5)/01 duAs(u) [1 —A;—(;l)}

Too(q?) = A ' dzA, (&)
zﬂﬁ=£b&@>

To(q) = /0 L deay(@) |a

I(q*) = Al déA, (&)
I3s(q2) = Al déA;(&)
Tule) = [ dens@)

Ts35(q*) = Al duAs(u) {Am(w + Ay (u) -

INGE

Ci1Ay (¢
28

A1(8) + Ay(8) -

Cz As(¢
28

_m®+%®
INGEYNGE

£4(8) + Ag(8) -

-2 (a0

2(5)(1

Ky

%Aﬁ

As()(1-)

I

(
()1 =
As(9)(

As(E)Ag(u)

25 }’

zmm%=inm&>ﬁlmmx@[l—&+

)]’

ﬁ
ﬁ

MWOJW’
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Tou(q?) =T11(q%) /01 duAs(€) [5 +A;—(§)]

Tos(@®) = T11(q Z)AlduA(,(u) [1+A82—g”>],

C2A2 >
CzAz >

A3(8) = [(2 3 -1)=¢&7],

[(T+&(1=3) + (1 =97,

l\.)l>—‘

Ag(é) =

2§
Ts(q%) = Al duAg(u) {Als(”) + Ayg(u) —%;_?)]
where
ME=5[1-29+7-3  A(6)= %w H(1-7)
MO =—5lE- 1) +7=5, A =31 =P +32 -9
As(u) = : [u(l1=7)+352—u) Ag(u) = —%[(1 —u)(1=7)+8(u+1)],

App(&,8) =

Ajg(u)

Ay (&) =5 [=Cou+ Ci(1 = E)(1 =7 +5) + Cru(l = &) - 28],
Alz(&u)Z—E[—Cz(l—u)+c1(1—§)+C1(1—u)(1—§)— 28],
AuEH =gt~ ClE+E 2, Auleu) =
Bus(E.u) = 5 [C1& = Call ~ ) + Co&(1 ) = 23]
B = 5[t DE=P) 41—, Ap(w) =

1
311 =20 +1-5).

[C1(1 E+8) -

25—2(1 = ¢&)&.

1
—E[Clé— Czu +C3M§— 23‘],

1
=S [Qu=1F+1-5),

Avo(u) = -%[(2 (G- +1—u).
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