
Kinetic mixing at strong coupling

Michele Del Zotto,1,* Jonathan J. Heckman,2,† Piyush Kumar,3,‡ Arada Malekian,2,§ and Brian Wecht4
1Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Physics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
3Wolfram Research, Somerville, Massachusetts 02144, USA

4Game Grumps and Ninja Sex Party, Los Angeles, California 91436, USA
(Received 22 November 2016; published 30 January 2017)

A common feature of many string-motivated particle physics models is additional strongly coupled
Uð1Þ’s. In such sectors, electric and magnetic states have comparable mass, and integrating out modes also
charged underUð1Þ hypercharge generically yields CP preserving electric kinetic mixing and CP violating
magnetic kinetic mixing terms. Even though these extra sectors are strongly coupled, we show that in the
limit where the extra sector has approximate N ¼ 2 supersymmetry, we can use formal methods from
Seiberg-Witten theory to compute these couplings. We also calculate various quantities of phenomeno-
logical interest such as the cross section for scattering between visible sector states and heavy extra sector
states as well as the effects of supersymmetry breaking induced from coupling to the minimal
supersymmetric Standard Model.
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I. INTRODUCTION

As the only known viable theory of quantum gravity, it is
clearly important to determine possible low energy man-
ifestations of string theory. One promising route to forging
such connections is to examine generic string-motivated
scenarios for physics beyond the Standard Model of
particle physics.
A generic feature of many string constructions is the

presence of additional Uð1Þ gauge fields. These can arise
from dimensional reduction of higher p-form potentials,
that is, from the “closed string sector” of a model. Another
common way such gauge fields arise is from degrees of
freedom localized on lower-dimensional branes, that is,
from the “open string sector.” In many cases, there can be
degrees of freedom charged under both the Uð1Þ hyper-
charge factor of the Standard Model gauge group and one
of these extra Uð1Þ’s. This motivates the study of kinetic
mixing in the context of string phenomenology. For a
partial list of references, see, e.g., Refs. [1–17] as well as
Refs. [18–28].
But another generic feature of many string constructions

is the presence of sectors which are strongly coupled [29].
Indeed, while it is certainly possible to arrange for some
parameters to remain weakly coupled (as is necessary for
realizing the perturbative couplings of our world), it is
typically more problematic to arrange for all couplings to
be small. In the context of closed string parameters, this is
the statement that it is easier—albeit less calculable—to

produce models with some geometric moduli set at
string scale values. In the case of open string sectors,
this is the statement that there are extra sectors at strong
coupling.
Having such strongly coupled extra sectors is also

expected to generate novel phenomenological scenarios.
For a review of some recent work on composite dark matter
with strong coupling dynamics, see, for example, Ref. [30].
Unparticles with a mass gap [31,32] provide another class
of strongly coupled extra sectors with novel signatures.
In this paper, we combine these considerations; that is,

we study string-motivated scenarios with an extra Uð1Þ
which is strongly coupled. From this perspective, the gauge
group of the Standard Model can be approximated as a
weakly gauged flavor symmetry. It is natural to expect there
to be states (which may be quite heavy) that are charged
under both the Standard Model and such extra Uð1Þ’s. As
far as we are aware, there have been only limited analyses
of such systems, with very specialized structure for
magnetic objects [11,12]. See Fig. 1 for a depiction of
kinetic mixing at strong coupling.

FIG. 1. Depiction of kinetic mixing with a strongly coupled
extra sector. In this limit, the standard one loop calculation of
kinetic mixing does not apply, and we must instead resort to
nonperturbative methods. Integrating out messenger states be-
tween the two sectors leads to electric and magnetic kinetic
mixing with the visible sector Uð1Þ.
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Kinetic mixing between a visible sector Uð1Þ and an
extra sector Uð1Þ is captured by the effective Lagrangian,

LUð1Þ ¼ Ldiag þ Lmix ð1:1Þ

Ldiag ¼ −
1

4
FμνFμν −

1

4
F0
μνF0μν þ g2θ

32π2
F0
μν
~F0μν ð1:2Þ

Lmix ¼ −
χelec
2

FμνF0μν −
χmag

2
Fμν

~F0μν; ð1:3Þ

where F0
μν is the field strength of an extra Uð1Þ with

magnetic dual field strength ~F0
μν ¼ 1

2
εμνρσF0ρσ . Here, we

have omitted the theta angle of the visible sector since all
its magnetic objects are assumed to be quite heavy. The
analog of the fine structure constant in the extra sector is
αextra ¼ g2=4π, so that strong coupling corresponds to
taking αextra ∼Oð1Þ.
A priori, then, kinetic mixing can occur via both a CP

preserving and a CP violating term:

Electric Mixing∶FμνF0μν ð1:4Þ

Magnetic Mixing∶Fμν
~F0μν: ð1:5Þ

Electric kinetic mixing has been heavily studied, starting
with Refs. [1,2], and has led to a slew of novel dark matter
scenarios. For some examples, see Refs. [33–39].
Magnetic kinetic mixing is far more challenging to study.

If we have both electrically and magnetically charged states
of comparable mass, we are inherently at strong coupling,
and there is no duality transformation available to eliminate
terms such as Fμν

~F0μν. Indeed, another symptom of this fact
is that when magnetic monopoles are present, Fμν

~F0μν can
no longer be expressed as a total derivative because there is
no Lorentz invariant formulation of the theory with a vector
potential.1 Indeed, it has been known for some time that the
analog of the QCD theta angle plays an important role in
the dynamics of Abelian gauge theories with dyons (i.e.,
states with electric and magnetic charge) [41].
Precisely because the extra Uð1Þ is at strong coupling,

standard methods from perturbative quantum field theory
do not apply. It is therefore important to see whether we can
extract any quantitative information about kinetic mixing at
strong coupling.
In this paper, we develop a general set of methods to

extract these mixing effects. In the limit where the extra
sector enjoys approximate N ¼ 2 supersymmetry, we
show how to adapt formal methods from Seiberg-Witten
theory [42,43] to extract the exact form of electric and
magnetic mixing. We also use these methods to extract the
spectrum of stable objects and to calculate the leading order

effects of supersymmetry breaking induced from coupling
to the minimal supersymmetric Standard Model (MSSM).
Additionally, we calculate the leading order contributions
to scattering between visible sector states and heavy
extra sector states. For some previous uses of extended
supersymmetry in the model building literature, see, for
example, Ref. [44], and for some discussion on other uses
of magnetically charged states of an extra sector, see,
e.g., Ref. [45].
In F-theory realizations of the Standard Model (see, e.g.,

Ref. [46–48] for reviews), the canonical example of such an
extra sector is a D3-brane probing a stack of 7-branes with
E8 gauge symmetry [14,15,49–54]. That is, this realizes an
N ¼ 2 superconformal field theory with E8 flavor sym-
metry [55,56]. Tilting the 7-branes and activating back-
ground fluxes then breaks this flavor symmetry down to the
StandardModel gauge group, which in particular contains a
Uð1Þ ⊂ E8 which we identify with the hypercharge of the
Standard Model.
Approximate conformal symmetry of the extra sector

means that the overall mass scales of the extra sector are
dictated by coupling it to additional sectors. This can
include both mass scales associated with the visible sector
Standard Model and its embedding in the MSSM and a
stringy grand unified theory (GUT), but can also include
other decoupled sectors (for example, in gravity mediated
supersymmetry breaking scenarios). For this reason, moti-
vated values for approximate N ¼ 2 supersymmetric extra
sector states can range from the TeV scale up to the GUT
scale. As noted in Ref. [15], partial breaking to N ¼ 1
supersymmetry via T-brane deformations [49] can induce a
seesawlike mechanism for dark extra sector states, which in
turn can generate sub-TeV mass scales.
We also put some of these considerations together to

provide a preliminary analysis of how such extra sectors
can serve as toy models for more realistic phenomenology.
In particular, we explain how such extra sectors arise in
specific string constructions and how to incorporate the
leading order effects of supersymmetry breaking. Since
the resulting cosmological history greatly depends on the
associated mass scales, we mainly illustrate the general
contours of how such models work.
The rest of this paper is organized as follows. First, in

Sec. II, we discuss in greater detail some additional features
of electric and magnetic mixing, as well as the effect such
terms make on scattering cross sections. Next, in Sec. III,
we show how to apply formal methods from the study of
theories with N ¼ 2 supersymmetry to calculate such
mixing effects and how to incorporate the leading effects
of supersymmetry breaking. Section IV sets up the ingre-
dients needed for theories with a single extra Uð1Þ, which
we follow with an analysis of kinetic mixing when the extra
sector is the rank 1 H1 Argyres-Douglas theory. In Sec. V,
we discuss some aspects of the resulting phenomenology.
We present our conclusions in Sec. VI. Some of the results1See, however, Ref. [40].
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presented in this paper also appear in the Ph.D. thesis of
A. Malekian [57].

II. ELECTRIC AND MAGNETIC MIXING

Our plan in this section will be to discuss some basic
aspects of electric and magnetic kinetic mixing. We also
show how to extract some information about how visible
states can scatter off of dark dyons of an extra sector. For a
complementary account of some aspects of magnetic
mixing, see, for example, Refs. [11,12].
Our starting point is a system with r total Uð1Þ’s, with

effective Lagrangian:

LUð1Þ0s ¼
X
i

�
−
1

4
Fi · Fi þ g2iiθii

32π2
Fi · ~Fi

�
ð2:1Þ

þ
X
i≠j

�
−
χelecij

4
Fi · Fj −

χmag
ij

4
Fi · ~Fj

�
: ð2:2Þ

Working in terms of the electric and magnetic field
strengths, we see two types of interaction terms: those
which preserve CP and those which do not,

CP Preserving∶Fi · Fj ð2:3Þ
CP Violating∶Fi · ~Fj; ð2:4Þ

which are respectively associated with electric kinetic
mixing and magnetic kinetic mixing.
Now, since our extra Uð1Þ’s will typically be at strong

coupling, it is actually more convenient to make use of a
basis of fields in which charge quantization is manifest. By
abuse of notation, we shall use the same expression for the
field strengths,

LUð1Þ0s ¼ −
1

4g2ij
Fi · Fj þ θij

32π2
Fi · ~Fj ð2:5Þ

¼ −
1

16π
ðImτijFi · Fj − ReτijFi · ~FjÞ; ð2:6Þ

where we sum repeated indices and we have introduced the
complexified parameter

τij ¼
4πi
g2ij

þ θij
2π

: ð2:7Þ

The original mixing parameters are then given by

χelecij ¼ Imτijffiffiffiffiffiffiffiffiffiffi
Imτii

p ffiffiffiffiffiffiffiffiffiffiffi
Imτjj

p and

χmag
ij ¼ −

Reτijffiffiffiffiffiffiffiffiffiffi
Imτii

p ffiffiffiffiffiffiffiffiffiffiffi
Imτjj

p : ð2:8Þ

We are interested in extra sectors which contain both
monopoles and dyons. Some care must be taken in properly
defining a basis of electric and magnetic charges which is

also consistent with Dirac quantization. It is convenient to
adopt a basis in which all magnetic charges are integral
and in which the physically measured electric charges
may contain shifts by the various theta angles [41]. So, we
introduce 2r integers neleci and nimag and corresponding
electric and magnetic charges:

Qelec
i ¼

�
neleci −

θij
2π

njmag

�
and Qi

mag ¼ nimag: ð2:9Þ

In our conventions, the electric fields ~Ei and magnetic

fields ~Bi for a point particle with these integral values
satisfy

~∇ · ~Ei ¼ 4πδ3ð~xÞ ×
�

1

Imτ

�
ij
nelecj and

~∇ · ~Bi ¼ 4πδ3ð~xÞ × nimag: ð2:10Þ
Electric-magnetic duality in this setting amounts to the

collection of transformations which preserve the form of
the Dirac pairing. We can, without loss of generality, adopt
a basis in which the pairing Ω has the block-diagonal form:

Ω ¼
�

1r×r
−1r×r

�
: ð2:11Þ

We shall sometimes write ΩIJ with indices I; J ¼ 1;…; 2r;
i.e., the index runs over both the electric and magnetic
charges.
Nontrivial duality transformations are then captured

by 2r × 2r matrices M with integer values subject to the
condition

MTΩM ¼ Ω; ð2:12Þ
that is, the dualities are captured by Spð2r;ZÞ trans-
formations. It acts on the complexified parameter matrix
τij as

τ ↦ ðAτ þ BÞðCτ þDÞ−1; ð2:13Þ
where we have decomposed M according to the block
structure:

M2r×2r ¼
�
Ar×r Br×r

Cr×r Dr×r

�
∈ Spð2r;ZÞ: ð2:14Þ

An important aspect of such duality transformations is
that we must ensure that our answers are compatible with
this Spð2r;ZÞ redundancy.2 It is common to work in a

2More precisely, it may happen that duality transformations
may only involve a congruent subgroup of Spð2r;ZÞ. This is in
turn dictated by the precise spectrum of Bogomol’nyi-Prasad-
Sommerfield (BPS) objects which transform into one another
under various duality transformations. We shall not dwell on this
point in what follows.

KINETIC MIXING AT STRONG COUPLING PHYSICAL REVIEW D 95, 016007 (2017)

016007-3



“fundamental domain” for τ and label all charges with
respect to this basis choice. For the purposes of mapping
out possible values of parameters, however, it is sometimes
convenient to work on the enlarged covering space.
Unitarity imposes the condition that

Imτ > 0; ð2:15Þ
that is, that we have a positive definite matrix of kinetic
terms. As we have already remarked, this choice of para-
metrization contains some redundancies because of the
duality group action.

A. Dark Rutherford scattering

Let us now suppose we have fixed a choice of funda-
mental domain, as well as a basis of electric and magnetic
charges. We would like to know how visible sector states
interact with hidden sector dyons.
The main idea will be to introduce a fixed background

for our various fields. We then consider small fluctuations
around this background, which we identify with the visible
sector gauge potential. For this approximation to be valid,
we really need the extra sector states to be heavy so that we
can simply substitute in the background values of the
various fields. This can be viewed as a mild generalization
of the calculation given in Ref. [58] (see also Ref. [12]).
With this in mind, we shall aim to expand the various

field strengths around background values, with fluctuations
captured by a vector potential:

Fi
μν ¼ Fi;bkgnd

μν þ ∂μAi
ν − ∂νAi

μ: ð2:16Þ

Our goal will be to determine how the vector potentials Ai
μ

couple to the background sourced by a dyon. To proceed
further, it is helpful to work directly with the electric and
magnetic field strengths. The mixing Lagrangian is then
given by

LUð1Þ0s ¼
1

2g2ij
ð~Ei · ~Ej − ~Bi · ~BjÞ − θij

8π2
~Ei · ~Bj: ð2:17Þ

Since we are working with static pointlike sources, it
suffices to consider the coupling of the scalar potential
to this background:

~Ei ¼ ~Ei
bkgnd − ~∇φi: ð2:18Þ

Plugging in to our effective Lagrangian, the scalar potential
couples to a source term:

Jeffi ¼ δ3ð~xÞ × ðneleci − Reτijn
j
magÞ: ð2:19Þ

Consequently, we see that in matrix elements between
visible sector currents and a heavy dark dyon, all our
amplitudes will be proportional to the quantity

ΠðMvis; NhidÞ ¼ qvis

�
1

Imτ

�
vis;j

ðnelecj − ReτjknkmagÞ;

ð2:20Þ

in the obvious notation.
It is tempting to organize this into a single duality

invariant expression. Indeed, the scattering amplitude we
compute cannot depend on the particular basis of fields we
choose to use in performing our calculation. The caveat is
that if we perform a duality transformation on the gauge
fields and couplings, we must also transform the charges of
the external states entering into the scattering amplitude.
So, following the discussion in Ref. [12], we note that the

Spð2r;ZÞ invariant bilinear between dyonic charges is

ΠðM;NÞ ¼ MIΠIJNJ; ð2:21Þ
where

MI ¼
"
neleci

nimag

#
; NJ ¼

"
nelecj

njmag

#
; ð2:22Þ

and

ΠIJ ¼
"

ð 1
ImτÞil −ð 1

ImτÞijReτjl
−Reτijð 1

ImτÞjl Reτijð 1
ImτÞjkReτkl þ Imτil

#
;

ð2:23Þ
in the obvious notation. We view MIΠIJNJ as calculating
the matrix element between a visible sector current asso-
ciated with MI and a hidden sector current associated
with NJ.
Consider, then, the special case where we have a state

with charge MI which couples to a weakly coupled gauge
boson; i.e., this is our “visible sector.” Assuming the extra
sector state is quite heavy and that the visible sector state
has mass mvis and charge qvis and moves with velocity ~v,
we then get a mild generalization of the standard result for
Rutherford scattering (see, e.g., Ref. [59]):

dσ
dΩ

¼ jΠðM;NÞj2
4m2

visv
4 sin4 θ

2

: ð2:24Þ

An interesting feature of this formula is the dependence
of the cross section on the electric and magnetic charge of
the extra sector. In particular, we see that the strength of the
magnetic mixing term can have a nontrivial impact on the
scattering of dark magnetic states.
We caution that to really apply this formula, we need to

have at least one scattering state to be near the free field
limit, i.e., we need it to be charged with respect to only a
weakly coupled gauge boson, and for the states of the extra
sector to be heavy. Thankfully, this is the case of maximal
interest for phenomenology, where we consider a visible
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sector electron/charged nucleon scattering off of a heavy
hidden sector dyon.
It is also convenient to package the contribution to the

scattering amplitude in terms of an effective electric charge
from the extra sector. We define an effective electric charge
for a dark sector state which scatters off a visible sector
state:

qeff ≡ jΠðMvis; NhidÞj
jMvisjαvis

: ð2:25Þ

Note that since Π is linear in Mvis, the overall value of the
visible sector charge drops out of this expression.
One might also ask whether we can extend this calcu-

lation to a regime in which we do not treat the extra sector
as a fixed classical source. This is of particular relevance for
strongly coupled sectors where we can typically expect a
rich spectrum of composite bound states. When we do this,
we need to have much more detailed information about the
spectrum of asymptotic scattering states. It is analogous to
the problem in QCD of determining the precise form of the
parton distribution functions. Nevertheless, we can already
see that several novel features will present themselves in the
general case. Precisely because we expect a general theory
of dyons to include nontrivial bound states with a finite
radius, these configurations can have nontrivial angular
momentum (as dictated by the Dirac pairing). This already
tells us that if we consider a scattering event in which the
internal state of the composite object undergoes a tran-
sition, conservation of angular momentum will lead to
nontrivial selection rules on possible interaction terms. One
can view this as a generalization of the Callan-Rubakov
effect [60–62].

III. SUPERSYMMETRIC APPROXIMATION

In the previous section, we presented some general
considerations on electric and magnetic mixing and
explained how in the regime where the dark charged
objects are quite heavy we can determine the net effect
of magnetic mixing on the visible sector. In particular,
many of the same considerations used to study electric
kinetic mixing also carry over to this case as well.
This prompts the following question: Can we realize

specific examples in which magnetic mixing is generated,
and, moreover, can we actually calculate the overall
strength of such mixing terms? To frame the discussion
to follow, let us recall that in a weakly coupled theory, the
leading order contribution to kinetic mixing between two
Uð1Þ’s is

1

g2ij
¼

X
ψ

cðψÞ
qðψÞi qðψÞj

16π2
log

�M2
ðψÞ
μ2

�
; ð3:1Þ

where the sum is over states of mass MðψÞ and the q’s are
the electric charges under the respective gauge groups.

Additionally, cðψÞ is a numerical prefactor which depends
on the spin of the state.
We would like to generalize this calculation to the case

where our extra sector states interact with a strongly
coupled Uð1Þ. The issue we face is that perturbative
methods via Feynman diagrams will no longer apply.
To give specific examples of how to integrate out

massive dyonic states to calculate possible mixing terms,
we shall use the general formalism of supersymmetric
gauge theories. Our conventions follow Ref. [63]. Recall
that in a supersymmetric gauge theory, we can package the
N ¼ 1 vector multiplet (with a gauge field and its super-
partner the gaugino as dynamical degrees of freedom) in
terms of the superfieldWα ¼ −iλαðyÞ þ…. In this context,
the electric and magnetic mixing terms both descend from a
single complexified parameter,

τij ¼
4πi
g2ij

þ θij
2π

; ð3:2Þ

and the kinetic term is

LUð1Þ0s ¼
X
i;j

Im
Z

d2θ
τij
8π

WðiÞ ·WðjÞ ð3:3Þ

¼
X
i;j

−
1

4g2ij
FðiÞ · FðjÞ þ θij

32π2
FðiÞ · ~FðjÞ: ð3:4Þ

In spite of this canonical holomorphic structure, it is still
challenging to extract the parameters τij for a theory with
both electric and magnetically charged states, even with
N ¼ 1 supersymmetry. To proceed further, we now assume
that we have N ¼ 2 supersymmetry. Let us hasten to add
that this will not require us to extend the Uð1Þvis gauge
theory to actually have N ¼ 2 supersymmetry. All that is
really required is that all extra sector states organize into
N ¼ 2 supersymmetry multiplets. Indeed, we shall view
the visible sector as a weakly gauged flavor symmetry.
Let us review some basic aspects of N ¼ 2 supersym-

metric gauge theory. For further details, see, for example,
Refs. [64,65]. Now, an N ¼ 2 vector multiplet consists of
an N ¼ 1 vector multiplet and an N ¼ 1 chiral multiplet.
In our conventions, the scalar component of each N ¼ 2

vector multiplet is ai. When the ai have generic values, all
states charged under theUð1Þ’s will have picked up a mass,
and we can integrate them out.3 In this limit, then, we get a
low energy effective action involving N ¼ 2 Abelian
vector multiplets. The key point for us is that the parameters
τij are given by

3For example, for a weakly coupled Uð1Þ gauge theory in
which we have an N ¼ 2 hypermultiplet with electric charge
qelec, we have a superpotential coupling W ¼ ffiffiffi

2
p

HcðqelecaÞH.
So, giving a background value to the scalar a gives a mass to the
corresponding hypermultiplet.
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∂aDi
∂aj ¼ τij; ð3:5Þ

where we have introduced the scalar of the magnetic
dual theory aDi given by the derivative of the N ¼ 2

prepotential4:

∂F
∂ai ¼ aDi : ð3:7Þ

An additional benefit of knowing the specific values of
these parameters is that we can also extract the mass M of
BPS states with prescribed electric and magnetic charges
from the central charge Z. For a state of charge QI ¼
ðq1elec;…; arelec; q

mag
1 ;…; qmag

r Þ which also transforms in a
representation R of a flavor symmetry Gflav, we have

Z ¼
X
I;J

ΩIJQIAJ þ 1ffiffiffi
2

p
XdimR

b¼1

qbmb; with M2 ¼ 2jZj:

ð3:8Þ
Here, we have introduced AJ ¼ ðaD1 ;…; aDr ; a1;…; arÞ,
which pair with the charges via the Dirac pairing ΩIJ of
Eq. (2.11). We have also introduced background mass
parameters mb which transform in the representation R
along with corresponding half integrally quantized charges:

qb ∈
1

2
Z: ð3:9Þ

Physically, we should view the mass parameters as being
specified by weakly gauging a flavor symmetry and
moving onto the Coulomb branch. From this perspective,
we introduce a complex scalar ϕ in the adjoint representa-
tion of Gflav. Activating a vacuum expectation value (vev)
for this field yields a mass for the hypermultiplet,5

mbffiffiffi
2

p ¼ ~wb · ~ϕ; ð3:10Þ

where ~wb is a weight vector for a representationR of Gflav,
and

~ϕ ¼
XrkG
s¼1

~αsϕs; ð3:11Þ

where the ~αs’s are a basis of positive roots of the flavor
symmetry algebra.
To extract the kinetic mixing with a visible sector, as well

as the mass of various electric and magnetic states, our task
therefore reduces to computing aDi as a function of the
values aj and the ϕs. In particular, if we identify one of
the flavor Uð1Þ’s with the visible sector Uð1Þ so that
ϕvis ¼ avis, we can extract the kinetic mixing term:

τvis;i ¼
∂aDj
∂ϕvis ¼

∂aDj
∂avis : ð3:12Þ

Thankfully, this is precisely what the general method
outlined by Seiberg and Witten in Refs. [42,43] provides.
The key point for us is that there is an auxiliary Riemann
surface and a meromorphic 1-form λ (i.e., a 1-form with
simple poles) such that the parameters ai, aDi , and mb are
encoded as contour integrals [42,43]. The presence of
marked points can be visualized as the effect of weakly
gauging a Uð1Þ, i.e., adding a long narrow tube to the
Seiberg-Witten curve.

A. Supersymmetry breaking effects

A priori, it could happen that, even if supersymmetry is
badly broken in the visible sector, it may be preserved in
some approximate form in the extra sector. Indeed, the
primary assumption we make throughout this work is the
presence of (possibly mildly broken) N ¼ 2 supersym-
metry in the extra sector. The nature of supersymmetry
breaking will of course impact some details of the mass
spectrum, as well as the amount of mixing between the
visible and hidden sectors. Our aim here will therefore be to
focus on aspects which are more generic. In particular, we
focus on those contributions which come from coupling to
the visible sector.
Since we are working in the limit where we treat the

visible sector as a weakly gauged symmetry, we can
parametrize possible contributions in terms of nonzero
background values to the corresponding N ¼ 2 vector
multiplet. Assuming these effects are small, we can expand
in their auxiliary fields. In terms of N ¼ 1 superfields avis

and Wvis, we can therefore make the substitutions

avis ↦ avis þ θ2Fvis and Wvis
α ↦ Wvis

α þ θαDvis:

ð3:13Þ

For example, F-term breaking could arise from a symmetry
breaking pattern which also breaks a GUT group to the
Standard Model gauge group. D-term breaking will inevi-
tably arise in the MSSM and its extensions due to the
D-term potential of the MSSM. Expanding as in line (3.13)
is valid provided these mass scales are subdominant
compared with supersymmetric mass terms:

4Recall that in terms of N ¼ 2 superfields (which by abuse of
notation we also denote by ai and aDi ), the low energy effective
Lagrangian specifies the prepotential F ðaiÞ via

Leff ¼
1

8π
Im

Z
d2θd2 ~θðF ðaiÞ − aiaDi Þ: ð3:6Þ

5For example, in a weakly coupled model, with a hyper-
multiplet in a representation R, we have the superpotential
coupling

ffiffiffi
2

p
HcTR

A ϕ
AH, where TR

A are generators of Gflav in
the representation R.
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Fvis

M2
SUSY

≪ 1 and
Dvis

M2
SUSY

≪ 1: ð3:14Þ

Let us begin by tracking the impact of F-term super-
symmetry breaking on the hypermultiplets. First of all,
we can see that the BPS mass formula will now receive
corrections. To see why, note that the mass of a hyper-
multiplet with electric-magnetic charge vector QI and
flavor charges qb has central charge

ZQ;qða; aD;mÞ ¼
X
I;J

ΩIJQIAJ þ 1ffiffiffi
2

p
X
b

qbmb: ð3:15Þ

In particular, a hypermultipletHc ⊕ H has a superpotential
coupling:

Leff ⊃
Z

d2θ
ffiffiffi
2

p
HcZQ;qH þ H:c: ð3:16Þ

Expanding around the background of line (3.13), we get

ZQ;q ↦ ZQ;q þ θ2Fvis ∂ZQ;q

∂avis : ð3:17Þ

If this is the only effect of supersymmetry breaking, we
can calculate the correction to the masses of states in the
hypermultiplets:

jMBosons
� j2 ¼ 2jZQ;qj2 �

ffiffiffi
2

p ����Fvis ∂ZQ;q

∂avis
���� and

jMFermionsj2 ¼ 2jZQ;qj2: ð3:18Þ

This approximation requires Fvis=M2
SUSY ≪ 1. Observe

also that the lightest state in the hypermultiplet is a boson
and that the supertrace relation on the mass spectrum is
obeyed.
An interesting feature of this answer is that there are

actually two distinct contributions to the mass splitting
formula. First, we have the expected electric contribution
from the mass parameters proportional to qbmb. For a
magnetically charged state, there is another contribution
proportional to ∂aD=∂avis ¼ τmix.
Consider next the effects of D-term supersymmetry

breaking on the vector multiplets. To track these contri-
butions, we return to our kinetic mixing interactions and
make the substitution of line (3.13):

Leff ⊃
1

8π

�
Im

�Z
d2θτijWðiÞ ·WðjÞ

�

þ Im

�
Fvis ∂τij

∂avis λ
ðiÞ · λðjÞ

�
þ Imðτvis;jDðvisÞ ·DðjÞÞ

�
:

ð3:19Þ

The middle term induces a gaugino mass matrix, which in
particular can mix a visible sector gaugino with the extra

sector gauginos. The last term specifies an effective Fayet-
Iliopoulos (FI) parameter for the extra sector [37,38].
The net combination of contributions, in particular

the presence of FI parameters and mass terms for the
hypermultiplets, provides multiple ways in which super-
symmetry may be partially or fully broken. First of all, in
the N ¼ 2 supersymmetric limit, we see that in various
weakly coupled models, having a large mass but with an FI
parameter switched on will lead to a partial breaking of
N ¼ 2 toN ¼ 1 supersymmetry [66]. Additionally, in this
case, the vacuum generically sits at the origin of the
Coulomb branch, and one of the scalars of the hyper-
multiplet develops a vev, breaking the Uð1Þ, thus screening
some charges (the ones which are local with respect to the
hypermultiplet charge) and confining others (the ones
which are nonlocal with respect to the hypermultiplet
charge). In such cases, we do not expect to retain as much
analytic control, because N ¼ 2 supersymmetry has been
badly broken.
An alternative way to retain more analytic control is to

also introduce a superpotential mass term for the
Coulomb branch scalar of the extra sector. In the context
of string constructions where the extra sector originates
from a D3-brane probing a visible sector, this will
generically happen in the presence of appropriate
fluxes/instanton effects [14,15,49,67–69]. Provided the
mass of the Coulomb branch scalar is lower than that of
the hypermultiplets, but still higher than the supersym-
metry breaking terms from mixing with the visible sector,
we can continue to use the N ¼ 2 supersymmetric
approximation developed here.

IV. RANK 1 THEORIES

In this section, we turn to some concrete examples of
kinetic mixing at strong coupling. For simplicity, we
consider rank 1 theories, i.e., those with a single Uð1Þ
in the extra sector Coulomb branch.
We further specialize to extra sectors which are

obtained from a deformation of a strongly coupled
N ¼ 2 superconformal field theory with a flavor sym-
metry group Gflav. This case is particularly well motivated
from string constructions, as it arises from a probe
D3-brane next to a stack of intersecting 7-branes with
exceptional gauge symmetry. In such examples, the
Standard Model is realized via the stack of 7-branes,
and the D3-brane realizes an extra sector [14,15,49–54].
We can describe these theories as N ¼ 1 deformations of
N ¼ 2 superconformal field theories with exceptional
flavor symmetry [55,56]. Our discussion of the associated
N ¼ 2 Seiberg-Witten geometry follows the presentation
and analysis of Ref. [70].
We assume that Uð1Þvis corresponds to a weakly gauged

subgroup of Gflav. There can potentially be additional
weakly gauged Uð1Þ’s contained in Gflav. We therefore
denote the local electric and magnetic coordinates as a and
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aD and the various mass parameters as mb. The central
charge of a state with electric charge nelec and magnetic
charge nmag transforming in a representation R of Gflav is

Z ¼ neleca − nmagaD þ 1ffiffiffi
2

p
XdimR

b¼1

qbmb; with

M2 ¼ 2jZj2: ð4:1Þ

The vacua are parametrized by u, the coordinate on
the moduli space of vacua. In physical terms, u is given
by the vev of an operator of the strongly coupled field
theory. A nonzero value for this operator breaks conformal
symmetry and gives masses to the hypermultiplets of
the theory.6 The corresponding Seiberg-Witten curve is
given by

y2 ¼ x3 þ fðu;mÞxþ gðu;mÞ: ð4:2Þ

The coefficients f and g are determined by our choice of a
strongly coupled theory.
Let us now turn to the Seiberg-Witten differential. In

general, we need to introduce a meromorphic 1-form with
appropriate periods which captures the spectrum of dyonic
states in our theory. In fact, there can be more than one
choice, and this is dictated by picking a representation R
for the flavor symmetry group, so we denote the Seiberg-
Witten differential by λR. Physically, however, the coupling
constants will not depend on this choice. In more formal
terms, we are specifying a section of the elliptic fibration
over the u-plane. The general form of λR is

λR ¼ α
xdx
y

þ β
dx
y
þ
X
b

γbyb
dx

yðx − xbÞ
; ð4:3Þ

where the coefficients α, β, and γb depend on the param-
eters u and m. Here, yb is the value of y in Eq. (4.2)
evaluated at the point x ¼ xb. The parameters of the
effective action are in turn obtained by evaluating the
contour integrals,

a ¼
I
γA

λR; aD ¼
I
γB

λR;
1

kR

mb

2
ffiffiffi
2

p ¼
I
xb

λR; ð4:4Þ

where we have introduced mass parameters mb of the
weakly gauged flavor symmetry. These mb transform in
the representation R. Here, kR ¼ IndðRÞ=n with IndðRÞ
the index of the representation, which in our conventions is
set to 1 for the fundamental representation. Additionally,
the parameter n ¼ 1 if all mass parameters are associated
with a unique pole xb, and n ¼ 2 if each pole xb is
associated with two mass parameters. The additional factor
of 1=2 in the last contour integral is due to the fact that we
have a two sheeted Riemann surface but are only encircling
the pole on one of the sheets.
Physically, the xb are marked points associated to long

narrow cylinders (i.e., weakly gauged flavor symmetries)
and where γA and γB are a basis of 1-cycles on the Riemann
surface such that

γA ∩ γB ¼ 1; γA ∩ γA ¼ 0; γB ∩ γB ¼ 0: ð4:5Þ
Now, our aim is to calculate the kinetic mixing couplings

of our model. To this end, we will need to evaluate the
derivatives,

τextra ≡ ∂aD
∂a and τmix ≡ ∂aD

∂avis ; ð4:6Þ

where avis is the local coordinate of the visible sector
Coulomb branch, associated with the weakly gauge visible
sector Uð1Þ. In this approximation, we also have τvis ≃ i∞.
Electric/magnetic duality in the strongly coupled Uð1Þ is
the geometric statement that there is in general an ambi-
guity in defining which 1-cycle of our curve is γA and
which is γB. A duality invariant way to parametrize the
strength of the extra sector coupling is in terms of the Klein
invariant J-function,

JðτextraÞ ¼
4f3

4f3 þ 27g2
; ð4:7Þ

which satisfies JðiÞ ¼ 1 and Jðe2πi=6Þ ¼ 0.
Our plan in the remainder of this section will be to

illustrate how to calculate the explicit form of these mixing
terms. We first present the expressions for the period
integrals. We will need these in order to extract numerical
quantities of interest. After this, we turn to a concrete model
which exhibits strong coupling. We calculate the electric
and magnetic kinetic mixing parameters in this model and
also determine the spectrum of lightest stable charged
objects. One can view this as defining an interesting
phenomenological scenario in its own right, though from
the perspective of a complete string theory construction, it
is better viewed as a toy model.

A. Elliptic integrals

Since our eventual aim is to extract numerical values of
the magnetic mixing, we will need explicit expressions for
the contour integrals of line (4.4). Following Refs. [74–76],

6In a weakly coupled SUð2Þ gauge theory, it would be given by
Tr ϕ2, where ϕ is the adjoint valued scalar of the N ¼ 2 vector
multiplet. In the case of a strongly coupled theory, this charac-
terization is not available. One symptom of this is that for the H1

Argyres-Douglas theory [71], for example, the scaling dimension
of u is 4=3, and for the E8 Minahan-Nemeschansky theory
[55,56], it has scaling dimension 6. These scaling dimensions are
calculated using the method given in Ref. [72] (see also Ref. [73]).
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we introduce a basis of three elliptic integrals which we
use to express the contour integrals of the Seiberg-Witten
differential around the 1-cycles of the Seiberg-Witten
curve. In addition to the contours encircling the poles,
we have 1-cycles which encircle the roots of the cubic in x
appearing in Eq. (4.2),

y2 ¼ x3 þ fxþ g ¼ ðx − e1Þðx − e2Þðx − e3Þ; ð4:8Þ

where the roots of the cubic are

ei ¼ −
1

ξi−1

�
2

3Λ

�
1=3

f þ ξi−1

3

�
3Λ
2

�
1=3

with

Λ ¼ −9gþ
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f3 þ 27g2

q
and ξ ¼ e2πi=3: ð4:9Þ

We take a basis in which for u and m real the cycle γA is
given by encircling e2 and e3, and the cycle γB encircles e1
and e2. Using the presentation in Ref. [76], we have the
explicit form of the contour integrals in terms of elliptic
integrals:

Ið1ÞA ¼
I
γA

dx
y

¼ 4

ðe1 − e3Þ1=2
KðkÞ ð4:10Þ

Ið2ÞA ¼
I
γA

xdx
y

¼ 4

ðe1 − e3Þ1=2
½e1KðkÞ þ ðe3 − e1ÞEðkÞ�

ð4:11Þ
Ið3ÞA ðcÞ ¼

I
γA

dx
yðx − cÞ

¼ 4

ðe1 − e3Þ3=2
�

1

1 − ~cþ p
KðkÞ

þ 4p
1þ p

1

ð1 − ~cÞ2 − p2
Π1

�
νðcÞ; 1 − p

1þ p

��
ð4:12Þ

with

k2 ¼ e2 − e3
e1 − e3

; p2 ¼ e2 − e1
e3 − e1

;

~c ¼ c − e3
e1 − e3

; νðcÞ ¼ −
�
1 − ~cþ p
1 − ~c − p

�
2
�
1 − p
1þ p

�
2

:

ð4:13Þ

Similar considerations hold for the integrals around γB by
interchanging e1 and e3.
In the above, we have introduced the elliptic integrals

(see, e.g., Refs. [77]),

KðkÞ ¼
Z

1

0

dx

½ð1 − xÞ2ð1 − k2x2Þ�1=2 ð4:14Þ

EðkÞ ¼
Z

1

0

dx

�
1 − k2x2

1 − x2

�
1=2

ð4:15Þ

Π1ðν; kÞ ¼
Z

1

0

dx

½ð1 − xÞ2ð1 − k2x2Þ�1=2ð1þ νx2Þ ; ð4:16Þ

which in Mathematica are respectively given
by KðkÞ ¼ EllipticK½k2�, EðkÞ ¼ EllipticE½k2�,
Π1ðν; kÞ ¼ EllipticPi½−ν; k2�.
In obtaining numeric results, we must be mindful of a

few subtleties. First of all, the actual period integral
expressions will depend on a basis of electric and magnetic
charges for the visible and extra sector. This can lead to
shifts in the evaluation of period integrals by contributions
proportional to m=

ffiffiffi
2

p
. Our guiding principle is that we

recover the correct asymptotics for all periods and masses
in suitable decoupling limits.
An additional subtlety has to do with the specific

implementation in Mathematica. In the numerical evalu-
ation of these expressions, we will encounter branch cuts in
the roots of the cubic in x. To account for this, we fix one
patch of values of the parameters for m real and for small
phases of u and then continue to other values by permuting
the roots of the cubic to retain smooth behavior for all
numerically evaluated quantities.

B. H1 Argyres-Douglas Theory

We now turn to a detailed analysis in the case where the
extra sector is a deformation of the H1 Argyres-Douglas
theory [71]. This is also sometimes referred to as the
“A3 Argyres-Douglas theory” because of the way it is
engineered by taking type IIB string theory on the back-
ground R3;1 × X, where X is a noncompact Calabi-Yau
threefold with a local A3 singularity [78–80].
This is a four-dimensional N ¼ 2 superconformal field

theory which enjoys an SUð2Þ flavor symmetry.7 Now, in
this theory, there is a single Uð1Þ subalgebra of SUð2Þ,
so we have our Coulomb branch parameter u and a single
complex scalar parametrizing breaking patterns of the
flavor symmetry. It therefore suffices to introduce mass
parameters m1 and m2 transforming in the doublet repre-
sentation. Returning to Eq. (3.10), we have

m1ffiffiffi
2

p ¼ ϕ and
m2ffiffiffi
2

p ¼ −ϕ; ð4:17Þ

7The name H1 simply comes from the fact that in an F-theory
construction of this model, we have a D3-brane probing a
nonperturbative bound state of ðp; qÞ 7-branes with SUð2Þ flavor
symmetry. Indeed, in F-theory, there are two distinct ways to
realize an SUð2Þ gauge symmetry on a 7-brane, one which is
perturbative and is called A1 (realized by a type I2 fiber) and one
which is nonperturbative and is called H1 (realized by a type III
fiber). For additional discussion on this point, see, e.g., Refs. [81]
and [82].
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so we can work in terms of a single mass param-
eter m ¼ ffiffiffi

2
p

ϕ.
The Seiberg-Witten curve and Seiberg-Witten differ-

ential in the fundamental representation are (see Ref. [70])

y2 ¼ x3 þ uxþ w2 ð4:18Þ

λ ¼
ffiffiffi
2

p

4πi

�
u
3
þm1y1

x

�
dx
y
; ð4:19Þ

where

w2 ¼ −4m1m2 ¼ 4m2 ð4:20Þ

is the mass dependent quadratic Casimir and y1 ¼ 2m1.
Physically, one can view w2 as the gauge invariant operator
proportional to Trϕ2 we would get from weakly gauging
the SUð2Þ flavor symmetry. In the above, we used Eq. (4.4)
with kR ¼ 1=2 (since we have the Seiberg-Witten (SW)
differential in the fundamental representation, but there is a
single pole).
As a first step toward understanding the parameter space

of our model, we compute the Klein-Invariant J-function:

JðτextraÞ ¼
4u3

4u3 þ 27ð4m2Þ2 : ð4:21Þ

So, depending on the parameters, we can either be at strong
coupling or weak coupling. For example, three canonical
values of interest are

τextra ¼ i for m ¼ 0 ð4:22Þ

τextra ¼ e2πi=6 for u ¼ 0 ð4:23Þ

τextra ≃ i∞ for

�
u
3

�
3

þ 4m4 ¼ 0: ð4:24Þ

The parameters u and m each implicitly specify mass
scales. More precisely, because the H1 Argyres-Douglas
theory is (at the origin of moduli space) actually a super-
conformal field theory, homogeneity allows us to fix the
scaling of u and m as a function of energy scales. We have

u ∼Mass4=3 and m ∼Mass: ð4:25Þ

The fractional power in the scaling of u is one of the
hallmarks of a strongly coupled superconformal field
theory. This leaves us with one unfixed dimensionless
ratio, m4=u3.
Depending on the phenomenological scenario, the actual

mass scales involved could be anywhere from the GUT
scale down to the TeV or sub-TeV scale. For example, in

many string-motivated scenarios, it is natural to take
m ∼ 1016 GeV since this is the implicit scale set by
separating the various 7-branes from each other. On the
other hand, if we assume that the dominant contribution to
conformal symmetry breaking is set by supersymmetry
breaking effects, a far lower reference scale is also possible.
We now turn to the calculation of the periods a and aD

and their derivatives. We have

a ¼
ffiffiffi
2

p

4πi

�
2u
3
Ið1ÞA þ w2I

ð3Þ
A ð0Þ

�
−
2

3

mffiffiffi
2

p ð4:26Þ

aD ¼
ffiffiffi
2

p

4πi

�
2u
3
Ið1ÞB þ w2I

ð3Þ
B ð0Þ

�
þ 2

3

mffiffiffi
2

p ; ð4:27Þ

with w2 ¼ 4m2, as per Eq. (4.20). Let us make a few
comments on the presence of the terms proportional tom in
our period integrals. Strictly speaking, this last piece is
just an artifact of how we pick a basis of contour integrals,
i.e., how we choose to define our basis of electric charges
with respect to the visible sector. The choice in the above
equation comes from imposing the condition that as we
take the m → ∞ decoupling limit, a and aD should be
independent ofm. Additionally, we pass to a theory with no
continuous flavor symmetry and in which the asymptotic
value of aD=a → expð2πi=6Þ; i.e., the value of τextra in this
limit is frozen. This induces a flow from the H1 Argyres-
Douglas theory to what is known as the H0 Argyres-
Douglas theory.
The first derivatives of the periods provide us with the

complexified gauge coupling and the mixing parameter:

τextra ≡ ∂aD
∂a ¼ ∂aD=∂u

∂a=∂u and τmix ≡ ∂aD
∂ϕ ¼

ffiffiffi
2

p ∂aD
∂m :

ð4:28Þ

Taking one more derivative provides us with the terms
which appear in gaugino mixing (after supersymmetry
breaking) as well as the coupling between the Coulomb
branch scalar and theUð1Þ gauge fields. In evaluating these
derivatives, we must treat a and ϕ as independent variables.
To get a sense of the overall values of these coupling

constants, and to emphasize the point that these really are
calculable quantities, we present a few of the numerically
evaluated derivatives obtained via our method. In general, it
is challenging to obtain a set of parameters which remains
in a single fundamental domain (i.e., a single basis of
electric and magnetic charges). To bypass these issues and
get a sensible class of examples, we hold fixed u ¼ 0.1,
with m in powers of 5. For the first derivatives of aD,
we have
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τextra ¼ ∂aD=∂a τmix ¼ ∂aD=∂ϕ
m ¼ 0.04 0.13þ 0.99i ð−2.0þ 1.0iÞ × 10−1

m ¼ 0.2 0.45þ 0.90i ð−2.4þ 3.5iÞ × 10−2

m ¼ 1.0 0.50þ 0.87i ð−2.6þ 4.4iÞ × 10−3

m ¼ 5.0 0.50þ 0.87i ð−3.0þ 5.2iÞ × 10−4

; ð4:29Þ

and for the second derivatives of aD, we have

∂2aD=∂a∂a ∂2aD=∂a∂ϕ ∂2aD=∂ϕ∂ϕ
m ¼ 0.04 3.6 × 100 − 5.4i 3.7 − 2.4i ð5.1 − 1.4iÞ × 100

m ¼ 0.2 3.1 × 10−1 − 3.4i −0.7 − 2.1i ð2.4 − 2.9iÞ × 10−1

m ¼ 1.0 6.9 × 10−3 − 0.65i −0.2 − 0.4i ð4.9 − 8.0iÞ × 10−3

m ¼ 5.0 1.6 × 10−4 − 0.13i −0.05 − 0.08i ð1.1 − 1.9iÞ × 10−4

: ð4:30Þ

Let us stress that the physically more meaningful
quantity is given by a duality invariant expression such
as a scattering amplitude, as in our discussion in Sec. II.
The reason is that to get a proper notion of the overall
strength of kinetic mixing, we also need to know the
spectrum of charges in the extra sector which can couple to
the visible sector.

1. BPS spectrum

For various model building considerations, it is impor-
tant to know the spectrum of stable objects in our system
and their charges in some duality frame under both the extra
sector Uð1Þ and the visible sector Uð1Þ. In more realistic
models where supersymmetry is broken, the spectrum will
be deformed with a mass splitting specified as in our
discussion around Eq. (3.18). A nonzero mass splitting
within a multiplet also means that there can now be
nontrivial decays to the lowest mass state. With an
unbroken Uð1Þ, however, this bottom component will be
stable. We therefore view the N ¼ 2 supersymmetric
approximation as telling us the leading order structure of
stable objects in our theory.
Let us now turn to the BPS spectrum of the H1 Argyres-

Douglas theory. With the explicit form of the period
integrals in hand, we can also determine the lightest
BPS particles at any point on the Coulomb branch. For
early work on the BPS spectrum of Argyres-Douglas
theories, see Ref. [80]. In general terms, the spectrum of
stable BPS states in the system will depend on the value
of the Coulomb branch parameter and mass parameters of
the model. An additional feature is that we should expect
“wall-crossing phenomena” in which the spectrum of stable

objects actually changes as we cross real codimension-1
loci in the moduli space of vacua [42,83,84].
Returning to the BPS formula for the mass of our states

given in Eq. (4.1), we have for a state of the rank 1 H1

Argyres-Douglas theory

Z ¼ neleca − nmagaD þ qflav
mffiffiffi
2

p ; with M2 ¼ 2jZj2;

ð4:31Þ
so we see that if we take m → ∞, a state with nonzero
charge with respect to the flavor symmetry will develop a
large mass.
It is also possible to arrange for the flavor neutral state to

be lightest by appropriately tuning the parameters and
moduli of the theory. For example, we can ensure that we
have an approximately massless state by working in the
special limit where the discriminant is nearly zero,

4u3 þ 27ðw2Þ2 ≃ 0; ð4:32Þ

with w2 ¼ 4m2 given by Eq. (4.20). Indeed, in this case,
the length of the cycle used to generate the period a
collapses to zero size, and the corresponding BPS mass of
a Uð1Þextra electrically charged state will be zero. In the
special case of the H1 Argyres-Douglas theory, we can
also see that when u andm are both nonzero, the coupling
constant τextra will be near i∞, i.e., the point of weak
coupling.
Let us now turn to the calculation of the BPS spectrum of

the theory in the Coulomb phase. There are by now various
methods for performing such a calculation. These include
the method of “BPS quivers,” e.g., Refs. [85–89], as well
as the method of spectral networks, e.g., Refs. [90,91].
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Since we have an explicit presentation for all of the period
integrals and we can track the dependence on moduli, we
shall use the method of BPS quivers.
The main idea in the BPS quiver method is to recognize

that all of the BPS particles are obtained as bound states of
smaller elementary constituent particles. The number of
independent charges for these particles is completely fixed
by the number of Uð1Þ factors of the model. For each
gauged Uð1Þ, we get two charges (one electric and one
magnetic), while for each Uð1Þ flavor symmetry, we get
one charge (just electric). The dynamics governing the
stability of a configuration is encoded by a supersymmetric
quiver quantum mechanics (SQM) with four conserved
supercharges [92]. The quiver is determined by the
elementary constituents as follows: it has nodes in one-
to-one correspondence with the charges of the elementary
constituents and directed arrows between two such quiver
nodes specified by the Dirac pairing for these charges. In
string theory terms, we view the nodes as candidate BPS
objects and the directed arrows as open strings which
stretch from one BPS object to the next. The existence of a
bound state of given charge corresponds to the existence of
a ground state for the corresponding SQM [92,93].
For the Argyres-Douglas theory, the total number of

generators of the Coulomb branch charge lattice is
2þ 1 ¼ 3. Indeed, we can express the charge of a
candidate state as a three component vector which we
write as a linear combination of the form

ðnelec; nmag; qflavÞ ¼ γ ¼
X2rþf

i¼1

niγi for ni ≥ 0: ð4:33Þ

Here, the γi are the constituent charges out of which all
other stable bound states are constructed.
Now, as we vary the value of the complex phase in u, we

can expect some new bound states to enter or exit the
spectrum. For the H1 Argyres-Douglas theory, the full list
of candidate states is dictated by the root space of the
corresponding A3 lattice [80]:

Candidate Charges ¼ f�γ1;�γ2;�γ3;�ðγ1 þ γ2Þ;
� ðγ2 þ γ3Þ;�ðγ1 þ γ2 þ γ3Þg:

ð4:34Þ

For this model, all the stable BPS states are
hypermultiplets.8

The task of finding the spectrum of stable states
therefore decomposes into two pieces. First, we need
to determine a good quiver basis fγigi in the sense of
Refs. [87,93], and, second, we determine which values of

ni in Eq. (4.33) lead to stable particles.9 The actual
presentation of the quiver as well as the spectrum of
stable particles will depend on the particular region of
moduli space where we are located. The basis of charges
we use to construct our bound states will change, i.e., we
have a transformation of the form,

γi ↦ γ0i ¼
X
j

Mijγj; ð4:35Þ

for Mij an integer valued matrix.10 This leads to a
“mutation” or Seiberg duality on the quiver SQM. The
candidate physical charges of line (4.34) can also change;
i.e., we build our spectrum of candidates using γ0i
rather than γi. A mutation simply reflects the fact that
the structure of composite objects may change as we
change the moduli/parameters of the model: an object
which looks elementary in one frame, can look like a
bound state in another. In string theory terms, this means
that we must alter the BPS states used to construct bound
states, and correspondingly the spectrum of open strings
will also change. On top of that, the actual spectrum of
stable BPS states can change as we move in moduli space
(wall-crossing phase transitions).
Since we have an explicit presentation of the various

period integrals, it is straightforward for us to sweep over
possible choices of charge assignments. The main com-
plication is to ensure that we have indeed found all of the
stable particles at a given point in the moduli space, i.e.,
wall crossing.
At a qualitative level, there are three general regimes of

possible interest:

Large Mass∶jmj ≫ ju3=4j ð4:36Þ

Tuned Mass∶
�
u
3

�
3

þ 4m4 ≃ 0 ð4:37Þ

Small Mass∶jmj ≪ ju3=4j: ð4:38Þ

For illustrative purposes, we study in detail the large mass
regime. We shall also explain how a similar analysis applies
at small mass parameters.
Consider, then, the large mass regime. Here, we have

τextra ≃ e2πi=6 ≃ e2πi=3, so we are at strong coupling. An
additional simplification is that we always expect the
lightest object to be neutral under the flavor symmetry.
To determine the spectrum near this point, it is helpful to

8Borrowing from standard techniques in soliton theory, the
spin of a BPS multiplet is determined “quantizing” the moduli
space of vacua for the SQM [92,94] (see also Ref. [95]).

9We find, however, that the technical definition specified in
Refs. [87,93] for a good quiver basis is not enough to determine it
uniquely; there is an extra condition (compatibility among
mutations and wall crossings) which needs to be imposed. The
details of this point are discussed in the Appendix.

10The precise form of the allowed matricesMij is subject to the
same caveat discussed in footnote 2.

MICHELE DEL ZOTTO et al. PHYSICAL REVIEW D 95, 016007 (2017)

016007-12



rely on the existing analysis of BPS quivers presented, for
example, in Refs. [87,89]. For the H1 theory, there are
always at least three stable BPS states corresponding to the
three nodes of the BPS quiver. These are always N ¼ 2
hypermultiplets. In addition to these three states, there can
in principle be others which are also stable.
We find that when juj ¼ 0.1 and m ¼ 1, we are effec-

tively in the large mass regime. So, let us turn to an analysis
of the BPS quiver in this regime. To illustrate, suppose that
we hold fixed the parameters:

u ¼ 0.1 expðiθÞ; m ¼ 1: ð4:39Þ

When 5π=3 ≤ θ ≤ 2π, the quiver SQM governing the
dynamics of the BPS solitons is the quiver with nodes,

BPS Quiver∶ γ1 → γ2 ← γ3; ð4:40Þ

with

Nodencharge nelec nmag qflav
γ1 þ1 þ1 þ1=2

γ2 −1 0 0

γ3 þ1 þ1 −1=2

; ð4:41Þ

so the three hypermultiplets with charges γ1, γ2, and γ3 are
the elementary BPS states in this region of moduli space.
Notice that we have a stable “dark electron” with charge γ2.
This is a stable BPS particle which is neutral under
the flavor symmetry. For these values of θ, there is
an additional bound state with charge γ2 þ γ3 in the
spectrum. Now, as we vary the phase θ, we can expect
that some of these objects ceases to be elementary
and decay to other stable constituents. To figure out the
possible changes as we move around, we need to explore
the various mutants quiver SQMs occurring as we vary θ in
line (4.39). The actual pattern of wall crossings is analyzed
in details in the Appendix. The precise structure of the BPS

spectrum as a function of θ is plotted in Fig. 2. We find that
in sweeping over all values of the phases for juj ∼ 0.1, the
dark electron with charge γ2 remains a stable object of the
spectrum.
Let us also note that, although the “dark dyon” with

charge γ1 þ γ2 þ γ3 has lower mass than its flavor charged
counterparts, it is nevertheless not a stable object in the
large mass regime for juj ∼ 0.1. Rather, it can enter the
spectrum as we decrease the value of m (see Fig. 3 as well
as the Appendix).
Similar analyses can be carried out for all of the regions

of moduli space and mass parameter space. An important
point is that near the region m ¼ 0, we also have a restored
SUð2Þ flavor symmetry, so as a consequence, the states
have a mass degeneracy compatible with this fact. Another
interesting feature close to this region is that the state of
charge γ2 is not always the lightest in the spectrum.

2. Dark electron and dark dyon

From our analysis of the mass spectrum of the H1

Argyres-Douglas theory, we can also draw some conclu-
sions about the spectrum of stable particles which are
neutral under the visible sector gauge coupling. For both
the large and small mass regimes, the states of charge �γ2
are stable. We refer to this as a dark electron since it
only has electric charge under the extra sector Uð1Þ.
Additionally, in some regions of parameter space, there
is another flavor neutral state which in a suitable basis
of electric and magnetic charges has charge vector
�ðγ1 þ γ2 þ γ3Þ which we refer to as the dark dyon since
it has both electric and magnetic charge under the extra
sector Uð1Þ.
Now, even when these states are unstable, they can still

play an important role in scattering events between the
visible and hidden sector. The reason is that with a
sufficiently energetic process in the extra sector, we may
still be able to generate such charged states. Since we can
also calculate the effects of kinetic mixing, we now ask

FIG. 2. LEFT: Plot of the spectrum of masses for the stable states as a function of θ in the large mass regime. For numerical purposes,
we take u ¼ 0.1 expðiθÞ and m ¼ 1. Notice that a BPS state with charge γ3 − γ1 þ γ2 enters the spectrum in the region
0.525 < θ < 3.65. This is possible precisely because the BPS quiver relevant in that region is a mutant of the one in line (4.40)
(see the Appendix for the details). RIGHT: Magnified region of the plot of jZj with u ¼ 0.1 expðiθÞ and m ¼ 1, which shows γ3
destabilizing and γ1 þ γ2 stabilizing in complementary regions.
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what the effective electric charge under the visible sector
Uð1Þ is for each of these states. The effective electric
charge follows from our formula for dark Rutherford
scattering presented in Eq. (2.25). To keep the analysis
simple yet tractable, we shall primarily focus on the single
slice of parameters u ¼ 0.1, withm varying by powers of 5.

As in our earlier analyses, we work in dimensionless units;
i.e., depending on the scale of conformal symmetry break-
ing (dictated by its coupling to other sectors), the actual
mass of the state could be anywhere from the TeV scale to
the GUT scale. Here, then, is the list of effective electric
charges as we vary the value of m:

Dark electron m ¼ 0.04 m ¼ 0.2 m ¼ 1.0 m ¼ 5.0

jqeffðγ2Þj 2.0 × 10−2 1.0 × 10−3 1.3 × 10−5 1.8 × 10−7

jZðγ2Þj 2.9 × 10−2 1.8 × 10−2 1.1 × 10−2 6.3 × 10−3
; ð4:42Þ

Dark dyon m ¼ 0.04 m ¼ 0.2 m ¼ 1.0 m ¼ 5.0

jqeffðγ1 þ γ2 þ γ3Þj 4.0 × 10−1 8.1 × 10−2 1.0 × 10−2 1.2 × 10−3

jZðγ1 þ γ2 þ γ3Þj 5.6 × 10−2 3.2 × 10−2 1.9 × 10−2 1.1 × 10−2
; ð4:43Þ

where for reference we have also included the correspond-
ing values of the central charge. Again, we emphasize that
the dark dyon is not stable in some regions of parameter
space, e.g., in the large mass regime jmj≳ 1.

V. PHENOMENOLOGICAL TOY MODELS

Having spelled out the main technical elements of how to
compute kinetic mixing at strong coupling, we now turn to
some aspects of how these models embed in more realistic
phenomenological scenarios. Even so, we will keep our
discussion at the level of toy models, using theH1 Argyres-
Douglas theory as our primary example.
Indeed, in the context of string constructions, the

Argyres-Douglas theory should be viewed as a subsector
of a more complete model. From a bottom up perspective,
however, we can view deformations of the H1 Argyres-
Douglas theory as a candidate extra sector in its own right.
Even in this case, however, there are several moving parts
which can impact the resulting phenomenology.

The rest of this section is organized as follows. First,
we place the H1 Argyres-Douglas theory in the context of
more general stringy constructions which incorporate the
Standard Model. After this, we explain how different scales
of conformal symmetry breaking lead to different types of
phenomenological scenarios.

A. String-motivated examples

One of the motivations for this work is the fact that string
constructions typically contain extra Uð1Þ’s which can mix
with the visible sector Uð1Þ. To illustrate the general suite
of ideas, we focus on the class of extra sectors introduced
in Refs. [14,15,49,50,96]. In these models, the Standard
Model is realized from a stack of intersecting 7-branes, and
the extra sector is realized by a probe D3-brane. This D3-
brane is energetically attracted to the visible sector by the
same mechanism which generates quark and lepton masses
and mixing angles [67,97] (see also Refs. [68,69]). As a
passing remark, we note that in constructions of the
Standard Model via heterotic M-theory, a similar class

FIG. 3. LEFT: Plot of the spectrum of masses for the stable states as a function of m interpolating from the large mass regimem ¼ 1 to
m ¼ 0. For numerical purposes, we take u ¼ 0.1 expði5.5Þ. The whole deformation is covered by the BPS quiver in line (4.40); no
mutation occurs. RIGHT: Magnified region of the plot which shows 1) the region where the dark dyon stabilizes and 2) the small region
where the dark electron ceases to be the lightest massive excitation.
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of extra sectors is realized by M5-branes wrapped on a
curve of the compactification manifold.
A priori, there may be other local minima for the D3-

brane, so fluxes may localize it at other points of the
compactification manifold. Indeed, we can expect there to
typically be many such D3-branes. The total number in a
general type IIB background is given by the formula [98]

ND3 ¼
χðCY4Þ
24

þ
Z
B

HNS ∧ HRR; ð5:1Þ

where χðCY4Þ is the Euler characteristic of the elliptically
fibered Calabi-Yau fourfold used to define an F-theory
background and HNS and HRR are 3-form fluxes which are
integrated over the six-dimensional internal spacetime B.
Values of χðCY4Þ=24 can range from Oð102Þ to Oð104Þ
(see, e.g., Refs. [99,100]), so depending on the choice of
background fluxes, one can contemplate scenarios with
either many D3-branes or only a small number.
One of the interesting features of kinetic mixing is that,

because it comes from integrating out heavy states to
generate marginal couplings, we can expect there to be
possible contributions to electric and magnetic kinetic
mixing even for those D3-branes which are far removed
from our visible sector stack. So, even for extra sector
models where other direct couplings to the Standard Model
are suppressed (as they typically will be), kinetic mixing at
strong coupling can still survive.
Let us now turn to more details of the resulting effective

field theory on a D3-brane. In the limit where the D3-brane
is close to the Standard Model stack of intersecting 7-
branes, we can visualize this extra sector as an N ¼ 2
superconformal field theory with E8 flavor symmetry
[55,56] which is subject to N ¼ 1 relevant and marginal
deformations which induce a flow to an N ¼ 1 super-
conformal field theory in which the flavor symmetry of this
IR theory includes the gauge group of the Standard Model
[14,15,49,50,96].
We organize our discussion according to the decompo-

sition of SUð5ÞGUT × SUð5Þ⊥ ⊂ E8, with corresponding
mass deformations valued in the adjoint representations;
i.e., we schematically writeϕGUT andϕ⊥ for these Coulomb
branch parameters. Geometrically, the main idea is that the
Coulomb branch parameter u describes the position of a D3-
brane normal to the SUð5ÞGUT 7-brane. There are also two
complex directions u1 and u2 parallel to the 7-brane. In the
associated field theory, u1 ⊕ u2 parametrize a decoupled
hypermultiplet. To get anN ¼ 1 deformation, we therefore
allow the mass parameters of the theory to depend on u1 and
u2, so we make the substitution ϕ⊥ ↦ ϕ⊥ðu1; u2Þ.
Additionally, we need not require that ϕ⊥ is even diagonal.
We can also consider mass deformations which break
SUð5ÞGUT to SUð3Þ × SUð2Þ ×Uð1Þ, i.e., by taking a mass
deformation in the same direction as Uð1ÞY .

To apply the methods of the present paper, we must also
assume that the deformation to an N ¼ 1 vacuum is
sufficiently mild; i.e., we have a “short flow” from a
neighboring N ¼ 2 theory. Now, even though we only
have N ¼ 1 supersymmetry, there is still a notion of a
Seiberg-Witten curve, with the Seiberg-Witten differential
now replaced by a meromorphic 4-form of a noncompact
Calabi-Yau fourfold. The main caveat to extracting numeri-
cal estimates, however, is that the physical couplings may
now receive nontrivial contributions from wave function
renormalization. This shows up quite directly in other
contexts as corrections to the scaling dimensions of
operators in the deformed theory; see, e.g., Refs. [15,50].
While we leave a complete analysis of this more involved

case to future work, it is interesting to already explore some
of the general features of these models. First of all, we see
that if we take most of the mass parameters to be of the
GUT scale or higher, then the lightest states which can
meaningfully participate at low energies will be those
which are neutral under the flavor symmetries. As we
have already seen in the H1 Argyres-Douglas theory,
there is a lightest state which is neutral under all such
flavor symmetries, with mass controlled primarily by the
Coulomb branch parameter. Additionally, we can reincor-
porate some of the effects of heavier states of the model.
These will show up as line operators (that is, heavy quarks)
of the theory, and we can also contemplate bound states of
comparatively light objects to these line operators. The
excitation scale for these heavy objects can naturally be at
the GUT scale or higher, so in this sense, their direct
relevance for phenomenology may be more limited. It is
interesting to note, however, that in some cases, we can
tune parameters of the string-based model to realize
excitations of these objects at lower energy scales.
Indeed, an intriguing novelty of rank 1 theories with larger
flavor symmetry groups such as E6, E7, and E8 is the
presence of whole Regge trajectories of stable objects in
certain ranges of moduli space [89,101–103]. This clearly
leads to a rich class of possibilities, which would be quite
interesting to study in future work.

B. Mass scales

To make more contact with model building consider-
ations, we clearly need to specify possible mass scales for
our model. Since we have an extra sector with approximate
conformal symmetry, we expect that the masses of the extra
sector states will be dictated by the scale of conformal
symmetry breaking. Even in this case, however, we can get
different mass hierarchies, since, as we saw in the case of
the H1 Argyres-Douglas theory, taking the mass parameter
m very large still leaves us with a light state which we
referred to as the dark electron. In other regimes of
parameter space, this can also be accompanied by a dark
dyon. Let us step through the different kinds of scenarios
associated with each sort of mass scale.
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1. GUT scale masses

Suppose we take the simplest scenario in which all
hypermultiplets have GUT scale masses. This possibility is
also well motivated in the context of string constructions.
In this case, we expect to be left at low energies with a
collection of Uð1Þ gauge bosons and their N ¼ 2 super-
partners. Transmission of supersymmetry breaking to the
extra sector will then lead to further mass splittings
amongst the states.
The phenomenological bounds on extra decoupled

Uð1Þ’s are quite weak, since without any charged states
from the extra sector, there is no way to directly detect these
vector bosons.
The caveat to this statement is that we also have theN ¼ 2

superpartners, which include a gaugino and a decoupled
N ¼ 1 chiral multiplet. As we have already remarked, the
extra sector gauginos can mix with visible sector gauginos.
These mixing terms depend on the details of supersymmetry
breaking, butwe have shown in Sec. III how to calculate these
contributions in certain supersymmetry breaking scenarios by
computing the second derivatives of aD with respect to a and
m. Some aspects of the phenomenology of these photini
mixing have been studied, for example, in Ref. [104].
Consider next the N ¼ 1 chiral multiplet. In the limit of

exact N ¼ 2 supersymmetry, the presence of a complex
scalar with no potential suggests the presence of a modulus,
which, if left unstabilized, can lead to a cosmological
history in which the energy density is dominated by such a
rolling scalar.
There is a simpleway to ameliorate this issue by introducing

an overall superpotential deformation of the system, i.e.,
WðuÞ, for the Coulomb branch parameter. For us to continue
to use ourN ¼ 2 supersymmetric approximation, we simply
need to require that the mass scale for the scalar is small
compared to those of the charged states, i.e., that ma ≪ hai,
with a the local expression for the Coulomb branch scalar.
This is technically natural since such mass terms are con-
formally suppressed in this class of models [15,49].

2. TeV and sub-TeV scale masses

It is also natural to consider scenarios in which some
of the extra sector states have masses far below the GUT
scale. For example, if the D3-brane remains close to the
Standard Model stack, we can still expect some flavor
neutral hypermultiplets to survive to much lower energies.
Again, this is technically natural since a superpotential
deformation for the Coulomb branch parameter can be
conformally suppressed [15,49]. In such cases, transmission
of supersymmetry breaking to the extra sector will also
contribute to themasses of these states.We can also see from
our analysis near lines (4.42) and (4.43) that the effective
electric charge for these flavor neutral states can be quite
small. For some discussion on cosmological constraints on
millicharged particles as well as scenarios with an exactly

massless Uð1Þ decoupled from the Standard Model, see,
respectively, Refs. [105] and [106] (see also Ref. [107]).
In the TeV scale mass range, much of the phenomenol-

ogy is dictated by whether the extra sector Uð1Þ is
electrically screened/magnetically confined or remains as
a long range force carrier. Some aspects of the former case
were studied in detail in Ref. [15], to which we refer the
interested reader for further details. In this case, we get
string-motivated examples of asymmetric dark matter
models with order 10 GeV masses for dark matter. The
sub-TeV mass scale originates from a seesawlike mecha-
nism for dark states connected with partial breaking to
N ¼ 1 supersymmetry [15]. Even lower mass scales are
potentially possible, though the presence of heavier extra
sector states charged under the visible sector means that we
must exercise some care in building such models.
If, on the other hand, we assume that the extra sector

Uð1Þ remains as a long range force carrier, then we have a
conserved electric and magnetic charge, and so we can also
expect there to be stable dark states. We have also seen that
visible sector charged states can be decoupled.
Assuming we have a TeV scale dark state, we can

estimate its cosmological relic abundance. The fact that
we have kinetic mixing with the visible sector as well as a
strongly coupled extra sector means that the overall
thermally produced relic abundance will be lower than
that of the standard weakly interacting massive particle
(WIMP) example. For example, letting Ωextra denote the
relic abundance of such an extra sector state and ΩDM that
of WIMP dark matter, we have

Ωextra

ΩDM
∼
α2WIMP

α2extra

M2
extra

M2
WIMP

∼
�
10−3

α2extra

��
Mextra

1 TeV

�
2

; ð5:2Þ

so we see that if our extra sector states are around the TeV
scale, an order 1 value for αextra suppresses the overall
contribution of these states. For this reason, we see that any
individual extra sector will make only a small contribution
to the net relic abundance; i.e., we can easily satisfy various
cosmological bounds. Observe also that if we have a
nonthermal epoch in the evolution of the Universe, i.e.,
one with a late decaying scalar, it can also be beneficial to
overproduce this relic abundance, as is common in some
string based constructions [108,109].
Aside from their potential role in cosmology (if we have

multiple decoupled extra sectors to obtain a suitable relic
abundance), we now have the strongly coupled analog of
extra charged states which could be generated in collider
experiments. Indeed, we have also explained how these
extra sector states can produce an effective electric charge
[cf. Eq. (2.25)]. This leads to generalizations of the
standard Z0 scenario, which would be interesting to study
further. It is important to emphasize, however, that the
strongly coupled nature of the extra sector means that some
of the implicit assumptions usually made in the analysis of
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Z0 models should be revisited before drawing any definite
conclusions on this class of models. We leave a full analysis
of this possibility for future work.

VI. CONCLUSIONS

Kinetic mixing at strong coupling is well motivated from
both a top down and bottom up perspective. We have
shown how to extract the leading order mixing terms for an
extra sector with approximate N ¼ 2 supersymmetry and
commented on their potential role in phenomenological
scenarios. In the remainder of this section, we discuss some
avenues of future investigation.
It would be interesting to extend our analysis to larger

unbroken flavor symmetry groups for the extra sector. In
particular, theories with exceptional flavor symmetry have
a rich spectrum of BPS objects which can also figure into
model building considerations.
A related question is how to carry over our results to

models in which N ¼ 2 supersymmetry is broken to
N ¼ 1 or N ¼ 0 supersymmetry. Provided these super-
symmetry breaking effects are sufficiently mild, we antici-
pate that the formal techniques developed here should be
more broadly applicable.
Finally, it is tempting to speculate that, because our

N ¼ 2 sector contains a scalar modulus with a flat
potential, this mode could play the role of an inflaton in
slow roll inflation [14], with reheating triggered by reach-
ing the origin of moduli space. This suggests yet another
potential role for such extra sectors.
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APPENDIX: DETAILS ON THE BPS
SPECTRUM OF THE H1 MODEL

The BPS quiver computation of the BPS spectrum is
achieved by means of quiver representation theory [92]. By
a standard geometric invariant theory argument, the Higgs
branch moduli space of the quiver SQM corresponding to a
state of charge γ is equivalent to the moduli space of stable
representations of dimension vector ðN1;…; NnÞ, where
γ ¼ P

iNiγi and γi is a good quiver basis in the sense of
Refs. [87,93] (i.e., one for which 1) the coefficients Ni are
either all non-negative integers or nonpositive ones and 2)
ImZðγiÞ > 0 ∀ i ¼ 1;…; n). In our case, we find two
candidates of good quiver basis for the H1 model at
u ∼ 0.1 and m ∼ 1: the one outlined in the main body of

FIG. 4. LEFT: Putative quiver basis γ1;−γ2; γ3 for π < θ < 5π=3. RIGHT: Same basis as θ approaches 5π=3 from the left; one can see
that the bound state γ1 − γ2 destabilizes by wall crossing, which is in contradiction with the mutation rule for the basis elements as
Zð−γ2Þ exits the upper Z-plane from the negative real axis.
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the text and the one given by γ1; ð−γ2Þ; γ3 in the region
π < θ < 5π=3. Consider the former. See the lhs of Fig. 4
to see that indeed it meets requirements 1 and 2 of
Refs. [87,93]. The candidate basis γ1; ð−γ2Þ; γ3 does not
mutate to γ1, γ2, γ3 at θ ¼ 5π=3, but rather it mutates to
γ1 − γ2; γ2; γ3 − γ2, which leads to an inconsistency. The
quiver for this putative basis would be

γ1 ← ð−γ2Þ → γ3; ðA1Þ

from which we see that the representation with dimension
vector (1,1,0) is indeed stable. As θ approaches 5π=3 from
the left, one can see from Fig. 4 that Zð−γ2Þ exits the upper
Z-plane from the negative real axis, which triggers the
quiver mutation from the quiver in Eq. (A1) to

FIG. 5. UPPER LEFT: Stable states with charges γ1; γ2; γ3; γ2 þ γ3 for θ ¼ 5.3. UPPER RIGHT: Double mutation at θ ¼ 2π. CENTER LEFT:
New quiver basis valid for 0 < θ < 1.05. CENTER RIGHT: The wall crossing at which the state of charge γ2 þ γ3 − γ1 enters in the
spectrum occurs at θ ¼ 0.525, and here we plot the stable states in the Z-plane at θ ¼ 0.7. DOWN LEFT: Right after the θ ≈ 1.05mutation
at γ2 þ γ3. DOWN RIGHT: θ ≈ 2.06 right before the double mutation at −γ1 þ γ2 þ γ3 and γ2 and the wall-crossing leading to the
disappearence of γ3 from the spectrum and the appearance of γ1 þ γ2.
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γ1 − γ2 → γ2 ← γ3 − γ2: ðA2Þ

At the same time, the state γ1 − γ2 is wall crossing away
(getting unstable and disappearing from the spectrum),
which is inconsistent with the charges on the nodes of the
mutated quiver, because quiver nodes always correspond to
stable particles. This rules out the candidate basis
γ1; ð−γ2Þ; γ3 with respect to the one we use in the main
body of the text, which does not lead to such
inconsistencies.
Let us proceed by reviewing the computation of the BPS

spectra we summarized in Figs. 2 and 3. Let us first
consider the large mass regime with u ¼ 0.1 and m ¼ eiθ.
For 5π=3 < θ < 2π, the quiver basis we start with

gives a BPS quiver,

γ1 → γ2 ← γ3:

The corresponding central charges and stable states are
depicted in Fig. 5, and we have BPS spectrum

γ1; γ2; γ3; γ2 þ γ3; and CPT conjugates: ðA3Þ

At θ ¼ 2π, a double mutation occurs (see Fig. 5): Zðγ1Þ and
Zðγ3Þ exit the upper Z-plane simultaneously. The mutated
quiver is

−γ1 ← γ2 þ γ3 → −γ3: ðA4Þ

The BPS spectrum remains the one in (A3), and the stable
particles have charges −γ1; γ2 þ γ3;−γ3; γ2. Now, γ2
appears as a stable bound state with dimension vector
(0,1,1) for the A3 quiver in line (A4), and adding CPT
conjugates, one gets the same charges as in line (A3). At
θ ∼ 0.525, a wall-crossing phase transition occurs, and the
BPS state with charge γ2 þ γ3 − γ1 stabilizes; the BPS
spectrum becomes

−γ1; γ2 þ γ3;−γ3; γ2; γ2 þ γ3 − γ1 and CPT conjugates:

ðA5Þ

At θ ≈ 1.05, another mutation occurs (see Fig. 5), the
charge γ2 þ γ3 exits the upper half Z-plane, and the BPS
quiver becomes

FIG. 6. UPPER LEFT: θ ≈ 3.1 right before the mutation at π. UPPER RIGHT: θ ≈ 3.6 right before the wall crossing leading to the decay of
the state γ1 − γ2 − γ3. DOWN LEFT: Right before the mutation at θ ≈ 4.15. DOWN RIGHT: Right before the wall crossings destabilizing
γ1 þ γ2 and stabilizing γ3 while γ2 mutates at θ ≈ 5.2.
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γ2 þ γ3 − γ1 → −ðγ2 þ γ3Þ ← −γ2: ðA6Þ

The spectrum is still as in line (A5), but now γ3 is a bound
state corresponding to the dimension vector (0,1,1). At
θ ≈ 2.06, both the charge γ2 þ γ3 − γ1 and the charge γ2
exit the upper half Z-plane. Moreover, the state with charge
γ3 destabilizes, while the state with charge −ðγ1 þ γ2Þ
stabilizes (see Fig. 5). The mutated BPS quiver is

−γ2 − γ3 þ γ1 ← −γ1 → −γ2; ðA7Þ

The new BPS spectrum is

− γ2 − γ3 þ γ1;−γ1;−γ2;−γ2 − γ3;−γ1 − γ2

and CPT conjugates: ðA8Þ

At θ ¼ π (see Fig. 6), the charge γ1 mutates, and one has
the quiver

−γ2 − γ3 → γ1 ← −γ2 − γ1: ðA9Þ

At θ ≈ 3.65, there is a wall crossing, and the spectrum
becomes

γ1;−γ2;−γ2 − γ3;−γ1 − γ2 and CPT conjugates:

ðA10Þ

At θ ≈ 4.15, we have another double mutation (see Fig. 6),

γ2 þ γ3 ← −γ2 → γ2 þ γ1; ðA11Þ

followed at θ ≈ 5π=3 by a mutation at γ2 and simulta-
neously two wall crossings leading to the destabilization of
the state with charge γ2 þ γ1 and the stabilization of the
state with charge γ3, bringing us back to the original
spectrum at θ > 5π=3 (see Fig. 6).
The BPS spectrum in Fig. 3 was obtained for u ¼

0.1ei5.5 tuning m from 0 to 1. The whole line is covered by
the quiver

γ1 → γ2 ← γ3: ðA12Þ

FIG. 7. UPPER LEFT: m ≈ 0.2 same spectrum as at large mass for θ ¼ 5.5. UPPER RIGHT: m ≈ 0.1; the state γ1 þ γ2 enters the spectrum.
DOWN LEFT: m ≈ 0.03 right after the mutation leading to the stabilization of the dark dyon. DOWN RIGHT: m ≈ 0; the flavor symmetry
gets restored.
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The relevant pattern of wall crossings in the Z-plane is
illustrated in Fig. 7: for 0.2 < m < 1, the spectrum is
constant. In the region 0.03 < m < 0.2, a series of wall
crossing occurs leading to a maximal chamber with stable
states

γ1; γ2; γ3; γ1 þ γ2; γ2 þ γ3; γ1 þ γ2 þ γ3: ðA13Þ

It should be possible to reproduce our results using the
spectral networks as in Ref. [110].
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