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We investigate the interparticle potential between spin-0, spin-1=2, and spin-1 sources interacting in
modified electrodynamics in the nonrelativistic regime. By keeping terms ofOðjpj2=m2Þ in the amplitudes,
we obtain spin- and velocity-dependent interaction energies. We find well-known effects such as spin-orbit
couplings, as well as spin-spin (dipole-dipole) interactions. For concreteness, we consider the cases of
electrodynamics with higher derivatives (Podolsky-Lee-Wick) and hidden photons.
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I. INTRODUCTION

Classical Maxwell electrodynamics is a great theoretical
and phenomenological success: its predictions are found to
correctly describe a very wide variety of physical phenom-
ena. In this scenario, the sources are agglomerations of
electrons, protons and neutrons—all spin-1=2 fermions—
so that the Maxwell equations actually encode the macro-
scopic interaction between photons and spin-1=2 particles.
In the more general context of quantum field theories,

however, the electromagnetic field is not bound to couple
only to spin-1=2 sources, but may also interact with scalar
(spin-0) and/or vector (spin-1) charged particles. At this
point an interesting question arises: how can one distinguish
between these sources via electromagnetic experiments? Or
rather, can one find similarities—or universalities—among
sources with different spins? A way to (partially) answer
these questions is by investigating the potential energy
between the spin-0, spin-1=2, and spin-1 sources.
The study of the interparticle potential serves yet another

important cause, namely, the determination of the proper-
ties of the mediator, such as whether it is massive or not, as
well as to provide information on the number of propa-
gating degrees of freedom. This is specially important in
scenarios with physics beyond the standard model, whose
low-energy effective theories generate modifications to
usual electrodynamics.
The role of the sources, which couple to the gauge fields,

is pivotal to understand—and experimentally probe—the
features of modified electrodynamics. Here we pursue a
comparative study of the potential energy between scalar
(spin-0), spinorial (spin-1=2), and vector (spin-1) sources,
all electrically charged and massive. Similar analyses
have been carried out, e.g., in Refs. [1,2]—also including

higher-order and quantum effects—in the context of pure
Maxwell electrodynamics (and gravitation [3]). Here we
focus on a simpler approximation and work only with
potential energies generated by one-boson exchange.
The potential energy being a classical, macroscopic

quantity, it is natural that we work in the limit of small
velocities, i.e., the nonrelativistic (NR) limit. Most of the
literature, e.g., Refs. [4–6], works in the extreme NR limit
of static sources. Though relevant, this restriction obscures
the role of the spin of the sources, as can be easily seen
in the case of spin-1=2 fermions, where the momentum is
directly coupled to the spin matrices.
In order to exhibit the spin and momentum dependence

in greater detail, we use the first Born approximation [7],
where the potential energy is given by

EðrÞ ¼ −
Z

d3q
ð2πÞ3MNReiq·r; ð1Þ

with MNR being the NR limit of the fully relativistic
Feynman amplitude M.
For the sake of concreteness, we work in the center-of-

mass reference (CM) frame, so that only a pair of
momentum variables is independent: p ¼ ðp1 þ p0

1Þ=2 ¼
ðp2 þ p0

2Þ=2 and q ¼ p0
1 − p1 ¼ −ðp0

2 − p2Þ, thus repre-
senting the average momentum and the momentum
transfer, respectively (cf., Fig. 1). Moreover, we assume
elastic scattering, where q0 ¼ 0, so p · q ¼ 0.
In order to bring to light spin (and momentum) depend-

ence, it is necessary to go beyond Oð1Þ in jpj=m. At this
level we have the well-known static ∼e−Mr=r spin-
independent Yukawa potential. For this reason we work
with amplitudes up to Oðjpj2=m2Þ, where more interesting
effects become evident. As we see, at this approximation
level one obtains spin- and momentum-dependent gener-
alizations of the Yukawa potential displaying, e.g., spin-
orbit couplings as well as spin-spin interactions.
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At this point it is important to briefly address the
relationship between MNR and M in order to avoid
confusion. Following Ref. [7], we have

MNR ¼
Y
i¼1;2

ð2EiÞ−1=2
Y

j¼10;20
ð2EjÞ−1=2M ð2Þ

and we note that the energy-dependent prefactors are
fundamental to obtain the NR potential correctly up to a
given order. This is especially true here, as wewant to go up
to Oðjpj2=m2Þ.
An important instance where this plays a role is in

expressions involving combinations of energy and mass,
such as Eþm, which are momentum independent up to
Oðjpj=mÞ, but give 2mþ jpj2=2m at theOðjpj2=m2Þ level.
In the case of spin-1=2 sources, for example, we see that
such corrections affect the monopole-monopole terms, but
not the spin-dependent ones (cf., Sec. II B).
We set out to study two phenomenologically interesting

cases of modified electrodynamics. First we consider the
Podolsky-Lee-Wick (PLW) higher-order derivative model
[8–11], where a heavy “ghost” à la Pauli-Villars is
introduced and helps tame UV divergences. Next we study
the case of a massive neutral boson from a novel Uð1ÞB
symmetry kinetically mixed with the photon [12]. Since
usual matter is not charged under Uð1ÞB, this boson
remains hidden, being dubbed a hidden (or dark) photon.
The kinetic mixing induces a photon-hidden-photon oscil-
lation and modifies the electromagnetic interaction between
electrical charges [13].
These two scenarios are representative and serve as

applications for the more general discussion we wish to
present. The main idea is to determine the role of the spin
of the sources in the interparticle potential energy and,
simultaneously, check for the signs of possible beyond the
standard model effective models that may induce small
corrections in the well-known Maxwell electrodynamics.

This paper is organized as follows: in Sec. II, we present a
general and systematic discussion of the interparticle poten-
tials for different sources, where we apply the NR approxi-
mation to the respective matter currents. In Sec. III, we
analyze the standard Maxwell electrodynamics as a bench-
mark. In Secs. IV and V, we work out the cases with the
Podolsky-Lee-Wick modified electrodynamics and with
photon-hidden-photon oscillations, respectively. We dedi-
cate Sec. VI to our concluding remarks.We use natural units
(c ¼ ℏ ¼ 1) and a flat metric ημν ¼ diagð1;−1;−1;−1Þ
throughout.

II. THE NONRELATIVISTIC LIMIT OF THE
INTERPARTICLE POTENTIAL

Let us set up our analysis by first considering the general
structure of the NR potential energy for interactions
mediated by neutral Abelian vector bosons. As discussed
earlier, the interparticle potential energy is given by the
first Born approximation, Eq. (1). This is essentially the
NR limit of the quantum field theoretical scattering
process between two particles (here labeled 1 and 2) with
3-momentum attributions as given in Fig. 1.
Since the Feynman rules at tree level are equivalent to

considering the matter currents Jμ associated with the
interacting particles as being the interaction vertex, the
amplitude may be written [14]

M ¼ iJμð1Þðp1; p0
1ÞPμνðqÞJνð2Þðp2; p0

2Þ; ð3Þ

where Jμ
1ð2Þ are the currents associated with particles 1(2)

and PμνðkÞ is defined as the Feynman propagator, DμνðkÞ,
without its longitudinal part—this is possible once we have
qμJ

μ
1ð2Þ ¼ 0, i.e., conserved currents [15,16].
Before we treat particular cases for the external currents,

we note that one can simplify the expression above, Eq. (3).
If we consider that the field theory describing the vector
boson that is responsible for the interaction at hand respects
Lorentz invariance and receives no contribution from
topological terms, we can express the Feynman propagator
as a linear combination of the metric, ημν, and momentum
transfer, qμ.
Schematically one may then write

DμνðqÞ ¼ iaðqÞημν þ ibðqÞqμqν; ð4Þ
where aðqÞ and bðqÞ are scalar functions specified by the
particular theory under examination. When contracted
with conserved currents, only the part linear in ημν survives
and, as a consequence, one can write PμνðqÞ ¼ iaðqÞημν.
Inserting this into Eq. (3), we finally get

M ¼ −aðqÞημνJμð1Þðp1; p0
1ÞJνð2Þðp2; p0

2Þ: ð5Þ
From now on we particularize the external currents to the

cases of spin-0, spin-1=2, and spin-1 sources in order to

FIG. 1. Scattering process mediated by a vector boson
(3-momenta displayed in the CM reference frame).
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derive suitable expressions to compute the potential energy
as mediated via one-boson exchange.

A. Spin-0 external currents

We first consider the simplest case, where the charge
carriers are described by spin-0 (complex) scalar fields. It is
well known that the interaction vertex between an Abelian
vector field and a scalar field is given by Vμðp; p0Þ ¼
−ieðp0μ þ pμÞ with momenta flowing into the vertex. Here
e is the coupling constant.
Taking into account the usual Feynman rules and

changing the final 4-momenta in favor of the momentum
transfer and the initial 4-momenta, we obtain the following
expression for the relativistic amplitude:

M ¼ −4e1e2aðqÞ
�
p1 · p2 −

1

2
ðp1 − p2Þ · q −

1

4
q2
�

¼ −4e1e2aðqÞðE1E2 þ p2Þ; ð6Þ

where E1 and E2 stand for the energies of the incoming
particles and we used that p1 þ p2 ¼ 0 in the CM frame, as
well as p2

1ð2Þ ¼ p2 þ q2=4, since p · q ¼ 0. We note that we

do not find extra ∼q2 terms.
According to Eq. (2), the NR amplitude is

MNR ¼ −e1e2aðqÞ
�
1þ p2

E1E2

�
ð7Þ

with the notation aðqÞ ¼ aðqÞjq0¼0. Now, bearing in mind
that

E1ð2Þ ≈m1ð2Þ

�
1þ

p2
1ð2Þ

2m2
1ð2Þ

�
ð8Þ

in the NR limit, we may recast MNR as

MNR ¼ −e1e2aðqÞ
�
1þ p2

m1m2

�
þOðjpj4=m4Þ: ð9Þ

Here it is important to stress that the energy-dependent
prefactors in Eq. (2) stem from normalization factors of the
wave functions that compose the currents and, for this
reason, we enforce our NR approximation by allowing
terms up to and includingOðjpj2=m2Þ inMNR ∼ J1J2

E1E2
. This

means that terms such as ∼p2q2=m4 are disregarded as in
Eq. (9) above. This choice might lead us to not recover
contact terms [1]. Nevertheless, this approach is consistent
with our approximation scheme and we make similar
choices in the rest of this paper.
Finally, using Eq. (1) along with Eq. (9), we obtain the

following formal result for the NR potential energy
associated with spin-0 charged particles,

Eðs¼0ÞðrÞ ¼ e1e2

�
1þ p2

m1m2

�
I0ðrÞ; ð10Þ

with the integral I0ðrÞ defined in the Appendix.
A similar analysis has been conducted in Ref. [17] for

the case of scalar electrodynamics. Our result, Eq. (10), is
different, as here we do not find a contact term (which is
still different from the one found in Ref. [1]). The reason for
this is simple: the two momentum variables we work with
are p and q, which are orthogonal. This ensures that they
are independent from each other.
Since we are integrating over the momentum transfer, it

is convenient to separate terms in the NR amplitude that
depend on it from those that do not. This is most easily
donewith the orthogonal variables, p and q. In Ref. [17] the
extra contact term arises as the initial momentum of one of
the particles is used, and this momentum is not independent
from the momentum transfer, which must be integrated
according to Eq. (1).

B. Spin-1=2 external currents

We now consider the case of external currents associated
with charged spin-1=2 fields. The conserved vector current is

Jμðp; p0Þ ¼ eūðp0ÞγμuðpÞ; ð11Þ
where uðpÞ stands for the positive-energy solutions of
the Dirac equation (its conjugate is ū ¼ u†γ0) and e is the
coupling constant between the spin-1=2 fermion and the
vector boson, as usual.
Using the standard Dirac representation for the gamma

matrices, namely,

γ0 ¼
�
1 0

0 −1

�
and γk ¼

�
0 σk

−σk 0

�
;

one obtains

uðpiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þmi

p � ξ
σ·pi

Eiþmi
ξ

�
; ð12Þ

with ξ being the basic spinor. We have normalized the
spinor such that u†ðpiÞuðpiÞ ¼ 2Ei.
Taking into account the momentum attributions from

Fig. 1 and considering contributions up to second order in
momenta, it follows that

J0ð1Þ ¼ 2m1e1

�
1þ 1

4m2
1

ð2p2 þ iðq × pÞ · hσð1ÞiÞ
�

ð13Þ

and

Jð1Þ ¼ 2m1e1

�
p
m1

−
i

2m1

q × hσð1Þi
�
; ð14Þ

where we have used the notation hσðiÞi ¼ ξ†σðiÞξ. Note that
Jμð2Þ can be readily obtained from Eqs. (13) and (14) by

SPIN- AND VELOCITY-DEPENDENT NONRELATIVISTIC … PHYSICAL REVIEW D 95, 016006 (2017)

016006-3



taking e1 → e2, m1 → m2, p → −p, q → −q, and
hσð1Þi → hσð2Þi.
Spin-1=2 currents present a richer phenomenology—

as compared with spin-0 ones—due to the presence of a
nontrivial spin. This can be seen by plugging Eqs. (13) and
(14) in Eq. (5), which, in view of Eq. (2), gives

MNR ¼ Mð0Þ
NR þMðvelÞ

NR þMðs-velÞ
NR þMðs-sÞ

NR ; ð15Þ
where

Mð0Þ
NR ¼ −e1e2aðqÞ;

MðvelÞ
NR ¼ −e1e2aðqÞ

�
p2

m1m2

−
q2

8

�
1

m2
1

þ 1

m2
2

��
;

Mðs-velÞ
NR ¼ −ie1e2aðqÞq ·

�
p ×

�
1

4

�hσð1Þi
m2

1

þ hσð2Þi
m2

2

�

þ 1

2m1m2

ðhσð1Þi þ hσð2ÞiÞ
��

;

Mðs-sÞ
NR ¼ −

e1e2aðqÞ
4m1m2

fðq · hσð1ÞiÞðq · hσð2ÞiÞ

− q2hσð1Þi · hσð2Þig:
Each of the above equations stands for a contribution

of a different nature: Mð0Þ
NR is the Feynman amplitude

associated with static particles with no spin structure;

MðvelÞ
NR is the contribution dependent on the velocity of

the charge carriers; Mðs-velÞ
NR is related with spin-velocity

(or spin-orbit) interactions, and Mðs-sÞ
NR displays spin-spin

interactions.
Finally, the NR potential energy is found to be

Eðs¼1=2ÞðrÞ ¼ e1e2

��
1þ p2

m1m2

�
I0ðrÞ

−
�
1

8

�
1

m2
1

þ 1

m2
2

�
þ 1

m1m2

hS1i · hS2i
�
I1ðrÞ

þ 1

r
I00ðrÞL ·

�hS1i
2m2

1

þ hS2i
2m2

2

þ hS1i þ hS2i
m1m2

�

þ 1

m1m2

X3
i;j¼1

hS1iihS2ijIijðrÞ
�
; ð16Þ

where we made S ¼ σ=2 and L ¼ r × p is the (orbital)
angular momentum. The integrals I0ðrÞ, I1ðrÞ, and IijðrÞ
are listed in the Appendix.

C. Spin-1 external currents

Lastly, we consider the less usual—but nonetheless
relevant—case where the charge carriers are described
by a (complex) spin-1 vector field, here designated by
Wμ. The conserved current is given by

Jμ ¼ ieðWμν�Wν −WμνW�
νÞ

þ ieðg − 1Þ∂νðWμWν� −Wμ�WνÞ; ð17Þ

where Wμν ¼ ∂μWν − ∂νWμ is the Abelian field strength.
The first line of Eq. (17) stands for the usual Noether

current coming from the global Uð1Þ symmetry. The
second line plays an important role in the electrodynamics
of spin-1 fields: it stems from a nonminimal coupling
between the gauge field Aμ and the vector fieldWμ, namely,
Lint ⊃ ieðg − 1ÞW�

μWνFμν, which is reminiscent of a bro-
ken SUð2Þ ⊗ Uð1Þ symmetry. As argued in Refs. [18,19],
the addition of this term is mandatory in order to ensure the
correct tree-level gyromagnetic factor for the vector field,
i.e., g ¼ 2 (instead of g ¼ 1).
The free vector field solution is

WμðpiÞ¼Nð1Þ
W

�
pi ·ϵi
mi

;ϵiþ
1

miðEiþmiÞ
ðpi ·ϵiÞpi

�
; ð18Þ

where ϵi stands for the polarization 3-vector and

jNðiÞ
W j2 ¼ 1, with i ¼ 1, 2 labeling the sources (no summa-

tion implied). Equation (17) may be rewritten in momen-
tum space (for particle 1),

Jμð1Þðp; p0Þ ¼ e1ðpþ p0ÞμWνðpÞW�
νðp0Þ

− e1g½pνWν�ðp0ÞWμðpÞ þ p0
νWνðpÞWμ�ðp0Þ�:

ð19Þ

In order to exhibit the spin dependence, we define the
spin matrix, ðSiÞjk ¼ −iεijk, where Si is related to the
vector representation of the rotation group, Σij ¼ εijkSk.
Using Eq. (18) and repeating the steps of the previous
sections we find the NR potential energy,

Eðs¼1ÞðrÞ ¼ e1e2

��
1þ p2

m1m2

�
I0ðrÞ

−
1

m1m2

hS1i · hS2iI1ðrÞ

þ 1

r
I00ðrÞL ·

�hS1i
2m2

1

þ hS2i
2m2

2

þ hS1i þ hS2i
m1m2

�

þ
X3
i;j¼1

�
1

m1m2

hS1iihS2ij

−
1

2m2
1

ðϵ�1Þiðϵ1Þj − ð1 → 2Þ
�
IijðrÞ

�
: ð20Þ

D. Partial conclusions

It is interesting to notice the similarities between the
bosonic cases treated. At the lowest order in jpj=m the
potential energy is basically determined by I0ðrÞ. At this
level the spin has no influence and the structure of the
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interaction is solely determined by the nature of the
mediator, encoded in aðqÞ. In this case one cannot use
the potential energies to assess the nature of the sources,
as these are indistinguishable. The monopole-monopole
sector of the potentials for spin-0 and spin-1 sources is
therefore identical.
For the static limit with spin-1=2 sources there is an extra

term containing I1ðrÞ [cf., Eq. (16)]. If we take a step back
and redo the calculations, starting from a truly static spinor,
we reobtain the classic Yukawa potential ∼I0ðrÞ. This
shows that this apparent discontinuity in the static approxi-
mation is actually an artifact of that very limit and is a
particularity of spin-1=2 sources. In this sense, the potential
energies of the three cases are equally proportional to the
monopolelike I0ðrÞ in the strict static limit (p ¼ 0). This
shows that, up to monopole-monopole terms, the inter-
particle energies Eðs¼0ÞðrÞ, Eðs¼1=2ÞðrÞ, and Eðs¼1ÞðrÞ are
indistinguishable, which should not come as a surprise.
For nonstatic sources the situation is richer. At

Oðjpj2=m2Þ we find a large interplay between momentum
and spin. Familiar effects (e.g., spin-orbit coupling) appear
and angular dependences become the rule. For well-known
and/or carefully experimentally controlled (nonstatic) spin-
polarized sources it is possible, then, to investigate the
nature of the underlying interaction by direct inspection of
the ensuing interparticle potential energy.
In the next sections, we apply the results above to

specific interactions. First, however, we work out the
familiar case of Maxwell electrodynamics. From now on
we define α ¼ e1e2=4π.

III. MAXWELL ELECTRODYNAMICS

Once we are interested in nonstandard electrodynamics,
it is important to establish common grounds for compari-
son. We start with the classical Maxwell Lagrangian,
given by

L ¼ −
1

4
FμνFμν −

1

2λ
ð∂μAμÞ2; ð21Þ

where Fμν ¼ ∂μAν − ∂νAμ is the Abelian gauge-invariant
field-strength tensor and the λ-dependent term fixes the
gauge. This Lagrangian may be written as a quadratic form
and its kernel, the wave operator, may be inverted to give
the momentum-space propagator,

hAμAνi ¼ −
i
q2

�
ημν þ ðλ − 1Þ qμqν

q2

�
: ð22Þ

Comparing Eq. (22) with Eq. (4) we find that
aðqÞ ¼ 1=q2. In this case, the relevant integrals can be
easily evaluated from Eqs. (A3)–(A6) with ξ ¼ 0 and the
interparticle potential for scalar sources reads

Eðs¼0Þ
Max ðrÞ ¼ α

r

�
1þ p2

m1m2

�
; ð23Þ

which is compatible with the results from Refs. [1,17],
apart from contact terms (cf., Sec. II A).
Similarly, for spin-1=2 sources we find

Eðs¼1=2Þ
Max ðrÞ

¼ α

r

�
1þ p2

m1m2

−
1

r2
L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�

þ 1

m1m2r2
½hS1i · hS2i − 3ðr̂ · hS1iÞðr̂ · hS2iÞ�

�

− 4πα

�
2hS1i · hS2i
3m1m2

þ 1

8m2
1

þ 1

8m2
2

�
δ3ðrÞ ð24Þ

whereas, for spin-1 sources, we have

Eðs¼1Þ
Max ðrÞ

¼ α

r

�
1þ p2

m1m2

−
�

1

2m2
1

þ 1

2m2
2

�
1

r2

−
1

r2
L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�

þ 1

m1m2r2
½hS1i · hS2i − 3ðr̂ · hS1iÞðr̂ · hS2iÞ�

þ 3

2r2

�
1

m2
1

ðϵ�1 · r̂Þðϵ1 · r̂Þ þ ð1 → 2Þ
��

− 4πα

�
2

3m1m2

hS1i · hS2i þ
1

6m2
1

þ 1

6m2
2

�
δ3ðrÞ: ð25Þ

Overall, we see that some universalities between spin-
1=2 and spin-1 sources are present, especially in the dipole-
dipole (spin-spin) and momentum-dependent sectors of the
respective interactions. As expected, the dominating con-
tribution comes from the monopole-monopole term, which
is the usual Coulomb one. We notice the appearance of
contact terms, specifically the spin-spin one, which plays a
role in multielectron systems [20].
From the form of Eqs. (16) and (20), especially the

respective second lines, we would expect extra spin- and

momentum-independent contributions to Eðs¼1=2Þ
Max ðrÞ, but

not to Eðs¼1Þ
Max ðrÞ. Contrary to our expectations, in Eq. (25)

there is another such term besides the Coulomb one. It
arises as a byproduct of the contractions of the polarization
vectors, they satisfy ϵ�i · ϵi ¼ 1 with i ¼ 1, 2, and the
Krönecker deltas in IijðrÞ [cf., Eq. (A6)]. Apart from
contact terms, our results match those from Ref. [1].
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IV. PODOLSKY-LEE-WICK ELECTRODYNAMICS

Recently, interest in the PLW electrodynamics has been
renewed as Grinstein et al. extended the usual PLW model
to a non-Abelian scenario and applied it to the standard
model in an attempt to solve the hierarchy (Higgs mass)
problem [21–23]. Here, however, we focus on the simpler
Abelian PLW electrodynamics.
More specifically, we examine the role played by the

(matter) sources interacting through the PLW fields. This
topic has been the subject of many studies regarding, e.g.,
the pointlike self energy of the electron [4], monopoles [5],
and charged stationary branes and Dirac strings [6].
In this section we investigate the NR potential energy

between particles interacting via the Abelian PLW electro-
dynamics. Its dynamics is governed by the Lagrangian
[10,11]

LPLW ¼ −
1

4
Fμν

�
1þ □

M2

�
Fμν þ 1

2λ
ð∂μAμÞ; ð26Þ

so that one can immediately compute the Feynman propa-
gator, which reads

Dμν ¼
iM2

q2ðq2 −M2Þ
�
ημν −

qμqν
k2

�
1þ λ

�
q2

M2
− 1

���
:

ð27Þ

By inspecting the poles when contracted with external
conserved currents, we conclude that the spectrum of the
PLW electrodynamics consists of a massless unitary
particle and of a nonunitary (ghost) particle with mass
M [8–11]. Despite its presence, the PLW model is still
considered a good effective theory—in particular, the PLW
QED is naturally finite in the UV sector.
Usual Maxwell electrodynamics is recovered in the limit

M → ∞, which is physically sensible, as the ultraheavy
mode is not excited and plays no role in physical processes.
Experimentally, one may find lower limits on M by
examining corrections to the g-factor of the electron,
whereby it is found that M > 40 GeV [24]. This shows
that, if the PLWelectrodynamics is realized in nature, it can

only be significantly different from Maxwell’s theory at
distances lM ∼ 1=M ∼ 10−16 cm—a hundred times smaller
than the classical radius of the electron.
Bearing in mind that conserved external currents are

orthogonal to kμ, we promptly obtain the reduced propa-
gator PμνðkÞ as being

PμνðqÞ ¼ −i
�
1

q2
−

1

q2 −M2

�
ημν; ð28Þ

thus concluding that aðqÞ ¼ − 1
q2 þ 1

q2−M2. The ghost nature

of the massive particle is clear from the “wrong” sign of the
massive piece in Eq. (28). As mentioned before, we are
working in the limit of elastic scattering, where q0 ¼ 0, so
that aðqÞ reduces to

aðqÞ ¼ 1

q2
−

1

q2 þM2
; ð29Þ

and we are now ready to specialize the discussion from
Sec. II to the PLW electrodynamics.

A. Results

Having set the basis of the model, we are ready to
consider the simplest case, where the currents are described
by (charged) spin-0 particles. Using Eqs. (10) and (A3)
with Eq. (29), we find

Eðs¼0Þ
PLW ðrÞ ¼ α

r

�
1þ p2

m1m2

�
ð1 − e−MrÞ; ð30Þ

which is the leading-order correction.
Returning to the static case, we recover the well-known

monopole-monopole, M-dependent, PLW interaction
∼ð1 − e−MrÞ=r. Also, in the limit where M → ∞, the
second term in Eq. (30) is suppressed by the exponential
and we reobtain the Coulomb potential, as expected.
We may now proceed to the more interesting cases of

spin-1=2 and spin-1 sources. For the former, we find that
the potential energy reads

Eðs¼1=2Þ
PLW ðrÞ ¼ α

r

��
1þ p2

m1m2

�
ð1 − e−MrÞ −M2

8

�
1

m2
1

þ 1

m2
2

�
e−Mr −

f1ðrÞ
r2

L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�

þ 1

m1m2r2
½f2ðrÞhS1i · hS2i − 3f3ðrÞðr̂ · hS1iÞðr̂ · hS2iÞ�

�
; ð31Þ

where we defined f1ðrÞ ¼ 1 − ð1þMrÞe−Mr, f2ðrÞ ¼ 1 − ð1þMrþM2r2Þe−Mr, and f3ðrÞ ¼ 1 − ð1þMrþ M2r2
3
Þe−Mr

for the sake of convenience.
Using the definitions above we may write the potential energy for spin-1 sources in the PLW electrodynamics as
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Eðs¼1Þ
PLW ðrÞ ¼ α

r

��
1þ p2

m1m2

�
ð1 − e−MrÞ − f1ðrÞ

2r2

�
1

m2
1

þ 1

m2
2

�
e−Mr −

f1ðrÞ
r2

L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�

þ 1

m1m2r2
½f2ðrÞhS1i · hS2i − 3f3ðrÞðr̂ · hS1iÞðr̂ · hS2iÞ� þ

3f3ðrÞ
2r2

�
1

m2
1

ðϵ�1 · r̂Þðϵ1 · r̂Þ þ ð1 → 2Þ
��

: ð32Þ

A remarkable consequence of the relative sign in
Eq. (29) is that the integrals in the Appendix present no
contact terms ∼δ3ðrÞ. This is only possible due to the
particular structure of the PLW propagator, Eq. (29), which
allows a natural cancellation. This is a very distinctive
feature of the interaction energies in the PLW electrody-
namics, when compared to the standard Maxwell one.

V. KINETICALLY MIXED PHOTON-HIDDEN-
PHOTON ELECTRODYNAMICS

Let us now apply the formalism developed in Sec. II
to the case where the usual Maxwell electrodynamics is
extended by the inclusion of an extra Abelian boson
without direct interaction with the matter sector. This novel
boson, Bμ, interacts with the standard photon only through
a kinetic mixing. The gauge Lagrangian is then

L ¼ −
1

4
F2
μν −

1

4
B2
μν þ

χ

2
BμνFμν þm2

γ0
2

B2
μ; ð33Þ

where Bμν ¼ ∂μBν − ∂νBμ is the field-strength tensor of the
hidden photon (γ0), whose mass is mγ0 .
The hidden photon is completely decoupled from the

visible sector except for the kinetic mixing term, χ
2
BμνFμν.

Here we take this term as a true interaction vertex,

Vμν
γ−γ0 ¼ iχðημνq2 − qμqνÞ; ð34Þ

so that, from Eq. (33) we may read the propagator of the
hidden photon,

hBμBνi ¼ −
i

q2 −m2
γ0

�
ημν −

qμqν
m2

γ0

�
; ð35Þ

while the propagator for the photon is given in Eq. (22).

Given that the matter sources are not charged
under Uð1ÞB they can only feel the influence of the hidden
photon by means of small corrections to the usual electro-
magnetic interaction. According to Ref. [13], the para-
meter χ is constrained to 10−12 ≲ χ ≲ 10−3, so we may
write the effective photon propagator as hAμAνieff ¼
hAμAαiVαρ

γ−γ0 hBρBλiVλσ
γ−γ0 hAσAνi þ � � �, which can be

recast as

hAμAνieff ¼ −i
�
1

q2
þ χ2

q2 −m2
γ0

�
ημν þ iXμνðλÞ; ð36Þ

with the last (gauge-dependent) piece ∼XμνðλÞ vanishing
upon contraction with conserved currents.
Comparing Eq. (36) with Eq. (4), we find (q0 ¼ 0),

aðqÞ ¼ 1

q2
þ χ2

q2 þm2
γ0
; ð37Þ

which is similar to Eq. (29) for the PLW electrodynamics,
but it has an important difference: there is no relative sign,
so we cannot expect a cancellation of the contact terms as
in Sec. IV.

A. Results

Evaluating the integrals in the Appendix with Eq. (37)
we find that the interaction energy between scalars is
given by

Eðs¼0Þ
γ−γ0 ðrÞ ¼

α

r

�
1þ p2

m1m2

�
ð1þ χ2e−mγ0 rÞ; ð38Þ

whereas, for spin-1=2 sources, we have

Eðs¼1=2Þ
γ−γ0 ðrÞ ¼ α

r

��
1þ p2

m1m2

�
ð1þ χ2e−mγ0 rÞ þ χ2m2

γ0

8

�
1

m2
1

þ 1

m2
2

�
e−mγ0 r

−
g1ðrÞ
r2

L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�
þ 1

m1m2r2
½g2ðrÞhS1i · hS2i

− 3g3ðrÞðr̂ · hS1iÞðr̂ · hS2iÞ�
�
− 4π ~α

�
2

3m1m2

hS1i · hS2i þ
1

8m2
1

þ 1

8m2
2

�
δ3ðrÞ; ð39Þ
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where we used ~α ¼ αð1þ χ2Þ and defined the functions g1ðrÞ ¼ 1þ χ2ð1þmγ0rÞe−mγ0 r, g2ðrÞ ¼
1þ χ2ð1þmγ0rþm2

γ0r
2Þe−mγ0 r, and g3ðrÞ ¼ 1þ χ2ð1þmγ0rþ

m2

γ0 r
2

3
Þe−mγ0 r.

Finally, the interaction energy between spin-1 sources in the hidden-photon electrodynamics is

Eðs¼1Þ
γ−γ0 ðrÞ ¼

α

r

��
1þ p2

m1m2

�
ð1þ χ2e−mγ0 rÞ − g1ðrÞ

2r2

�
1

m2
1

þ 1

m2
2

�
e−mγ0 r

−
g1ðrÞ
r2

L ·

�
1

2m2
1

hS1i þ
1

2m2
2

hS2i þ
hS1i þ hS2i

m1m2

�
þ 1

m1m2r2
½g2ðrÞhS1i · hS2i − 3g3ðrÞðr̂ · hS1iÞðr̂ · hS2iÞ�

þ 3g3ðrÞ
2r2

�
1

m2
1

ðϵ�1 · r̂Þðϵ1 · r̂Þ þ ð1 → 2Þ
��

− 4π ~α

�
2

3m1m2

hS1i · hS2i þ
1

6m2
1

þ 1

6m2
2

�
δ3ðrÞ: ð40Þ

The lowest-order contribution from Eq. (39) matches
the interaction potential used in Ref. [13] to extract limits
on the χ −mγ0 parameter space through spectroscopy
measurements.

VI. CONCLUDING REMARKS

We have systematically analyzed the interparticle poten-
tial energy between sources of different spins in the context
of modified electrodynamics. For concreteness, we treated
the well-known case of Maxwell electrodynamics and of
two extensions, namely, that of PLW and that with an extra
Abelian dark gauge boson (hidden photon).
We worked with NR amplitudes up to Oðjpj2=m2Þ,

whereby a broad variety of spin- and velocity-dependent
terms arises, including well-known effects such as spin-
orbit couplings, as well as more exotic ones involving the
polarizations. For the modified electrodynamics, the ensu-
ing interparticle potentials include Yukawa-like terms with
a typical interaction range l ∼ 1=ξ, where ξ ¼ M or mγ0

is the mass of the mediator (PLW and hidden photon,
respectively).
Another possibility to study the modified photon-

hidden-photon electrodynamics is by finding the effective
action for the electromagnetic field by integrating out the
Bμ-field in Eq. (33). This was carried out in Ref. [25] and
the spin-independent (static) potential obtained coincides
with our first correction up to Oðχ2Þ.
In the two applications we presented there are spin- and

momentum-independent terms in the potential energies for
both spin-1=2 and spin-1 sources. These terms are divided
in two classes: ∼ξ2=r, with ξ ¼ M or mγ0, for spin-1=2 [cf.,
Eqs. (31) and (39)] and ∼1=r3 for spin-1 sources [cf.,
Eqs. (32) and (40)], both accompanied by a factor of
m−2

1 þm−2
2 . The origins of these terms are quite different.

For spin-1=2 sources it is easy to see that these factors come
from the second term in Eq. (16), since I1ðrÞ ∼ ξ2=r [cf.,
Eq. (A5)]. The origin of such terms for spin-1 sources was
already indicated in the end of Sec. III: it arises as part of

the contraction ðϵ�1Þiðϵ1ÞjIijðrÞ þ ð1 → 2Þ in Eq. (20),
since IijðrÞ ∼ δij [cf., Eq. (A6)] and the polarization
3-vectors satisfy ðϵ�1;2Þkðϵ1;2Þk ¼ 1.
As indicated in the end of Sec. II, the contact terms arise

only when the NR amplitude is expressed as a series
expansion in jpj=m. The same is also true not only for the
momentum-dependent terms, but also for the ones con-
taining information on the spin (or polarization) of the
sources. For fermions exchanging the usual photon, this is a
direct consequence of the fact that the spin operator only
appears as σ · p=m [cf., Eq. (12)]. If we start with truly
static sources, the Coulomb potential ∼α=r is dully
recovered. Similar conclusions apply for the modified
electrodynamics discussed above.
Although not explicit, an analogous situation is found for

the electromagnetic interaction of spin-1 sources, as can be
seen by the profile ∼1=r3 of the third term in Eq. (25).
Since 1=r3 ∼ q3 in Fourier space, we see that this term
actually stems from IijðrÞ, Eq. (A6), with aðqÞ ¼ 1=q2, so
this too is reminiscent of the series expansion in powers of
jpj=m. As in the spin-1=2 case, starting directly with p ¼ 0,
the only term that survives in Eq. (25) is the first. This
shows that, irrespective of their spin, static sources interact
via the Coulomb potential α=r.
In summary, the analysis presented in Sec. II and

implemented in the following sections is general and
may be applied to any modification of standard electro-
dynamics that keeps Lorentz invariance; the main require-
ment is that the propagator may be decomposed as in
Eq. (4). Moreover, the results given above may be used to
experimentally search for new mediators, as they would
induce exotic spin- and velocity-dependent forces that
could be detected in experiments involving, e.g., torsion
pendula [26], rare earth iron magnets [27], geomagnetic
electrons [28] or magnetometers [29].
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APPENDIX: USEFUL INTEGRALS

Throughout this paper we have used three classes of
integrals, namely,

InðrÞ ¼
Z

d3q
ð2πÞ3 ðq

2ÞnaðqÞeiq·r; ðA1Þ

IijðrÞ ¼
Z

d3q
ð2πÞ3 qiqjaðqÞeiq·r; ði; j ¼ 1; 2; 3Þ: ðA2Þ

It is not difficult to see that Inþ1ðrÞ ¼ −∇2InðrÞ and
IijðrÞ ¼ −∂i∂jI0ðrÞ. Consequently, once we specify aðqÞ,
the only integral we have to worry about is I0ðrÞ.
In this paper we came across situations where

aðxÞ ¼ 1
x2þξ2

, with ξ being a real constant. Therefore, it

is useful to compute the integrals above in this specific
case. Below we quote the results used in the main text (the
limit ξ → 0 may be taken),

I0ðrÞ ¼
1

4πr
e−ξr; ðA3Þ

I00ðrÞ ¼ −
1

4πr2
ð1þ ξrÞe−ξr; ðA4Þ

I1ðrÞ ¼ δ3ðrÞ − ξ2

4πr
e−ξr; ðA5Þ

IijðrÞ ¼
1

3
δijδ

3ðrÞ þ 1

4πr3

�
ð1þ ξrÞδij

− ð3þ 3ξrþ ξ2r2Þ xixj
r2

�
e−ξr: ðA6Þ

The presence of the Dirac delta in Eq. (A6) is justified
once we recognize that I1ðrÞ ¼ TrfIijðrÞg [30].
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