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We study electron-positron pair production by spatially inhomogeneous electric fields. Depending on the
localization of the field, a critical point (critical surface) exists in the space of field configurations where the
pair production probability vanishes. Near criticality, pair production exhibits universal properties similar
to those of continuous phase transitions. We extend results previously obtained in the semiclassical
(weak-field) critical regime to the deeply critical regime for arbitrary peak field strength. In this regime, we
find an enhanced universality, featuring a unique critical exponent β ¼ 3 for all sufficiently localized fields.
For a large class of field profiles, we also compute the nonuniversal amplitudes.
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I. INTRODUCTION

Universality is a paradigm that often arises from the
dominance of long-range fluctuations near critical points,
washing out the effect of microscopic details on the long-
range observables. This form of universality can be cast
into scaling laws of observables which are characterized by
universal critical exponents that depend only on a few gross
features of the system such as dimensionality, symmetries
and the number and nature of the long-range degrees of
freedom. Standard examples are provided by critical
phenomena in spin systems or liquid-gas transitions [1–3].
Beyond fluctuation dominated systems, universality has

also become a useful concept in classical (deterministic)
systems such as turbulence [4], or even general relativity
[5,6], where the resulting scaling laws reflect self-similarity
of the field configurations induced by the nonlinearities of
the underlying theory over a wide range of scales.
In a recent Letter [7], we have found aspects of

universality also in Schwinger pair production [8–10],
where an analogue of a critical point exists in the form
of field configurations that provide the minimum of
electrostatic energy to produce a (real) pair from vacuum,
see e.g. [11–14]. On the one hand, this form of universality
appears to fit into the framework of fluctuation-driven
criticality, as the onset of pair production arises from long-
range electron-positron quantum fluctuations that acquire
sufficient energy from the external field to become real. On
the other hand, the relevant physics of this process can be
extracted from the Klein-Gordon or Dirac equation in an
external field, which may be viewed as a classic determin-
istic and even linear wave equation.

This makes universality in Schwinger pair production a
rather special example. Nevertheless, the origin of this
universality has a clear physical picture: the relevant long-
range fluctuations average over the local details of the pair-
producing field profile, giving rise to a scaling law that
depends only on the large-scale properties of the field. We
emphasize that this universality holds only near criticality.
By contrast, the microscopic details of the field can play an
important role in other parameter regions, such as in the
dynamically assisted pair production regime [15–25]. The
diversity of this phenomenon of pair production and its
interpretation as a decay of the vacuum have lead to a
search and study of analogue systems in e.g. atomic
ionization [26], graphene [27,28], and semiconductors
[29,30] and with ultracold atoms in optical lattices [31–34].
In our previous work [7], we interpreted the pair pro-

duction probability ImΓ as an order parameter and deter-
mined the scaling of this order parameter with the distance
from the critical point. Using semiclassical worldline
instanton methods [35–38], we found that the semiclassical
critical regime entails a family of critical exponents β which
is directly related to the power by which the electric field
vanishes, i.e. the power d for asymptotically vanishing fields
E ∼ x−d, or n for fields with compact supportE ∼ ðx − x0Þn.
For each d and n there is one universality class. Though the
worldline instanton approach facilitates a direct understand-
ing of criticality and universality, and provides quantitative
information about the semiclassical region near the critical
point, the critical point itself actually lies outside the
semiclassical regime of validity. This makes the large degree
of universality that we found even more remarkable. It is
natural to expect that universality will be enhanced in the
immediate vicinity of the critical point. In this paper, we
verify this expectation in the affirmative.
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This paper is organized as follows. In Sec. II we give a
general introduction as well as a brief summary of the main
results. In Sec. III we derive the universal critical scaling of
the probability for fields vanishing asymptotically faster
than jxj−3, and in Sec. IV and Sec. V we derive also the
nonuniversal coefficient under the additional assumption of
either strong or weak field strengths. In Sec. VI and
Sec. VII we study fields that decay as jxj−3 and jxj−2,
respectively. In Sec. VIII, we briefly consider spinor QED.
We conclude in Sec. IX.

II. UNIVERSALITY IN SCHWINGER
PAIR PRODUCTION

Schwinger pair production denotes the instability of the
asymptotic “in” vacuum towards the creation of pairs in the
presence of an external electric or electromagnetic field.
The decay probability P of the vacuum is related to the
imaginary part of the QED effective action Γ,

P ¼ 1 − expð−2ImΓ½E�Þ: ð1Þ

To lowest order, ImΓ hence is a measure for the pair
production rate [39–41]. From the viewpoint of critical
phenomena, we consider ImΓ as an order parameter for pair
production. In the space of all conceivable electromagnetic
field configurations, ImΓ can only be nonzero, if the
external background can transfer sufficient energy to
the electron-positron fluctuations to form a real pair. In
the infinite dimensional space of field strength tensor
functions, the regions where ImΓ ≠ 0 are therefore sepa-
rated from those where ImΓ ¼ 0 by a critical hypersurface.
In the present work, we confine ourselves to a large class

of field configurations within which we can approach the
critical surface from the unstable-vacuum side (ImΓ ≠ 0)
by tuning one parameter. For this, we consider unidirec-
tional spatially inhomogeneous electric background fields
with one nonzero vector component EðxÞ, which varies
along the direction x of the field. For convenience, we use
units with ℏ ¼ c ¼ 1 and absorb a factor of the electron
charge into the background field, eE → E. We concentrate
on pair production to leading order, ignoring radiative
corrections of the photon field which would involve higher
orders in the fine-structure constant α ¼ e2=ð4πÞ, see, e.g.
[42–52]. We also use units in which the rest mass of the
electron is set to m ¼ 1, implying that all dimensionful
quantities are expressed in units of the electron mass.
The fields of interest can be parametrized by E ¼ A0 with

potential

AðxÞ ¼ 1

γ
ð1þ fðkxÞÞ; γ ¼ k

E0

; ð2Þ

where E0 is a characteristic field strength scale and k−1 a
characteristic length scale of the inhomogeneous field.
Their precise choice is not relevant. In fact, the field profile

may support various of these scales, such that the function
fðkxÞ in addition depends on dimensionless ratios of
further scales. Of particular relevance is the adiabaticity
parameter γ ¼ k=E0, as we limit ourselves to fields with

fð−∞Þ < fðkxÞ < fð∞Þ ð3Þ

and normalize the profile function f such that
fð�∞Þ ¼ �1. As a consequence, Að−∞Þ ¼ 0 and
Aðþ∞Þ ¼ 2=γ. This class of fields goes beyond those
considered frequently in the literature, in particular there is
no restriction concerning monotonicity and (anti)symmetry
of f.
A semiclassical viewpoint suggests that pair production

requires the electric field be sufficiently strong or extended
to provide an electrostatic energy greater than the energy of
a real pair at rest. In the full quantum theory, this threshold
may receive quantum radiative corrections from final-state
interactions, which come, however, with higher powers of
α. Recalling that m ¼ 1, the energy constraint readsZ

∞

−∞
dxE > 2 ⇒ γ < 1: ð4Þ

In our previous paper [7], we have studied criticality in the
semiclassical regime,

E2
0 ≪ 1 − γ2 ≪ 1: ð5Þ

We have considered fields that decay asymptotically with a
power law E → E0cðkxÞ−d or vanish at a finite point x0 as
E → E0cðk½x − x0�Þn. In the semiclassical regime, we have
[7,37]

ImΓ ∼
exp½− π

E gðγ2Þ�
ðγ2gÞ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2gÞ00

p ð…Þ0 ≔ d
dγ2

ð…Þ ð6Þ

and, for n > 1 and d > 3, the critical limit is obtained from

g ¼ 2

π

Z
∞

−∞
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2ðuÞ

q
þ Cð1 − γ2Þρ þ � � � ; ð7Þ

where Cðs; cÞ and ρ ¼ 1
2
sþ3
sþ1

, with s ¼ n;−d, only depend
on the asymptotic behavior of the field. The scaling for
n ≤ 1 and d ≤ 3 can be obtained from the second term in
Eq. (7) and its first and second derivative, see [7].
Differentiating the second term in Eq. (7) gives terms that
cause the prefactor of ImΓ to vanish as γ → 1. Although
ρ > 0 for d > 3, the second term can also be quantitatively
relevant in the exponent for 1 − γ2 > E2

0. For ρ < 0 we find
essential scaling. Thus, the scaling is determined by the
second term in Eq. (7), and hence only depends on the
asymptotic behavior of the field. So, the power d or n
groups fields into different universality classes in the
semiclassical regime.

HOLGER GIES and GREGER TORGRIMSSON PHYSICAL REVIEW D 95, 016001 (2017)

016001-2



The semiclassical critical regime defined in Eq. (5) is
likely to be most relevant to upcoming experiments, as the
field strength or intensity rather than length scales represent
the most challenging issue, e.g. for high-power lasers. Still,
limiting the criticality study to this regime is conceptually
not satisfactory, as the criticality limit, i.e., the approach of
the critical surface is defined by taking γ → 1, say for
constant E0. It is the aim of the present work to study
scaling in the deeply critical regime, defined by the regime
where 1 − γ2 is smaller than any other scale,

1 − γ2 ≪ fE2; 1=E2; 1g: ð8Þ

Below, we show that the scaling in this regime depends
even less on the field. In fact, for all n and d > 3 we find
power-law scaling with the same universal critical expo-
nent,

ImΓ ∝ ð1 − γ2Þ3: ð9Þ

If we further assume that the field is weak, E2 ≪ 1, we find
a general expression for the nonuniversal coefficient

ImΓ ¼ Pðn; dÞð1 − γ2Þ3e−2S; ð10Þ

where the prefactor P is universal in the sense that it
depends only on the asymptotic behavior of the electric
field (see below), and the microscopic details of the field
are included in the “tunneling exponent”

S ¼
Z

∞

−∞
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
k

; u ¼ kx; ð11Þ

which we recognize from the semiclassical result Eq. (7).
The result (10) holds for different combinations of d and n,
e.g. fields decaying with dþ for x → ∞ and d− for
x → −∞, or decaying with d for x → ∞ and with n at a
finite point. By taking the limit d → ∞ or n → ∞ we
recover the scaling for an exponentially decaying field,
which agrees in particular with the exact result for the
Sauter field [39]. We will see below, that the scaling differs
from ð1 − γ2Þ3 for weak fields vanishing slower than jxj−3.
Importantly, the critical scaling ð1 − γ2Þ3 also holds

without assuming E ≪ 1. Many aspects of criticality of
Schwinger pair production are independent of the spin of
the created particles; hence, it suffices to perform the study
for the simpler case of scalar QED for most aspects. An
interesting difference between scalar and spinor QED
occurs though for strong fields E2 ≫ 1. For scalar QED,
we find for E2 ≫ 1 that the final result for the order
parameter is given by (recall f2 ≤ 1)

ImΓscal ¼
L2T
48π

E2
0ð1 − γ2Þ3

�Z
∞

−∞
du1 − f2ðuÞ

�
−2
: ð12Þ

In fact, (12) holds also for fields which vanish slower than
jxj−3 as long as the integral in (12) converges. Strong fields
vanishing as jxj−2 still have to be treated separately.
Spinor QED also exhibits the same scaling with

ð1 − γ2Þ3. Moreover, for strong fields, we find a remarkably
universal expression

ImΓspin ¼
L2T
96π

ð1 − γ2Þ3: ð13Þ

A comparison of Eq. (13) and Eq. (12) reveals two
important differences: First, in contrast to the weak-field
regime where scalar and spinor QED predict essentially the
same ImΓ, here we find ImΓspin ≪ ImΓscal due to the factor
of E2

0 in Eq. (12). Second, spinor QED leads to a higher
degree of universality; in fact, the whole expression
Eq. (13) is universal and does neither depend on the details
of the profile nor on the asymptotic behavior of the field.
Note that there is no exponential suppression factor in

Eq. (12) or Eq. (13), as would be typical for pair production
in weak fields [e.g. as in (10)]. The large-field regime
therefore appears most promising for a future experimental
verification of this universal critical behavior. In scalar
QED, the factor of E2

0 ≫ 1 in Eq. (12) can further
compensate for the critical factor ð1 − γ2Þ3 ≪ 1, which
could be important for analog systems.

III. DERIVATION OF THE UNIVERSAL
CRITICAL EXPONENT

In the present work, we use the classical field equation
for an analysis of the pair production probability, see
[39,40,53,54] for more details on this formalism. As the
critical scaling is independent of spin, we will focus on the
scalar case and solve directly the Klein-Gordon equation.
Throughout we consider 1 − γ2 to be the smallest parameter
in the problem and we work to the lowest nontrivial order.
As the fields only depend on x, the Klein-Gordon equation
can be written

ð∂2
x þ ½p0 − AðxÞ�2 −m2⊥Þφ ¼ 0; ð14Þ

where m2⊥ ¼ 1þ p2⊥ and p⊥ is the momentum spatially
transverse to the field direction. The momentum longi-
tudinal to the field for x → −∞ is

p2 ≔ p2
0 −m2⊥; ð15Þ

and becomes for x → ∞

q2 ≔ ðp0 − 2=γÞ2 −m2⊥: ð16Þ

Following [39,40,53,55], we are looking for the solution of
(14) that behaves asymptotically as
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Jeipx þ Re−ipx ←
x→−∞

φðxÞ →
x→∞

eiqx: ð17Þ

The imaginary part of the effective action is obtained
[39,53] by integrating the tunneling factor

T ¼ q
p

1

jJj2 ð18Þ

over momentum,

ImΓ ¼ L2T
2

Z
d2p⊥
ð2πÞ2

Z
dp0

2π
T : ð19Þ

We are in the so-called Klein region, where the energy is in
the classical tunnel regime, and the integration limits are
obtained from [cf. (15) and (16)]

m⊥ < p0 <
2

γ
−m⊥: ð20Þ

We change variables in order to make the dependence on
1 − γ2 manifest,

p2⊥ ¼ ð1 − γ2Þr p0 ¼ 1þ ð1 − γ2Þ v
2
: ð21Þ

Working in an expansion in 1 − γ2, the asymptotic longi-
tudinal momenta read to leading order

p2 ¼ ð1 − γ2Þðv − rÞ q2 ¼ ð1 − γ2Þð2 − v − rÞ; ð22Þ

with corrections being of order O½ð1 − γ2Þ2�. With this
change of variables of Eq. (21) and working to leading
order in ð1 − γ2Þ, the effective action becomes

ImΓ ¼ L2T
8ð2πÞ2 ð1 − γ2Þ2

Z
1

0

dr
Z

2−r

r
dvT : ð23Þ

We can already see that ImΓ vanish at least as fast as
ð1 − γ2Þ2, in contrast to the semiclassical exponent that
follows from Eq. (7). Wewill show that T is linear in 1 − γ2

for a large class of fields, so that ImΓ ∼ ð1 − γ2Þ3.
For this, we begin by expanding the Klein-Gordon

equation (14) to first order in 1 − γ2,

�
∂2
u −

1 − f2

k2
þ 1 − γ2

k2
½f2 þ ð1 − vÞf − r�

�
φ ¼ 0; ð24Þ

where u ¼ kx. In order to find J and R in Eq. (17), we start
with the asymptotic wave φ ¼ eiqu=k for u ∼ k=q ≫ 1 and
work backwards to u → −∞. For definiteness we introduce
a bookkeeping parameter λ ≪ 1 and define the asymptotic
regions as

1 − f2 ≤ λð1 − γ2Þ: ð25Þ

For the class of fields defined in Eq. (3), there are only two
regions satisfying Eq. (25), which we refer to as the right
(f > 0) and the left (f < 0) asymptotic region. In the right
asymptotic region, the Klein-Gordon equation is simply

�
∂2
u þ

q2

k2

�
φ ¼ 0; ð26Þ

where we have used Eq. (22) and f ≃ 1þOðλð1 − γ2ÞÞ.
According to Eq. (17), the solution is φ ¼ eiqu=k. Let us call
the location of the border of the right asymptotic region uþλ
defined by 1 − f2ðuþλ Þ ¼ λð1 − γ2Þ and fðuþλ Þ > 0. We
claim that φ is a very slowly oscillating wave near uþλ , so
that we can choose an irrelevant phase such that we have
φ ¼ 1 at and near the border of the right asymptotic region.
This claim follows trivially for fields that are identically
zero for u larger than some u0, i.e. for fields with fðu0Þ ¼ 1

at ju0j < ∞. For fields vanishing asymptotically, uþλ is
large so one has to be more careful to make sure that quþλ =k
is small. Using the defining equation for uþλ and assuming
that the field decays asymptotically as E → E0cðkxÞ−d with
c being a dimensionless constant, we have

quþλ
k

¼ 1

k

�
2c

d − 1

1

λ

� 1
d−1
q

d−3
d−1: ð27Þ

For fields decaying sufficiently fast, i.e., for d > 3, the
plane wave phase (27) is indeed small, so φ ¼ eiqu=k ≈ 1

for u ∼ uþλ . For d < 3, on the other hand, (27) is large.
Below, we see that weak fields with d ≤ 3 and strong fields
with d ¼ 2 exhibit different scalings from ð1 − γ2Þ3.
As u decreases from the right asymptotic region we first

come to what we will refer to as the right semiasymptotic
region, which is delineated by f > 0 and

λð1 − γ2Þ ≤ 1 − f2 ≤ Λð1 − γ2Þ ≪ 1; ð28Þ

where Λ ≫ 1 is another bookkeeping parameter. For
reference, we indicate the right semiasymptotic region
by uþΛ < u < uþλ . In this region, the second and the third
term in (24) can be of the same order. Since we can still
substitute f ¼ 1 in the third term, the Klein-Gordon
equation (24) reduces to

�
∂2
u −

1 − f2

k2
þ q2

k2

�
φ ¼ 0: ð29Þ

However, since both the second and third term in Eq. (29)
are small, we can solve for φ perturbatively, which to
lowest order is simply φ ¼ 1.
In the left semiasymptotic region, which satisfies

Eq. (28) but with f < 0, the Klein-Gordon equation is
given by replacing q2 with p2 in Eq. (29). For reference we
indicate this region by u−λ < u < u−Λ. For fields vanishing in
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this region either at a finite point or asymptotically with
d > 3, the solution to lowest order is given by
φ ¼ CþDu, where C and D are constants obtained by
solving the Klein-Gordon equation in between the semi-
asymptotic regions where 1 − f2 ≫ 1 − γ2. These con-
stants depend on the microscopic details of the field in
the region where the field strength is comparatively strong,
but they are independent of 1 − γ2, because φ ¼ 1 in the
right semiasymptotic region. Since pjuj=k ≪ 1 in the left
semiasymptotic region we can write

φ ¼ CþDu

≃ kD
2ip

�
exp

�
ip
k

�
uþ C

D

��
− exp

�
−
ip
k

�
uþ C

D

���
:

ð30Þ

By matching the semiasymptotic form (30) with the
asymptotic form (17) we find

jJj ¼ kjDj
2p

: ð31Þ

Note that jRj ¼ jJj holds to lowest order as expected, since
jJj ≫ 1. With Eq. (18) and Eq. (22) the tunneling factor
becomes

T ¼ 4pq
k2jDj2 ¼

4ð1 − γ2Þ
k2jDj2

ffiffiffiffiffiffiffiffiffiffi
v − r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − v − r

p
: ð32Þ

After substituting this into Eq. (23) and performing the
momentum integrals (v and r) we finally find

ImΓ ¼ πL2T
12

ð1 − γ2Þ3
E2
0j2πDj2 : ð33Þ

Since D is independent of 1 − γ2 we see that all fields that
vanish faster than jxj−3 have the same power-law scaling
ImΓ ∼ ð1 − γ2Þβ with critical exponent β ¼ 3. This scaling
can be confirmed by comparing with the exact result [39]
for a Sauter field. In order to arrive at Eq. (33), there was no
need to assume E ≪ 1 (or equivalently k ≪ 1). In fact, in
the next sections we will derive explicit expressions for the
nonuniversal constant D in terms of e.g. d and n, both for
weak fields E ≪ 1 and for strong fields E ≫ 1.
As a verification of Eq. (33), we have numerically solved

the Klein-Gordon equation in its original form (14). The
result for the field in Fig. 1 is shown in Fig. 2 and Fig. 3. We
summarize the parametrizations of the field profiles used as
illustrations in the Appendix.

f(u)

f'(u)

–10 –8 –6 –4 –2
u

–1.0

–0.5

0.5

1.0

FIG. 1. Example field as defined in Eq. (A1). The blue curve
depicts the potential function fðkxÞ and the red curve is the
electric field EðkxÞ=E0 ¼ f0. The electric field has been chosen
identically zero for kx > 0 and vanishes asymptotically as jkxj−6
for kx → −∞.

3 4 5 6
–log10(1–γ )

–10

–9

–8

–7

–6

–log10|J 2

FIG. 2. Double-logarithmic plot of the inverse of the squared
amplitude, 1=jJj2, as a function of γ for the field shown in Fig. 1.
The blue curve is obtained by solving Eq. (14) numerically, and
the red dashed line is a straight line with slope −1 obtained by
matching with the blue curve at the end of the plot. The field
strength is E0 ¼ 1 and the momentum parameters at r ¼ 0 and
v ¼ 1. This plot demonstrates that sufficiently close to the critical
surface γ ¼ 1 the tunneling factor is linear in 1 − γ2 and
contributes as such to ImΓ, which implies that ImΓ ∝ ð1 − γ2Þ3.

Jexact

Japprox

2

3 4 5 6 7 8
–log10(1–γ )

0.88

0.90

0.92

0.94

0.96

0.98

1.00

FIG. 3. Amplitude ratio for the field as in Fig. 2 with the same
parameters. Jexact is the exact amplitude obtained from the
numerical solution of Eq. (14), and Japprox ¼ ðE0=2pÞφ0ðu →
−∞Þ is obtained from the numerical solution of Eq. (34) with
boundary condition φ ¼ 1 and φ0 ¼ 0 at u ¼ 0. For γ ¼ 1–10−8

we have jJexact=Japproxj2 ≈ 1–7 � 10−6.
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IV. D FOR STRONG FIELDS

Let us now derive the nonuniversal constant D, starting
with the simpler case for strong fields E0 ≫ 1, the weak
field case E0 ≪ 1 is treated in the next section.
For this, we need to solve the equation

�
∂2
u −

1 − f2

k2

�
φ ¼ 0 ð34Þ

in between the two semiasymptotic regions, i.e., for
u−Λ < u < uþΛ , and with boundary condition φ ¼ 1 for
u ∼ uþΛ . Schematically, we need to find D in the solution
chain

Jeipx þ Re−ipx ←
u−λ

CþDu←
u−Λ

?←
uþΛ

1←
uþλ

eiqx: ð35Þ

The solution to Eq. (34) is obtained by expanding in 1=k2,
which to lowest order gives

φ¼ 1þ
Z

u

uþΛ

du0ðu−u0Þ1−f2ðu0Þ
k2

; u−Λ <u< uþΛ : ð36Þ

By taking u ∼ u−Λ we find

D ¼
Z

∞

−∞
du

1 − f2ðuÞ
k2

; ð37Þ

where the extension of the integration boundaries remains
exact to leading order where f ≃ 1 in all (semi)asymptotic
regions. Substituting Eq. (37) into Eq. (33) gives
us Eq. (12).
As a simple check of Eq. (37), consider a Sauter pulse,

fðuÞ ¼ tanhu. From Eq. (37) and Eq. (32) it follows that
T ¼ qpk2, which is in perfect agreement with the exact
solution [39,53] in the regime 1 − γ2 ≪ 1=E2 ≪ 1. As a
further check, consider the field depicted in Fig. 1. In Fig. 4
we show that Eq. (37) agrees well with a numerical solution
of the Klein-Gordon equation (14). Another field example
is shown in Fig. 5, and the agreement between Eq. (37) and
numerical results is demonstrated in Fig. 6. In Fig. 7 we
demonstrate with a field that vanishes as jxj−5=2 that
Eq. (37) also holds for fields vanishing slower than jxj−3
(compare though with the scaling found in Sec. VII for
fields vanishing as jxj−2). In each of these cases, the
asymptotic error for γ → 1, i.e., the slight deviations of
the numerical to analytical amplitude ratio from the deeply
critical value jJnum=Janaj2 → 1, is controlled by the field
strength. The deeply critical amplitude ratio is approached
more closely, the better the parameter hierarchy 1 − γ2 ≪
1=E2 ≪ 1 of the deeply critical regime is satisfied. We
emphasize that this asymptotic error does not affect the
scaling property.

Jnum

Jana

2

4.5 5.0 5.5 6.0
–log10(1–γ )

1.020

1.025

1.030

1.035

1.040

1.045

1.050

FIG. 4. Ratio of the squared amplitude jJj2 obtained numeri-
cally and that obtained analytically from Eq. (37), as a function of
−log10ð1 − γÞ. The field shape is that shown in Fig. 1, the field
strength is E0 ¼ 30, and the momentum parameters are r ¼ 0 and
v ¼ 1. The plot shows that the analytical approximation for the
tunneling factor T ∝ 1=jJj2 is only slightly larger than the
numerical result, and that the analytical approximation improves
with γ → 1. The asymptotic error can be made smaller by
choosing a stronger field [recall that Eq. (37) has been derived
under the assumptions 1 − γ2 ≪ 1=E2 ≪ 1].
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FIG. 6. Ratio of the squared amplitude jJj2 obtained numeri-
cally and that obtained analytically from Eq. (37), as a function of
−log10ð1 − γÞ. The field shape is that shown in Fig. 5, the field
strength is E0 ¼ 30, and the momentum parameters are r ¼ 0 and
v ¼ 1. The plot shows that the analytical approximation improves
with γ → 1.
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FIG. 5. Example field as defined in Eq. (A2). The blue curve
depicts the potential function fðkxÞ and the red curve is the
electric field EðkxÞ=E0 ¼ f0. The field decays exponentially for
juj → ∞.

HOLGER GIES and GREGER TORGRIMSSON PHYSICAL REVIEW D 95, 016001 (2017)

016001-6



V. D FOR WEAK FIELDS

Let us now derive the nonuniversal coefficient D in
Eq. (33) for weak fields E0 ≪ 1. We will consider
fields that vanish either asymptotically as x−d or beyond
specific points x0 as ðx − x0Þn; there are four different
combinations.
We again have to solve Eq. (34) in the region between the

two semiasymptotic regions, u−Λ < u < uþΛ , and with boun-
dary condition φ ¼ 1 for u ∼ uþΛ. This time we divide this
region into three regions. We begin with the two outer
regions where

1 − f2 ≤ Lk2 ≪ 1 L ≫ 1; ð38Þ

where L is yet another bookkeeping parameter. In these two
regions we expand f around �1. The lowest nontrivial
order can be solved analytically in terms of Bessel
functions. Therefore, we refer to these two regions as
the left and right Bessel regions from now on. Defining the
inner boundaries of these regions in terms of u�L by
1 − fðu�L Þ2 ¼ Lk2, where the � sign holds for f > 0

and f < 0, respectively, the left Bessel region covers u−Λ <
u < u−L and the right Bessel region uþL < u < uþΛ .
Between the two Bessel regions, i.e. u−L < u < uþL , we

have

1 − f2

k2
≥ L ≫ 1; ð39Þ

which implies that Eq. (34) can be well approximated by
the standard WKB method,

φ ¼ A

ð1 − f2Þ14 exp
�Z

∞

u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
k

�
: ð40Þ

We have dropped the term with opposite sign in front of the
integral since it is exponentially smaller. The upper limit in
the integral is chosen for convenience. This choice is
possible for all n and for d > 3, but for d ≤ 3 we have
to choose a finite value.
To connect the WKB and the Bessel regions we note that

near the boundaries u ∼ u�L we can express the solution in
terms of either Bessel functions or as in Eq. (40). In other
words, the region where the WKB form is valid partly
overlap with the region where we can expand f around�1.
By expanding the Bessel functions in u near the boundary
between the left Bessel region and the left semiasymptotic
region, i.e. at u ∼ u−Λ, we obtain D in Eq. (30), which then
completes the final result Eq. (33).
In summary, we wish to construct the solution chain for

weak fields,

Jeipx þ Re−ipx ←
u−λ

CþDu←
u−Λ

Bessel←

←
u−L

WKB←
uþL

Bessel←
uþΛ

1←
uþλ

eiqx: ð41Þ

A. The right Bessel region

1. Fields decaying asymptotically

We begin with the right Bessel region, uþL < u < uþΛ ,
and with fields decaying as

E → E0

cþ
ðkxÞdþ x → ∞; ð42Þ

where dþ > 3. The þ subscripts indicate that we are in the
right Bessel region; to avoid cumbersome notation we will
simply write d and c where the meaning should be clear
from the context. The potential is

f ¼ 1 −
c

d − 1
u−ðd−1Þ; ð43Þ

and the Klein-Gordon equation reduces to�
∂2
u −

2c
ðd − 1Þk2 u

−ðd−1Þ
�
φ ¼ 0: ð44Þ

The solution can be written in terms of Bessel functions
[56]. The correct linear combination is determined by
requiring that φ → 1 as u → ∞ [cf. Eq. (41)]. One obtains

φ ¼ b1
ffiffiffi
u

p
I

�
1

d − 3
;

2

d − 3

ffiffiffiffiffiffiffiffiffiffiffi
2c

d − 1

r
1

ku
d−3
2

�
; ð45Þ

with normalization constant
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5.0 5.5 6.0 6.5 7.0
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FIG. 7. Ratio of the squared amplitude jJj2 obtained numeri-
cally and that obtained analytically from Eq. (37), as a function of
− log10ð1 − γÞ. The field shape is f ¼ uð1þ juj3=2Þ−2=3, with
field-strength parameter E0 ¼ 200, and momentum parameters
r ¼ 0 and v ¼ 1. The plot shows that the strong-field approxi-
mation (12) is valid also for fields vanishing slower than jxj−3.
However, here we need larger E0 for Eq. (37) to be a satisfactory
approximation. This serves as an indication for the fact that we
find a completely different scaling for weak fields vanishing
slower than jxj−3.
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b1 ¼ Γ
�
1þ 1

d − 3

��
kðd − 3Þ

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2c

r � 1
d−3
: ð46Þ

By matching Eq. (45) and the WKB form (40) for u ∼ uþL ,
we find [56]

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðd − 3Þ

4π

r
b1: ð47Þ

2. Fields vanishing beyond a finite point

Before we connect with the left Bessel region we
consider fields vanishing beyond a finite point uþ as

E → E0cþðuþ − uÞnþ : ð48Þ

The potential is given by (again omitting þ subscripts for
brevity)

f ¼ 1 −
c

nþ 1
ðuþ − uÞnþ1; for u≲ uþ; ð49Þ

and f ¼ 1 for u ≥ uþ. The Klein-Gordon equation reduces
to

�
∂2
vþ −

2c
ðnþ 1Þk2 v

nþ1
þ

�
φ ¼ 0; ð50Þ

where vþ ¼ uþ − u. The general solution is again given by
Bessel functions. Demanding that the solution and its
derivative be continuous at uþ, we find

φ ¼ b1
ffiffiffiffiffiffi
vþ

p
I

�
−

1

3þ n
;

2

3þ n

ffiffiffiffiffiffiffiffiffiffiffi
2c

1þ n

r
v

3þn
2þ
k

�
; ð51Þ

where

b1 ¼ Γ
�
1 −

1

3þ n

��
1

3þ n

ffiffiffiffiffiffiffiffiffiffiffi
2c

1þ n

r
1

k

� 1
3þn

: ð52Þ

By matching Eq. (51) with the WKB form (40) in the
overlap region u ∼ uþL , we find [56]

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3þ nÞ

4π

r
b1: ð53Þ

Note that the similarity between the asymptotic (d) case in
Eq. (47) and the compact (n) case here. To highlight this,
we let s stand for either n or −d, and define

Fðs; cÞ ≔ j3þ sj12Γ
�
1 −

1

3þ s

��
1

j3þ sj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

j1þ sj

s
1

k

� 1
3þs

:

ð54Þ

This allows us to write the WKB constant in Eq. (40) as

Aðs; cÞ ¼
ffiffiffiffiffiffi
k
4π

r
Fðs; cÞ: ð55Þ

B. The left Bessel region

Next we perform a similar matching with the Bessel
region to the left of the WKB region at u−L.

1. Fields vanishing asymptotically

We begin again with fields decaying asymptotically,

E → E0

c−
ð−kxÞd− ; ð56Þ

where d− > 3. Note that the constants c−, d− specifying the
asymptotics of the field profile are allowed to be different
from those for the x → þ∞ asymptotics. Dropping again
the subscripts for brevity, the potential function is

f ¼ −1þ c
d − 1

ð−uÞ−ðd−1Þ; ð57Þ

and the Klein-Gordon equation reduces to

�
∂2
u −

2c
ðd − 1Þ

1

k2ð−uÞðd−1Þ
�
φ ¼ 0: ð58Þ

By matching with the WKB form in the overlap region near
u−L, we find for the left Bessel region u−Λ < u < u−L

φ ¼ b3
ffiffiffiffiffiffi
−u

p
K

�
1

d − 3
;

2

d − 3

ffiffiffiffiffiffiffiffiffiffiffi
2c

d − 1

r
1

kð−uÞd−32
�
; ð59Þ

where

b3 ¼
eS

π

Fðsþ; cþÞffiffiffiffiffiffiffiffiffiffiffiffiffi
d− − 3

p : ð60Þ

Here, the tunnel exponent S, as in Eq. (11), arises from the
integral in the WKB exponent Eq. (40).

2. Fields vanishing beyond a finite point

Finally, we consider fields approaching zero at
u → u− as

E → E0c−ðu − u−Þn− ; ð61Þ

and vanishing beyond that point for all u < u−. The
potential is given by

f ¼ −1þ c
nþ 1

ðu − u−Þnþ1; for u≳ u−; ð62Þ
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and f ¼ −1 for u ≤ uþ. The Klein-Gordon equation
reduces to

�
∂2
v− −

2c
ðnþ 1Þk2 v

nþ1
−

�
φ ¼ 0; ð63Þ

where v− ¼ u − u−. A similar matching as above gives us
the solution in the left Bessel region,

φ ¼ b3
ffiffiffiffiffiffi
v−

p
K

�
1

3þ n
;

2

3þ n

ffiffiffiffiffiffiffiffiffiffiffi
2c

1þ n

r
v

3þn
2−

k

�
; ð64Þ

where

b3 ¼
eS

π

Fðsþ; cþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ n−

p : ð65Þ

For fields vanishing at either uþ or u− or both, it is obvious
that the integrand in S given by Eq. (11) is identically zero
beyond these points.

C. The left asymptotic region and the
final result for D

We are now in a position to obtain D in Eq. (33). For
fields decaying asymptotically in the left Bessel region, we
take the u → −∞ limit of Eq. (59) and compare with
Eq. (30), and for fields vanishing at a finite point in the left
Bessel region we take the v → 0 limit of Eq. (64). In all
cases we find

jDj ¼ eS

2π
Fðs−; c−ÞFðsþ; cþÞ; ð66Þ

where s ¼ n or s ¼ −d depending on the asymptotic field
properties, and F as in Eq. (54). This is the final result valid
for weak fields E0 ≪ 1 and for all n and d > 3.
To check Eq. (66), we solve Eq. (14) numerically for the

electric field shown in Fig. 8. The ratio of the amplitude
squared obtained analytically and numerically is shown in
Fig. 9. (See Fig. 10 for the corresponding plot in the strong
field regime.) For some fields, a quantitative comparison
requires to choose E0 rather small depending on the desired
precision of D, because the regions where it is sufficient to
keep the first order corrections to f ¼ �1 have to partly
overlap with the WKB region; due to the exponential
suppression, this can make the corresponding ImΓ very
small. We emphasize, though, that this does not affect the
scaling.
As a further check, we consider the limit d → ∞. From

our previous paper, we expect this to give the same result as
an exponentially decaying field, in particular as the exact
result for the Sauter field [39]. Writing

e−κu ¼ lim
d→∞

�
1þ κu

d

�
−d

ð67Þ

and casually exchanging the order of the limits d → ∞ and
u → ∞, suggests that we should scale c in Eq. (42) as

f (u)

f (u)

–4 –3 –2 –1 1
u

–1

1

FIG. 8. Compact field example, defined by (A4). The blue
curve is the potential fðkxÞ and the red curve is the electric field
EðkxÞ=E0 ¼ f0. The electric field is identically zero for kx > 0
and kx < −π.
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FIG. 9. Ratio of the squared amplitude jJj2 obtained numeri-
cally and analytically. The field shape is that shown in Fig. 8, the
field strength is E0 ¼ 0.07, and the momentum parameters are
r ¼ 0 and v ¼ 1. The plot shows that the analytical approxima-
tion becomes better as γ → 1.
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FIG. 10. Ratio of jJj2 obtained numerically and analytically
using Eq. (37). The field shape is that shown in Fig. 8, the field
strength is E0 ¼ 10, and the momentum parameters are r ¼ 0 and
v ¼ 1. The plot shows that the analytical approximation becomes
better as γ → 1.
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c ¼ ðd=κÞdc̄ with some d-independent constant c̄. With
this rescaling, the d → ∞ limit of Eq. (66) is D ¼ κeS=2π,
and the imaginary part of the effective action becomes

ImΓ ¼ π

12
L2T

ð1 − γ2Þ3
κ2E2

e−2S: ð68Þ

For the Sauter field, we have κ ¼ 2 and S ¼ π=E from
Eq. (11), which indeed agrees with the exact result [39].
We also recover this result from a limit of compact fields.

In order to compare with an exponentially decaying field
E → E0c̄e−κu we choose u� ¼ �n=κ and c ¼ c̄ðκ=nÞn, so

cðuþ − uÞn ¼ c̄

�
1 −

κu
n

�
n

ð69Þ

and similarly for u−. In the limit n → ∞ we again find
D ¼ κeS=2π and thus Eq. (68).

D. Exponentially decaying fields

We have just shown that the result for exponentially
decaying fields can be obtained from limits of fields
vanishing with a power either asymptotically or beyond
finite points. For completeness, we derive the same results
directly in this subsection by starting with fields with
asymptotic behavior

E → E0cκe−κjuj: ð70Þ

Here, c and κ may be chosen differently for x → �∞ in
order to allow for fields vanishing nonsymmetrically. For
u ≫ 1 we have

f ¼ 1 − ce−κu: ð71Þ

For such fields, we can solve the Klein-Gordon equation in
the Bessel, the semiasymptotic and the asymptotic regions
in one fell swoop. The solution to

�
∂2
u þ

1

k2
½−2ce−κu þ q2�

�
φ ¼ 0 ð72Þ

can be written as

φ ¼ Γ
�
1 −

2iq
κk

��
2c
κ2k2

�iq
κk

I

�
−
2iq
κk

;
2

ffiffiffiffiffi
2c

p

κk
e−

κu
2

�
: ð73Þ

By matching with the WKB form (40), we find

A ¼
ffiffiffiffiffiffi
κk
4π

r
: ð74Þ

This agrees with the n → ∞ and d → ∞ limits of Eq. (55).
By a similar matching in the left Bessel region we find

D ¼
ffiffiffiffiffiffiffiffiffiffi
κ−κþ

p
eS

2π
; ð75Þ

which agrees with Eq. (68) in the simplifying limit
κ− ¼ κ ¼ κþ.

VI. WEAK FIELDS DECAYING AS E ∼ x−3

All the fields considered so far, both compact and
asymptotically decaying with power d > 3, have the same
universal power-law scaling with critical exponent β ¼ 3.
In this section, we consider weak fields E0 ≪ 1 for the
special case d ¼ 3, and for simplicity we assume a
symmetric decay

E → E0

c
jkxj3 x → �∞: ð76Þ

In our previous paper [7], we found that these fields have
power-law scaling with a critical exponent depending on
the field strength in the semiclassical regime. We show here
that the same scaling is recovered also in the deeply critical
regime.
For u ≫ 1 we have

f ¼ 1 −
c
2u2

: ð77Þ

Because the integrand in S goes like 1=u we cannot
choose the upper integration limit as in Eq. (40). Instead
we take

φ ¼ A

ð1 − f2Þ14 exp
Z

U

u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
k

; ð78Þ

with U large but finite. The limit U → ∞ is considered on
the level of the final result for ImΓ. The solution to

�
∂2
u þ

1

k2

�
−

c
u2

þ q2
��

φ ¼ 0 ð79Þ

is given in terms of a Hankel function (Bessel function of
the third kind) [56]

φ ¼
ffiffiffiffiffiffiffiffi
πqu
2k

r
e
iπ
4
ð1þ2

ffiffi
c

p
k ÞHð1Þ

� ffiffiffi
c

p
k

;
qu
k

�
; ð80Þ

where the normalization coefficient is chosen such that
φ → eiqx asymptotically. We have neglected some factors
that are small due to k ≪ 1, as we are working in the critical
regime γ ¼ k=E0 → 1 and at weak fields E0 ≪ 1. In the
overlap with the WKB region, we have

φ ¼ Ac−
1
4u

1
2
−
ffiffi
c

p
k e

ffiffi
c

p
k lnU; ð81Þ
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which, upon comparing with Eq. (80), gives us A. In the
overlap between the WKB and the left Bessel region, the
solution is

φ ¼ Ac−
1
4ð−uÞ12þ

ffiffi
c

p
k eSΛ−

ffiffi
c

p
k lnU; ð82Þ

where

SU ¼
Z

U

−U
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
k

: ð83Þ

It follows that in the left Bessel region we have

φ ∝
ffiffiffiffiffiffi
−u

p
J

� ffiffiffi
c

p
k

;−
pu
k

�
; ð84Þ

with asymptotic limit

φ ∝ cos

�
pxþ π

4

�
1þ 2

ffiffiffi
c

p
k

��
u → −∞: ð85Þ

By matching the different forms of the solution we find

jJj ¼ 1

2π

ffiffiffiffi
q
p

r ffiffiffi
c

p
k

Γ2

� ffiffiffi
c

p
k

��
4k2

pq

� ffiffi
c

p
k

eSU−
2
ffiffi
c

p
k lnU: ð86Þ

Thus the imaginary part of the effective action scales as

ImΓ ∼ ð1 − γ2Þ2ð1þ ffiffi
c

p
=kÞ; ð87Þ

which we recognize from our semiclassical results in [7].
Thus, in contrast to the fields considered in the previous
sections with n and d > 3, weak fields decaying with jxj−3
have the same scaling in both the semiclassical and the
deeply critical regime.
Although SU diverges as U → ∞, the limit of Eq. (86) is

finite. Consider for example a Lorentz type of field,

f ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; ð88Þ

for which c ¼ 1. Expanding in U leads to

SU −
2

k
lnU ¼ ln 4

k
þOðU−2Þ: ð89Þ

It follows from this, together with Eq. (86) and Eq. (23),
that

ImΓ ¼ L2T
ffiffiffi
π

p
16ð2πÞ2 E

3
2ð1 − γ2Þ2ð1þ1

EÞ
�
e
4

�4
E

; ð90Þ

which, again, equals the critical limit of the semiclassical
result in [37]. In general, the exponent in Eq. (86) can be
expressed as

SU −
2

ffiffiffi
c

p
k

lnU ¼ 1

k

Z
U

−U
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

q
− θðjuj − 1Þ

ffiffiffi
c

p
juj ;

ð91Þ

which makes it clear that the limit U → ∞ is finite.

VII. FIELDS DECAYING AS E ∼ jxj−2
In this section we will consider fields decaying as

E → E0

c
jkxj2 : ð92Þ

As for weak fields with d ¼ 3, we also recover the
semiclassical scaling as shown in the following. For
u ≫ 1 we have

f ¼ 1 −
c
u
; ð93Þ

and the Klein-Gordon equation reduces to

�
∂2
u þ

1

k2

�
−
2c
u
þ q2

��
φ ¼ 0: ð94Þ

Instead of a Bessel function, this time the solution is given
by a Whittaker function1

φ ¼
�
−
2iq
k

� ic
kq

W− ic
kq;

1
2

�
−
2iqu
k

�
: ð95Þ

The asymptotic limit u → ∞ of Eq. (95) is not simply eiqx,
but

φ → exp i

�
qx −

c
kq

lnðqxÞ þ real constant

�
: ð96Þ

However, we still have the same normalization

φ†ð−i∂↔Þφ → 2q; ð97Þ

so we expect that the relation between T and ImΓ derived
in the literature is still valid.

A. Weak fields

We begin with the scaling for weak fields E0 ≪ 1. In the
overlap with the WKB regime u ∼ uþL , where

1 ≪ u ≪
c
k2

≪
c
q2

; ð98Þ

1Whittaker functions also appear in treatments of pair pro-
duction by constant electric fields in de Sitter space, see
e.g. [57–60] and references therein.
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we use the asymptotic expansions in [61] for Wκ;1
2
ðzÞ as

jκj → ∞, yielding

φ ¼ ffiffiffi
q

p �
u
2c

�1
4

exp
�
πc
kq

−
2

ffiffiffiffiffiffiffiffi
2cu

p

k
þ i…

�
: ð99Þ

By matching this with the WKB form (78), we find

jAj ¼ ffiffiffi
q

p
exp

�
πc
kq

−
2

ffiffiffiffiffiffiffiffiffi
2cU

p

k

�
: ð100Þ

Already at this point, we can see the emergence of essential
scaling by recalling q ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
. To the left of the WKB

region the solution is given by another Whittaker function

φ ¼ b2M� ic
kp;

1
2

�
� 2ipð−uÞ

k

�
: ð101Þ

The asymptotic limit u → −∞ has the form of Eq. (17)
modified with logarithmic terms as in Eq. (96). Using again
expansions given in [61], we find

jJj ¼
ffiffiffiffi
q
p

r
exp

�
πc
k

�
1

p
þ 1

q

�
þ
�Z

U

−U

ffiffiffiffiffiffiffiffiffiffiffiffi
1−f2

p
k

�
−
4

ffiffiffiffiffiffiffiffiffi
2cU

p

k

�
:

ð102Þ

Substituting this into Eq. (23) and taking U → ∞, we
finally obtain

ImΓ ¼ L2T

32
ffiffiffi
6

p
π3

�
k
c

�3
2ð1 − γ2Þ114 exp

�
−

4πc

k
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p �

× exp

�
−
2

k

��Z
U

−U

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

q �
− 4

ffiffiffiffiffiffiffiffiffi
2cU

p ��				
U→∞

;

ð103Þ

where the second line can asymptotically be expressed as

exp

�
−
2

k

Z
∞

−∞
du

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

q
−

ffiffiffiffiffiffi
2c
juj

s ��
: ð104Þ

This is indeed exactly the same scaling as we found in the
semiclassical regime [7], which suggests that our semi-
classical results in [7] hold more generally in the deeply
critical regime for weak fields with 2 ≤ d ≤ 3. For the field
implicitly defined by f0 ¼ ð1 − f2Þ2 the term in square
brackets in the second line in Eq. (103) vanishes and one
can show that the prefactor in the first line of Eq. (103) also
agrees with the semiclassical result.

B. Strong fields

Now let us study strong fields E0 ≫ 1. We consider
again for simplicity symmetric fields. LetU be such that for

u > U we have f ¼ 1 − c=u. Although U ≫ 1 we still
have qU=k ≪ 1, so in the region u ∼U we can expand
Eq. (95)

φ ¼ Q0

�
1þ 2cu

k2

�
ln

�
2cu
k2

e2γE
�
− 1

��
; ð105Þ

where γE ≈ 0.577 is the Euler number and

jQ0j ¼
ffiffiffiffiffiffiffiffi
kq
2πc

r
e
πc
kq: ð106Þ

In the region −U < u < U we solve the Klein-Gordon
equation (34) perturbatively in 1=k,

φ¼Q0

�
1þ 2c

k2

�
c0 þ c1uþ

Z
u

U
du0ðu− u0Þ1− f2ðu0Þ

2c

��
;

ð107Þ

where the two constants c0 and c1 are obtained by matching
Eq. (107) with Eq. (105) in the region u ∼ U. For u < −U
the solution is given by a linear combination of Whittaker
functions,

φ ¼ AMic
kp;

1
2

�
−
2ipu
k

�
þ BWic

kp;
1
2

�
−
2ipu
k

�
: ð108Þ

By matching Eq. (108) with Eq. (107), we find B ¼
Γð1 − ic=kpÞQ0 and

A ¼ −
icQ0

kp

��Z
U

−U

1 − f2

2c

�
− 2 ln

2cUe2γE

k2

�
; ð109Þ

where the limit U → ∞ of the term in square brackets is
finite and given by

Z
∞

−∞
du

�
1 − f2

2c
−
θðjuj − 1Þ

juj
�
− 2 ln

2ce2γE

k2
: ð110Þ

In the asymptotic limit u → −∞ the first term in Eq. (108)
is dominant and the amplitude becomes

jJj ¼ 1

2π

ffiffiffiffi
q
p

r 				
�Z

U

−U

1 − f2

2c

�
− 2 ln

2cUe2γE

k2

				
×exp

πc
k

�
1

p
þ 1

q

�
: ð111Þ

To check these analytical expressions, we consider the field
depicted in Fig. 11, and show in Fig. 12 that the analytical
approximation for jφðuÞj agrees well with the exact
numerical solution.
By comparing Eq. (111) with Eq. (102) we see that the

critical scaling for strong fields is the same as that for
weak fields. The prefactor, though, is different. In fact,
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for very strong fields we can drop the integral term in
Eq. (111),

jJj ≈ 2

π

ffiffiffiffi
q
p

r
ln k exp

πc
k

�
1

p
þ 1

q

�
: ð112Þ

Thus, for very strong fields vanishing as E ∼ jxj−2, the
whole expression for ImΓ is universal and not just the
scaling behavior [cf. Eq. (13)].

VIII. SPINOR QED

So far we have considered scalar QED. In this section,
we briefly consider spinor QED [39]. The imaginary part of
the effective action is still given by Eq. (19), but the
tunneling factor now reads

T ¼ 2
p0 þ p

2=γ − p0 − q
q
p

1

jJj2 ; ð113Þ

where the factor of 2 comes from the sum over spin degrees
of freedom. In the critical regime, this reduces to

T ¼ 2
q
p

1

jJj2 ; ð114Þ

which has the same form as the scalar case in Eq. (18). The
amplitude J is obtained from φ as in Eq. (17), but φ is now
the solution of the squared Dirac equation,

ð∂2
x þ ½p0 − AðxÞ�2 −m2⊥ þ iA0ðxÞÞφ ¼ 0; ð115Þ

which in the critical regime reduces to�
∂2
u þ

1

k2
½−ð1 − f2Þ þ ikf0 þ P2�

�
φ ¼ 0; ð116Þ

where P2 ¼ q2 for u≳ 0, and P2 ¼ p2 for u≲ 0.
Comparing with the scalar case we see that the f0 term
is new. It arises from the Pauli term ∼σμνFμν of the squared
Dirac operator. For weak fields the solution in the WKB
region is

φ ¼ A

ð1 − f2Þ14 exp
�
i
2
sin−1f þ

Z
∞

u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
k

�
: ð117Þ

For asymptotically decaying weak fields the new f0 term is
always smaller than the 1 − f2 term: in the Bessel region
we have

kf0 ∼
k
ud

≪
1

ud
≪

1

ud−1
∼ 1 − f2; ð118Þ

and in the overlap with the WKB region the extra term in
Eq. (117) simply gives an irrelevant phase. Thus, scalar and
spinor QED agree in the deeply critical regime (up to a
factor of 2) for asymptotically decaying weak fields. This is
also reflected by the exact result for a Sauter pulse [39],
which for spinor QED leads to Eq. (68) times a factor of 2.
For compact fields we have in the Bessel region

kf0

1 − f2
∼

k
uþ − u

; ð119Þ

so the spin term actually becomes larger than the scalar
term as u → uþ, which suggests that the spin term can lead
to corrections to the nonuniversal coefficient D. However,
the spin term is only dominant in a region of size
uþ − u≲ k, so these corrections will not change D sig-
nificantly. Indeed, the most important part of the D is still
given by eS as in the scalar case. Moreover, the critical
exponent remains unchanged,

–2500 –2000 –1500 –1000 –500
u

100
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300

400

500

600

numerical analytical

FIG. 12. Modulus of the solution to the Klein-Gordon equation
jφðuÞj in the left asymptotic region, i.e., for large negative u. The
field shape is that shown in Fig. 11 with field strength E0 ¼ 10,
adiabaticity 1 − γ ¼ 3 � 10−3, and momentum parameters r ¼ 0
and v ¼ 1. The two curves show that the analytical results (107),
(109) and (110) agree well with the exact numerical solution; the
analytical solution converges to the exact numerical one as 1 − γ
decreases.

f (u)

f (u)

–4 –2 2 4
u

–1

1

FIG. 11. Example field defined by (A5) that vanishes as
E ∼ jxj−2; the blue curve is the potential fðuÞ and the red curve
the normalized electric field E=E0 ¼ f0.
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ImΓspin ∼ ð1 − γ2Þ3: ð120Þ

For strong fields, a remarkable simplification occurs in
the spinor case marking a qualitative difference to the scalar
case: we can find Dspin by going back to Eq. (37) and
replacing 1 − f2 with 1 − f2 − ikf0. While 1 − f2 is
bounded, the term ∼kf0 ∼ E is proportional to the electric
field, thus dominating the integrand in the strong-field
limit,

Dspin ¼
Z

∞

−∞
du

1 − f2ðuÞ − ikf0ðuÞ
k2

≈ −
i
k

Z
f0 ¼ −

2i
k
; ð121Þ

and hence we find Eq. (13). Equation (13) agrees with the
exact result for a Sauter pulse [39] in the strong-field limit.
In Figs. 14 and 16, we verify that Eq. (121) matches with
the numerical solution of Eq. (115) near the critical point
for the fields shown in Figs. 13 and 15, respectively.
The origin of this enhanced strong-field universality lies

in the dominance of the Pauli term ∼σμνFμν, parametrizing
the coupling of the spin structure to the field. It is
instructive to recall the relevance of this term in the analog
case of a strong magnetic field: in the magnetic case, the
Pauli term characterizes the paramagnetism of the electron-
positron fluctuations as opposed to the Klein-Gordon
operator describing diamagnetism. In the strong-field limit,
paramagnetism dominates which is reflected by a zero
mode of the squared Dirac operator for the lowest Landau
level and a suitably oriented spin [43,62]. This mode is
responsible for a variety of strong-field features that are
unique to spinor QED [63–68]. In the present case, it is
again the Pauli term dominating the strong field limit, even
though the Minkowskian mode structure in the electric field
is somewhat different from the magnetic case: e.g., there is
no dependence on the orientation of the spin relative to the
field, as the electron does not have a permanent electric
dipole. Still, the analogy to the magnetic case justifies to

f(u)

f'(u)

–14 –12 –10 –8 –6 –4 –2
u

–1.0

–0.5

0.5

1.0

FIG. 13. Example field as defined in Eq. (A6). The blue curve
depicts the potential function fðkxÞ and the red curve is the
electric field EðkxÞ=E0 ¼ f0.
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FIG. 14. Ratios of the squared amplitude obtained numerically
and analytically for scalar and spinor QED. The field is shown in
13 with peak-field parameter E0 ¼ 70, and the momentum
parameters are r ¼ 0 and v ¼ 1. For scalar QED, Jnum is obtained
from the numerical solution of Eq. (14), Jana is the analytical
estimate of Eq. (37), and their ratio approaches ≈1–6 � 10−3. For
spinor QED, Jnum is obtained from the numerical solution of
Eq. (115). The latter is compared to two different analytical
estimates Jana deduced from Eq. (121) and Eq. (31) by either
keeping (orange dot-dashed curve) or neglecting (red solid curve)
the 1 − f2 term, and their ratios approach ≈1–7 � 10−3 and
≈1–9.9 � 10−3, respectively.
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FIG. 15. Example field as defined in Eq. (A7). The blue curve
depicts the potential function fðkxÞ and the red curve is the
electric field EðkxÞ=E0 ¼ f0.
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FIG. 16. Ratios of the squared amplitude obtained numerically
and analytically for scalar and spinor QED, as described in
Fig. 14. The field is shown in 15, the field strength is E0 ¼ 70 and
the momentum parameters are r ¼ 0 and v ¼ 1. The scalar and
spinor ratios converge to ≈1–2.5 � 10−3 and ≈1–7.3 � 10−3.
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classify the enhanced universality of deeply critical pair
production in the spinor case as paraelectric dominance.
This nomenclature reflects the dominance of the endomor-
phism ∼σμνFμν in the relevant differential operator as
opposed to the “dia”-part of the covariant Laplacian [69].

IX. CONCLUSION

We have studied critical scaling in Schwinger pair
production. In the space of all possible electromagnetic
field configurations, we have considered the regime near
the critical hypersurface that separates the configurations
that allow for pair production from those that do not. This
critical surface can be detected using the imaginary part of
the Heisenberg-Euler effective action ImΓ as an order
parameter. As noted in our previous work [7], the scaling
of ImΓ in the vicinity of the critical surface exhibits scaling
laws that are reminiscent to critical phenomena in statistical
systems. In the present paper, we generalize these previous
results in two decisive aspects: we provide for the first time
scaling results in the deeply critical regime, i.e. in the
immediate vicinity of the critical surface, whereas the
results of [7] apply to the semiclassical critical region.
Second, by directly studying the underlying field equations,
we can address a wider class of field profiles, also including
nonsymmetric cases with nonmonotonic gauge potentials.
For simplicity, we still restrict ourselves to uniaxial time-
independent field profiles varying in one spatial direction.
In comparison with the semiclassical critical regime, the

deeply critical regime supports an even higher degree of
universality, with the same scaling law as a function of the
Keldysh parameter γ,

ImΓ ∼ ð1 − γ2Þβ; β ¼ 3; ð122Þ

for all fields that asymptotically vanish faster than jxj−3.
The result holds for both scalar and spinor QED in the
weak- as well as strong-field regime. The existence of such
a scaling law expresses the fact that the onset of pair
production is dominated by the long-range fluctuations of
the electron-positron field and becomes insensitive to the
microscopic details of the field profile.
The highest degree of universality is found for spinor

QED in the strong-field regime, where paraelectric domi-
nance also establishes a universal prefactor. The scaling law
Eq. (122) is modified for more gradually vanishing fields.
E.g., fields that vanish as jxj−2 obey the same scaling law as
in the semiclassical regime. The scaling for fields vanishing
as jxj−3 depends on the field strength; for weak fields, we
recover the semiclassical scaling, whereas Eq. (122) holds
again for strong fields.
As we noted in [7], it is easy to generalize the results for

the spatially inhomogeneous fields considered here to fields
that depend on a linear combination of x and t as in [70]. It
would be interesting to investigate how more nontrivial

combinations of spatial and temporal inhomogeneities
affect the critical scaling found in this paper. Of particular
relevance for discovery experiments may be fields that
support dynamically assisted pair production [15], e.g., by
adding a weak time-dependent field to the fields considered
here, e.g. as in [16].
Since the real and imaginary parts of correlation func-

tions and thus of the effective action are related by
dispersion relations, the onset of pair production in the
critical regime will also leave an imprint in the real part of
the effective action. One physical manifestation of such
dispersion relations is, for instance, given by an anomalous
dispersion of a photon propagating through the field, see
e.g. [71], which can be extracted from the photonic two-
point correlator [63,72–75]. However, since the real part
also receives contributions from perturbative processes, it
remains an open question as to whether the analogue of the
(nonperturbative) scaling behavior can be quantitatively
dominant in the regime of anomalous dispersion.
Dispersion relations also lead to an intriguing relation

between the imaginary part of the action and the large-order
behavior of the perturbative expansion of the real part: for
constant fields as well as for the spatially homogeneous
electric Sauter profile in time, it has been shown that the
absence/appearance of the imaginary part is tightly linked
to the properties of the perturbative series under Borel
transformations [48,49,76,77] (see also [71]). If this pattern
also holds for spatially inhomogeneous fields, the critical
surface of Schwinger pair production in the space of field
profiles could also separate Borel- from non-Borel-sum-
mable perturbative expansions of the effective action. Such
a conjecture clearly deserves further investigation.
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APPENDIX

Here we list the field examples used above to demon-
strate various results. The first field example, shown in
Fig. 1, is given by fðuÞ ¼ f0ðu=f̂00Þ, where fðu > 0Þ ¼ 1,

f0ðu < 0Þ ¼ 1þ
�
1þ 1

5
sinð13uÞsech2

�
3uþ 21

10

��

×
4

3π

�
uð−3þ 8u2þ 3u4Þ

ð1þu2Þ3 þ 3arctanu

�
ðA1Þ

and where f̂00 ≈ 4.5 is the maximum of f00. The second field
example, shown in Fig. 5, is given by
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fðuÞ ¼ tan

�
u
3

�
−
1

5
cos

�
10u
3

�
exp−

�
u
3

�
2

: ðA2Þ

The compact example in Fig. 9 is obtained by first
integrating

f00ðuÞ ¼ −u cos
�
uþ π

2

��
1þ 1

4
cos

�
5

�
uþ π

2

���
ðA3Þ

and then

fð−π < u < 0Þ ¼ 1 − 2
f0ð0Þ − f0ðuÞ
f0ð0Þ − f0ð−πÞ

; ðA4Þ

fðu < −πÞ ¼ −1 and fðu > 0Þ ¼ 1. The field example
Fig. 12 is given by fðuÞ ¼ f0ðu=f̂00Þ, where

f0ðuÞ ¼
2

π
arctan

�
π

2
u

�
ð1þ sinð3uÞ expð−3u2ÞÞ ðA5Þ

and where f̂00 ≈ 1.7 is the maximum of f00. An example
similar to (A1), but with simpler analytical form, is given
by fðuÞ ¼ f0ðu=f̂00Þ, where f0ðu > 0Þ ¼ 1,

f0ðu < 0Þ ¼ 1−
2u2

ð1þ u6Þ13
�
1þ 7

10
sin½14u�sech2½5uþ 3�

�

ðA6Þ

and where f̂00 ≈ 10 is the maximum of f00. Eq. (A6) is
shown in Fig. 13. The symmetric field shown in Fig. 15 is
defined by

fðuÞ ¼ tanhðuþ 2Þ − tanhðuÞ þ tanhðu − 2Þ: ðA7Þ
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