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We propose an effective left-right-right-left model with a parity breaking scale around a few TeV. One
of the main achievements of the model is that the mirror fermions as well as the mirror gauge sector
simultaneously could be at TeV scale. It is shown that the most dangerous quadratic divergence of the SM
Higgs boson involving the top quark in the loop is naturally suppressed, and begins at three loop. The
model postpones the fine-tuning of the mass of the SM Higgs boson up to a sufficiently high scale.
The model explains the smallness of the neutrino masses whether they are Dirac or Majorana. Furthermore,
the strong CP phase is zero in this model.
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Left-right-right-left (LRRL) models are an alternative
and elegant way of restoring parity at a high scale [1]. In
these models, the standard model (SM) left- and right-
handed fermions are kept in the fundamental representation
of the gauge groups SUð2ÞL and SUð2ÞR, respectively.
This is similar to left-right symmetric (LRS) models [2–5].
However, the coupling constants of the gauge groups
SUð2ÞL and SUð2ÞR are independent. Now, the question
is if parity can be restored. The simplest possibility is to
assume that there are gauge symmetries SUð2Þ0R and
SUð2Þ0L which are parity or mirror counterparts of the
gauge groups SUð2ÞL and SUð2ÞR, respectively. This is
also the simplest way to introduce new fermions to the
SM in this scenario. These are unique features of LRRL
models. Furthermore, the scalar sector of LRRL models is
elegant and optimum.
On the phenomenological side, LRRL models have a

good motivation from a recently observed excess by the
ATLAS and CMS collaborations [6–14]. This is established
that this excess can be explained with different coupling
constants for SUð2ÞL and SUð2ÞR [15–24].1 LRRL models
also provide an interesting perspective from the pure
theoretical point of view. We note that the symmetry
SUð3Þc⊗SUð2ÞL⊗SUð2ÞR⊗SUð2Þ0R⊗SUð2Þ0L⊗Uð1ÞY
of LRRL models cannot be embedded in SUð5Þ or SOð10Þ
type GUT models. LRRL models might present an inter-
esting possibility for a new and a low scale unification
scenario. For example, the nearest unification could come
from a SUð4Þ1 ⊗ SUð4Þ2 type of model where SUð2ÞL and
SUð2Þ0R can be embedded in SUð4Þ1 whereas SUð2ÞR and
SUð2Þ0L can live inside SUð4Þ2.
However, models based on mirror fermions and mirror

symmetries come with a great disadvantage [25–30].
Parity invariance dictates that the Yukawa couplings
of the mirror fermions should be identical to that of the

SM ones. The LHC has not found these mirror fermions
around TeV scale yet. Hence, for keeping the masses of
mirror fermions at TeV scale, parity breaking scale should
be very high (108 GeV or so) [25–30]. This raises the
scale of the mirror gauge sector to, for example, 108 GeV.
Thus, the new mirror gauge sector of these models is
out of the reach of the LHC, and it is practically
impossible to produce mirror gauge bosons with present
day technologies.
In this paper, we investigate whether it is possible to have

a mirror gauge sector as well as the mirror fermions around
TeV scale within the framework of the LRRL symmetry
[1]. We propose a new type of LRRLmodel which provides
a low scale parity breaking resulting in a low scale mirror
gauge sector as well as low scale mirror fermions. This is
one of the main achievements of this proposed work which
is near impossible in other models having mirror fermions
and mirror gauge symmetries [25–30]. Furthermore,
we shall see that the dangerous quadratic divergences of
the SM Higgs mass involving fermions loops are sup-
pressed, and begin at the three-loop level. The model can
stabilize the mass of the SM Higgs up to a sufficiently
high scale.
The fermionic and gauge fields under parity transform as

the following in LRRL models:

ψL ↔ ψ 0
R; ψR ↔ ψ 0

L; WL ↔ W 0
R;

WR ↔ W 0
L; Bμ ↔ Bμ; Gμν ↔ Gμν; ð1Þ

where ψL, ψR are doublets of the gauge groups SUð2ÞL and
SUð2ÞR, respectively. The doublets ψ 0

L, ψ
0
R correspond to

the gauge groups SUð2Þ0L and SUð2Þ0R, respectively. WL
and WR are the gauge fields corresponding to SUð2ÞL
and SUð2ÞR, respectively.W 0

R andW 0
L are gauge fields of

the symmetries SUð2Þ0R and SUð2Þ0L, respectively. Bμ is the
gauge field corresponding to the gauge symmetry group
Uð1ÞY . Gμν is the gluon field strength tensor representing
the SUð3Þc color symmetry.
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1With new data, all these excesses have disappeared.
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The fermions of the model have the following transformations under the symmetry SUð3Þc ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ SUð2Þ0R ⊗ SUð2Þ0L ⊗ Uð1ÞY :

QL∶
�
3; 2; 1; 1; 1;

1

3

�
; QR∶

�
3; 1; 2; 1; 1;

1

3

�
; Q0

R∶
�
3; 1; 1; 2; 1;

1

3

�
; Q0

L∶
�
3; 1; 1; 1; 2;

1

3

�
;

LL∶ ð1; 2; 1; 1; 1;−1Þ; LR∶ ð1; 1; 2; 1; 1;−1Þ; L0
R∶ ð1; 1; 1; 2; 1;−1Þ; L0

L∶ ð1; 1; 1; 1; 2;−1Þ; ð2Þ

whereQ and L denote the quarks and leptonic doublets. For
more details, see Ref. [1].
We introduce four Higgs doublet and two singlet

real scalar fields for the spontaneous symmetry breaking
(SSB) which transform in the following way under
SUð3Þc⊗SUð2ÞL⊗SUð2ÞR⊗SUð2Þ0R⊗SUð2Þ0L⊗Uð1ÞY :
φL∶ ð1;2;1;1;1;1Þ; φR∶ ð1;1;2;1;1;1Þ; φ0

R∶ ð1;1;1;2;1;1Þ;
φ0
L∶ ð1;1;1;1;2;1Þ; χ∶ ð1;1;1;1;1;0Þ; χ0∶ ð1;1;1;1;1;0Þ:

ð3Þ
The scalar fields under parity behave as follows:

φL ↔ φ0
R; φR ↔ φ0

L; χ ↔ χ0: ð4Þ
Now, the SSBoccurs in the following pattern: Thevacuum

expectation value (VEV) of the scalar fields φ0
L breaks the

whole symmetry SUð2ÞL⊗SUð2ÞR⊗SUð2Þ0R⊗SUð2Þ0L⊗
Uð1ÞY to SUð2ÞL ⊗ SUð2ÞR ⊗ SUð2Þ0R ⊗ Uð1ÞY 0 . After
this, we break SUð2ÞL ⊗ SUð2ÞR ⊗ SUð2Þ0R ⊗ Uð1ÞY 0 to
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞY 00 using the VEV of the scalar
field φ0

R. The SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞY 00 is broken down
to the SMgauge group SUð2ÞL ⊗ Uð1ÞY 000 by theVEVof the
scalar field φR. Finally, the VEVof the scalar field φL breaks
the SM gauge symmetry SUð2ÞL ⊗ Uð1ÞY 000 to the Uð1ÞEM.
The Yukawa Lagrangian does not exist since there is no

bidoublet in this model. Now, the only way to give masses
to fermions is to use nonrenormalizable operators which
makes this model an effective theory. For this purpose, we
observe that all nonrenormalizable operators are “equal.”
For example, due to given scalar fields of the model, we
could use a dimension-5; 6; 7;… or any operator for this
purpose.
However, our aim is to have mirror fermions and mirror

gauge sector at the same scale which could be around a few
TeV. For this purpose, we demand that fermionic fields ψR,
ψ 0
L and scalar singlets χ, χ0 transform under two discrete

symmetries, Z2 and Z0
2 as given in Table I. All other fields

are even under Z2 and Z0
2.

Now, the mass term for charged fermions appears at
dimension-6. Thus, the mass term for quarks is given by

LQ
mass¼ 1

Λ2
½Q̄LðΓ1φLφ

†
RχþΓ2 ~φL ~φ

†
RχÞQRþ Q̄0

RðΓ0
1φ

0
Rφ

0†
L χ

0

þΓ0
2 ~φ

0
R ~φ

0†
Lχ

0ÞQ0
L�þH:c:; ð5Þ

where Γi ¼ Γ0
i due to parity and ~φ ¼ iσ2φ� is the charge

conjugated Higgs field. A similar Lagrangian can be
written for leptons. Parity is spontaneously broken
when scalar fields acquire vacuum expectation values
(VEVs) such that hχ0i ≫ hφ0

Li ≥ hφRi ≥ hφ0
Ri ≫ hφLi and

hχ0i ≫ hχi.
Now, let us assume that the parity breaking scale is

around a few TeV. This means that the gauge bosons
corresponding to the gauge groups SUð2ÞR; SUð2Þ0R and
SUð2Þ0L should be around a few TeV. Since the Yukawa
couplings of the mirror fermions are identical to those of
the SM ones, we would naively expect that mirror fermions
could be very light and already ruled out by experiments.
However, we observe that due to the VEV pattern
described, the VEV of the singlet hχ0i could be large so
that mirror fermions, in spite of a TeV scale parity breaking,
could be sufficiently heavy to search at the LHC. Thus, we
observe that the mirror fermions and mirror gauge sector
both could be at TeV scale in this model. This is obtained in
a natural way, and is one of the main achievements of
this work. The LHC has searched for these quarks, and has
excluded them up to 690 GeV. However, these searches are
model dependent [31].
We note that the models with mirror fermions discussed

in the literature are either based on SUð2Þ ⊗ Uð1Þ ⊗
SUð2Þ0 ⊗ Uð1Þ0 or SUð2ÞL ⊗ SUð2ÞR⊗Uð1Þ symmetries
[25–30]. These models have a well-defined Yukawa
Lagrangian. Any attempt to raise the mass scale of the
mirror fermions using singlet scalar fields will kill the
Yukawa Lagrangian making these models artificial and
unnatural. Furthermore, these models do not yield any
explanation for the smallness of neutrino masses.
The Majorana mass term for neutrinos can be written at

dimension-5,

Lν
Majorana¼

1

Λ
½L̄c

Lc1 ~φ
�
L ~φ

†
LLLþ L̄c

R
0c01 ~φ

�0
R ~φ0†

RL
0
R

þ L̄c
Rc2 ~φ

�
R ~φ

†
RLRþ L̄c

L
0c02 ~φ

�0
L ~φ0†

LL
0
L�þH:c:; ð6Þ

where ci ¼ c0i due to parity. We observe in Eqs. (5) and (6)
that masses of the neutrinos are suppressed by the scale Λ.

TABLE I. The charges of fermionic and singlet scalar fields
under Z2 and Z0

2 symmetries.

Fields Z2 Z0
2

ψR þ −
χ þ −
ψ 0
L − þ

χ0 − þ
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Hence, even if neutrinos are Dirac in nature [which means
that nature has chosen couplings ci ¼ c0i ¼ 0 in Eq. (6) or
Lagrangian in Eq. (6) is forbidden by some symmetry], the
model can provide an explanation for their small masses.
We can also write the Lagrangian which allows the

mirror quarks to decay into the SM ones. This is given by
the following dimension-5 and dimension-7 operators:

L ¼ ρ

Λ
Q̄LφLφ

0†
RQ

0
R þ σ

Λ3
Q̄L

0φ0
Lχχ

0φ†
RQR þ H:c:; ð7Þ

where ρ and σ are dimensionless couplings. We can write a
similar Lagrangian for leptons.
The masses and mixings of gauge bosons are obtained

from the following Lagrangian:

Lgauge−scalar ¼ ðDμ;LφLÞ†ðDμ
LφLÞ þ ðD0

μ;Rφ
0
RÞ†ðDμ0

Rφ
0
RÞ

þ ðDμ;RφRÞ†ðDμ
RφRÞ þ ðD0

μ;Lφ
0
LÞ†ðDμ0

Lφ
0
LÞ;
ð8Þ

where DL;R and D0
L;R are the covariant derivatives given by

Dμ;LðD0
μ;RÞ ¼ ∂μ þ ig1

τa
2
Wa

μ;LðWa0
μ;RÞ þ ig0

Y
2
Bμ; ð9Þ

Dμ;RðD0
μ;LÞ ¼ ∂μ þ ig2

τa
2
Wa

μ;RðWa0
μ;LÞ þ ig0

Y
2
Bμ; ð10Þ

where τa’s are the Pauli matrices. The coupling constant
g1 corresponds to gauge groups SUð2ÞL and SUð2Þ0R.
The coupling constant of gauge groups SUð2ÞR and
SUð2Þ0L is g2. The coupling constant of gauge group
Uð1ÞY is g0.
After the SSB, masses of the charged gauge bosons are

given as

MW�
L
¼ 1

2
g1vL; MW0�

R
¼ 1

2
g1v0R;

MW�
R
¼ 1

2
g2vR; MW0�

L
¼ 1

2
g2v0L: ð11Þ

The nondiagonal mass matrix for the neutral gauge
bosons, in the basis (W3

L;W
03
R ;W

3
R;W

03
L ; B), is given by

M2 ¼ 1

4

0
BBBBBB@

g21v
2
L 0 0 0 −g1g0v2L

0 g21v
02
R 0 0 −g1g0v02R

0 0 g22v
2
R 0 −g2g0v2R

0 0 0 g22v
02
L −g2g0v02L

−g1g0v2L −g1g0v02R −g2g0v2R −g2g0v02L g02ðv2L þ v02R þ v2R þ v02R Þ

1
CCCCCCA
: ð12Þ

This mass matrix can be diagonalized through an
orthogonal transformation R which transforms the weak
eigenstates (W3

L;W
03
R ;W

3
R;W

03
L ; B) to the physical mass

eigenstates (ZL; Z0
R; ZR; Z0

L; γ);0
BBBBBB@

W3
L

W03
R

W3
R

W03
L

B

1
CCCCCCA

¼ R

0
BBBBBB@

ZL

Z0
R

ZR

Z0
L

γ

1
CCCCCCA
: ð13Þ

The physical masses of neutral gauge bosons are given as

M2
ZL

¼ 1

2
g21v

2
L
ð2g22g02 þ g21ðg22 þ g02ÞÞ
ðg22g02 þ g21ðg22 þ g02ÞÞ þOðϵ1; ϵ2; ϵ3Þ;

M2
Z0
R
¼ 1

2
v02R

ðg22g02 þ g21ðg22 þ 2g02ÞÞ
ðg22 þ 2g02Þ þOðϵ1; ϵ2; ϵ3Þ

M2
ZR

¼ v2R
g42g

04

ðg22 þ g02Þðg22g02 þ g21ðg22 þ g02ÞÞ þOðϵ1; ϵ2; ϵ3Þ;

M2
Z0
L
¼ v02L

g04

ðg22 þ g02Þ þOðϵ1; ϵ2; ϵ3Þ; ð14Þ

where ϵ1 ¼ v2L=v
02
L , ϵ2 ¼ v2L=v

02
R and ϵ3 ¼ v2L=v

2
R. We

have shown only leading order terms assuming that
v0L; vR; v

0
R ≫ vL. The orthogonal transformation matrix R

can be parametrized in terms of four mixing angles θWL
,

θW0
R
, θWR

and θW0
L
which are the following:

cos2θWL
¼
�
M2

WL

M2
ZL

�
ϵ1;2;3¼0

¼ ðg22g02þg21ðg22þg02ÞÞ
2ð2g22g02þg21ðg22þg02Þ;Þ

cos2θW0
R
¼
�M2

W0
R

M2
Z0
R

�
ϵ1;2;3¼0

¼ g21ðg22þ2g02Þ
2ðg22g02þg21ðg22þ2g02ÞÞ ;

cos2θWR
¼
�
M2

WR

M2
ZR

�
ϵ1;2;3¼0

¼ðg22þg02Þðg22g02þg21ðg22þg02ÞÞ
4g22g

04 ;

cos2θW0
L
¼
�M2

W0
L

M2
Z0
L

�
ϵ1;2;3¼0

¼g22ðg22þg02Þ
4g04

: ð15Þ

The Lagrangian in Eq. (7) introduces mixing between the
SM and mirror fermions. We can diagonalize the mass
matrices of charged fermions via biunitary transformation
by introducing two mixing angles. The mass eigenstates of
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the charged fermions are related to the gauge eigenstates
through the following transformation:

�
fg

f0g

�
L;R

¼
�

cos θ sin θ

− sin θ cos θ

�
L;R

�
f

f0

�
L;R

; ð16Þ

where, fL;R are the left- and right-handed component of the
SM fermions and f0L;R denote the mirror fermions.
Now we discuss the scalar potential of the model. We

write the most general scalar potential of the model as
follows:

VðφL;φR;φ0
R;φ

0
L; χ; χ

0Þ ¼ −μ21ðφ†
LφL þ φ0†

Rφ
0
RÞ − μ22ðφ†

RφR þ φ0†
Lφ

0
LÞ − μ23ðχ2 þ χ02Þ

þ λ1ððφ†
LφLÞ2 þ ðφ0†

Rφ
0
RÞ2Þ þ λ2ððφ†

RφRÞ2 þ ðφ0†
Lφ

0
LÞ2Þ

þ λ3ðφ†
LφLφ

†
RφR þ φ0†

Rφ
0
Rφ

0†
Lφ

0
LÞ þ λ4ðφ†

LφLφ
0†
Lφ

0
L þ φ†

RφRφ
0†
Rφ

0
RÞ

þ λ5φ
†
LφLφ

0†
Rφ

0
R þ λ6φ

†
RφRφ

0†
Lφ

0
L þ λ7ðχ4 þ χ04Þ þ λ8χ

2χ02

þ λ9ðφ†
LφLχ

2 þ φ0†
Rφ

0
Rχ

02Þ þ λ10ðφ†
LφLχ

02 þ φ0†
Rφ

0
Rχ

2Þ
þ λ11ðφ†

RφRχ
2 þ φ0†

Lφ
0
Lχ

02Þ þ λ12ðφ†
RφRχ

02 þ φ0†
Lφ

0
Lχ

2Þ: ð17Þ

The VEVs of the Higgs fields are denoted as hφLi ¼
vL=

ffiffiffi
2

p
, hφLi ¼ vR=

ffiffiffi
2

p
, hφ0

Ri ¼ v0R=
ffiffiffi
2

p
, hφ0

Li ¼ v0L=
ffiffiffi
2

p
,

hχi ¼ ω=
ffiffiffi
2

p
, hχ0i ¼ ω0=

ffiffiffi
2

p
. We need a solution of the

potential such that hχ0i ≫ hφ0
Li ≥ hφRi ≥ hφ0

Ri ≫ hφLi
and hχ0i ≫ hχi. There are six independent vacuum param-
eters which correspond to six independent vacuum minimal
conditions, i.e.,

0 ¼ ∂V
∂vL ¼ ∂V

∂vR ¼ ∂V
∂v0R ¼ ∂V

∂v0L ¼ ∂V
∂ω ¼ ∂V

∂ω0 : ð18Þ

The second derivatives of the scalar potential which is
the mass squared matrix determine the nature of the
minimum. This is given by

∂2V
∂ðφi; χ; χ0Þ∂ðφj; χ; χ0Þ

> 0: ð19Þ

In general, one of the eigenvalues of this matrix is always
zero. Hence, we assume that the mass term for the singlet
scalar fields in the scalar potential is zero (μ3 ¼ 0). This
implies that the scalar particles corresponding to the singlet

fields χ and χ0 are massless.2 The reason to choose only
singlet scalars to be massless is that they could be dark
matter candidates. The phenomenological consequences of
this assumption are far reaching and will be discussed in the
later course of the paper.
Furthermore, some of the eigenvalues in general could be

complex. For illustration of a physical solution, we propose
a “mirror scale difference” through the SSB. This means
the gauge bosons corresponding to SUð2Þ0L should have the
same scale difference with respect to the gauge bosons of
the group SUð2ÞR as that of the gauge bosons of the gauge
group SUð2Þ0R with respect to the gauge group SUð2ÞL.
The gauge bosons corresponding to SUð2Þ0R could be at
the same or a close scale to SUð2ÞR. This means, vR ¼ v0R
and v0L ¼ 2vR. It is quite interesting that a physical solution
does exists for this symmetry breaking pattern. A more
general study of the scalar potential will be provided
elsewhere.
With the above assumptions, the equations ∂V

∂vL ¼ ∂V
∂vR ¼ 0

can be used to eliminate μ1 and μ2. After this, we obtain the
following constraints on the quartic couplings:

λ1 ¼
1

2

�
λ5 þ

ðλ3 − λ4Þðv02L − v2RÞ − ðλ9 − λ10Þðω2 − ω02Þ
v2L − v02R

�
;

λ2 ¼
1

2

�
λ6 þ

ðλ3 − λ4Þðv2L − v02R Þ þ ðλ11 − λ12Þðω2 − ω02Þ
v02L − v2R

�
;

λ9 ¼
−ðλ11v2R þ λ12v02L Þv2L þ ðλ11v02L þ λ12v2RÞv02R − ð2λ7v2L − λ8v02R Þw2 þ ð2λ7v02R − λ8v2LÞw02

ðv4L − v04R Þ
;

λ10 ¼
−ðλ11v02L þ λ12v2RÞv2L þ ðλ11v2R þ λ12v02L Þv02R þ ð2λ7v02R − λ8v2LÞw2 − ð2λ7v2L − λ8v02R Þw02

ðv4L − v04R Þ
: ð20Þ

2We can also assume that only one scalar singlet is massless and the other one is massive. Then, we need to write a mass term for the
other singlet in the potential. This will break parity softly.
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For the determination of the eigenvalues of Eq. (19), we
encounter an order five polynomial (since one eigenvalue is
always zero) which is difficult to solve. For simplifying our
calculations, we first expand this polynomial in terms of
parameter ϵ ¼ vR=ω0 (since ω0 ≫ vR) and keep only the
leading order contribution. This factorizes our polynomial
into three parts, two linear terms and one cubic term. From
linear terms, we obtain the following two scalar masses
squared:

M2
1 ¼

4

3
ððλ3 − λ4Þv2L þ ðλ11 − λ12Þðw2 − w02ÞÞ þOðϵÞ;

M2
2 ¼

1

3
ððλ3 − λ4Þv2L þ ðλ11 − λ12Þðw2 − w02ÞÞ þOðϵÞ:

ð21Þ
We further expand the cubic part in term of the parameter
ϵ0 ¼ ω=ω0 (since ω0 ≫ ω). This provides us a quadratic
factor and one eigenvalue zero. Solving the quadratic
factor, we obtain the physical masses of two other scalars.
These are

M2
3;4 ¼

1

2v2L
ðx1 �

ffiffiffiffiffi
x2

p Þ þOðϵ; ϵ0Þ; ð22Þ

where

x1 ¼ λ5v4L þ 2λ7v2Lω
02 þ 2λ7ω

04 − λ8ω
04Þ;

x2 ¼ 8λ7v2Lð−λ5v4Lω02 þ λ8ω
06Þ

þ ðλ5v4L − λ8ω
04 þ 2λ7ω

02ðv2L þ ω02ÞÞ2: ð23Þ
The condition that all masses squared must be positive and
ω0 ≫ vL; vR;ω implies that

λ12 > ðλ3v2L − λ4v2L þ λ11ω
2 − λ11ω

02Þ=ðw2 − ω02Þ;

λ7 > 0; λ8 <
λ5v4L
ω04 : ð24Þ

The couplings λ3, λ4, λ5, λ6, λ8, λ11 and λ12 can be positive
as well as negative satisfying Eq. (24) appropriately. For
instance, for vL ¼ 246 GeV, vR ¼ v0R ¼ ω ¼ 1 TeV and
v0L ¼ 2 TeV, a set of values of quartic couplings which
provide a true minimum could be λ3 ¼ 0.78, λ4 ¼ 0.005,
λ5 ¼ 0.05, λ6 ¼ 0.0001, λ7 ¼ 2.0 × 10−12, λ8 ¼ −10−12,
λ11 ¼ −0.9 and λ12 ¼ −0.9.
The scalar potential of the model does not have any

complex coupling. The gauge symmetry of the model
allows us to make the VEVs of the scalar fields real.
Hence, as discussed in Ref. [32], the strong CP phase is
zero in this model.
Now, we discuss the naturalness of the SM Higgs mass.

The one-loop contributions to the mass of the SM Higgs
due to fermions is absent, and the contribution begins at
three loops. We calculate the quadratic divergence within
the dimensional regularization scheme. The quadratic
divergence is identified with the D ¼ 2 pole [33]. hR, S

and S0 denote the Higgs particles corresponding to scalar
fields φR, χ and χ0, respectively. The quadratic divergent
part is given as

−
Z

dDk1
ð2πÞD

dDk2
ð2πÞD

dDk3
ð2πÞDTr

�
iðk1þmfÞ
k21−m2

f

i
ðk22−m2

hR
Þ

i
k23−m2

S

×
iðpþk1þk2þk3þmfÞ
ðpþk1þk2þk3Þ2−m2

f

�
ð−iΓfÞð−iΓfÞ

¼ 6i
ð16π2Þ3Λ

2Γ2
fþ��� ; ð25Þ

where Γf denotes the coupling of fermions running in the
loop to the SM Higgs and other scalars. The noteworthy
consequence of the loop suppression is that the quadratic
divergent contribution is naturally suppressed. However,
there is no reason that Γf should be of order Oð1Þ now.
The mass of the top quark, from Eq. (5), is given by
mt ¼ ΓtvLvRω=2

ffiffiffi
2

p
Λ2. Hence, even if Γt < 1, the other

unknown VEVs could be such that we recover experimen-
tal mass of the top quark. Therefore, the quadratic diver-
gence could be even suppressed further. The analogous
contribution to the SM Higgs mass in the SM, assuming it
an effective theory, turns out to be the most dangerously
divergent one.
The one-loop quadratic divergent contribution to the SM

Higgs mass which involves scalar doublets and singlets is
the following:

1

2

Z
dDk
ð2πÞD

i
k2 −m2

hR;h0R;L;S;S
0
ð−iλ3;4;5;9;10Þ ¼

−iΛ2

16π2
1

2
λ3;4;5;9;10

þ � � � ; ð26Þ

where λ3;4;5;9;10 are couplings of the SM Higgs to the other
scalar doublets and singlets.
These contributions depend on the sign and values of the

quartic couplings λ3;4;5;9;10. However, λ3;4;5, can be positive
as well as negative as discussed earlier. The values of
couplings λ9;10 depend on the values of other couplings as
given in Eq. (20). In principle, they could also be positive as
well as negative. The contribution to the SM Higgs mass
from the scalar doublets and singlets could be such that
they cancel the one-loop quadratic corrections coming from
the SM gauge bosons. Thus, this model postpones the
fine-tuning of the mass of the SMHiggs up to a scale which
is relatively higher than what is obtained assuming an
effective SM. In fact, it is known that addition of real scalar
singlets to the SM can stabilize the SM Higgs mass up
to a sufficiently high scale [34]. However, such a complex
investigation using the Veltman condition [33] is beyond
the scope of this paper.
The phenomenological signatures of the model will be

discussed now. For this purpose, the charged current
Lagrangian can be written as
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LCC ¼ −
g1
2

ffiffiffi
2

p
X

F¼f;f0
F̄ γμ½CWL

FF ð1 − γ5ÞW−
Lμ

þ C
W0

R
FF ð1þ γ5ÞW0−

Rμ�F
−

g2
2

ffiffiffi
2

p
X

F¼f;f0
F̄ γμ½CWR

FF ð1þ γ5ÞW−
Rμ

þ C
W0

L
FF ð1 − γ5ÞW0−

Lμ�F; ð27Þ

where the couplings CW
FF depend on the charged fermion

mixing angles θL and θR. The neutral current Lagrangian is
given as

LNC ¼ −eQf

X
F¼f;f0

F̄ γμAμF

− g1
X

F¼f;f0
F̄ γμ

��
AZL
FF

1 − γ5

2
þ BZL

FF
1þ γ5

2

�
ZLμ

þ
�
A
Z0
R

FF
1 − γ5

2
þ B

Z0
R

FF
1þ γ5

2

�
Z0
Rμ

�
F

− g2
X

F¼f;f0
F̄ γμ

��
AZR
FF

1 − γ5

2
þ BZR

FF
1þ γ5

2

�
ZRμ

þ
�
A
Z0
L

FF
1 − γ5

2
þ B

Z0
L

FF
1þ γ5

2

�
Z0
Lμ

�
F; ð28Þ

where e is electron charge and Qf;f0 is the charge
of fermion f and f0. The couplings AZ

FF and BZ
FF are

functions of charged fermion mixing angles and gauge
mixing angles given in Eqs. (15) and (16). We observe
from charged and neutral current Lagrangians that the
mirror quarks can decay into a WL or ZL boson in
association with a SM quark. Moreover, the mirror quarks
can decay into the SM Higgs and a SM quark. For
illustration, we show the pair production of the mirror
quarks in Fig. 1 at the LHC via gluon-gluon and quark-
antiquark initial states.
In addition to this, flavor changing neutral meson

mixings K − K̄, B − B̄ and D − D̄ will further put con-
straints on new gauge bosons. The masses of the gauge
bosons corresponding to the gauge groups SUð2ÞR in the

minimal left-right symmetric model (MLRSM) [35] are
highly constrained by the mixing of WL and WR bosons.
The masses of these gauge bosons are excluded up to
approximately 3 TeV [36] in this model. Since there
is no mixing between WL and WR bosons in the
proposed model, this limit is not applicable. A detailed
phenomenological investigation is the subject of a future
study.
Now we comment on the importance of the singlet

scalar fields. It should be noted that singlet scalar fields
are not arbitrarily introduced in this model. They have a
rather important purpose to provide masses to fermions.
Furthermore, the singlet scalar fields could be a viable cold
dark matter candidate as observed in some models [37].
Finally, they could make the electroweak phase transition a
strong first-order transition [38].
The ultraviolet completion of the model could come

from a larger underlying theory. Since there are many
VEVs in this model, one of the possibilities is that this
model could be a part of a multiverse theory with many
ground states which is motivated by the fine-tuning of the
cosmological constant [39]. This is encouraged by the fact
that there are two real massless scalars in the model coming
from two real singlet scalar fields. The quantum and/or
thermal fluctuations in the early universe would randomize
the initial values of these fields leading to regions of
different initial values due to inflation. We comment why
we have chosen real scalar singlets massless in the scalar
potential now. The multiverse theories require a continuous
variation of the parameters across the universe [39]. Only a
field can have a spatial or temporal variation. For this
purpose, that field must be light [39]. This is the case for
real scalar singlets in this model.
This model restores parity in a nonminimal way. We

observe that parity is maximally violated in the SM. Now,
maximal violation of parity could be a consequence
of a minimal or maximal parity restoring theory. Our
approach in this work is that the maximal parity violation
leads to a maximal parity restoring theory. We note that
MLRSM has a VEV which must be zero or vanishing to
reproduce neutrino masses. This is similar to unnaturally
small Yukawa couplings of neutrinos in the SM extended
by three right-handed singlet neutrinos. The other
mirror models seem to have a huge scale disparity in

FIG. 1. The pair production of the mirror quarks at the LHC and their subsequent decay to the SM ZL boson and a quark.
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the gauge sector [25–30]. Furthermore, they do not have
any explanation for the smallness of neutrino masses.
Moreover, the above two classes of models do not have
any mechanism to make the mass of the SM Higgs natural.
Therefore, if one discards the prejudice of minimality, the
model presented in this work is a natural parity restoring
extension of the SM.
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