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We consider a class of flavor models proposed by Aranda, Carone and Lebed, relaxing the assumption of
supersymmetry and allowing the flavor scale to float anywhere between the weak and Planck scales. We
perform global fits to the charged fermion masses and Cabibbo-Kobayashi-Maskawa angles, and consider
the dependence of the results on the unknown mass scale of the flavor sector. We find that the typical
Yukawa textures in these models provide a good description of the data over a wide range of flavor scales,
with a preference for those that approach the lower bounds allowed by flavor-changing-neutral-current
constraints. Nevertheless, the possibility that the flavor scale and Planck scale are identified remains
viable. We present models that demonstrate how the assumed textures can arise most simply in a
nonsupersymmetric framework.
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I. INTRODUCTION

There is a vast literature on models that attempt to explain
the observed hierarchy of fermion masses by means of
horizontal symmetries. In this paper, we revisit one such
model, proposed byAranda, Carone andLebed, based on the
double tetrahedral group T 0 [1,2]. Prior to this work, it had
been shown that supersymmetric grand unified theories with
U(2) flavor symmetry predict simple forms for the Yukawa
matrices, ones that provide a successful description of
charged fermion masses and the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix [3,4]. The authors of
Refs. [1,2] posed a simple question: What is the smallest
discrete flavor group that predicts the same form for the
Yukawa textures? The answer to this question was deter-
mined by the specific group theoretic properties of U(2) that
were utilized in the most successful U(2) models [4]:
(1) U(2) models involved fields in 1, 2 and 3 dimen-

sional representations (reps). Matter fields of the
three generations were embedded into 2 ⊕ 1 dimen-
sional reps; the fact that the third generation
fields were treated differently allowed the model to
accommodate an order one (i.e., a flavor-group-
invariant) top quark Yukawa coupling. The flavor-
symmetry-breaking fields, called flavons, appeared
in all three of these representations.

(2) In each Yukawa matrix, the two-by-two block
associated with the first two generations decom-
posed into an antisymmetric and symmetric part.
These followed from the couplings of the 1 and
3-dimensional flavon fields, respectively, due to the
group multiplication rule

2 ⊗ 2 ¼ 3 ⊕ 1: ð1:1Þ
(3) The U(2) symmetry was broken to a U(1) subgroup

that rotated all first generation fields by a phase. This
U(1) symmetry was subsequently broken at a lower
energy scale than that of the original U(2) symmetry.
Since Yukawa couplings emerge as a ratio of a
symmetry-breaking scale to a cut off, the sequential
breaking of the flavor symmetry explains why the
Yukawa couplings associated with first generation
were smaller than those of the heavier generations.

The group T 0 is special in that it is the smallest discrete group
that has 1, 2 and 3-dimensional representations, aswell as the
multiplication rule 2 ⊗ 2 ¼ 3 ⊕ 1. We will briefly review
the representations and multiplication rules for T 0 symmetry
in Sec. II. Following Refs. [1,2], the appropriate symmetry
breaking sequence is achieved if the flavor group includes an
Abelian factor, so that GF ¼ T 0 × Z3. Then the breaking
pattern of the U(2) model

Uð2Þ!ϵ Uð1Þ!ϵ
0
nothing; ð1:2Þ

is mimicked by

T 0 × Z3 !ϵ ZD
3 !

ϵ0
nothing: ð1:3Þ

Herewe have indicated the scale of each symmetry breaking
via the dimensionless parameters ϵ and ϵ0, which represent
the ratio of a symmetry-breaking vacuum expectation value
(vev) to the cutoff of the effective theory. We refer to the
cutoff as the flavor scale, MF, henceforth. A useful way to
understand the connection between Eq. (1.2) and (1.3) is to
consider the SUð2Þ × Uð1Þ subgroup of U(2); The T 0 factor
is a subgroup of the SU(2) factor while Z3 is a subgroup of
the U(1). The Z3 factor remaining after the first step in the
symmetry-breaking chain in Eq. (1.3) also transforms all
first generation fields by a phase and will be specified later.

*cdcaro@wm.edu
†scchaurasia@email.wm.edu
‡svasquez@mail.usf.edu

PHYSICAL REVIEW D 95, 015025 (2017)

2470-0010=2017=95(1)=015025(11) 015025-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.015025
http://dx.doi.org/10.1103/PhysRevD.95.015025
http://dx.doi.org/10.1103/PhysRevD.95.015025
http://dx.doi.org/10.1103/PhysRevD.95.015025


The T 0 × Z3 model defined in this way reproduces the
successful Yukawa textures of the U(2) models, but with a
much smaller symmetry group. For other productive appli-
cations ofT 0 symmetry in flavormodel building, we refer the
reader to Ref. [5].
The T 0 models of Refs. [1,2] were constructed more than

16 years ago, when it was widely assumed that weak-scale
supersymmetry was the likely solution to the gauge
hierarchy problem. The numerical study of the Yukawa
textures in these references assumed supersymmetric
renormalization group equations to relate the predictions
of the theory at the flavor scale MF to those at observable
energies. Superpartners were taken to have masses just
above the electroweak scale, while MF was identified
with the scale of supersymmetric grand unification,
∼2 × 1016 GeV. The latter choice was motivated by the
most elegant T 0 models, which were formulated in
the context of an SUð5Þ grand unified theory. Some of
the essential features of the Yukawa textures followed
from the combined restrictions of the flavor and grand
unified symmetries.
At the present moment, however, the status of weak-

scale supersymmetry as a necessary ingredient in model
building is far less certain. The latest data from the LHC has
found no evidence for supersymmetry. Of course, this may
simply mean that the scale of the superpartner masses is
slightly higher than what one might prefer from the
perspective of naturalness; this interpretation would have
little effect on the results of Refs. [1,2]. On the other hand,
the LHC may be hinting that there is no necessary
connection between the weak scale and the scale of
supersymmetry breaking. In this case, one might entertain
the possibility that the supersymmetry breaking scale is
associated with the only higher physical mass scale whose
existence is well established: the Planck scale. For example,
it has been suggested in Ref. [6] that the shallowness of the
Higgs potential may be explained by Planck-scale super-
symmetry breaking, assuming that supersymmetry is still
relevant for a quantum gravitational completion. This latter
assumption itself has been challenged in Ref. [7], where it
has been noted that there are consistent string theories that
are fundamentally nonsupersymmetric and whose low-
energy limit could include the standard model. Whether
supersymmetry is broken at the Planck scale, or not present
at any scale, one might attempt to address the hierarchy
between the weak scale and Planck scale, for example, by
anthropic selection, or by Higgs field relaxation [8], or by
mechanisms not yet known. Alternatively, one might
pursue the idea that quantum gravitational physics does
not contribute to scalar field quadratic divergences in the
way that one expects naively from effective field theory
arguments [9]. In this paper, we remain completely agnostic
on the issue of naturalness. We instead investigate a
question that can be addressed in a more definitive and
quantitative way: how well do the T 0 flavor models in

Refs. [1,2] work if there is no supersymmetry below the
Planck scale?
We begin our study by assuming a standard form for the

Yukawa textures expected in models with T 0 × Z3 sym-
metry and perform a global fit to the charged fermion
masses and CKM elements assuming that the predictions at
the flavor scaleMF are related to those at the weak scale via
nonsupersymmetric renormalization group equations.1

In the absence of supersymmetry, we no longer have gauge
coupling unification and therefore do not consider grand
unified embeddings. The flavor scale is taken as a free
parameter that may vary anywhere from the TeV scale to
the Planck scale. By study of the goodness of these fits, we
consider whether there is any preference for a higher or
lower flavor scale within the specified range. If one were to
find acceptable results for values of MF near the Planck
scale, one might conclude that the model is consistent with
a minimal scenario in which there are no other energy
scales of physical relevance other than the weak and the
Planck scale. On the other hand, if one were to find
acceptable results for MF closer to the lower bounds from
flavor-changing-neutral-current processes, then one might
obtain interesting predictions for observable indirect effects
of heavy particles associated with the flavor sector.
Our paper is organized as follows. In the next section, we

briefly review the flavor models of interest and present a
parameterization of the Yukawa matrix textures that typ-
ically arise in these models at the flavor scale MF. In
Sec. III, we study the predictions that follow from these
textures by a nonsupersymmetric renormalization group
analysis, including global fits to the current data on charged
fermion masses and CKM elements. In Sec. IV, we point
out the largest indirect effects of heavy flavor-sector
particles on flavor-changing-neutral current processes in
the case where MF is low. In Sec. V, we address model
building issues: supersymmetric models have two Higgs
doublets (in order to cancel anomalies) and have a super-
potential that is constrained by holomorphicity; these
requirements are absent in the nonsupersymmetric case.
Hence, in this section we show how the textures assumed in
Sec. III may arise in nonsupersymmetric T 0 models. In the
final section, we summarize our conclusions.

II. TYPICAL YUKAWA TEXTURES FROM
T-PRIME SYMMETRY

The group T 0 is discussed at length in Ref. [2]. Here we
summarize only the most basic properties relevant to the

1Note that we do not consider neutrino physics in the present
work due to the additional model dependence affecting that sector
of the theory. For example, the structure of the theory is different
depending on whether neutrino masses are Dirac or Majorana,
whether the Majorana masses arise via a seesaw mechanism or
via coupling to electroweak triplet Higgs fields, and whether
additional neutral fermions are present with which the neutrinos
can mix. We reserve such a study for future work.
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present discussion: The group has 24 elements. This
includes 12 elements that correspond to the 12 proper
rotations that take a regular tetrahedron into coincidence
with itself, with choices of Euler angles that are less than
2π. The remaining 12 elements are the first set times an
element called R that corresponds to a 2π rotation. As we
indicated earlier, T 0 has 1, 2 and 3-dimensional represen-
tations, that we specify more precisely below. For odd-
dimensional representations, R acts trivially and the action
of the group T 0 is not distinguishable from that of the
tetrahedral group T. For the even-dimensional representa-
tions, however, R acts nontrivially; this reflects the fact that
T 0 is a subgroup of SU(2) and that spinors flip sign under a
rotation by 2π.
The complete list of T 0 representations is as follows:

there is a trivial singlet, 10, two nontrivial singlets, 1�, three
doublets, 20 and 2�, and one triplet, 3. The different singlet
and doublet representations are distinguished by how they
transform under a Z3 subgroup, generated by the group
element called g9 in Ref. [2]. This is indicated by the triality
superscript; when we multiply representations, trialities add
under addition modulo three. Keeping this in mind, the
rules for multiplying representations are then specified by

1 ⊗ R ¼ R ⊗ 1 for any rep R;

2 ⊗ 2 ¼ 3 ⊕ 1;

2 ⊗ 3 ¼ 3 ⊗ 2 ¼ 20 ⊕ 2þ ⊕ 2−;

3 ⊗ 3 ¼ 3 ⊕ 3 ⊕ 10 ⊕ 1þ ⊕ 1−: ð2:1Þ

As we indicated in the Introduction, the models of
interest are based on the flavor group GF ¼ T 0 × Z3, which
includes a Z3 subgroup that rotates all first-generation
matter fields by a phase. We now identify that subgroup. In
the models of Ref. [2], the first two generations are
assigned to the 20 representation,2 in which the element
g9 is given by

g9ð20Þ ¼
�
η2 0

0 η

�
; ð2:2Þ

where η≡ e2πi=3. However, the matter fields may also
transform under the Z3 factor that commutes with T 0.
We represent charge assignments under this Z3 by an
additional triality index 0, þ and −, corresponding to the
phase rotations 1, η and η2. The diagonal subgroup of the
Z3 subgroup generated by g9 and the Z3 factor that
commutes with T 0 is the intermediate symmetry that we
desire; we call this subgroup ZD

3 . If we assign the first two
generations to the rep 20−, then the action of ZD

3 is through
powers of the product

g9ð20Þ · η2 ¼
�
η 0

0 1

�
; ð2:3Þ

which provides the desired first generation phase rotation.
Assigning the three generations of matter fields to the

T 0 × Z3 reps 20− ⊕ 100 yields the following transformation
properties of the Yukawa matrices:

YU;D;E ∼
� ½3− ⊕ 10−� ½20þ�

½20þ� ½100�

�
: ð2:4Þ

The models of interest include a set of flavon fields, Aab,
ϕab and Sab, which transform as 10−, 20þ and 3−,
respectively. When the T 0 × Z3 symmetry is broken to
ZD
3 , the doublet and triplet flavons acquire the vacuum

expectation values (VEVs)

hϕi
MF

∼
�
0

ϵ

�
;

hSi
MF

∼
�
0 0

0 ϵ

�
; ð2:5Þ

where we use ∼ when we omit possible order one factors.
This is the most general pattern of nonvanishing entries that
is consistent with the unbroken ZD

3 symmetry defined by
Eq. (2.3). Yukawa couplings involving first-generation
fields are generated only after the ZD

3 symmetry is broken
at a lower scale; in analogy to the U(2) models of
Refs. [3,4], it is assumed that this is accomplished solely
through the vev of the flavon Aab,

hAi
MF

∼
�

0 ϵ0

−ϵ0 0

�
; ð2:6Þ

where ϵ0<ϵ. This sequential breaking T 0×Z3 →
ϵ

ZD
3 →

ϵ0
nothing yields a Yukawa texture for the up quarks,

down quarks and leptons of the form

YU;D;E ∼

0
B@

0 ϵ0 0

−ϵ0 ϵ ϵ

0 ϵ 1

1
CA; ð2:7Þ

where we have suppressed Oð1Þ operator coefficients.
The forms of the Yukawa matrices obtained in Eq. (2.7)

are inadequate, given the known differences between the
up-, down- and charged-lepton masses. The top quark
Yukawa coupling is of order one, while the all others are
substantially smaller, suggesting an additional overall
suppression factor is desirable in YD and YE. Moreover,
the hierarchy of quark masses is more extreme in the up-
quark sector than in the down; for example, the quark mass
ratios renormalized at the supersymmetric grand unified
scale are given approximately by [10]

2This choice is motivated by the cancellation of discrete gauge
anomalies. See Ref. [2] for details.
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md ∶∶ ms ∶∶mb ¼ λ4 ∶∶ λ2 ∶∶ 1 while

mu ∶∶mc ∶∶mt ¼ λ8 ∶∶ λ4 ∶∶ 1; ð2:8Þ

where λ ≈ 0.22 is the Cabibbo angle. This suggests that an
additional suppression in the 1-2 block of YU is also
desirable. We call these suppression factors ρ and ξ, which
modify the textures of Eq. (2.7) as follows:

YU ∼

0
B@

0 ϵ0ρ 0

−ϵ0ρ ϵρ ϵ

0 ϵ 1

1
CA; YD ∼

0
B@

0 ϵ0 0

−ϵ0 ϵ ϵ

0 ϵ 1

1
CAξ;

YE ∼

0
B@

0 ϵ0 0

−ϵ0 ϵ ϵ

0 ϵ 1

1
CAξ: ð2:9Þ

Clearly, the smallness of ρ and ξ does not follow directly
from the assumed flavor symmetry breaking, but requires
additional symmetries and/or dynamics. In the U(2) models
of Refs. [3,4] and the T 0 models of Refs. [1,2], ξ is assumed
to arise from mixing in the Higgs sector of the theory, while
the origin of ρ is understood in terms of a grand unified
embedding. Flavon charge assignments under the unified
gauge group can cause Yukawa entries to arise at higher
order in 1=MF than they would otherwise. In the non-
supersymmetric T 0 models that we discuss in Sec. V, we
will neither have an extended Higgs sector nor a grand
unified embedding; we will, however, show how ρ and ξ
may arise simply by a small extension of the flavor
symmetry.
All other differences between YU, YD and YE can now be

accommodated by the choice of the undetermined Oð1Þ
operator coefficients, identified according to naive dimen-
sional analysis. We generally require these to be between
1=3 and 3 in magnitude; the precise range is a matter of
taste, but our choice is consistent with the assumptions of
Refs. [1,2]. Variations in the operator coefficients are then
sufficient, for example, to account for differences between
YD and YE that are attributed to group theoretic factors of 3
in grand unified theories [11]. We parametrize the Yukawa
matrices in terms of coefficients ui, di and li as follows:

YU ¼

0
B@

0 u1ϵ0ρ 0

−u1ϵ0ρ u2ϵρ u3ϵ

0 u4ϵ u5

1
CA;

YD ¼

0
B@

0 d1ϵ0 0

−d1ϵ0 d2ϵ d3ϵ

0 d4ϵ d5

1
CAξ;

YE ¼

0
B@

0 l1ϵ
0 0

−l1ϵ
0 l2ϵ l3ϵ

0 l4ϵ l5

1
CAξ: ð2:10Þ

These forms will be used to define the Yukawa matrices at
the flavor scale MF in the numerical study presented in the
following section.

III. NUMERICAL ANALYSIS

We numerically evolve the Yukawa matrices in
Eq. (2.10), using the one-loop, nonsupersymmetric renorm-
alization group equations (RGEs). The flavor scale MF is
taken to be variable, while the scale of observable energies
is chosen to be the mass of the Z boson, mZ. We omit all
weak-scale threshold corrections. The RGEs are given
by [12]

dgi
dt

¼ bSMi
16π2

g3i ; ð3:1Þ

dYU

dt
¼ 1

16π2

×

�
−
X
i

cSMi g2i þ
3

2
YUY

†
U −

3

2
YDY

†
D þ Y2ðSÞ

�
YU;

ð3:2Þ

dYD

dt
¼ 1

16π2

×

�
−
X
i

c0i
SMg2i þ

3

2
YDY

†
D −

3

2
YUY

†
U þ Y2ðSÞ

�
YD;

ð3:3Þ

dYE

dt
¼ 1

16π2

�
−
X
i

c00i
SMg2i þ

3

2
YEY

†
E þ Y2ðSÞ

�
YE; ð3:4Þ

where

Y2ðSÞ ¼ Tr½3YUY
†
U þ 3YDY

†
D þ YEY

†
E�: ð3:5Þ

Here, the gi are the gauge couplings, YU, YD and YE are the
Yukawa matrices, and t ¼ ln μ is the log of the renormal-
ization scale. The SU(5) normalization of g1 is assumed.
In the absence of supersymmetry [12],

bSMi ¼
�
41

10
; −

19

6
; −7

�
; ð3:6Þ

and

cSMi ¼
�
17

20
;

9

4
; 8

�
; c0i

SM ¼
�
1

4
;

9

4
; 8

�
;

c00i
SM ¼

�
9

4
;

9

4
; 0

�
: ð3:7Þ

The MS gauge couplings are chosen to satisfy the boundary
conditions
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α−11 ðmZÞ ¼ 59.01;

α−12 ðmZÞ ¼ 29.59;

α−13 ðmZÞ ¼ 8.44; ð3:8Þ

where αi ¼ g2i =4π. These were computed using the values
of αEM ¼ e2=4π ¼ 127.950 and sin2 θ̂W ¼ 0.23129 renor-
malized at mZ [13] as well as

e ¼ gY cos θ̂W ¼ g2 sin θ̂W and g1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
gY; ð3:9Þ

where the latter equation converts the standard model
hypercharge gauge coupling to SU(5) normalization
[14]. The QCD coupling is given directly in Ref. [13].
At the flavor scaleMF, the Yukawa matrices are given by

Eq. (2.10). For a given numerical choice of symmetry-
breaking parameters and operator coefficients, the Yukawa
matrices are run down to the scale mZ and diagonalized. In
addition to the nine fermion mass eigenvalues, three CKM
mixing angles can be compared to experimental data. (In
this work, we do not consider the CKM phase, which is not
constrained by the flavor symmetry.) Equivalently, we take
the predictions of the theory to consist of the nine fermion
masses and the magnitudes of the three CKM elements,
Vus, Vub and Vcb.
To optimize the choice of parameters and operator

coefficients for a given choice of flavor scale MF, we
follow the approach of Ref. [2] and minimize the function

~χ2 ¼
X9
i¼1

�
mth

i −mexp
i

Δmexp
i

�
2

þ
�jV th

usj − jVexp
us j

ΔVexp
us

�
2

þ
�jV th

ubj − jVexp
ub j

ΔVexp
ub

�
2

þ
�jV th

cbj − jVexp
cb j

ΔVexp
cb

�
2

:

þ
X5
i¼1

�
ln juij
ln 3

�
2

þ
X5
i¼1

�
ln jdij
ln 3

�
2

þ
X5
i¼1

�
ln jlij
ln 3

�
2

:

ð3:10Þ

Here, the quantities with the superscript th refer to the
predictions of the theory, obtained as we have described
previously. The quantities with the superscript exp refer to
the experimental data, taken from Ref. [13], and written as
X � ΔX, where the second term is the experimental
uncertainty. Since we have omitted two-loop corrections
and threshold effects, we take this uncertainty into account
in the same way as Ref. [2]: we inflate experimental error
bars to 1% of the central value if the experimental error is
smaller than this. The terms involving ratios of logarithms
in Eq. (3.10) ensure that the operator coefficients remain
near unity [2].
We have called the function we minimize ~χ2 to make

clear that it differs from the conventional χ2 function one
would define in a simple least-squares fit. The latter cannot

be sensibly formulated for the purpose of our analysis. A
conventional χ2 function only involves differences between
the theoretical predicted values and the experimental
measurements. The conventional χ2 function that would
replace our Eq. (3.10) would thus involve the sum of 12
terms that are a function of 19 parameters. This means that
the numbers of degrees of freedom is negative and the
conventional χ2 probability distribution is not defined. This
reflects the fact that we could choose parameter values to
set a conventional χ2 function identically to zero (i.e., there
would be nothing to fit)3 Doing so, however, is not
adequate since this does not prevent a parameter value
from exceeding the limits that assure a valid effective field
theory. For example, a choice of parameters that gives a
very good match to all the experimental central values but
includes an operator coefficient that is, for example, 17.3,
would be in wild conflict with the assumption that we have
a valid effective field theory description. The ~χ2 function,
on the other hand, includes additional terms that give
weight to the theoretical constraint that the effective theory
remain valid and consistent with naive dimensional analy-
sis. Any alternative way of imposing such a theoretical
constraint, which necessarily involves adding additional
terms to the function that is minimized that are independent
of the output predictions of the theory, would not be a
conventional χ2 function with the conventional statistical
interpretation. Hence, we opt for a form that is both simple
and consistent with what has been used in the past literature
[2]. The quantity ~χ2 is useful in that it allows us to quantify
the comparison of one of our fits to another. To interpret the
meaning of a given value of ~χ2 in absolute terms, one then
directly inspects the fit output, as we will discuss later.
Since the ui, di and li are not treated as free parameters, we
might expect qualitatively that a good fit will have a ~χ2 ≈ 8,
corresponding to 12 pieces of experimental data minus 4
unconstrained parameters (ϵ, ϵ0, ρ and ξ). We will see that
this is consistent with our numerical results.
A plot of ~χ2 as a function of the flavor scaleMF is shown

in Fig. 1. The two curves in this figure correspond to the
cases were the coefficient u4 is allowed to float, or is fixed
to zero. [In the latter case, the sum over the ui in the second
line of Eq. (3.10) omits i ¼ 4.] These cases are motivated

3Note that there is one way that one could do a conventional χ2
fit, namely, if one arbitrarily fixes a subset of the model
parameters. This approach, however, is not adequate: Imagine
if one fixed 14 of the 19 model parameters, and fit the 12
predictions of the theory to the data in terms of the 5 free
parameter values. There are over 11,000 different ways of
choosing the set of free parameters in this example and no
physical basis for choosing one set over another, nor for
determining the precise values to which the fixed parameters
should be set. We therefore follow an approach where all the
parameters are allowed to float. Note that in the one case where
we do fix a parameter value, i.e., u4 ¼ 0, there is a specific
physics justification that follows from the model building
considerations discussed in Sec. V.
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by two variants of the Yukawa textures that may arise in
explicit models, as we show in Sec. V. Over the entire range
of MF we find good fits with ~χ2 ≈ 8, but with clear and
monotonic improvement in ~χ2 toward smaller values of
MF. In addition, the case where the operator corresponding
to u4 is absent from the theory (i.e., where u4 is fixed to
zero), which we will see corresponds to more minimal
model-building assumptions, provides a better description
of the data than the case where it is present. We present two
examples of our results in Tables I and II, for MF ¼
106 GeV and 1018 GeV, respectively, both in the case where u4 ¼ 0. The first choice corresponds to a flavor scale

of the same order as the lower bounds from flavor-changing
neutral current processes, as we discuss further in the next
section, while the second is of the same order as the Planck
scale. Interestingly, the latter demonstrates that the model is
consistent with the possibility that there are only two
important physical scales in nature, the weak and the
Planck scales (with flavor associated with the latter) so
that no additional hierarchies or fine-tuning need to be
considered.
Note that Tables I and II correspond to the extreme values

of ~χ2 on the lower curve of Fig. 1 and showdirectly that all the
predictions of the theory arewithin one, or occasionally two,
standard deviations of the experimental data, with model
parameters consistent with naive dimensional analysis. One
can then infer that every point on the lower curve of Fig. 1
provides a reasonably good description of the data in
comparison to these reference points, over the entire range
of flavor scales studied, with a slight preference for lower
values. Similar qualitative conclusions can be drawn about
the upper curve in the same figure, though, for the sake of
brevity, we omit the corresponding fit tables.

IV. DIRECT LOWER BOUNDS ON THE
FLAVOR SCALE

Our results in Fig. 1 indicate that typical T 0 Yukawa
textures provide a good description of charged fermion

FIG. 1. Minimum ~χ2 values as a function of MF, for two
different model assumptions.

TABLE II. Fit parameters and observables forMF ¼ 1018 GeV
with χ2 ¼ 7.762. In this example, the operator corresponding to
u4 is absent from the theory. All masses are given in GeV. (Note
that mt is the MS mass, not the pole mass.)

Best fit parameters

ϵ ¼ 0.131, ϵ0 ¼ 0.004, ρ ¼ 0.02,
ξ ¼ 0.011

u1 ¼ 1.005 d1 ¼ 1.005 l1 ¼ 0.847
u2 ¼ 1.01 d2 ¼ −0.64 l2 ¼ −0.633
u3 ¼ −0.458 d3 ¼ 1.024 l3 ¼ −1.193
u4 ¼ 0 (fixed) d4 ¼ 2.397 l4 ¼ −1.199
u5 ¼ 0.369 d5 ¼ −0.676 l5 ¼ −0.847

Observable Expt. Value [13] Fit Value
mu ð2.3� 0.6Þ × 10−3 1.4 × 10−3

mc 1.275� 0.025 1.277
mt 160� 4.5 160.4
md ð4.8� 0.4Þ × 10−3 4.2 × 10−3

ms ð9.5� 0.5Þ × 10−2 9.8 × 10−2

mb 4.18� 0.03 4.18
me ð5.11� 1%Þ × 10−4 5.11 × 10−4

mμ 0.106� 1% 0.106
mτ 1.78� 1% 1.78
jVusj 0.225� 1% 0.226
jVubj ð3.55� 0.15Þ × 10−3 3.58 × 10−3

jVcbj ð4.14� 0.12Þ × 10−2 4.13 × 10−2

TABLE I. Fit parameters and observables for MF ¼ 106 GeV
with χ2 ¼ 7.021. In this example, the operator corresponding to
u4 is absent from the theory. All masses are given in GeV. (Note
that mt is the MS mass, not the pole mass.)

Best fit parameters

ϵ ¼ 0.182, ϵ0 ¼ 0.005, ρ ¼ 0.029,
ξ ¼ 0.014

u1 ¼ 1.131 d1 ¼ 1.162 l1 ¼ 0.651
u2 ¼ 0.921 d2 ¼ −0.631 l2 ¼ −0.710
u3 ¼ −0.575 d3 ¼ 1.024 l3 ¼ −1.242
u4 ¼ 0 (fixed) d4 ¼ 2.375 l4 ¼ −1.244
u5 ¼ 0.628 d5 ¼ −0.931 l5 ¼ −0.637

Observable Expt. Value [13] Fit Value
mu ð2.3� 0.6Þ × 10−3 1.4 × 10−3

mc 1.275� 0.025 1.277
mt 160� 4.5 160.1
md ð4.8� 0.4Þ × 10−3 4.18 × 10−3

ms ð9.5� 0.5Þ × 10−2 9.84 × 10−2

mb 4.18� 0.03 4.18
me ð5.11� 1%Þ × 10−4 5.11 × 10−4

mμ 0.106� 1% 0.106
mτ 1.78� 1% 1.78
jVusj 0.225� 1% 0.226
jVubj ð3.55� 0.15Þ × 10−3 3.58 × 10−3

jVcbj ð4.14� 0.12Þ × 10−2 4.13 × 10−2
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masses and CKM angles over a wide range ofMF, but with
a preference for values closer to the TeV scale than to the
Planck scale. The lowest possible values of MF are
separately constrained by flavor-changing-neutral-current
(FCNC) processes that receive contributions from heavy
flavor-sector fields. In this section, we provide some
estimates of the lower bounds on MF following from
K0 − K0, D0 −D0, B0 − B0 and B0

s − B0
s mixing. In

addition, we give the branching fractions predicted for
the largest flavor-changing neutral meson decays, which
also violate lepton flavor.
The new physics contributions to the FCNC processes of

interest come from flavon exchange, or more precisely, the
exchange of the physical fluctuations about the flavon vevs.
We identify these as follows:

ϕ ¼
�

φ1

ϵMF þ φ2

�
; Sab ¼

� ~S11 ~S12
~S12 ϵMF þ ~S22

�
;

Aab ¼
�

0 ϵ0MF þ ~A

−ϵ0MF − ~A 0

�
; ð4:1Þ

where the φi, the ~Sij and ~A are complex scalar fields. The
couplings to standard model fermions originate from the
same operators that gave us the Yukawa couplings. As an
example, let us consider the origin of ΔS ¼ 2 operators,
where S here refers to strangeness. We focus on the largest
flavor-changing effects, ones that are present even in the
absence of a rotation from the gauge to mass eigenstate
basis. Let Ψ be a three-component column vector with the
elements d, s and b. Then the flavon-quark-antiquark
vertex in the down sector follows from

L ⊃ −
vffiffiffi
2

p ðΨLYDΨR þ H:c:Þ; ð4:2Þ

where we have set the standard model Higgs field to its vev
v=

ffiffiffi
2

p
, where v ¼ 246 GeV, and where

YD ¼
� Sab=MF þ Aab=MF ϕ=MF

ϕ=MF 1

�
ξ; ð4:3Þ

with the flavons S, A and ϕ given by Eq. (4.1), and ξ is the
dimensionless suppression factor defined earlier. (We
provide an origin for ξ and ρ in the next section.) The
flavon couplings involving fermions of the first two
generations only are given by

d1
vξffiffiffi
2

p
MF

ðdL ~AsR − sL ~AdRÞ

− d2
vξffiffiffi
2

p
MF

ðdL ~S12sR þ sL ~S12dRÞ þ H:c: ð4:4Þ

Four-fermion operators are obtained by integrating out the
heavy fields. It follows that the ΔS ¼ 2 operator that
contributes to the K0 − K0 mass splitting is

OΔS¼2 ¼ −
�
d21
m2

~A

þ d22
m2

~S12

�
v2ξ2

2M2
F
½dLsRdRsL�; ð4:5Þ

where the di are the same order one coefficients defined in
Eq. (2.10). As the flavon masses are not known exactly, we
assume that they are of the same order as the symmetry-
breaking scale associated with the given flavon; in the
present example,

m ~S12
∼ ϵMF and m ~A ∼ ϵ0MF: ð4:6Þ

Moreover, we pick numerical values of ϵ, ϵ0, ρ and ξ that are
characteristic of the values found in our global fits for MF
below ∼1000 TeV:

ϵ ∼ 0.1; ξ ∼ 0.03; ρ ∼ 0.02: ð4:7Þ

We set all order one coefficients equal to one. With these
assumptions, the new physics contribution to the neutral
pseudoscalar meson mass splittings, Δm, may be expressed
as a function of the scale MF. In general, given a ΔF ¼ 2
interaction of the form cO, where c is the operator
coefficient and F represents either strange (S), charm
(C) or bottom (B), the mass splitting is given by

Δm ¼ c
mP0

jhP0jOjP0ij; ð4:8Þ

where P0ðP0Þ is the pseudoscalar meson (anti-meson) in
question, and the states are relativistically normalized. For
an operator of the form

O ¼ 1

4
½hαð1 − γ5Þlα�½hβð1þ γ5Þlβ�; ð4:9Þ

where h, l represent the heavy (light) quark flavors and α, β
are color indices, the matrix element in Eq. (4.8) is given
by [15]

hP0jOjP0i ¼ 1

2
BP0

m4
P0f2P0

ðmh þmlÞ2
; ð4:10Þ

in the case where P0 ¼ K0 or D0. Here, BP0 is the bag
parameter,mP0 and fP0 are the mass and decay constants of
the meson and ml; mh are the masses of the quarks that
make up the meson. For P0 ¼ B0 or B0

s, the matrix element
is given by [16]

hP0jOjP0i ¼ 1

2
BP0f2P0m2

P0

��
mP0

mh þml

�
2

þ 1

6

�
: ð4:11Þ

As computed on the lattice, the bag parameter in Eq. (4.10)
is defined by the expression as shown [15], omitting the
additional term proportional to 1=6 that is retained in
Eq. (4.11); in the case where P0 ¼ K0 or D0, the effect of
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this term is negligible. All masses and mass splittings were
obtained from the Review of Particle Properties [13], all
decay constants were obtained from Ref. [17], the bag
parameters for ΔS ¼ 2 and ΔC ¼ 2 were obtained from
Ref. [15], and the bag parameters for ΔB ¼ 2 were
obtained from Ref. [16]. To estimate the lower bound on
MF, we assume that the experimentally observed mass
splittings are consistent with the standard model predictions
and require that the new physics contributions not exceed
the current 2σ experimental uncertainty. Such an approach
is sufficient for an estimate given the theoretical uncer-
tainties involved in determining the new physics contribu-
tion itself. Our results are shown in Table III. As one might

expect, we obtain the tightest bound from the K0 − K0

mass splitting, which requires MF ≳ 85 TeV.
Flavon exchange between quarks and leptons can also

lead to flavor-changing neutral meson decays. We again
focus on operators that are flavor-changing in the absence
of a rotation of the fields from the gauge to mass eigenstate
basis. The largest effects are shown in Table IV. The
relevant operators are of the form Oijkn

qde ≡ ðliejÞðdkqnÞ,
in the notation of Ref. [18]; in the same reference, bounds
on the operator coefficients are conveniently summarized.
We translate these into bounds on the scale MF which, as
can be seen from Table IV, are much weaker that those
coming from the pseudoscalar meson mass splittings.
Therefore, we also show the predicted branching fractions

with MF set equal to our lower bound from K0 − K0

mixing. It is clear that the predicted branching fractions are
far below the experimental bounds and unlikely to have

observable consequences. Note that we have only consid-
eredCP conserving processes and it is generally known that
bounds on CP violation in the neutral kaon system tends to
give a better bound on the scale of new physics by about an
order of magnitude compared to the CP-conserving FCNC
bounds. Given the smallness of these branching fractions,
this fact does not change our qualitative conclusions, so we
do not pursue that issue further.

V. NONSUPERSYMMETRIC MODELS

In the renormalization group analysis of Sec. III, the
Yukawa matrices Yi are defined by

Lm ¼ vffiffiffi
2

p ψ i
LYiψ

i
R þ H:c:; ð5:1Þ

where i ¼ U,D or E and generation indices are suppressed.
In order to replicate the Yukawa textures of the super-
symmetric models of Refs. [1,2], we assign the right-
handed fermions of the three generations to the T 0 × Z3

representations 20− ⊕ 100. Hence, for example, we would
assign the first two generations of the charge-2=3 quarks
according to ðucL; ccLÞ ∼ ðuR; cRÞ ∼ 20−, where the super-
script “c” refers to charge conjugation; since ψ ¼ iψcTγ0γ2,
this is equivalent to specifying the transformation proper-
ties of the Dirac adjoints ðuL; cLÞ. We then identify the
following transformation properties for the various blocks
of the Yi,

YU;D;E ∼
� ½3− ⊕ 10−� ½20þ�

½20þ� ½100�

�
; ð5:2Þ

i.e., Eq. (2.10) (or Eq. (4.1) in Ref. [2]), which omits any
additional symmetries that may be needed to explain the
suppression factors ρ and ξ. As in the supersymmetric
model, the transformation properties given in Eq. (5.2)
determine the allowed flavon couplings. However, in the
supersymmetric case, Eq. (5.2) dictates the form of terms in
the superpotential, which is required to be a holomorphic
function of the superfields. The absence of this constraint in
the nonsupersymmetric case could lead, in principle, to
additional flavon couplings that are not present in the
supersymmetric theory. However, we see that as far as the

TABLE III. Lower bounds on the flavor scale. See the text for
definitions of our notation.

Mass Splitting Operator MF Lower Bound

K0 − K̄0 −d22 1
m2

~S12

v2ξ2

2M2
F
d̄LsRd̄RsL 85 TeV

B0 − B̄0 −d3d4 1
m2

φ1

v2ξ2

2M2
F
d̄LbRd̄RbL 22 TeV

B0
s − B̄0

s −d3d4 1
m2

φ2

v2ξ2

2M2
F
b̄LsRb̄RsL 14 TeV

D0 − D̄0 −u22 1
m2

~S12

v2ρ2

2M2
F
ūLcRūRcL 14 TeV

TABLE IV. Lower bound on MF for the largest flavor-changing decays. The predicted branching fraction for MF

set equal to the K0-K̄0 mixing bound is also shown.

Decays BF (Ref. [13]) Operator MF Lower Bound BF (MF ¼ 85 TeV)

K0
L → μ̄e <4.7 × 10−12 −d2l2

1
m2

~S12

v2ξ2

2M2
F
ēLμRs̄RdL 9.8 TeV 1.5 × 10−19

B0 → τ̄e <2.8 × 10−5 −d4l3
1

m2
φ1

v2ξ2

2M2
F
ēLτRd̄RbL 0.62 TeV 2.3 × 10−22

B0
s → τ̄μ � � � −d3l4

1
m2

φ2

v2ξ2

2M2
F
s̄LbRμ̄RτL � � � 3.2 × 10−22
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ϕ, S and A flavons are concerned, this is not the case: each
has a nontrivial Z3 charge, which prevents new flavon
couplings at the same order that involve the complex
conjugates of these fields.
In the supersymmetric theories of Refs. [1,2], the addi-

tional suppression factors associated with the parameters ρ
and ξ required the introduction of additional fields and
symmetries. For example, in the simplest unified T 0 × Z3

model of Refs. [1,2], SU(5) charge assignments of the
flavon fields are responsible for forbidding the coupling of
the A and S flavons in YU at lowest order in 1=MF.
However, these couplings emerge via higher-order oper-
ators that involve a flavor-singlet, SU(5) adjoint field
Σ ∼ 24, just as in earlier models based on U(2) flavor
symmetry [4]. The suppression associated with the param-
eter ξ, on the other hand, was assumed to arise via mixing in
the Higgs sector, a reasonable possibility since super-
symmetric models require more than one Higgs doublet.
Here we will also achieve the additional suppression

factors by means of additional fields and symmetries.
However, the additional symmetry will be much smaller
than the product of supersymmetry and a grand unified
gauge group. (The latter, of course, would not be appro-
priate for the nonsupersymmetric case where the gauge
couplings do not unify.) We will simply assume an
additional Z3 factor, so that the flavor group is Gnew

F ¼
T 0 × ðZ3Þ2 Defining one of the elements of the new Z3

factor as ω ¼ expð2iπ=3Þ, the only standard model fields
that transform nontrivially under this symmetry are

H → ωH and tR → ωtR; ð5:3Þ

where H is the standard model Higgs field and tR is the
right-handed top quark. In the standard model,H couples to
YD and YE, while σ2H� couples to YU. Hence, when the
new Z3 symmetry is unbroken, the assignments in Eq. (5.3)
forbid YD and YE entirely, as well as the first two columns
of YU. How one proceeds with the model building depends
on the desired relative sizes of ϵ, ϵ0, ρ and ξ. For example,
for some choices of MF, it is possible to find numerical
results that are consistent with the simple possibility
ϵ ∼ ρ ∼ ξ, up to order one factors. In this case, we assume
the symmetry-breaking pattern

T 0 × ðZ3Þ2 →ϵ ZD
3 →

ϵ0
nothing; ð5:4Þ

where the intermediate ZD
3 factor is exactly the same one as

in the original theory, that transforms all first generation
fields by a phase; in this case, the new Z3 symmetry is
broken at the first step in the symmetry-breaking chain. We
introduce two new flavon fields

ρ0 → ω2ρ0 and ~ϕ → ω ~ϕ; ð5:5Þ

where ~ϕ transforms like ϕ ∼ 20þ under the original flavor
group. With the assumed symmetry breaking pattern, the ρ0
field and one component of the ~ϕ doublet can develop vevs
of order ϵMF. The Z3 charges of these fields now allow us
to rebuild our otherwise forbidden Yukawa matrices as
follows:

(i) For YD and YE, we may generate matrices propor-
tional to the standard form if we replace H by Hρ0;
it follows that hρ0i=MF is identified with the
suppression factor ξ, which we now predict to be
of order ϵ, up to an order one factor. One might
worry that we could obtain a lower-order contri-
bution from operators that do not involve ρ0, but
involve ~ϕ� instead, which also transforms under the
new Z3 factor as ~ϕ� → ω2 ~ϕ�. However, this does
not occur since ~ϕ� ∼ 20− under the original flavor
symmetry, which is not one of the representations
that leads to a lowest order coupling. On the other
hand, the product ρ�0 ~ϕ does couple at the same order
as ρ0ϕ; however, this additional contribution does
nothing to the form of the resulting Yukawa
textures beyond a redefinition of the order one
coefficients.

(ii) For YU, the two-by-two block associated with the
flavons A and S can now be recovered via
operators involving ρ�0A and ρ�0S. Hence, the
parameter we called ρ previously is now pre-
dicted to be of the same order as ξ. In an
analogous way, the 3-1 and 3-2 entries of YU
can couple to the product ρ�0ϕ, but this transforms
in the same way as ~ϕ, which may couple at
lower-order. Hence the canonical YU texture with
an additional suppression in only the upper-left
two-by-two block is obtained. Note that we could
simply omit ~ϕ from the theory and ignore the
corresponding entries in YU; this leads to an
alternative texture in which u4 ¼ 0 in Eq. (2.10),
neglecting corrections from higher-order opera-
tors. This was the alternative possibility consid-
ered in Sec. III. It is worth noting that in the case
where the ~ϕ is omitted from the theory, there is
no longer a necessary connection between the
scale of the additional Z3 breaking and the scale
of the T 0 doublet vev, ϵMF. In this case, we could
vary this additional scale independently so that ρ
and ξ are still comparable, but intermediate in
size between ϵ and ϵ0. This construction would be
compatible with the numerical results in Tables I
and II.

In summary, we have provided an existence proof that
the textures considered in our numerical analysis may
arise in a relatively simple way in a nonsupersymmetric
framework.
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VI. CONCLUSIONS

In this paper, we have reconsidered models of flavor
based on the non-Abelian discrete flavor group T 0 that were
proposed in Ref. [1,2]. We have relaxed two assumptions
made in these studies, that the models are supersymmetric
and that the scale of the flavor sector is around the scale of
supersymmetric grand unification. Our numerical study
found that T 0 models without supersymmetry provide a
viable description of charged fermion masses and CKM
angles for a range of values of the flavor scaleMF. We find
that identification of MF with the reduced Planck scale is a
viable possibility, consistent with a simple picture in which
no new physics appears between the weak and gravitational
scales. However, we also find that our fits improve
monotonically as MF is lowered toward the lower bound
dictated by the constraints from flavor-changing-neutral-
current processes. In the case where MF is as low as
possible, we identified the largest flavor-changing neutral
current effects that result from the exchange of heavy
flavor-sector fields; these could provide indirect probes of
the model. We then showed how the form of the Yukawa

textures that we studied, which were the same as, or closely
related to, those described in Refs. [1,2], can nonetheless
arise in a nonsupersymmetric framework, where there is
only a single Higgs doublet field and where the interactions
do not originate from a superpotential, a holomorphic
function of the fields. The models we described are
arguably simpler than their supersymmetric counterparts;
in the nonsupersymmetric case, we needed only to extend
the original flavor-group by a Z3 factor to obtain the desired
Yukawa textures shown in Eq. (2.10), while avoiding the
well-known complications that come with a grand unified
Higgs sector. Extending the present study to include the
neutrino sector is more model dependent, but would be
interesting for future work.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grant
No. PHY-1519644. In addition, S. V. thanks the William
& Mary Research Experience for Undergraduates (REU)
program for support under NSF Grant No. PHY-1359364.

[1] A.Aranda,C. D.Carone, andR. F. Lebed,U(2) flavor physics
without U(2) symmetry, Phys. Lett. B 474, 170 (2000).

[2] A. Aranda, C. D. Carone, and R. F. Lebed, Maximal
neutrino mixing from a minimal flavor symmetry, Phys.
Rev. D 62, 016009 (2000).

[3] R. Barbieri, G. R. Dvali, and L. J. Hall, Predictions from a
U(2) flavor symmetry in supersymmetric theories, Phys.
Lett. B 377, 76 (1996).

[4] R. Barbieri, L. J. Hall, S. Raby, and A. Romanino, Unified
theories with U(2) flavor symmetry, Nucl. Phys. B493, 3
(1997).

[5] I. Girardi, A. Meroni, S. T. Petcov, and M. Spinrath,
Generalised geometrical CP violation in a T 0 lepton flavour
model, J. High Energy Phys. 02 (2014) 050; M. C. Chen,
J. Huang, K. T. Mahanthappa, and A. M. Wijangco,
Large θ13 in a SUSY SUð5Þ × T 0 model, J. High Energy
Phys. 10 (2013) 112; P. H. Frampton, C. M. Ho, and T.W.
Kephart, Heterotic discrete flavor model, Phys. Rev. D 89,
027701 (2014); Y. H. Ahn, Leptons and quarks from a
discrete flavor symmetry, Phys. Rev. D 87, 113011 (2013);
A. Meroni, E. Molinaro, and S. T. Petcov, Revisiting
leptogenesis in a SUSY SUð5Þ × T 0 model of flavour, Phys.
Lett. B 710, 435 (2012); D. A. Eby and P. H. Frampton,
Nonzero θ13 signals nonmaximal atmospheric neutrino
mixing, Phys. Rev. D 86, 117304 (2012); Dark matter from
binary tetrahedral flavor symmetry, Phys. Lett. B 713,
249 (2012); D. A. Eby, P. H. Frampton, X. G. He, and
T.W. Kephart, Quartification with T 0 flavor, Phys. Rev. D

84, 037302 (2011); M. C. Chen, K. T. Mahanthappa,
and F. Yu, A viable Randall-Sundrum model for quarks
and leptons with T 0 family symmetry, Phys. Rev. D 81,
036004 (2010); M. C. Chen and K. T. Mahanthappa, Group
theoretical origin of CP violation, Phys. Lett. B 681, 444
(2009); P. H. Frampton, T. W. Kephart, and S. Matsuzaki,
Simplified renormalizable T 0 model for tribimaximal
mixing and Cabibbo angle, Phys. Rev. D 78, 073004
(2008); C. Luhn, Discrete anomalies of binary groups,
Phys. Lett. B 670, 390 (2009); G. J. Ding, Fermion mass
hierarchies and flavor mixing from T 0 symmetry, Phys. Rev.
D 78, 036011 (2008); S. Sen, Quark masses in super-
symmetric SUð3ÞC × SUð3ÞW × Uð1ÞX model with discrete
T 0 flavor symmetry, Phys. Rev. D 76, 115020 (2007);
A. Aranda, Neutrino mixing from the double tetrahedral
group T 0, Phys. Rev. D 76, 111301 (2007); P. H. Frampton
and T.W. Kephart, Flavor symmetry for quarks and
leptons, J. High Energy Phys. 09 (2007) 110; M. C.
Chen and K. T. Mahanthappa, CKM and tri-bimaximal
MNS matrices in a SUð5Þ ×ðdÞ T model, Phys. Lett. B
652, 34 (2007); F. Feruglio, C. Hagedorn, Y. Lin,
and L. Merlo, Tri-bimaximal neutrino mixing and quark
masses from a discrete flavour symmetry, Nucl. Phys.
B775, 120 (2007); Erratum, Nucl. Phys. B836, 127(E)
(2010); P. H. Frampton and T. W. Kephart, Simple non-
abelian finite flavor groups and fermion masses, Int. J. Mod.
Phys. A 10, 4689 (1995).

CARONE, CHAURASIA, and VASQUEZ PHYSICAL REVIEW D 95, 015025 (2017)

015025-10

http://dx.doi.org/10.1016/S0370-2693(99)01497-5
http://dx.doi.org/10.1103/PhysRevD.62.016009
http://dx.doi.org/10.1103/PhysRevD.62.016009
http://dx.doi.org/10.1016/0370-2693(96)00318-8
http://dx.doi.org/10.1016/0370-2693(96)00318-8
http://dx.doi.org/10.1016/S0550-3213(97)00134-X
http://dx.doi.org/10.1016/S0550-3213(97)00134-X
http://dx.doi.org/10.1007/JHEP02(2014)050
http://dx.doi.org/10.1007/JHEP10(2013)112
http://dx.doi.org/10.1007/JHEP10(2013)112
http://dx.doi.org/10.1103/PhysRevD.89.027701
http://dx.doi.org/10.1103/PhysRevD.89.027701
http://dx.doi.org/10.1103/PhysRevD.87.113011
http://dx.doi.org/10.1016/j.physletb.2012.03.006
http://dx.doi.org/10.1016/j.physletb.2012.03.006
http://dx.doi.org/10.1103/PhysRevD.86.117304
http://dx.doi.org/10.1016/j.physletb.2012.06.004
http://dx.doi.org/10.1016/j.physletb.2012.06.004
http://dx.doi.org/10.1103/PhysRevD.84.037302
http://dx.doi.org/10.1103/PhysRevD.84.037302
http://dx.doi.org/10.1103/PhysRevD.81.036004
http://dx.doi.org/10.1103/PhysRevD.81.036004
http://dx.doi.org/10.1016/j.physletb.2009.10.059
http://dx.doi.org/10.1016/j.physletb.2009.10.059
http://dx.doi.org/10.1103/PhysRevD.78.073004
http://dx.doi.org/10.1103/PhysRevD.78.073004
http://dx.doi.org/10.1016/j.physletb.2008.11.025
http://dx.doi.org/10.1103/PhysRevD.78.036011
http://dx.doi.org/10.1103/PhysRevD.78.036011
http://dx.doi.org/10.1103/PhysRevD.76.115020
http://dx.doi.org/10.1103/PhysRevD.76.111301
http://dx.doi.org/10.1088/1126-6708/2007/09/110
http://dx.doi.org/10.1016/j.physletb.2007.06.064
http://dx.doi.org/10.1016/j.physletb.2007.06.064
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.002
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.002
http://dx.doi.org/10.1016/j.nuclphysb.2010.04.018
http://dx.doi.org/10.1016/j.nuclphysb.2010.04.018
http://dx.doi.org/10.1142/S0217751X95002187
http://dx.doi.org/10.1142/S0217751X95002187


[6] M. Ibe, S. Matsumoto, and T. T. Yanagida, Flat Higgs
potential from Planck scale supersymmetry breaking, Phys.
Lett. B 732, 214 (2014).

[7] S. Abel, K. R. Dienes, and E. Mavroudi, Towards a non-
supersymmetric string phenomenology, Phys. Rev. D 91,
126014 (2015).

[8] P. W. Graham, D. E. Kaplan, and S. Rajendran, Cosmologi-
cal Relaxation of the Electroweak Scale, Phys. Rev. Lett.
115, 221801 (2015).

[9] S. Dubovsky, V. Gorbenko, and M. Mirbabayi, Natural
tuning: Towards a proof of concept, J. High Energy Phys. 09
(2013) 045.

[10] P. Ramond, R. G. Roberts, and G. G. Ross, Stitching the
Yukawa quilt, Nucl. Phys. B406, 19 (1993).

[11] H. Georgi and C. Jarlskog, A new lepton-quark mass
relation in a unified theory, Phys. Lett. 86B, 297 (1979).

[12] V. Barger, M. S. Berger, and P. Ohmann, Supersymmetric
grand unified theories: Two-loop evolution of gauge and
Yukawa couplings, Phys. Rev. D 47, 1093 (1993).

[13] K. A. Olive et al. (Particle Data Group Collaboration),
Review of particle physics, Chin. Phys. C 38, 090001
(2014) and 2015 update.

[14] M. E. Peskin, Beyond the standard model, arXiv:hep-ph/
9705479.

[15] N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Lubicz, G. C.
Rossi, S. Simula, and C. Tarantino (ETM Collaboration),
S ¼ 2 and C ¼ 2 bag parameters in the standard model and
beyond from Nf ¼ 2þ 1þ 1 twisted-mass lattice QCD,
Phys. Rev. D 92, 034516 (2015).

[16] A. Bazavov et al. (Fermilab Lattice and MILC Collabora-
tions), B0

ðsÞ-mixing matrix elements from lattice QCD for

the standard model and beyond, Phys. Rev. D 93, 113016
(2016).

[17] J. L. Rosner, S. Stone, and R. S. Van de Water, Leptonic
decays of charged pseudoscalar mesons—2015, arXiv:
1509.02220.

[18] M. Carpentier and S. Davidson, Constraints on two-lepton,
two quark operators, Eur. Phys. J. C 70, 1071 (2010).

FLAVOR FROM THE DOUBLE TETRAHEDRAL GROUP … PHYSICAL REVIEW D 95, 015025 (2017)

015025-11

http://dx.doi.org/10.1016/j.physletb.2014.03.041
http://dx.doi.org/10.1016/j.physletb.2014.03.041
http://dx.doi.org/10.1103/PhysRevD.91.126014
http://dx.doi.org/10.1103/PhysRevD.91.126014
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://dx.doi.org/10.1007/JHEP09(2013)045
http://dx.doi.org/10.1007/JHEP09(2013)045
http://dx.doi.org/10.1016/0550-3213(93)90159-M
http://dx.doi.org/10.1016/0370-2693(79)90842-6
http://dx.doi.org/10.1103/PhysRevD.47.1093
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://arXiv.org/abs/hep-ph/9705479
http://arXiv.org/abs/hep-ph/9705479
http://dx.doi.org/10.1103/PhysRevD.92.034516
http://dx.doi.org/10.1103/PhysRevD.93.113016
http://dx.doi.org/10.1103/PhysRevD.93.113016
http://arXiv.org/abs/1509.02220
http://arXiv.org/abs/1509.02220
http://dx.doi.org/10.1140/epjc/s10052-010-1482-4

