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The Sun’s gravitational potential at Earth varies during a year due to varying Earth-Sun distance.
Comparing the results of very accurate measurements of atomic clock transitions performed at different
times in the year allows us to study the dependence of the atomic frequencies on the gravitational potential.
We examine the measurement data for the ratio of the frequencies in Hgþ and Alþ clock transitions and
absolute frequency measurements (with respect to the caesium frequency standard) for Dy, Sr, H, hyperfine
transitions in Rb and H and obtain significantly improved limits on the values of the gravity-related
parameter of the Einstein equivalence principle violating term in the electron sector of the Standard Model
extension Hamiltonian c00 ¼ ð−3.0� 5.7Þ × 10−7 and the parameter for the gravity-related variation of
the fine structure constant κα ¼ ð−5.3� 10Þ × 10−8.
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Theories unifying gravity with other interactions suggest
that local Lorentz invariance (LLI) and the Einstein
equivalence principle (EEP) might not be exact at very
high energy [1]. This can manifest itself at low energy via a
tiny change of atomic frequencies. Obtaining sensitivities
to LLI and EEP violation requires that the frequencies
being compared depend differently on the LLI and EEP
violating parameters. One can search for the LLI or EEP
violation in the electron sector, taking advantage of the
extremely high accuracy of atomic clocks or using a system
where the effect is strongly enhanced. The strongest
constraint on the gravity-related EEP violation has been
obtained with the use of atomic dysprosium [2]. The results
of the measurements are interpreted in terms of the
Standard Model extension (SME) Hamiltonian [3]. The
corresponding term for the electron can be presented in
the form (see, e.g. [4])

δH ¼ c00
2

3

U
c2

p2

2m
; ð1Þ

where c00 is one of the parameters in the SME character-
izing the magnitude of the EEP violation, U is the
gravitational potential, c is the speed of light, and p is
the operator of the electron momentum (p ¼ −iℏ∇).
The Hamiltonian (1) is written in the laboratory refer-

ence frame. The constant corresponding to c00 in the Sun
reference frame is called cTT . The difference between c00
and cTT is small and usually neglected (see, e.g. Ref. [2]).
There are also anisotropic gravity-dependent terms in the
SME Hamiltonian which we do not consider in the present
paper. We should note that the transformation between the
Sun and laboratory reference frames produces sensitivity to
c00 in the SME nongravitational term describing a correc-
tion to the kinetic energy of particles. The nongravitational

limits on cTT are presented in the regularly updated review
[5]. For example, the limit cTT > −5 × 10−21 has been
obtained from astrophysical observations [5,6].
The change of the frequency of atomic transition

between states a and b between two dates in the year is

Δωab ¼ c00
2

3

ΔU
c2

��
p2

2m

�
a
−
�
p2

2m

�
b

�

≡ c00
2

3

ΔU
c2

δKab: ð2Þ

To avoid any confusion with the sign, let us assume that
state a is always above state b on the energy scale so that
ℏωab ¼ Ea − Eb > 0. ΔU in (2) is the change of the Sun’s
gravitational potential due to changing of the Earth-Sun

distance, hp2

2mia is the expectation value of the kinetic energy
of electrons in state a, and δKab is the difference between
the kinetic energies of the states a and b. The maximal
change of the gravitational potential is between January
and July, ΔU=c2≈3.3×10−10 [7,8]. Therefore, comparing
accurate frequency measurements performed in January
and July, or fitting several measurements with a cosine
function with the zero phase in the beginning of January
and with period of one year, one can put constrains on the
parameter c00,

c00 ¼
3

2

Δωab

ðΔU=c2ÞδKab
: ð3Þ

Measuring atomic frequency means comparing it to some
reference frequency, e.g. caesium primary frequency stan-
dard or another microwave or optical reference frequency.
Therefore, we need to consider a ratio of two frequencies.
In the nonrelativistic limit, one can use the virial theorem
(hp2=2mi ¼ −Etotal) and obtain from Eq. (2)
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Δω
ω

¼ −c00
2

3

ΔU
c2

; ð4Þ

i.e. Δω=ω is the same for all electron transitions (except
for the hyperfine transitions where the splitting is due to the
“relativistic” magnetic interaction). This means that, in
the nonrelativistic limit, the effect in the ratio of optical
frequencies is unobservable. Therefore, we should perform
relativistic calculations. It is convenient to introduce
relativistic factors R which describe deviation of the
expectation value of the kinetic energy from the value,
given by the virial theorem,

R ¼ −
ΔEa − ΔEb

Ea − Eb
: ð5Þ

Here ΔEa is the energy shift of the state a due to the kinetic
energy operator. In the nonrelativistic limit, R ¼ 1. In
the relativistic case, R can be larger or smaller than one
and can even be negative. For the relative change of two
frequencies, we now have

Δω1

ω1

−
Δω2

ω2

¼ ðR2 − R1Þ
2

3
c00

ΔU
c2

≡ ðβ1 − β2Þ
ΔU
c2

; ð6Þ

where β ¼ 2
3
Rc00. It is clear from (6) that, for higher

sensitivity, one should compare the frequencies of atomic
transitions with the largest possible difference in the values
of relativistic factors R. It is convenient to rewrite (6) in a
form

c00 ¼
3

2

Δω1=ω1 − Δω2=ω2

ðR2 − R1ÞΔU=c2
: ð7Þ

If we fit the change of atomic frequencies to a cosine
function

∂
∂t ln

ω1ðtÞ
ω2ðtÞ

¼ A cosð2πt=1 yrÞ ð8Þ

and note that maximum change of the frequency ratio
is 2A then we can obtain from (7)

c00 ¼
3A

ðR2 − R1ÞðΔU=c2Þ : ð9Þ

The change of an atomic frequency can also be attributed
to the variation of the fine structure constant α (α ¼ e2=ℏc)

Δω
ω

¼ Kα
Δα
α

≡ 2q
ω

Δα
α

: ð10Þ

Here Kα and q are the electron structure factors
(Kα ¼ 2q=ω) which come from atomic calculations.
Assuming that α can vary with the gravitational potential,
one can write [7]

Δα
α

¼ κα
ΔU
c2

; ð11Þ

where κα is an unknown parameter. Using (10) and (11)
we find

κα ¼
ðΔω=ωÞ

KαðΔU=c2Þ : ð12Þ

For the case of relative change of two frequencies one can
write

κα ¼
Δω1=ω1 − Δω2=ω2

ðKα1 − Kα2ÞðΔU=c2Þ : ð13Þ

Comparing (3) and (12) we see that the same exper-
imental data on the change of atomic frequencies between
January and July can be used to put constrains on the
gravity-related parameter c00 of the EEP violating
Hamiltonian, and variation of the fine structure constant
due to the change of the gravitational potential (κα). In
principle, the parameters c00 and κα may have different
physical origin and have different dependence on the
reference frame (see e.g. Refs. [1,3,7]). However, for
convenience in interpretation of different laboratory experi-
ments, we can relate two parameters to each other using
Eqs. (3), (10), and (11),

c00 ¼
3qκα
δKab

; ð14Þ

or for the case of two frequencies, using (6) and (13),
we get

κα ¼
R2 − R1

Kα1 − Kα2

2

3
c00: ð15Þ

The study of the variation of the fine structure constant α
due to the change of the gravitational potential was a
subject of previous works [7–10]. In this paper, we mostly
focus on the EEP violating term (1).
It was shown in Ref. [4] that the values of the matrix

elements of the kinetic energy operator are very sensitive to
the many-body effects. Therefore, it is convenient to reduce
the calculations to the calculation of the energies where we
have accurate methods for the relativistic many-body
calculations. The relativistic form of the EEP violating
operator can be written as 2EK ¼ cγ0γjpj, where EK is
kinetic energy, c is speed of light, γj are Dirac matrixes, and
p is an operator of electron momentum (see, e.g [11]). The
inclusion of the EEP violating operator into the calculation
can be reduced to the simple rescaling of the kinetic energy
term in the Dirac equation (we use atomic units),�∂f

∂r þ
κ

r
f

�
ð1þ sÞ − ½2þ α2ðϵ − V̂Þ�g ¼ 0;

�∂g
∂r −

κ

r
g

�
ð1þ sÞ þ ðϵ − V̂Þf ¼ 0. ð16Þ
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Here f and g are upper and lower radial components of the
single-electron wave function ψ , which in the spherically
symmetric case can be written in the form

ψκmnðrÞ ¼
1

r

�
fnðrÞΩκmðnÞ

iαgnðrÞΩ−κmðnÞ

�
; ð17Þ

where (n ¼ r=r), s in ((16)) is the rescaling parameter, and
s ¼ 0 corresponds to the Dirac equation with no extra
operator. The value of s should be chosen to ensure the
linear dependence of the energy shift on s. In practice, it
can be taken between 10−4 and 10−3. The potential V̂ in
(16) includes the nuclear and electronic parts. The elec-
tronic part is usually the self-consistent Hartree-Fock-Dirac
potential. Note that the EEP violating perturbation operator
δH (the parameter s) is included into the self-consistent
procedure and produces a correction to the Hartree-Fock
potential (in the linear approximation in δH, this is
equivalent to the random-phase approximation (RPA) with
exchange).
The rest of the calculations are the same as for the energies.

One can use the many-body perturbation theory (MBPT),
configuration interaction (CI), or any other technique suit-
able for a many-electron atom and perform calculations for
several values of the rescaling parameter s, including s ¼ 0.
Then the linear energy shift with respect to s is extracted. The
advantage of this approach comes from the fact that the
accuracy for the energy shift is expected to be similar to
the accuracy for the energy which may be controlled by
the comparison of the calculated and experimental energies.
This is important since a strong sensitivity of the EEP
violating energy shift to the many-body effects makes it
difficult to estimate the accuracy of the calculations.
The actual choice of the computational technique is

dictated by the configuration of external electrons. Table I
lists popular optical clock transitions. At least three different
types of configurations can be found here. For atoms with
one external electron and no core change in the clock
transition (e.g., the 5s − 4d transition in Srþ and 6s − 5d
transition in Ybþ), we use the correlation potential method
with second-order correlation potential [12]. For atoms
with two valence electrons (Alþ, Sr, Yb, Hg), we use the
combination of the configuration interaction (CI) with the
many-body perturbation theory [13,14]. Finally, for the clock
transition involving excitation from the atomic core (the
4f146s2S1=2 − 4f136s22F7=2 transition in Ybþ, the 5d106s
1S0 − 5d96s22D5=2 transition in Hgþ), we use a version of
the CI method for the many-valence-electron atoms [15,16].
The results of the calculations are presented in Table I.

The largest sensitivity can be achieved when monitoring the
ratio of the frequencies of E2 and E3 transitions in Ybþ
(ΔR ¼ 3.38, see Table I). This ratio has been recently
measured to about 10−16 accuracy [17]. However, separate
sets of data dated between January and July (or between
July and December) are not available. For other clock

transitions, the typical value of the measured frequency
ratios is also ∼10−16 (see, e.g. [18,19]), and a typical value
of ΔR is ΔR ∼ 0.2–0.8 (see Table I).
Several extra steps are needed to calculate the relativistic

factors for microwave transitions, e.g. the hyperfine tran-
sition in caesium which serves as the primary frequency
standard. First, the wave functions are found using Eq. (16)
with the rescaled kinetic energy operator. Second, some
standard technique is used to calculate the hyperfine
structure including the many-body corrections. We use
the correlation potential method (see, e.g. [12,20,21]) to
calculate the relativistic factors for the hyperfine structure
of the ground state of all alkali atoms from Li to Cs. This
ab initio method provides accuracy ∼1% for the hyperfine
structure of the alkali atoms. The method includes solving
the Hartree-Fock-Dirac equations in an external hyperfine
filed [equivalent to the random phase approximation
(RPA)] to account for the core polarization effect. The
RPA equations are similar to Eq. (16) but with the right-
hand side containing the hyperfine interaction operator. The
kinetic energy terms in the RPA equations have also been
rescaled. As for the energies, the calculations are done for
several values of the rescaling parameter s.
In the nonrelativistic limit, the effect of the kinetic energy

rescaling results in Rk ¼ 2.5 for the hyperfine splitting.
Indeed, the hyperfine splitting is due to the “relativistic”
magnetic interaction and depends on the kinetic energy
differently from the energies in the electrostatic atomic
potential. The direct analytical calculation based on
Eq. (16) shows that the kinetic energy scales as 1=ð1þ sÞ2
while the hyperfine structure scales as 1=ð1þ sÞ5; i.e., the
ratio of the parameters R is equal to 5=2. This result is
confirmed by the numerical calculations.
There is another effect which we should take into

account in the case of the hyperfine transitions. We should
take the EEP violating interaction in the gauge invariant
form replacing momentum p by p − e=cA, where A is the
electromagnetic vector potential:

δH ¼ c00
2

3

U
c2

ðp − e=cAÞ2
2m

: ð18Þ

TABLE I. Relativistic factors (R) for best optical clock tran-
sitions in atoms and ions.

Atom/Ion Ground state Clock state ℏω [cm−1] R

Alþ 3s2 1S0 - 3s3p 3Po0 37393 1.00
Srþ 5s 2S1=2 - 4d 2D5=2 14556 1.20
Sr 5s2 1S0 - 5s5p 3Po0 14317 1.03
Yb 6s2 1S0 - 6s6p 3Po0 17288 1.20
Ybþ 6s 2S1=2 - 5d 2D3=2 22961 1.48
Ybþ 6s 2S1=2 - 4f 2F7=2 21419 −1.9
Hg 6s2 1S0 - 6s6p 3Po0 37645 1.40
Hgþ 5d106s 2S1=2 - 5d96s2 2D5=2 35515 0.2
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[The relativistic form of the EEP violating operator, which
we actually use in the hyperfine structure calculations,
is proportional to cγ0γjðpj − e=cAjÞ]. This means that
the EEP violating correction gives the additional factor
ð1þ c00 2

3
U
c2Þ to the magnetic interaction. This correction

effectively replaces the relativistic factor Rk for the hyper-
fine interaction, which was obtained by the rescaling of the
kinetic energy, by R ¼ Rk − 1. For example, the non-
relativistic limit for R will be 1.5 (instead of 2.5 for Rk).
To clarify this statement, it is useful to note that Rk scales in
the nonrelativistic limit as 1=ð1þ sÞ5, and the value of the
rescaling parameter s at the physical point is s ¼ 1

2
c00

2
3
U
c2.

The calculated relativistic factors for the hyperfine
transitions are presented in Table II.
The EEP violating correction also affects the magnetic

interaction between atomic electrons and gives the EEP
violating correction to the Breit interaction Hamiltonian.
However, the contribution of the Breit interaction to
energies of optical transitions is negligible.
(a) Alþ vs Hgþ. Figure 1 shows the results of the

measurements of the ratio of frequencies of Alþ
and Hgþ clock transitions performed between
December 2006 and November 2007 in Ref. [22].
Note that we approximately reproduce Fig. 3(A)
of this paper. The measurements are fitted by the
cosine function A cosð2πt=1 yrÞ þ B. The least mean
square fitting leads to A ¼ ð0.26� 0.50Þ × 10−16,
B ¼ ð4.3� 0.4Þ × 10−16. Substituting A into Eq. (9)
and using the relativistic factors R1 ¼ 1 for Alþ and
R2 ¼ 0.2 for Hgþ (see Table I), we obtain

c00 ¼ ð−3.0� 5.7Þ × 10−7: ð19Þ

We can also use the data to extract the limit on the
gravity-related variation of the fine structure constant
κα. Using (15) and the values Kα1 ≈ 0 for Alþ and
Kα2 ≈ −3 for Hgþ [23], we get

κα ¼ ð5.3� 10Þ × 10−8: ð20Þ

This represents an improvement of 5 times the
previous result with dysprosium [24] (see below).

(b) Dysprosium. The dysprosium atom has a unique pair
of degenerate states of the opposite parity, state A
4f106s5d, J ¼ 10 and state B 4f95d26s, J ¼ 10,
both having energy EA;B ¼ 19797.96 cm−1 above
the ground state. Due to the extremely small energy

interval between these states, many effects relevant
to new physics are strongly enhanced [25–27]. The
transition between these states was used to study parity
nonconservation [28], time variation of the fine struc-
ture constant [2,9,24], LLI and EEP violation [2,8],
and the search for dark matter [29]. The latest study of
the coupling of the variation of the fine structure
constant to gravity reveals [24]

κα ¼ ð−5.5� 5.2Þ × 10−7: ð21Þ

We can use this result together with Eq. (14) to
obtain the value of c00. To do so, we also need to
knowΔq and δKab. Both values come from the atomic
calculations. The sensitivity coefficients q for states A
and B of Dy (Δq ¼ qA − qB) were calculated in
Refs. [16,30]. The values are qA ¼ 7952 cm−1,
qB ¼ −25216 cm−1. Both values are stable and reli-
able. The value of δKab was calculated in Ref. [2].
However, we believe that this number is inaccurate.
Therefore, we performed new, more accurate calcu-
lations and performed several tests to be sure that
there are no mistakes. Our new calculations use the
configuration interaction (CI) method in the Hartree-
Fock-Dirac basis. For the ten valence electrons, we
obtain hp2=2miA ¼ 57.632 a.u., and hp2=2miB ¼
57.803 a.u., leading to δKab ¼ 0.174 a.u. These values
agree well with what is expected from the virial
theorem linking kinetic and total energies. The CI
energy of ten external electrons of Dy is ECI

A;B¼−61.89
a.u. for both states A and B. The small difference
between jECIj and hp2=2mi can be attributed to the
relativistic effects. In contrast, the values calculated

TABLE II. Relativistic factors for the hyperfine clock
transitions in atoms.

H Li Na K Rb Cs

Z 1 3 11 19 37 55
R 1.50 1.50 1.51 1.53 1.66 1.89

FIG. 1. Fit by A cosðωtÞ þ B the results of the measurements of
the frequency ratio for the clock transitions in Alþ and Hgþ [22]
between November 2006 and November 2007.
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and used in Ref. [2] are too large and strongly disagree
with the virial theorem. In the end, our present value
for δKab is 43 times smaller (with the minus sign)
than in Ref. [2]. To exclude any mistake in the new
calculation we performed it using two different meth-
ods. One is via the energy shift due to the rescaling
procedure [see Eq. (16)], and the other is as a value of
the matrix element of the EEP violating operator. The
results are in perfect agreement.

Substituting the numbers into Eq. (14), we obtain

c00 ¼ ð6.4� 6.0Þ × 10−7: ð22Þ
This result agrees with the result of Ref. [2] if the latter
is corrected by a factor of 43.

(c) Hgþ and Sr optical clocks, Rb and hydrogen. Fre-
quency of the electric quadrupole clock transition in
Hgþ at ℏω ¼ 35515 cm−1 (last line of Table I) was
measured against the caesium clock to a very high
precision in [31]. The limit on the modulated change
of the frequency during a year was found to be

ΔðωHgþ=ωCsÞ
ðωHgþ=ωCsÞ

¼ ð0.7� 1.2Þ × 10−15: ð23Þ

Substituting this number into Eq. (7) and using
the values R ¼ 0.2 for Hgþ from Table I, the value
R ¼ 1.89 for Cs from Table II and the value for the
change of the Sun’s gravitational potential ΔU=c2 ≈
3.3 × 10−10 [7,8], we get

c00 ¼ ð1.8� 3.2Þ × 10−6: ð24Þ

In Ref. [32], the values of parameters β [see Eq. (6)] have
been measured using a comparison of the frequencies of the
1S0-3Po0 clock transition in Sr against the caesium primary
frequency standard. The result reads βðSrÞ − βðCsÞ ¼
ð6.6� 9.1Þ × 10−7. Using (6) and (7) and the values of
R from Tables I and II, we obtain

c00 ¼ ð1.4� 2.0Þ × 10−6: ð25Þ

In Refs. [33,34], the values of β have beenmeasured using
comparisons of the frequencies of the hyperfine transitions
Rb/Cs and H/Cs: βðRbÞ − βðCsÞ ¼ ð7.4� 6.5Þ × 10−7 and
βðHÞ − βðCsÞ ¼ ð0.1� 1.4Þ × 10−6. Again, using (6) and
(7) and the data from Table II, we obtain

c00 ¼ ð4.8� 4.2Þ × 10−7; c00 ¼ ð0.4� 5.4Þ × 10−6

ð26Þ
correspondingly. The results are summarized in Table III.
We see that the best limits provided by the current

method on the value of c00 for the electron come from the
frequency measurements in Alþ vs Hgþ (20) and Dy vs Cs
(22), which stand at the 10−7 level. The current fractional
accuracy for the Alþ vs Hgþ measurements is 10−16 [22].
Since optical clocks approach a fractional accuracy of
10−18 (see, e.g. [35–38]), further progress in limiting the
gravity-dependent EEP violating interaction is possible.
Many existing measurements can probably be used for this
purpose if the date of the measurements is known.
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