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Supersymmetric extensions of the standard model contain additional heavy neutral Higgs bosons that are
coupled to heavy scalar top quarks (stops). This system exhibits interesting field theoretic phenomena when
the Higgs mass is close to the stop-antistop production threshold. Existing work in the literature has examined
the digluon-to-diphoton cross section near threshold and has focused on enhancements in the cross section
that might arise either from the perturbative contributions to the Higgs-to-digluon and Higgs-to-diphoton
form factors or from mixing of the Higgs boson with stoponium states. Near threshold, enhancements in the
relevant amplitudes that go as inverse powers of the stop-antistop relative velocity require resummations of
perturbation theory and/or nonperturbative treatments. We present a complete formulation of threshold effects
at leading order in the stop-antistop relative velocity in terms of nonrelativistic effective field theory. We give
detailed numerical calculations for the case in which the stop-antistop Green’s function is modeled with a
Coulomb-Schrödinger Green’s function. We find several general effects that do not appear in a purely
perturbative treatment. Higgs-stop-antistop mixing effects displace physical masses from the threshold
region, thereby rendering the perturbative threshold enhancements inoperative. In the case of large Higgs-
stop-antistop couplings, the displacement of a physical state above threshold substantially increases its width,
owing to its decay width to a stop-antistop pair, and greatly reduces its contribution to the cross section.
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I. INTRODUCTION

In extensions of the standard model (SM), new heavy
particles typically appear. For example, supersymmetric
extensions of the SM include heavy stop quarks (stops),
which are the supersymmetric partners of a top quark [1–5].
A stop quark and a stop antiquark (antistop) can bind to
form a spectrum of stoponium states. The decays of these
states into two photons potentially provide a clean signal
for their detection. However, stoponium states typically
have rather small gluon-fusion cross sections times branch-
ing ratios into two photons [6–12].
Extensions of the SM can also contain heavy Higgs

bosons [13]. The presence of new Higgs doublets is
motivated by weak-scale extensions of the SM that aim
to address the disparity between the electroweak and
Planck scales and to provide explanations of the origins
of flavor and of the matter-antimatter asymmetry. In these
theories, the SM description is recovered in the so-called
decoupling regime, in which the masses of the heavy Higgs
bosons become large. In such a regime, the heavy neutral

Higgs bosons may decay into pairs of third-generation
fermions, including top quarks. Owing to the presence of
these tree-level decays, the branching ratio of loop-induced
decay processes is suppressed, making it difficult to
observe the decay of the heavy Higgs boson to two
photons.
The interplay of a heavy stop-antistop system with a

heavy Higgs boson whose mass is near the stop-antistop
production threshold results in interesting and intricate new
phenomena. Loop-induced processes may be enhanced in
the presence of heavy quarks or squarks that are strongly
coupled to the heavy Higgs boson. In supersymmetric
extensions of the SM, the dimensionful coupling of stops
to the heavyHiggs bosons is governed by theHiggsinomass
parameter μ. Loop-induced processes may be significantly
modified if the heavy quarks or squarks have masses that
are comparable to that of the heavy Higgs boson. The
modification to loop-induced processes may be especially
important if there is a production threshold for heavy
particle-antiparticle pairs that is close to theHiggsmass [14].
Near threshold, QCD perturbation-expansion contribu-

tions of relative order n may receive 1=vn enhancements,
where v is half of the relative velocity between the stop and
the antistop in the stop-antistop center-of-momentum (CM)
frame. Such enhanced contributions are typically propor-
tional to αns ðm~tvÞ=vn, where αs is the strong-interaction
running coupling and m~t is the stop-quark mass. The
presence of these enhanced contributions requires a resum-
mation of the perturbative contributions, which, among
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other things, takes into account the formation of stop-
antistop bound states.
The issue of gluon-fusion Higgs production and decay to

diphotons at the stop-antistop production threshold has
been addressed recently in Ref. [15]. The authors of
Ref. [15] recognized the possibility that Higgs-stoponium
mixing and the formation of stop-antistop bound states
could have a significant effect on the gg → H → γγ rate.
They pointed out, as is stressed in Ref. [16], that stoponium
effects lead to Higgs-digluon (Hgg) and Higgs-diphoton
(Hγγ) form factors that are enhanced relative to the form
factors that are obtained in fixed-order perturbative
calculations. We note, though, that the description in
Refs. [15,16] does not explicitly account for all of the
Higgs-stoponium mixing effects [6].
In this article, we provide a detailed analysis of the

interplay between a heavy Higgs boson and a heavy stop-
antistop pair for Higgs masses that are close to the stop-
antistop production threshold.1 We take into account
threshold enhancements to the stop-antistop amplitudes
by means of the analogues for scalar quarks of the effective
field theories nonrelativistic QED (NRQED) [17] and
nonrelativistic QCD (NRQCD) [18,19]. In this framework,
we are also able to give a description of Higgs-stop-antistop
mixing near threshold that incorporates fully the effects that
are contained in the stop-antistop Green’s function.2

In order to make contact with recent numerical work on
the Higgs-stop-antistop system, we choose, in our numeri-
cal work, a stop mass of 375 GeV, and we assume that the
Higgs mass is near the stop-antistop production threshold,
which is 750 GeV. Much of the recent numerical work in
the literature was motivated by initial results from the
ATLAS and CMS experiments that showed excesses in
rates for the process pp → γγ at diphoton masses around
750 GeV [20,21]. (For an extensive list of theoretical work
that is related to this signal, see Ref. [22].) However, we
emphasize that our work is not tied to any particular
phenomenological model and that it is aimed at under-
standing the general features of a Higgs-stop-antistop
system near threshold.

We find that effects of Higgs-stop-antistop mixing go
beyond the modification of the Hgg and Hγγ form factors
and significantly change the diphoton production rate near
the stop-antistop threshold with respect to the rate that would
be obtained from the simple addition of the Higgs and
stoponium contributions. For Higgs masses near threshold,
we find that several mechanisms that arise from Higgs-stop-
antistop mixing suppress the diphoton rate relative to the
rates that are obtained in perturbative calculations: (1) for
small stop widths, mixing significantly increases the width
of the narrowest physical state relative to the width of the
unmixed stoponium state; (2) mixing shifts masses of
physical states away from the region in which form-factor
enhancements occur; (3) mixing shifts some physical-state
masses above threshold, where, in the case of strong Higgs-
stop-antistop couplings, the states develop large decay
widths into stop-antistop pairs; (4) for strong Higgs-stop-
antistop couplings, the mixing changes the heights and
widths of the physical resonances that lie below threshold.
In some of our numerical work, we employ rather large

values of the Higgs-stop-antistop coupling. In some spe-
cific models of the Higgs-stop-antistop system, such large
values of the coupling could lead to the presence of color-
symmetry-breaking minima in the potential for the vacua
[23–25]. Since, in our work, we are not focused on any
specific model realization of the Higgs-stop-antistop sys-
tem, we will not study these possible constraints. However,
they would have to be taken into account in the construc-
tion of detailed models.
The remainder of this article is organized as follows. In

Sec. II, we describe the effective-field-theory approach that
we employ. We also give formulas for the gg → γγ
amplitude that account fully for the Higgs-stop-antistop
mixing. Section III contains a discussion of a simplified
model in which the stop-antistop states are replaced by a
single Breit-Wigner resonance. That model exhibits a
number of the features of the full theory. In Sec. IV, we
present and discuss our numerical results for the gg → γγ
amplitude and cross section as a function of the Higgs
mass, relative to the stop-antistop threshold. Section V
contains our conclusions.

II. EFFECTIVE-FIELD-THEORY APPROACH

A. NRQED/NRQCD analogues for scalar quarks

We wish to compute the amplitude for gg → γγ in the
presence of a Higgs boson with mass mH that couples to a
heavy stop quark and a heavy antistop quark, each of which
have massm~t. We are concerned with the situation in which
mH is near 2m~t, the threshold for stop-antistop production.
Because the amplitude is computed near threshold, there
can be important effects from the binding or near binding of
the stop-antistop pair that are not captured in fixed-order
perturbation theory. It is convenient to take these effects
into account by making use of the analogues for scalar

1In the cases of SM extensions that contain more than one stop
quark, we will assume that the heaviest stop mass eigenstate is
significantly heavier than the lightest one. This implies that the
Higgs mass is far below the threshold for production of a heaviest
stop and a heaviest antistop. Therefore, the heaviest stop
contribution becomes subdominant with respect to the lightest-
stop contribution. We will consider the heaviest stop contribution
to be a perturbation to the rates that are computed in this work. It
should be taken into account in precision studies. For large values
of the trilinear Higgs-stop-antistop coupling, the coupling of the
heavy stop to the Higgs boson is of the same order as and
opposite in sign to the coupling of the lightest stop to the Higgs
boson. Hence, the contribution of the heavy stop to the diphoton
rate may be non-negligible in the regime of strong Higgs-stop-
antistop coupling.

2In Ref. [14], the effects of mixing between the Higgs boson
and discrete stoponium resonances were considered.
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quarks of the effective field theories NRQED [17] and
NRQCD [18,19].3

We will carry out the effective-field-theory computation
at the leading nontrivial order in the heavy stop velocity v
in the stop-antistop CM frame, where v is given by

v ¼ jpj=m~t ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m~tE

p
=m~t: ð1Þ

Here, p is the 3-momentum of the stop in the stop-antistop
(or γγ) CM frame,

E ¼
ffiffiffî
s

p
− 2m~t ð2Þ

is the nonrelativistic CM energy of the stop-antistop
system,

ffiffiffî
s

p
is the partonic CM energy,ffiffiffî

s
p

¼ mγγ; ð3Þ

and mγγ is the γγ mass.
The effective field theory is an expansion in powers of v.

Hence, our calculation should be valid as long as v is much
less than 1. We expect corrections to our calculation of the
gg → γγ amplitude to be of relative order v2.
The heavy stop part of the effective Lagrangian density

that we will use, which is valid at the leading order in v, is

L~t ~t ¼ ψ†ð2im~tD0 þ D2Þψ þ χ†ð2im~tD0 þ D2Þχ − iCH~t ~tHðψ†χ þ χ†ψÞ

þ ði=2ÞCgg~t ~t
1

N2
c − 1

ðψ†χ þ χ†ψÞGa
μνGaμν þ ði=2ÞCγγ~t ~tðψ†χ þ χ†ψÞFμνFμν

þ ði=2ÞCggH
1

N2
c − 1

HGa
μνGaμν þ ði=2ÞCγγHHFμνFμν

− iC~t ~t H~t ~t
1

Nc
ψ†χχ†ψ þ iImT~t ~t→gg→~t ~t

1

Nc
ψ†χχ†ψ ; ð4Þ

where m~t is the stop pole mass, ψ is the field that
annihilates a stop, χ is the field that creates an antistop,
Ga

μ is the gluon field with adjoint color index a, Ga
μν is the

gluon field strength with adjoint color index a, Aμ is the
electromagnetic field, and Fμν is the electromagnetic field
strength. The covariant derivative contains both the electro-
magnetic field and the gluon field:

Dμ ¼ ∂μ − iee~tAμ − igGa
μta; ð5aÞ

where e is the electromagnetic coupling, e~t is the stop-
quark charge, g is the strong-interaction coupling, and ta is
an SUð3Þ matrix in the adjoint representation that is
normalized to

Trtatb ¼ TRδab ¼ ð1=2Þδab: ð5bÞ

In the calculations in this paper, we ignore the couplings of
stops and antistops to the electromagnetic field, except in
the annihilation of a stop-antistop pair into two photons.
The Ci’s are short-distance coefficients, which will be
determined by matching the effective theory with full QED
and full QCD at the stop-antistop threshold. The short-
distance coefficient C~t ~t H~t ~t takes into account the t-channel
exchange of the heavy Higgs boson between the stop and

the antistop. The quantity ImT~t ~t→gg→~t ~t is also a short-
distance coefficient that accounts for decays of a stop-
antistop pair into two gluons. It is given by (−2) times the
imaginary part of the contribution to the stop-antistop
forward T-matrix that contains a two-gluon intermediate
state, evaluated at the stop-antistop threshold. Note that,
because we are working at leading order in v, there are only
S-wave couplings to the stop-antistop pairs.

B. Computation of the short-distance coefficients

In this section, we compute the short-distance coefficients
in Eq. (4) by matching the effective theory to the full theory.
Because our focus is on the formulation of the calculation
and on the qualitative features of the threshold physics, we
work at the lowest nontrivial order in the electromagnetic
and strong couplings. Therefore, one should take care in
comparing our numerical results with those in the literature,
which often are performed at next-to-leading order, and,
therefore, include two-loop effects in the couplings of the
Higgs boson to digluons and diphotons [28–31].4
We compute the short-distance coefficients that appear at

the Born level by evaluating the corresponding amplitude
in the full theory at the stop-antistop threshold. We compute

3In Ref. [26], an effective field theory for stoponium systems
was developed, and a resummation of threshold logarithms in the
stoponium production cross section was carried out by making
use of soft-collinear effective theory [27]. However, the formal-
ism in Ref. [26] does not address the possibility of stoponium-
Higgs mixing.

4An expansion of in powers of αs is valid for the short-distance
coefficients, since they contain no 1=v enhancements. However,
in the computation of the effective-field-theory amplitudes in
Sec. II C, the expansion in powers of αs can fail because there are
contributions to the stop-antistop Green’s function in order αns
that are enhanced by factors 1=vn. We compute these contribu-
tions to all orders in αs.
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the short-distance coefficients that appear at one-loop level
by evaluating the one-loop amplitude in the full theory at
threshold and subtracting the corresponding one-loop
amplitude in the effective theory.
The short-distance coefficients Cgg~t ~t, Cγγ~t ~t, and C~t ~t H~t ~t

are easily obtained by carrying out Born-level calculations
in full QCD at the stop antistop threshold. They are
given by

Cgg~t ~t ¼ 8iπαsðm~tÞ
TRffiffiffiffiffiffi
Nc

p ; ð6aÞ

Cγγ~t ~t ¼ 8iπαe2~t
ffiffiffiffiffiffi
Nc

p
; ð6bÞ

C~t ~t H~t ~t ¼ iNc
g2H~t ~t

4m2
~t

; ð6cÞ

where α ¼ e2=ð4πÞ, e~t is the stop electromagnetic charge,
αs ¼ g2=ð4πÞ, and Nc ¼ 3 is the number of SUð3Þ colors.
We have chosen the effective-field-theory factorization
scale to be m~t, which accounts for the argument of αs.
We have also taken the color-singlet projection of the stop-
antistop pairs, making use of the projector

Pij ¼ δij=
ffiffiffiffiffiffi
Nc

p
; ð7Þ

where i and j are the squark and antiquark color indices,
respectively.
The short-distance coefficient CH~t ~t is simply the Born-

level Higgs-stop-antistop coupling, gH~t ~t, rescaled by a
factor of

ffiffiffiffiffiffi
Nc

p
:

CH~t ~t ¼ i
ffiffiffiffiffiffi
Nc

p
gH~t ~t ≡ −i

ffiffiffiffiffiffi
Nc

p
κm~t; ð8Þ

where we have normalized the Higgs coupling to stops in
terms of the stop mass, with κ being an adjustable
parameter.
The short-distance coefficients CggH and CHγγ are

generated by quark loops and stop loops. We take into
account the b-quark, t-quark, and stop loops, which give
the most important contributions. In full QCD, we have the
amplitude [32–34]

iMgg→HðŝÞ ¼
�
ϵ1 · ϵ2 −

ϵ1 · k2ϵ2 · k1
k1 · k2

�
δabAgg→HðŝÞ;

ð9Þ

where

Agg→HðŝÞ ¼
iαs
8π

TFŝ

�
2gHbb

mb
A1=2ðτbÞ þ

2gHtt

mt
A1=2ðτtÞ þ

gH~t ~t

m2
~t

A0ðτ~tÞ
�
; ð10Þ

A1=2ðτÞ ¼ 2½τ þ τð1 − τÞfðτÞ�; ð11aÞ

A0ðτÞ ¼ −τ½1 − τfðτÞ�; ð11bÞ

fðτÞ ¼
8<
:

arcsin2ð1= ffiffiffi
τ

p Þ τ ≥ 1;

− 1
4

�
log

�
1þ ffiffiffiffiffiffi

1−τ
p

1−
ffiffiffiffiffiffi
1−τ

p
�
− iπ

�
2

τ < 1;
ð12Þ

and

τb ¼
4m2

b

ŝ
; ð13aÞ

τt ¼
4m2

t

ŝ
; ð13bÞ

τ~t ¼
4m2

~t

ŝ
: ð13cÞ

Here, ðk1; ϵ1Þ and ðk2; ϵ2Þ are the (momentum, polariza-
tion) of the initial gluons, a and b are the gluon color
indices, mb and eb are the bottom-quark mass and electric
charge, mt and et are the top-quark mass and electric
charge,

gHbb ¼
gEWmb

2mW
tan β; ð14aÞ

gHtt ¼ −
gEWmt

2mW tan β
; ð14bÞ

gH~t ~t ¼ −κm~t; ð14cÞ

gEW is the electroweak coupling, mW is the W-boson mass,
tan β is the ratio of heavy and light Higgs vacuum expect-
ation values in a supersymmetric model, and we have listed
the values of the couplings in the heavy-Higgs-boson
decoupling limit, ignoring small deviations of the couplings
from those values.
Similarly, in the case of H → γγ, we have the amplitude

[34–37]
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iMH→γγðŝÞ ¼
�
ϵ3 · ϵ4 −

ϵ3 · k4ϵ4 · k3
k3 · k4

�
AH→γγðŝÞ; ð15Þ

where

AH→γγðŝÞ ¼
iα
8π

Ncŝ

�
2gHbb

mb
e2bA1=2ðτbÞ þ

2gHtt

mt
e2~t A1=2ðτtÞ þ

gH~t ~t

m2
~t

e2t A0ðτÞ
�
; ð16Þ

and ðk3; ϵ3Þ and ðk4; ϵ4Þ are the (momentum, polarization) of the final photons.

The corresponding quantities in the effective theory are
produced by the stop loop that is generated by the CH~t ~t,
Cgg~t ~t, and Cγγ~t ~t terms in the effective action. In the
modified-minimal-subtraction (MS) scheme, we obtain

Aeff
gg→H ¼ Cgg~t ~tCH~t ~t

−i
16πm~t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m~tðEþ iϵÞ

p
; ð17aÞ

Aeff
H→γγ ¼ Cγγ~t ~tCH~t ~t

−i
16πm~t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m~tðEþ iϵÞ

p
: ð17bÞ

The effective-theory amplitudes in Eq. (17) vanish at the
stop-antistop threshold (E ¼ 0). Therefore, the short-
distance coefficients CggH and CγγH are obtained simply
by evaluating Agg→H and AH→γγ at stop-antistop threshold:

CggH ¼ Agg→Hð4m2
~t Þ; ð18aÞ

CγγH ¼ AH→γγð4m2
~t Þ: ð18bÞ

Finally, as we have mentioned, the short-distance coeffi-
cient ImT~t ~t→gg→~t ~t is obtained by computing the contribu-
tion from a two-gluon intermediate state to the imaginary
part of the stop-antistop forward T-matrix, evaluated at the
stop-antistop threshold. By making use of unitarity, one can
obtain this quantity simply from a cut diagram. The result is

2ImT~t ~t→gg→~t ~t ¼
1

π
jCgg~t ~tj2: ð19Þ

C. Computation of the gg → γγ amplitude

In the nonrelativistic effective theory, the stop-antistop
interactions can be taken into account by considering the
stop-antistop Green’s function

G~t ~tðŝÞ ¼ PijPkl

Z
dx0eið

ffiffî
s

p
−2m~t ~tÞx0h0jχ†i ðx0; 0Þψ jðx0; 0Þψ†

kð0; 0Þχlð0; 0Þj0i: ð20Þ

Note that the fields in the Green’s function are evaluated at
zero spatial separation and that color-singlet projections of
the initial stop and antistop and the final stop and antistop
have been taken by making use of the projectors PijPkl
[Eq. (7)]. The Green’s function contains all of the effects of
the 1=vn enhancements that we have mentioned.
The Green’s function G~t ~tðŝÞ can be evaluated in a

systematic expansion in powers of v by considering a
reformulation of the nonrelativistic effective theory in terms
of an effective theory that is the scalar-squark analogue of
potential NRQCD [38]. In this effective theory, the Green’s
function can be evaluated by considering interactions of the
stop and antistop through nonrelativistic potentials. (The
potentials scale with definite powers of v.) The 1=vn

enhancements arise from n exchanges of heavy-stop-anti-
stop potentials. A resummation of the potential exchanges,
through the use of the Schrödinger equation, brings the
1=vn enhancements under control. The resummation of the
potential exchanges takes into account, among other things,
the formation of stop-antistop bound states. The potentials
incorporate both perturbative and nonperturbative effects. If
m~tv is sufficiently large, they are well approximated by

perturbative expressions, but they are also valid when m~tv
is in the nonperturbative regime.
We can take into account the four-fermion terms in the

effective action that are proportional to C~t ~t H~t ~t and
ImT~t ~t→gg→~t ~t by replacing G~t ~tðŝÞ with

~G~t ~tðŝÞ ¼
1

G−1
~t ~t ðŝÞð0; 0; EÞ − C~t ~t H~t ~t þ ImT~t ~t→gg→~t ~t

: ð21Þ

In the case of a stoponium state, this replacement accounts
for the decay width into two gluons, which, for small values
of the stop width, is the dominant stoponium decay width.5

5For large values of the coupling of the SM-like Higgs boson
to a stop-antistop pair, the stoponium state can also decay with a
significant rate into a pair of 125 GeV Higgs bosons. This occurs,
for instance, in the minimal supersymmetric standard model, for
large values of the stop mixing parameters [39]. In our work, we
have assumed that this coupling takes moderate values and,
consequently, that the decay width of the stoponium state into
pairs of SM-like Higgs bosons is much smaller than its decay
width into gluon pairs.
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The coupling of the Higgs-boson to a stop-antistop pair
leads to several contributions to the gg → γγ amplitude. We
write these contributions to the amplitude as

iMðgg→ γγÞi ¼
�
ϵ1 · ϵ2 −

ϵ1 · k2ϵ2 · k1
k1 · k2

�

×
�
ϵ3 · ϵ4 −

ϵ3 · k4ϵ4 · k3
k3 · k4

�
δabAiðgg→ γγÞ:

ð22Þ

There is a contribution in which the initial gg pair
transitions to the Higgs boson and the Higgs boson
transitions to a γγ pair:

A1ðgg → γγÞ
¼ CggH½SHðŝÞ þ SHðŝÞCH~t ~t

~G~t ~tðŝÞCH~t ~tSHðŝÞ þ…�CγγH

ð23aÞ

¼ CggH
1

S−1H ðŝÞ − C2
H~t ~t

~G~t ~tðŝÞ
CγγH ð23bÞ

¼ CggH
i

ŝ −m2
H þ imHΓH − iC2

H~t ~t
~G~t ~tðŝÞ

CγγH: ð23cÞ

Here,

SH ¼ i
ŝ −m2

H þ imHΓH
ð24Þ

is the Higgs propagator (that is, the Higgs Green’s function
in the absence of Higgs-stop-antistop interactions), mH is
the Higgs pole mass, and ΓH is the Higgs width.
There is also a contribution in which the initial gg state

transitions to a Higgs boson, which transitions to a stop-
antistop pair, which transitions to a γγ pair:

A2ðgg → γγÞ ¼ CggH
i

ŝ −m2
H þ imHΓH − iC2

H~t ~t
~G~t ~tðŝÞ

× CH~t ~t
~G~t ~tðŝÞCγγ~t ~t: ð25Þ

There is a contribution in which the initial gg pair
transitions to a stop-antistop pair, which transitions to a
Higgs boson, which transitions to a γγ pair:

A3ðgg → γγÞ ¼ Cgg~t ~t
~G~t ~tðŝÞCH~t ~t

×
i

ŝ −m2
H þ imHΓH − iC2

H~t ~t
~G~t ~tðŝÞ

CγγH:

ð26Þ
There is a contribution in which the initial gg pair

transitions to a stop-antistop pair, which transitions to a
Higgs boson, which transitions to a stop-antistop pair,
which transitions to a γγ pair:

A4ðgg → γγÞ ¼ Cgg~t ~t
~G~t ~tðŝÞCH~t ~t

i

ŝ −m2
H þ imHΓH − iC2

H~t ~t
~G~t ~tðŝÞ

CH~t ~t
~G~t ~tðŝÞCγγ~t ~t: ð27Þ

Finally, there is a contribution that does not involve the
Higgs boson:

A5ðgg → γγÞ ¼ Cgg~t ~t
~G~t ~tðŝÞCγγ~t ~t: ð28Þ

We note that the amplitudes A4 and A5 can be combined
to give a simpler expression:

A0
4ðgg → γγÞ ¼ A4ðgg → γγÞ þ A5ðgg → γγÞ ð29aÞ

¼ Cgg~t ~t
1

~G−1
~t ~t ðŝÞ − C2

H~t ~tSHðŝÞ
Cγγ~t ~t ð29bÞ

¼ Cgg~t ~t
~G~t ~tðŝÞ

×
ŝ −m2

H þ imHΓH

ŝ −m2
H þ imHΓH − iC2

H~t ~t
~G~t ~tðŝÞ

Cγγ~t ~t:

ð29cÞ
The form of A0

4ðgg → γγÞ in Eq. (29b) is the same as the
form of A1ðgg → γγÞ in Eq. (23b), but with the roles of the
Higgs boson and the stop-antistop pair interchanged.

We also note that the total amplitude

Atotðgg → γγÞ ¼
X5
i¼1

Aiðgg → γγÞ ð30Þ

can be obtained from the matrix expression

Atotðgg→ γγÞ

¼ ðCggH Cgg~t ~t Þ
�
S−1H ðŝÞ −CH~t ~t

−CH~t ~t
~G−1
~t~t ðŝÞ

�−1�CγγH

Cγγ~t ~t

�
ð31aÞ

¼ ðCggH Cgg~t ~t Þ
� ~G−1

~t ~t ðŝÞ CH~t ~t

CH~t ~t S−1H ðŝÞ

��
CγγH

Cγγ~t ~t

�

×
1

S−1H ðŝÞ ~G−1
~t ~t ðŝÞ − C2

H~t ~t

; ð31bÞ

where the matrix whose inverse is taken in Eq. (31a) is (−i)
times the effective Hamiltonian for the Higgs-stop-antistop
system. The expression in Eq. (31a) is a generalization of
Eq. (7) in Ref. [15].
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D. Coulomb-Schrödinger Green’s function

The stop-antistop Green’s function G~t ~tðŝÞ can be com-
puted at the leading nontrivial order in v, by allowing the
stop and antistop to interact only through the potential of
the leading order in v, which is called the static potential.
One could take the static potential from lattice data, which
are well described by a Coulomb-plus-linear potential
(Cornell potential [40]) with a roll-off to a flat potential
above the stop-antistop threshold. The Green’s function
corresponding to such a potential could, in principle, be
evaluated numerically. In this paper, we choose instead to

deal with a completely analytic Green’s function, which,
we believe, illustrates the qualitative features of the Higgs-
stop-antistop system. In particular, we make use of a
modified Coulomb-Schrödinger Green’s function, which
we describe in detail below.
We obtain the relationship between G~t ~tðŝÞ and the

Schrödinger Green’s function as follows. Potential inter-
actions are independent of the relative momentum p0 of the
stop quark and the antistop quark. Therefore, we integrate
the effective-field-theory stop and antistop propagators
over p0 to obtain

Z
dp0

2π

i
2m~tðp0 þ E=2Þ − p2 þ im~tΓ~t þ iϵ

i
−2m~tðp0 þ E=2Þ − p2 þ im~tΓ~t þ iϵ

¼ i
4m2

~t

1

E − p2

2m~t
þ iΓ~t þ iϵ

¼ −i
4m2

~t

Gð0Þ
S ðEþ iΓ~t; pÞ; ð32Þ

where Γ~t is the stop-quark width and Gð0Þ
S ðE; pÞ is the

Schrödinger propagator (Schrödinger Green’s function in
the absence of interactions). Hence, we conclude that, in the
case of a Coulomb potential,

G~t ~tðŝÞ ¼
−i
4m2

~t

GC−Sð0; 0; Eþ iΓ~tÞ; ð33Þ

where GC−Sð0; 0; Eþ iΓ~tÞ is the Coulomb-Schrödinger
Green’s function evaluated at zero spatial separation
between the initial stop and antistop and zero spatial
separation between the final stop and antistop.
In the MS scheme, GC−Sð0; 0; Eþ iΓ~tÞ is given by

[41,42]

GC−Sð0; 0; ~EÞ ¼
αsCF

4π
m2

~t

�
−

1

2λ
−
1

2
log

�
−4m~t

~E
μ2

�

þ 1

2
þ
X∞
n¼1

1

nðn=λ − 1Þ
�

ð34aÞ

¼ αsCF

4π
m2

~t

�
−

1

2λ
−
1

2
log

�
−4m~t

~E
μ2

�

þ 1

2
− γE − ψð1 − λÞ

�
; ð34bÞ

where

~E ¼ Eþ iΓ~t; ð34cÞ

λ≡ αsCFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4 ~E=m~t

q ; ð34dÞ

μ is the MS scale, γE is Euler’s constant, and ψð1 − λÞ is the
digamma function. We take μ ¼ m~t.

6

The first and second terms in Eq. (34a) correspond to zero
andoneCoulomb interaction, respectively. These are the only
contributions that are ultraviolet divergent and that, therefore,
depend on the renormalization scheme. The sum in Eq. (34a)
contains the contributions involving two or more Coulomb
interactions. When Γ~t ¼ 0, the nth term in the sum contains
the pole jψnð0Þj2=ðEn − EÞ, whereEn is the energyof thenth
bound state andψnð0Þ is thewave function at the origin of the
nth bound state. The nth term in the sum also contains
nonpole contributions. It is best not to separate the pole and
nonpole contributions, as either of them alone produces a
spurious logarithmic singularity at E ¼ 0 (threshold).
In this work,wewish to capture the essential features of the

QCDGreen’s function,whichwe expect to contain only a few
bound-state poles below threshold. Therefore, we modify
GC−Sð0; 0; EÞ by retaining only a few terms in the sum in
Eq. (34a).Weexpect that, for largem~t, the lowest-lying bound
states will be given approximately by the bound states of the
Coulomb potential, and so the modified Coulomb Green’s
function should give a qualitative description of the system.7

6Another reasonable choice is μ ¼ 2m~t, which would shift the
expressions in square brackets in Eqs. (34a) and (34b) by − log 2.
We believe that such a shift, which is small in comparison with
the term 1=2 in the expressions in square brackets, would have no
qualitative effect on our results.

7Lattice measurements of the static quark-antiquark potential
[43], which is identical to the static squark-antisquark potential,
suggest that the static potential is predominantly Coulombic at
short distances, as would be expected from asymptotic freedom. A
recent lattice calculation [44] indicates that the stoponium ground-
state wave functions at the origin, for 100 GeV ≤ m~t ≤ 750 GeV,
may have values that are substantially larger than those that are
obtained from potentials that match QCD perturbation theory at
short distances [45]. There is not, as yet, an independent con-
firmation of this surprising result.
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In computing the Coulomb Green’s function, we set αs to
a constant by requiring that

jpj ¼ vm~t ¼ αsðvm~tÞm~t: ð35Þ
This equation should be approximately valid for the low-
lying bound states. It yields αs ≈ 0.13.

E. Higgs-boson form factors

The perturbative form factor for the coupling of the
Higgs boson to diphotons through a stop loop is given by

FðH → ~t ~t → γγÞ ¼ CγγH þ CH~t ~t
~G~t ~tCγγ~t ~t: ð36Þ

The amplitude A1 þ A2 is proportional to this form factor,
and, hence, this form factor is built into our formalism.
There is a similar form factor for the Higgs coupling to two
gluons through a stop loop:

FðH → ~t ~t → ggÞ ¼ CggH þ CH~t ~t
~G~t ~tCgg~t ~t: ð37Þ

The amplitude A1 þ A3 is proportional to this form factor,
and, so, this form factor is also built into our formalism.
The amplitude A4 is proportional to the cross term between
the Higgs-to-diphoton form factor and the Higgs-to-
digluon form factor:

FðH → ~t ~t → γγggÞ ¼ Cgg~t ~tC
2
H~t ~t

~G2
~t ~tCγγ~t ~t: ð38Þ

The factors ~G~t ~t in the second terms of the form factors in
Eqs. (36) and (37) and in the form-factor contribution in
Eq. (38) give enhancements of the total amplitude when
ŝ is near a threshold peak in ~G~t ~t. Such enhancements are
already present in the perturbative calculations that make
use of the first and second terms of the Coulomb Green’s
function [Eq. (34a)], and they become stronger when one
takes into account the additional effects that are associated
with the stop-antistop bound states [16]. However, as we
will illustrate in detail in Sec. III, when the Higgs mass is
close to stop-antistop threshold, the effect of Higgs-stop-
antistop mixing is to displace the physical mass peaks away
from threshold. Consequently, when the full effects of
Higgs-stop-antistop mixing are taken into account, this
enhancement effect is not operative.

III. CASE OF A SINGLE BREIT-WIGNER
RESONANCE IN THE STOP-ANTISTOP

GREEN’S FUNCTION

We now discuss the situation in which we model ~G~t ~t
with the simplified form of a Breit-Wigner resonance.8 This

is the only modification to the effective theory that we
make. In particular, we use the formulas for the short-
distance coefficients that are given above.

A. Structure of the Breit-Wigner amplitude

We consider the situation in which ~G~t ~t is given by

~G~t ~t ¼ N2
~t ~tS~t ~tðŝÞ; ð39aÞ

where

S~t ~tðŝÞ ¼
i

ŝ −m2
~t ~t þ im~t ~tΓ~t ~t

; ð39bÞ

m~t ~t is the bound-state mass, Γ~t ~t is the bound-state width,

N2
~t ~t ¼ jψð0Þj2=m~t; ð40Þ

and ψð0Þ is the bound-state wave function at the origin. The
bound-state width is given by

Γ~t ~t ¼ 2Γ~t þ Γ~t ~t gg: ð41aÞ

Here, Γ~t ~t gg, is the width of the bound state to two gluons:

Γ~t ~t gg ¼
1

ð2m~tÞ2
2ImT~t ~t→gg→~t ~tjψð0Þj2 ¼

4πα2sðm~tÞjψð0Þj2
3m2

~t

:

ð41bÞ

For theCoulombground state, jψð0Þj2¼8α3sðm~tvÞm3
~t =ð27πÞ.

Now, we can write Eq. (31a) as

Atotðgg → γγÞ ¼ ðCggH Ĉgg~t ~t Þ
�
S−1H ðŝÞ −ĈH~t ~t

−ĈH~t ~t S−1~t ~t ðŝÞ

�−1

×

�CγγH

Ĉγγ~t ~t

�
; ð42Þ

where Ĉgg~t ~t¼N~t ~tCgg~t ~t, Ĉγγ~t ~t¼N~t ~tCγγ~t ~t, and ĈH~t ~t ¼
N~t ~tCH~t ~t. We can diagonalize the matrix in Eq. (42) by
making use of a similarity transformation:

− i

�
ŝ2 −m2þ þ imþΓþ 0

0 ŝ2 −m2
− þ im−Γ−

�

¼ SðθÞ−1
�
S−1H ðŝÞ ĈH~t ~t

ĈH~t ~t S−1~t ~t ðŝÞ

�
SðθÞ; ð43Þ

which implies that

8This simplified model has also been considered in Ref. [6]. In
Ref. [46], this model was used to investigate the effects of mixing
of a light pseudoscalar particle with ηbðnÞ states in the context of
decays of the pseudoscalar particle to the ηbðnÞ states.
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Atotðgg→ γγÞ

¼ ðCggþ Cgg− Þ
 i

ŝ2−m2
þþimþΓþ

0

0 i
ŝ2−m2

−þim−Γ−

!�
Cγγþ
Cγγ−

�
;

ð44aÞ

where �
Cγγþ
Cγγ−

�
¼ S−1ðθÞ

�CγγH

Ĉγγ~t ~t

�
; ð44bÞ

and

ðCggþ Cgg− Þ ¼ ðCggH Ĉgg~t ~t ÞSðθÞ: ð44cÞ
The masses and widths are given by

m2
� − im�Γ� ≡ 1

2
ðm2

H − imHΓH þm2
~t ~t − im~t ~tΓ~t ~tÞ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H − imHΓH −m2
~t ~t þ im~t ~tΓ~t ~tÞ2 þ 4jĈH~t ~tj2

q
:

ð45Þ
(Recall that, in our definition, ĈH~t ~t is purely imaginary.)
Note that these values of m� − im�Γ� correspond

precisely to the values of ŝ at which the denominators in
A1…A4 [Eqs. (23)–(27) and Eq. (31b)] vanish.
Approximate expressions for the masses and widths are

m2
� ≈

1

2
ðm2

H þm2
~t ~tÞ �

1

2
Δ; ð46aÞ

m�Γ�≈
1

2

�
mHΓHþm~t ~tΓ~t ~t�ðmHΓH−m~t ~tΓ~t ~tÞ

m2
H−m2

~t ~t

Δ

�
;

ð46bÞ
where

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H −m2
~t ~tÞ2 þ 4jĈH~t ~tj2

q
: ð46cÞ

In the approximate forms in Eq. (46), we have neglected
terms of higher order in ðmHΓH −m~t ~tΓ~t ~tÞ2=Δ2, which is
less than 2% for the values of mHΓH, m~t ~tΓ~t ~t, and Ĉ

2
H~t ~t that

we use in our cross-section calculations in Sec. III B.
The matrix SðθÞ is given by

SðθÞ ¼
�
cos θ − sin θ

sin θ cos θ

�
; ð47Þ

where

tan θ ¼ 2jĈH~t ~tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H − imHΓH −m2
~t ~t þ im~t ~tΓ~t ~tÞ2 þ 4jĈH~t ~tj2

q
− ðm2

H − imHΓH −m2
~t ~t þ im~t ~tΓ~t ~tÞ

≈
2jĈH~t ~tj

Δ − ðm2
H −m2

~t ~tÞ þ iδ
;

ð48aÞ

with

δ ¼ ðmHΓH −m~t ~tΓ~t ~tÞ
�
1 −

m2
H −m2

~t ~t

Δ

�
: ð48bÞ

In the approximation in Eq. (48a), we have again neglected
terms of higher order in ðmHΓH −m~t ~tΓ~t ~tÞ2=Δ2.
Note that m2þ and m2

− are always centered at the average
of m2

H and m2
~t ~t and separated from each other by a nonzero

amount, namely, Δ. When 2jĈH~t ~tj is small in comparison
with jm2

H −m2
~t ~tj, θ approaches 0 or π=2, and the masses and

widths approach their original values. On the other hand,
when jm2

H −m2
~t ~tj is negligible in comparison with 2jĈH~t ~tj,

mixing is maximal, and θ is very close to π=4.9 In this case
of maximal mixing, Δ approaches its minimum value,
2jĈH~t ~tj, and

m2
� ≈

1

2
ðm2

H þm2
~t ~tÞ � jĈH~t ~tj: ð49Þ

In the case of maximal mixing, the widths are given by

m�Γ� ≈
1

2
ðmHΓH þm~t ~tΓ~t ~tÞ: ð50Þ

That is, the widths Γþ and Γ− become approximately the
average of ΓH and Γ~t ~t.
It is illuminating to compute the physical mass separa-

tions and widths for the values of the theory parameters that
we use in our cross-section calculations in Sec. III B. Even
in the case of maximal mixing, for which the separation
between mþ and m− is minimal, that separation is still
substantial: about 4.7 GeV for κ ¼ 1 and about 37.4 GeV
for κ ¼ 8. These separations are much greater than the
widths of the Breit-Wigner resonances, which are
ΓH ≈ 1.2 GeV, Γ~t ~t ≈ 0.3 MeV for Γ~t ¼ 0.1 MeV, and
Γ~t ~t ≈ 0.2 GeV for Γ~t ¼ 0.1 GeV. Consequently, the mass
separations are also much greater than Γ�. That is, the
physical resonances are well separated for any value of mH
relative to m~t ~t.
In Sec. II E, we discussed the threshold enhancements

that are present in the form factors for the Higgs couplings
to gg and γγ. We now see that those enhancements are

9For the values of the theory parameters that are given in
Sec. III B, the real part of θ is within 1% of π=4, while the
imaginary part of θ is less than 7%.
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rendered inoperative because, when mH approaches the
stop-antistop threshold, the physical masses are displaced
from threshold by a sizable amount. In the next section, we
will provide a detailed numerical analysis of this effect.

B. Qualitative features of the Breit-Wigner cross section

In this section, we present numerical results for the short-
distance coefficients and also for cross sections at the LHC
at a CM energy

ffiffiffi
s

p
of 13 TeV. We note that the gg

contribution to the total cross section is given by the
expression

σtot ¼
1

128πs

Z ffiffiffiffiffiffi
ŝmax

p
ffiffiffiffiffiffi
ŝmin

p
d
ffiffiffî
s

pffiffiffî
s

p
Z

1

ŝ=s

dx
x
fg

�
ŝ
xs

�
fgðxÞjAtotðŝÞj2;

ð51Þ

where fg is the gluon distribution and
ffiffiffiffiffiffiffiffi
ŝmin

p
and

ffiffiffiffiffiffiffiffiffi
ŝmax

p
are

the lower and upper limits, respectively, of the range in
ffiffiffî
s

p
that includes all relevant contributions to the cross section.
In the computations of σtot in the remainder of this paper,
we take

ffiffiffiffiffiffiffiffi
ŝmin

p ¼ 600 GeV and
ffiffiffiffiffiffiffiffiffi
ŝmax

p ¼ 900 GeV.
As we have already mentioned, the Breit-Wigner reso-

nances are always well separated in comparison to their
widths. Therefore, we can approximate the cross section in
Eq. (51) as a sum of the individual contributions of the two
resonances. If we also neglect the dependences of the gluon
distributions on ŝ over the width of the resonance, then we
obtain the narrow-resonance approximation

σtot ¼
1

128πs

X
j¼�

Z
∞

0

d
ffiffiffî
s

p

mj

���� i
ŝ −m2

j þ imjΓj

����2
× jCggjCγγjj2FðmjÞ þOðΓj=mjÞ

¼ 1

256s

X
j¼�

jCggjCγγjj2
m3

jΓj
FðmjÞ þOðΓj=mjÞ; ð52aÞ

where FðmjÞ is the gluon flux factor:

FðmjÞ ¼
Z

1

m2
j =s

dx
x
fg

�
m2

j

xs

�
fgðxÞ: ð52bÞ

As can be seen from Fig. 1, FðmjÞ is a slowly varying
function of mj over the range of interest.10 It has only a
small effect on the shape of the cross section as a function
of mH, which is determined mainly by the dependences of
the short-distance coefficients Cggj and Cγγj and the
resonance widths Γj on mH.
Note that the cross section in the narrow-resonance

approximation varies inversely as the width Γj. In general,

the cross-section contribution of a Breit-Wigner resonance
is proportional to the square of the absolute value of the
maximum height of the amplitude times the width of the
resonance. In the Breit-Wigner model of this section,
the inverse of the diagonal matrix in Eq. (43) has elements
whose maximum absolute values are equal to 1=ðmjΓjÞ.
Therefore, the effect of this matrix factor on the cross
section can be characterized completely in terms of the
widths of the physical resonances. We use this characteri-
zation for the remainder of this section. As we will explain
in Sec. III C, in case of the Coulomb-Schrödinger model,
the corresponding diagonal matrix is more complicated,
and its effect on the cross section cannot be characterized
completely in terms of the widths of the physical
resonances.
We discuss below the behavior of the cross section for

four cases: κ ¼ 1, Γ~t ¼ 0.1 MeV; κ ¼ 1, Γ~t ¼ 0.1 GeV;
κ ¼ 8, Γ~t ¼ 0.1 MeV; and κ ¼ 8, Γ~t ¼ 0.1 GeV. The κ
value of 8 is near the upper limit of the values of κ that
are allowed by unitarity constraints [48]. As we have
mentioned, in order to make contact with previous numeri-
cal work, we take the stop mass to be m~t ¼ 375 GeV.
We also use the input values mbð2m~tÞ ¼ 2.46 GeV,
mtð2m~tÞ ¼ 149.95 GeV, where mtð2m~tÞ and mbð2m~tÞ
are the MS running masses at the scale 2m~t. We estimate
the Higgs width by computing its widths to top- and
bottom-quark pairs through order αs [49,50]

11 and its width
to a τ-lepton pair at the Born level, using the Higgs
couplings to top-quark, bottom-quark, and τ-lepton pairs
that occur in the decoupling limit of large Higgs mass [13].
We will make use of an intermediate value of tan β, setting
tan β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mtð2m~tÞ=mbð2m~tÞ
p

. At this value of tan β, the
Higgs decay width into third generation fermions is
minimized, and our estimate is ΓH ≃ 1.2 GeV.

FIG. 1. The gluon flux factor FðmjÞ.

10In the calculations of cross sections in this paper, we make
use of the CTEQ6M parton distribution functions [47].

11We have converted the result in Ref. [50], which is expressed
in terms of quark pole mass, to an expression in terms of the
quark modified-minimal-subtraction (MS) mass by adding 2þ
ð3=2Þ log½4=ð1 − β2Þ� to ΔH in Eq. (2.26) of Ref. [50].
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1. κ = 1, Γ ~t = 0.1 MeV

We consider first the case of weak Higgs-stop-antistop
coupling, κ ¼ 1, and small stop width, Γ~t ¼ 0.1 MeV.
Let us examine the effect of mixing on the short-distance

coefficients. In the left panel of Fig. 2, we show
jCγγ�Cgg�j2 as functions of mH. We also show
jCγγ~t ~tCgg~t ~tj2 and jCγγHCggHj2, so that one can judge the
importance of the mixing effects. At small values of mH,
the lower-mass eigenstate corresponds to the Higgs boson,
and the higher-mass eigenstate corresponds to the stop-
antistop bound state. This correspondence is reversed for
large values ofmH. That is, at both large and small values of
mH, the upper line corresponds to the Higgs coefficients,
and the lower line corresponds to the stop-antistop coef-
ficients. Maximal mixing occurs when mH is equal to the
stop-antistop bound-state mass m~t ~t, which is about
747 GeV. For large values of jmH −m~t ~tj, the mixing angle
decreases approximately as 1=jmH −m~t ~tj. However, we
remind the reader that the nonrelativistic approximation
that we use in our calculations is valid only when
jmH −m~t ~tj ≪ m~t ~t. The structure that appears in the quan-
tities jCgg�Cγγ�j2 is a consequence of the fact that the
Higgs coefficients contain real and imaginary parts that are
comparable in magnitude. The mixing then produces a
complicated pattern of interference. We emphasize that the
peak that appears in the upper line is not produced by a
resonance or by a threshold enhancement from the Higgs to
gg or γγ form factors. Rather, it is entirely a consequence of
interference effects in the short-distance coefficients.
Now, let us consider the behavior of the cross section as a

function of mH. In the right panel of Fig. 2, we show the

contributions of the larger-mass eigenstate and the smaller-
mass eigenstate to the cross section times the branching
ratio into γγ in the narrow-resonance approximation, the
sum of those contributions, and the exact cross section
times the branching ratio into γγ. We also show the exact
cross section in the absence of mixing so that one can judge
the importance of the mixing effects.
We can understand the qualitative features of the cross

section times the branching ratio into γγ from the formula
for the narrow-resonance approximation to the cross
section in Eq. (52). As can be seen from Fig. 2,
the factors 1=Γ� in Eq. (52a) have a strong effect on the
shape of the cross section. When mH is small (large), the
mixing is minimal, and Γþ (Γ−) is equal to Γ~t ~t ≈ 3 MeV.
When mH approaches m~t ~t, the mixing becomes maximal,
and Γ� ≈ ðΓH þ Γ~t ~tÞ=2 ≈ 0.6 GeV. The dependence of the
cross section on 1=Γ� completely overwhelms the depend-
ence of the cross section on the short-distance coefficients,
resulting in the shape for the total cross section that is
shown in the thick, dashed, red line in the right panel. The
cross section times the branching ratio is suppressed at
values of mH that are close to m~t ~t, owing to the increase in
the width of the narrowest resonance from the stoponium
width to the average of the stoponium and Higgs widths.
Even at mH ¼ 720 GeV and mH ¼ 780 GeV, where the
mixing angles are fairly small, the effect of mixing on the
width of the narrowest resonance leads to a considerable
suppression of the values of the cross section times the
branching fraction relative to the values in the absence of
mixing. We note that the narrow-resonance approximation
gives a result for the cross section that is very close to the
exact result. (The line for the exact result is almost
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FIG. 2. Numerical results for the case in which the stop-antistop Green’s function is given by a Breit-Wigner resonance for κ ¼ 1 and
Γ~t ¼ 0.1 MeV. Quantities are presented as functions of mH . The left panel shows the products of absolute squares of short-distance
coefficients: jCggþCγγþj2 (dotted, blue line), jCgg−Cγγ−j2 (narrow, dashed, orange line), jCgg~t ~tCγγ~t ~tj2 (solid, black line), and jCggHCγγHj2
(dash-dotted, black line). The right panel shows cross sections times branching ratios into γγ: contribution in the narrow-resonance
approximation of the larger-mass eigenstate (dotted, blue line), contribution in the narrow-resonance approximation of the smaller-mass
eigenstate (narrow, dashed, orange line), sum of the contributions in the narrow-resonance approximation (thick, dashed, red line), exact
cross section times branching ratio into γγ (thin, black line), and exact cross section times branching ratio into γγ in the absence of
mixing (dash-dotted, black line).
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completely obscured by the line for the narrow-resonance-
approximation result.)

2. κ = 1, Γ ~t = 0.1 GeV

Next, we consider the case of weak Higgs-stop-antistop
coupling, κ ¼ 1, and large stop width, Γ~t ¼ 0.1 GeV.
In Fig. 3, we display the values of jCγγ�Cgg�j2 as

functions of mH. Again, we also show jCγγ~t ~tCgg~t ~tj2 and

jCγγHCggHj2, so that one can judge the importance of the
mixing effects. As can be seen by comparing the left panel
of Fig. 3 with the left panel of Fig. 2, the effect of mixing on
the short-distance coefficients in the case of large stop
width is essentially the same as in the case of small stop
width. However, the stop-antistop width is now
Γ~t ~t ≈ 0.2 GeV, which is not far from the Higgs width
ΓH ≈ 1.2 GeV. It follows that the width of the narrowest
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FIG. 4. Numerical results for the case in which the stop-antistop Green’s function is given by a Breit-Wigner resonance for κ ¼ 8 and
Γ~t ¼ 0.1 MeV. Quantities are presented as functions of mH . The left panel shows the products of absolute squares of short-distance
coefficients: jCggþCγγþj2 (dotted, blue line), jCgg−Cγγ−j2 (narrow, dashed, orange line), jCgg~t ~tCγγ~t ~tj2 (solid, black line), and jCggHCγγHj2
(dash-dotted, black line). The right panel shows cross sections times branching ratios into γγ: contribution in the narrow-resonance
approximation of the larger-mass eigenstate (dotted, blue line), contribution in the narrow-resonance approximation of the smaller-mass
eigenstate (narrow, dashed, orange line), sum of the contributions in the narrow-resonance approximation (thick, dashed, red line), exact
cross section times branching ratio into γγ (thin, black line), and exact cross section times branching ratio into γγ in the absence of
mixing (dash-dotted, black line).
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FIG. 3. Numerical results for the case in which the stop-antistop Green’s function is given by a Breit-Wigner resonance for κ ¼ 1 and
Γ~t ¼ 0.1 GeV. Quantities are presented as functions of mH . The left panel shows the products of absolute squares of short-distance
coefficients: jCggþCγγþj2 (dotted, blue line), jCgg−Cγγ−j2 (narrow, dashed, orange line), jCgg~t ~tCγγ~t ~tj2 (solid, black line), and jCggHCγγHj2
(dash-dotted, black line). The right panel shows cross sections times branching ratios into γγ: contribution in the narrow-resonance
approximation of the larger-mass eigenstate (dotted, blue line), contribution in the narrow-resonance approximation of the smaller-mass
eigenstate (narrow, dashed, orange line), sum of the contributions in the narrow-resonance approximation (thick, dashed, red line), exact
cross section times branching ratio into γγ (thin, black line), and exact cross section times branching ratio into γγ in the absence of
mixing (dash-dotted, black line).
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resonance goes from about 0.2 GeV for minimal mixing to
about 0.7 GeV for maximal mixing, which is a much
smaller range than in the case of a small stop width.
Consequently, as can be seen from the right panel of Fig. 3,
the effect of mixing on the resonance widths has a much
less dramatic effect on the shape of the cross section times
the branching ratio than in the small-stop-width case. The
shape of the cross section times the branching ratio in the
thick, dashed, red line now exhibits a peak that corresponds
to the peak in the sum of the magnitudes of the products of
short-distance coefficients. Comparing with the situation
for small stop width, we see that the cross section times the
branching ratio away from threshold is significantly
smaller, owing to that fact that the stoponium width is
now much larger. For the same reason, the cross section
times the branching ratio away from threshold more closely
approaches the cross section in the absence of mixing.
Again, we note that the result from the narrow-resonance
approximation for the cross section times the branching
ratio into γγ agrees well with the exact result.

3. κ = 8, Γ ~t = 0.1 MeV

Next, we consider the case of strong Higgs-stop-antistop
coupling, κ ¼ 8, and small stop width, Γ~t ¼ 0.1 MeV.
As can be seen from the left panel of Fig. 4, the effect of

mixing on the short-distance coefficients now produces
only monotonic functions with no peaks or dips. This
simple structure is attributable to the fact that CHgg and
CHγγ are dominated by their imaginary parts. Furthermore,
as can be seen from the figure, the product of Higgs short-
distance coefficients is much larger in magnitude than the

product of stop-antistop coefficients, and so the Higgs
coefficients dominate at minimal mixing. At mH ¼
720 GeV and mH ¼ 780 GeV, the effects on the short-
distance coefficients are still considerable, especially at
mH ¼ 780 GeV. The stop-antistop width Γ~t ~t at mH ¼
720 GeV is about 0.24GeVand increases asmH approaches
the stop-antistop threshold. Therefore, owing to the domi-
nance of the Higgs short-distance coefficients, the stop-
antistop resonance does not contribute greatly to the cross
section times the branching ratio. At maximal mixing, there
are two resonances, whose widths are equal to about 1

2
ΓH

and whose values of jCgg�Cγγ�j2 are about 1
2
jCggHCγγHj2.

Consequently, the cross section times the branching ratio
changes very little fromminimalmixing tomaximalmixing,
as can be seen in the right panel of Fig. 4. Even at mH ¼
720 GeV and mH ¼ 780 GeV, the values of the cross
section times the branching ratio lie somewhat above the
values in the absence of mixing. The result from the narrow-
resonance approximation for the cross section is essentially
featureless. We note that it agrees well with the exact result.

4. κ = 8, Γ ~t = 0.1 GeV

Finally, we consider the case of strong Higgs-stop-anti-
stop coupling, κ ¼ 8, and large stop width, Γ~t ¼ 0.1 GeV.
As can be seen from the left panel of Fig. 5, the effect of

mixing on the short-distance coefficients is essentially the
same as in the case of κ ¼ 8 and Γ~t ¼ 0.1 MeV (Fig. 4).
Again, owing to the dominance of the imaginary parts of
CHgg and CHγγ , the effects of mixing on the short-distance
coefficients result in a simple structure. Since the product of
Higgs short-distance coefficients is much larger in
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FIG. 5. Numerical results for the case in which the stop-antistop Green’s function is given by a Breit-Wigner resonance for κ ¼ 8 and
Γ~t ¼ 0.1 GeV. Quantities are presented as functions of mH . The left panel shows the products of absolute squares of short-distance
coefficients: jCggþCγγþj2 (dotted, blue line), jCgg−Cγγ−j2 (narrow, dashed, orange line), jCgg~t ~tCγγ~t ~tj2 (solid, black line), and jCggHCγγHj2
(dash-dotted, black line). The right panel shows cross sections times branching ratios into γγ: contribution in the narrow-resonance
approximation of the larger-mass eigenstate (dotted, blue line), contribution in the narrow-resonance approximation of the smaller-mass
eigenstate (narrow, dashed, orange line), sum of the contributions in the narrow-resonance approximation (thick, dashed, red line), exact
cross section times branching ratio into γγ (thin, black line), and exact cross section times branching ratio into γγ in the absence of
mixing (dash-dotted, black line).
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magnitude than the product of stop-antistop coefficients,
the Higgs coefficients dominate at minimal mixing.
The stop-antistop width at mH ¼ 720 GeV is now
Γ~t ~t ≈ 0.44 GeV. This larger stop-antistop width has only
a small effect on the cross section times branching ratio at
minimal mixing, where the Higgs contribution is dominant,
and changes the resonance widths only slightly at maximal
mixing. Consequently, as in the case of κ ¼ 8 and
Γ~t ¼ 0.1 MeV, the cross section times branching ratio
changes very little fromminimalmixing tomaximalmixing.
This can be seen in the right panel of Fig. 4. In this case, the
contributions from the two eigenstates sum to produce a total
of the cross section times the branching ratio that deviates
very little from the total of the cross section times the
branching ratio in the absence of mixing. Again, the result
from the narrow-resonance approximation for the cross
section is essentially featureless, and it agrees well with
the exact result.

C. Differences between the Breit-Wigner resonance and
the Coulomb-Schrödinger Green’s function

As we will see, many of the qualitative features of the
model in which we replace the stop-antistop Green’s
function with a Breit-Wigner resonance persist when we
model the stop-antistopGreen’s functionwith the Coulomb-
Schrödinger Green’s function. There are, however, several
important differences.
First, the Coulomb-Schrödinger Green’s function devel-

ops an imaginary part above the stop-antistop threshold,
owing to the fact that the physical states can decay into a
stop-antistop pair. In the case of large Higgs-stop-antistop
coupling, this imaginary part can broaden the higher-mass
physical state significantly and lead to a substantial
reduction in its contribution to the cross section.
Second, the logarithm of ~E in Eq. (34) can produce

additional structure near the stop-antistop threshold. For the
examples that we have considered, this additional structure
appears to have a small effect on the cross section times the
branching ratio to γγ.
Third, the Coulomb-Schrödinger Green’s function con-

tains multiple bound-state poles. As we will see, the
additional poles beyond the ground-state pole do not have
a dramatic effect on the cross section times the branching
ratio to γγ.
Fourth, the Coulomb-Schrödinger Green’s function has a

much more complicated dependence on ŝ than does the
Breit-Wigner resonance. This situation is analyzed in detail
in the Appendix. The generalization of the matrix in
Eq. (42) is diagonalized by a similarity transformation
that depends on ŝ. Each of the matrix eigenvalues α� can
have multiple poles in its inverse. The real parts of the poles
locations,m�, and the imaginary parts of the pole locations,
m�Γ�, determine the resonance widths, which are different
than in the Breit-Wigner case. An important additional
difference is that the residues of those poles, Z�, which are

equal to unity in the Breit-Wigner case, can now have
magnitudes that are larger or smaller than unity. This
change in the pole residues is driven largely by the term
that is proportional to 1=λ in Eq. (34). However, the specific
value of the residue depends on the other terms in Eq. (34),
as well.
Fifth, in the Coulomb-Schrödinger analysis, we include

the effects of the t-channel Higgs exchange on the stop-
antistop propagator. Had we included these effects in the
Breit-Wigner analysis, they would have produced only
small shifts in the mass of the Breit-Wigner resonance.
In the Coulomb-Schrödinger analysis, it turns out that the
t-channel Higgs exchange has a negligible effect for the
case κ ¼ 1. However, it produces small, but noticeable,
effects for the case κ ¼ 8, particularly for the smaller stop
width. These t-channel-Higgs-exchange effects do not
change the qualitative picture for the total cross section.
As we have mentioned, in the approximation in which a

resonance amplitude is given by a Breit-Wigner form and
the separation of the resonance from other resonances is
small in comparison to the resonance widths, the contri-
bution of a resonance to the cross section is proportional to
the square of the maximum height of the absolute value of
the amplitude times the full width at half maximum of the
peak in the absolute value of the amplitude. Specifically,
the cross-section contribution is proportional to jZ�j2=Γ�.

IV. CASE OF THE COULOMB-SCHRÖDINGER
GREEN’S FUNCTION

In this section, we present numerical results for the gg →
γγ amplitudes and the associated LHC cross sections atffiffiffi
s

p ¼ 13 TeV for the case in which the stop-antistop
Green’s function is calculated from the Coulomb-
Schrödinger Green’s function [Eq. (34)].
Heavy-Higgs production and decay rates depend not

only on the Higgs coupling to the stop squark, but also on
the Higgs couplings to the top and bottom quarks. As we
have mentioned, we make use of an intermediate value of
tan β, setting tan β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt=mb

p
, where mt and mb are the

MS running masses at the scale 2m~t. At this value of tan β,
the Higgs decay width into third generation fermions is
minimized and is about 1.2 GeV. The additional contribu-
tions to the Higgs production rate and decay width that are
associated with Higgs couplings to stop-antistop pairs are
automatically taken into account within our theoretical
framework. The contributions to the total width from the
decay of the heavy Higgs boson into pairs of Higgs bosons
or heavy gauge bosons tend to be small, and we omit them
in our analysis.
Our results depend strongly on the Higgs coupling to the

stop-antistop pair and on the stop width. Therefore, we
present numerical results for two representative cases of
weak and strong Higgs coupling to the stop-antistop pair
and for small and moderate values of the stop width. In

BODWIN, CHUNG, and WAGNER PHYSICAL REVIEW D 95, 015013 (2017)

015013-14



particular, as in our analysis of the Breit-Wigner-resonance
model, we give results for the cases κ ¼ 1 and
Γ~t ¼ 0.1 MeV, κ ¼ 1 and Γ~t ¼ 0.1 GeV, κ ¼ 8 and
Γ~t ¼ 0.1 MeV, and κ ¼ 8 and Γ~t ¼ 0.1 GeV. We use
the input values of the various parameters that were
discussed in Sec. III B. We present results for various
values of the Higgs mass and the partonic center-of-mass
energy

ffiffiffî
s

p
.

In computing cross sections, we take into account only
the gluon-gluon initiated process, which has been the focus
of our discussion. As we have mentioned, the true stop-
antistop Green’s function likely contains only a few bound
states below threshold. Therefore, we give results that are
obtained by taking into account only the first term or the
first three terms in the sum in Eq. (34a). For comparison,
we also give results that are based on the full Coulomb-
Schrödinger Green’s function in Eq. (34a). In the figures for
the amplitudes below,we show, for clarity, the results that are
obtained by retaining only one pole in the stop-antistop
Green’s function. That is, take only the n ¼ 1 term in the
sum in Eq. (34a). In these figures, we show the following:
(1) jAtotj; (2) jAbare

H j ¼ jAbare
1 þ Abare

2 þ Abare
3 þ Abare

4 j, where
superscript “bare” means that the stop-antistop corrections
to the Higgs propagator in Eq. (23), which are proportional
to C2

H~t ~t, have been neglected; and (3) jAbare
~t ~t j, where Abare

~t ~t ¼
A5 is the stop-antistop amplitude in the absence of Higgs
coupling to the stop.Note thatAbare

H contains all of theHiggs-
form-factor contributions that were discussed in Sec. II E.
However, the absence of stop-antistop corrections to the
Higgs propagator in Abare

H affects that amplitude in two
important ways: (1) the Higgs-stop-antistop-mixing effects
that lead to the displacement of the physical mass eigen-
values from threshold are not present, and (2) some of the
corrections to theHiggswidth that are associatedwithHiggs
decays into stop-antistop pairs for Higgs masses above the
stop-antistop threshold are not present.
We remind the reader that, as we have explained in

Sec. III, the cross-section contribution of a resonance
whose amplitude can be approximated by a Breit-Wigner
form is proportional, in the narrow-width approximation, to
the square of the maximum height of the absolute value of
the amplitude times the full width at half maximum of the
absolute value of the amplitude.

A. κ= 1, Γ ~t = 0.1 MeV

In this case, the Higgs boson couples only weakly to the
stop, and the stop width is much less than the Higgs width.
In Fig. 6, we show jAtotj, jAbare

H j, and jAbare
~t ~t j for

mH ¼ 720, 750, and 780 GeV. The results for the three
different Higgs masses show that, for κ ¼ 1, the mixing has
a small effect on the physical masses, which remain close to
their values in the absence of mixing. At mH ¼ 720 GeV
we can clearly identify the Higgs and stoponium contri-
butions to the total amplitude. At mH ¼ 780 GeV, we can

also see the separate contributions from the Higgs and the
stoponium peaks, but we see a large increase in the width of
the Higgs peak that is associated with the Higgs decay to a
stop-antistop pair. At mH ¼ 750 GeV, where the mixing is
maximal, the physical masses are slightly displaced relative
to the Higgs and stoponium masses. Comparison of the
upper left panel with the upper right panel shows that jAtotj
for the Coulomb-Schrödinger Green’s function and the
Breit-Wigner Green’s function are quite similar, although
the lower-mass peak is somewhat broader and higher in the
Coulomb-Schrödinger case. Note that, at maximal mixing,
both physical peaks are much broader than the unmixed
stoponium peak.
In Fig. 7, we show the total diphoton production cross

section σtot as a function of mH. For comparison, we also
show σbareH (which corresponds to Abare

H ) and σbare~t ~t (which
corresponds to Abare

~t ~t ) as functions of mH. Figure 7 shows
that there are only small quantitative changes in σtot as one
includes additional stoponium poles in the stop-antistop
Green’s function.
A comparison of Fig. 7 with the right panel of Fig. 2

shows that the total cross section σtot in the Coulomb-
Schrödinger case has the same qualitative features as in the
Breit-Wigner case. The Higgs cross section σbareH is much
less than the stop-antistop cross section σbare~t ~t . The cross
section is dominated by the width of the narrowest peak. At
minimal mixing, this narrowest peak corresponds to the
stoponium peak. At maximal mixing, the width of the
narrowest physical peak is much greater than at minimal
mixing, and the height shrinks roughly as the inverse of the
width, resulting in a suppression of the cross section. As in
the Breit-Wigner case (Sec. III B 1), this suppression is so
great that it overwhelms the peaking effect that results from
mixing of the short-distance coefficients. We see that, even
at mH ¼ 720 GeV and mH ¼ 780 GeV, mixing broadens
the narrowest peak and reduces its height sufficiently that
the total cross section is well below σbare~t ~t .

B. κ = 1, Γ ~t = 0.1 GeV

In this case, the Higgs boson still couples weakly to the
stop, but the stop width is much closer to the Higgs width
than in the previous example.
In Fig. 8, we show jAtotj, jAbare

H j, and jAbare
~t ~t j. The left and

right panels show the results that are obtained in the
Coulomb-Schrödinger case and the Breit-Wigner case,
respectively. Again, these two choices for the stop-antistop
Green’s function result in qualitatively similar amplitudes.
However, the height and width of the lower-mass resonance
are both enhanced in the Coulomb-Schrödinger case
relative to the Breit-Wigner case. At mH ¼ 750 GeV,
where mixing is maximal, we see that the physical masses
are displaced slightly relative to the Higgs and stoponium
masses. Comparison with Fig. 6 shows that there is a
marked increase in the width of the stoponium peak in
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Abare
~t ~t , owing to the increase in the stop width. Because of

mixing effects, the width of the narrowest peak in Atot is
much larger than the width of the stoponium peak in Abare

~t ~t .
The width of the narrowest peak in Atot is larger in Fig. 8
than in Fig. 6, owing to the increase in the width of the stop.
In Fig. 9, we display σtot, σbareH , and σbare~t ~t , as functions of

mH. As can be seen, there are only small quantitative
differences that are associated with the inclusion of addi-
tional stoponium poles in the stop-antistop Green’s
function.
A comparison of Fig. 9 with the right panel of Fig. 3

shows that the total cross section σtot in the Coulomb-
Schrödinger case again has the same qualitative features as
in the Breit-Wigner case. However, there are minor
differences in the shapes, and the Coulomb-Schrödinger
cross section is considerably enhanced relative to the Breit-
Wigner cross section, owing to the increase in the height
and width of the lower-mass resonance, which can be seen
in Fig. 8. Once again, the Higgs cross section σbareH is much
less than the stop-antistop cross section σbare~t ~t , although σbare~t ~t

FIG. 7. Cross sections for the case κ ¼ 1, Γ~t ¼ 0.1 MeV: σtot
(thick, blue lines), σbareH (dotted, red line), and σbare~t ~t (thin, green
lines) vs mH . In the cases of σtot and σbare~t ~t , the dashed, dashed-
dotted, and solid lines correspond, respectively, to taking 1, 3, or
all terms in the sum in Eq. (34a).

FIG. 6. Amplitudes for the case κ ¼ 1, Γ~t ¼ 0.1 MeV. Upper left figure: the amplitudes jAtotj (thick, blue line), jAbare
~t ~t j (thin, green

line), and jAbare
H j (dashed, red line) vs mγγ for mH ¼ 750 GeV. Upper right figure: the same amplitudes, but with the stop-antistop

propagator replaced with a Breit-Wigner resonance, as in Eq. (39b). Lower left figure: the same as the upper left figure, but with
mH ¼ 730 GeV. Lower right figure: the same as the upper left figure, but with mH ¼ 770 GeV.
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is reduced in this broad-stop-width case in comparison to
σbare~t ~t in the small-stop-width case. Nevertheless, the cross
section is dominated by the width of the narrowest peak,
which corresponds, at minimal mixing, to the stoponium
peak. We see that, in contrast with the small-stop-width
case, the cross section now displays a peak at maximal
mixing. As we explained in Sec. III B 2, this peak arises
from the effects of mixing on the short-distance coefficients
and is unrelated to threshold-enhancement effects. A peak
persists in σtot because, owing to the large stop width, the
width of the narrowest peak in Atot does not change
sufficiently between minimal and maximal mixing to
reverse the peaking effect from the short-distance
coefficients.

C. κ= 8, Γ ~t = 0.1 MeV

Next, we discuss the case of a large Higgs-stop-antistop
coupling, κ ¼ 8, and a small stop width, Γ~t ¼ 0.1 MeV.
Large values of the Higgs-stop-antistop coupling have a

very large impact on the diphoton production rate, as has
been emphasized in the context of perturbative calculations
in Ref. [15]. As we will see, for κ ¼ 8, the Higgs-stop-
antistop mixing effects become dramatic, and it is essential
to include those effects, which go beyond the effects that
are contained in fixed-order perturbation theory, in order to
compute the diphoton rate reliably.
In Fig. 10, we show jAtotj, jAbare

H j, and jAbare
~t ~t j for

mH ¼ 750 GeV. The left and right panels show the results
that are obtained in the Coulomb-Schrödinger case and the
Breit-Wigner case, respectively. In both the Coulomb-
Schrödinger case and the Breit-Wigner case, there is a
clear shift of the physical poles at maximal mixing away
from the stop-antistop threshold. However, there are several
important differences between the Coulomb-Schrödinger
amplitude and the Breit-Wigner amplitude. First, at maxi-
mal mixing, the larger-mass peak that is present in the

Breit-Wigner amplitude has almost disappeared in the
Coulomb-Schrödinger amplitude. The reason for this is
that the larger-mass physical state has a very large decay
width into a stop-antistop pair. The very narrow peak in the
Coulomb-Schrödinger amplitude near threshold does not
correspond to the larger-mass peak in the Breit-Wigner
amplitude. Rather, it arises from the logarithmic term in
Eq. (34). It gives a small contribution to the cross section.
We also see that the width of the lower-mass peak is
significantly smaller in the Coulomb-Schrödinger ampli-
tude than in the Breit-Wigner amplitude, while its height is
about the same. This results in a reduced contribution of
this peak to the cross section.
In Fig. 11, we show σtot, σbareH , and σbare~t ~t , as functions of

mH. A comparison with the right panel of Fig. 4 shows that
the shape of σtot in the Coulomb-Schrödinger case is similar

FIG. 9. Cross sections for the case κ ¼ 1, Γ~t ¼ 0.1 GeV: σtot
(thick, blue lines), σbareH (dotted, red line), and σbare~t ~t (thin, green
lines) vs mH . In the cases of σtot and σbare~t ~t , the dashed, dashed-
dotted, and solid lines correspond, respectively, to taking 1, 3, or
all terms in the sum in Eq. (34a).

FIG. 8. Amplitudes for the case κ ¼ 1, Γ~t ¼ 0.1 GeV. Left figure: the amplitudes jAtotj (thick, blue line), jAbare
~t ~t j (thin, green line), and

jAbare
H j (dashed, red line) vs mγγ for mH ¼ 750 GeV. Right figure: the same amplitudes, but with the stop-antistop propagator replaced

with a Breit-Wigner resonance, as in Eq. (39b).
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to the shape of σtot in the Breit-Wigner case: Both are fairly
featureless, although the slopes are different. As in the case
of the Breit-Wigner cross section, this featureless nature of
the Coulomb-Schrödinger cross section is a consequence of
three properties of the amplitude: (1) the short-distance
coefficients are dominated by their imaginary parts, and so
the mixing of the short-distance coefficients produces no
pronounced peaks or dips; (2) the Higgs short-distance
coefficients dominate over the stop-antistop short-distance
coefficients, and so the stoponium peak does not contribute
greatly to the cross section; and (3) the height and width of
the lower-mass resonance are not very different from those
of a Higgs resonance over the range of mH.
The cross section is considerably smaller in the

Coulomb-Schrödinger case than in the Breit-Wigner case.

The reasons for this are the disappearance of the higher-
mass peak in the Coulomb-Schrödinger case, owing to its
large width into a stop-antistop pair, and the narrowing of
the lower-mass peak while its width remains constant.
In the case κ ¼ 8, in comparison to the case of κ ¼ 1, σbareH

is greatly enhanced by the large Higgs-stop-antistop cou-
pling and is greater than σbare~t ~t . AtmH ¼ 750 GeV,we see the
threshold enhancement of σbareH that is associated with the
Higgs diphoton and digluon form factors. However, σtot does
not show a similar threshold enhancement because of the
shifts of the masses of the physical states away from
threshold. Although σtot is enhanced at small values of the
Higgsmasswith respect toσbareH , this enhancement becomes a
suppression of factors of a few at values of the Higgs mass
that are close to the stop-antistop production threshold.12

D. κ = 8, Γ ~t = 0.1 GeV

Finally, we discuss the case of a large Higgs-stop-antistop
coupling, κ ¼ 8, and a large stop width, Γ~t ¼ 0.1 GeV.
In Fig. 12, we show jAtotj, jAbare

H j, and jAbare
~t ~t j for

mH ¼ 750 GeV. The left and right panels show the results
that are obtained in the Coulomb-Schrödinger case and the
Breit-Wigner case, respectively. As in the case of the
smaller stop width, at maximal mixing there is a clear
shift of the physical poles away from the stop-antistop
threshold. There are again several important differences
between the Coulomb-Schrödinger amplitude and the
Breit-Wigner amplitude. At maximal mixing, the larger-
mass peak that is present in the Breit-Wigner amplitude has
almost disappeared in the Coulomb-Schrödinger amplitude,

FIG. 11. Cross sections for the case κ ¼ 8, Γ~t ¼ 0.1 MeV: σtot
(thick, blue lines), σbareH (dotted, red line), and σbare~t ~t (thin, green
lines) vs mH . In the cases of σtot and σbare~t ~t , the dashed, dashed-
dotted, and solid lines correspond, respectively, to taking 1, 3, or
all terms in the sum in Eq. (34a).

FIG. 10. Amplitudes for the case κ ¼ 8, Γ~t ¼ 0.1 MeV. Left figure: the amplitudes jAtotj (thick, blue line), jAbare
~t ~t j (thin, green line),

and jAbare
H j (dashed, red line) vs mγγ for mH ¼ 750 GeV. Right figure: the same amplitudes, but with the stop-antistop propagator

replaced with a Breit-Wigner resonance, as in Eq. (39b).

12We have also examined the cross sections for the inter-
mediate value κ ¼ 5. The results are qualitatively similar to those
at κ ¼ 8, except that σbareH is reduced relative to σtot, and, so, there
is a mild enhancement of σtot relative to σbareH .
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owing to the large decay width of the larger-mass physical
state into a stop-antistop pair. There is again a structure near
threshold that appears only in the Coulomb-Schrödinger
amplitude that arises from the logarithmic term in Eq. (34),
but in this large-stop-width case, the structure has nearly
disappeared. We also see that both the height and the width
of the lower-mass peak are significantly smaller in the
Coulomb-Schrödinger amplitude than in the Breit-Wigner
amplitude. These changes in the lower-mass peak result in a
greatly reduced contribution of the lower-mass peak to the
cross section. In this larger-stop-width case, the stoponium
peak in jAbare

H j is much broader than in the smaller-stop-
width case and is so small as to be nearly invisible.
In Fig. 13, we show σtot, σbareH , and σbare~t ~t , as functions of

mH. A comparison with the right panel of Fig. 5 shows that

the shape of σtot in the Coulomb-Schrödinger case is again
similar to the shape of σtot in the Breit-Wigner case. The
cross section is featureless for the reasons that we men-
tioned in the discussion of the cross section for the narrower
stop width. For this larger stop-width, the cross section is
much smaller in the Coulomb-Schrödinger case than in the
Breit-Wigner case. As in the case of the smaller stop width,
the higher-mass peak has disappeared in the Coulomb-
Schrödinger amplitude, owing to the large width of the
higher-mass peak into a stop-antistop pair. Furthermore, the
reduction in both the height and the width of the lower-
mass peak has resulted in an additional reduction of σtot,
relative to its values in the smaller-stop-width case.
Again, we see that the larger value of the Higgs-stop-

antistop coupling greatly enhances σbareH . Owing to the
larger stop width, σbare~t ~t has almost disappeared in the figure.
At mH ¼ 750 GeV, we again see the threshold enhance-
ment of σbareH that is associated with the Higgs diphoton and
digluon form factors. As in the smaller-stop-width-case,
σtot does not show a similar threshold enhancement because
of the shifts of the masses of the physical states away from
threshold. In this larger-stop-width case, σtot is comparable
to σbareH at small values of the Higgs mass and is much
smaller than σbareH at values of the Higgs mass that are close
to the stop-antistop production threshold.13

V. CONCLUSIONS

The system of a heavy Higgs boson that is coupled to a
stop-antistop pair exhibits some interesting field-theoretic
phenomena near the stop-antistop production threshold.

FIG. 13. Cross sections for the case κ ¼ 8, Γ~t ¼ 0.1 GeV: σtot
(thick, blue lines), σbareH (dotted, red line), and σbare~t ~t (thin, green
lines) vs mH . In the cases of σtot and σbare~t ~t , the dashed, dashed-
dotted, and solid lines correspond, respectively, to taking 1, 3, or
all terms in the sum in Eq. (34a).

FIG. 12. Amplitudes for the case κ ¼ 8, Γ~t ¼ 0.1 GeV. Left figure: the amplitudes jAtotj (thick, blue line), jA~t ~tbarej (thin, green line),
and jAbare

H j (dashed, red line) vs mγγ for mH ¼ 750 GeV. Right figure: the same amplitudes, but with the stop-antistop propagator
replaced with a Breit-Wigner resonance, as in Eq. (39b).

13At κ ¼ 5, the cross-section results are qualitatively similar to
those at κ ¼ 8, except that σbareH is reduced relative to σtot, and, so,
there is a mild enhancement of σtot relative to σbareH , except in a
small region of mH between 750 and 770 GeV.
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This system has attracted interest in the context of the
production of a heavy Higgs boson near the stop-antistop
threshold and its subsequent decay to two photons [15],
owing to the perturbative enhancement of the Higgs cou-
plings to photons and gluons near threshold. However, as is
well known, the appearance of Coulomb infrared singular-
ities near threshold invalidates the use of fixed-order
perturbation theory. These Coulomb singularities first
appear at two-loop order in the Higgs-to-diphoton and
Higgs-to-digluon form factors. They occur when v (one-
half the stop-antistop relative velocity in the stop-antistop
CM frame) goes to zero, and they are a manifestation of the
general phenomenon of 1=v enhancements of two-particle
amplitudes near threshold. These enhancements require an
all-orders treatment, and they lead, among other things, to
the formation of stoponium bound states.
A discussion of nonperturbative threshold effects is given

in Ref. [15] and focuses on the enhancements of the Higgs-
to-diphoton and Higgs-to-digluon form factors that are
induced by the stop-antistop bound states [16]. The dis-
cussion in Ref. [15] suggests that nonperturbative threshold
effects produce an enhancement of the digluon-to-diphoton
cross section, relative to the predictions for the cross section
that are based on perturbative treatments of the Higgs-to-
diphoton and Higgs-to-digluon form factors near threshold.
However, a correct treatment of the threshold effects also
requires a complete analysis of Higgs-stop-antistop mixing
effects.
In this paper, we have formulated the calculation of the

threshold enhancements to the digluon-to-diphoton cross
section in terms of the scalar-quark analogues of the
effective field theories NRQED and NRQCD. Our treat-
ment is valid up to corrections of relative order v2. The
effective theory gives a complete accounting of Higgs-stop-
antistop mixing in the threshold region. We have studied
these enhancement and mixing effects numerically by
making use of a model Green’s function for the stop-
antistop system, namely, the Coulomb-Schrödinger Green’s
function. The Coulomb-Schrödinger Green’s function does
not correctly account for the QCD confining potential,
which should be Coulombic only for the lowest-lying
stoponium bound states. Therefore, we have considered
the case in which the expression for the Coulomb-
Schrödinger Green’s function is truncated so that it contains
only a few bound states. This approach retains only bound
states forwhich theCoulombic approximation is expected to
be valid, and it is in keeping with the actual stoponium
spectrum, which is expected have only a few bound states.
At a qualitative level, we have checked that the results that
we have obtained are independent of the number of bound
states that we have retained. Moreover, the quantitative
differences that are associated with the inclusion of heavier
bounds states are small, giving us confidence that our
conclusions are not dependent on the specifics of the model
Green’s function that we have chosen.

We have also investigated a simplified model in which
the stop-antistop Green’s function is represented by a
simple Breit-Wigner resonance. This simplified model
exhibits some, but not all, of the qualitative features of
the more complicated Coulomb-Schrödinger model.
We have found that the Higgs-stop-antistop mixing

produces three general effects that are very significant.
First, the mixing leads to mass eigenstates whose widths
are larger than the widths of the stoponium states. For a
single stoponium state and for large values of the Higgs-
stop-antistop coupling, the widths of the mass eigenstates at
threshold approach the average of the Higgs and stoponium
widths. These increases in the widths, and the concomitant
reductions in the peak heights, reduce the contributions to
the cross section relative to the contribution that would be
obtained from a narrow stoponium state. Second, the
physical masses are shifted from the input Higgs and
stoponium masses, and, when the Higgs mass is near
threshold, the physical masses are displaced away from
the threshold region. This effect is particularly important for
large values of the Higgs-stop-antistop coupling and can
render the perturbative threshold enhancements inoperative.
Third, when the Higgs-stop-antistop coupling is large, the
displacement of themass of the higher-mass physical state to
a point above threshold can give that state a very large width
into a stop-antistop pair, resulting in a drastic reduction of its
contribution to the cross section.
In addition, to these general effects, there are some effects

that depend on the details of the couplings of the Higgs
boson and the stop-antistop pair to photons and gluons and
on the details of theCoulomb-SchrödingerGreen’s function.
For example, the couplings can mix in such a way as to
produce a peak near threshold that has nothing to dowith the
threshold enhancements that are associated with the pertur-
bative Higgs-digluon and Higgs-diphoton form factors. The
Coulomb-Schrödinger Green’s function can also lead to
changes in the heights andwidths of the physical peaks in the
amplitudes, relative to their heights and widths in the simple
Breit-Wigner model. These effects are driven largely by the
term of lowest order in αs, in the Coulomb-Schrödinger
Green’s function. That term is universal in that it is
independent of the nature of the squark-antiquark static
potential. However, the details of the effects that arise from it
seem to depend on nonuniversal features of the Coulomb-
Schrödinger Green’s function.
In general, for large values of the heavy-Higgs coupling to

the stop-antistop pair, the mixing effects result in suppres-
sions of the digluon-to-diphoton cross section at threshold
relative to the cross section that is predicted in one-loop
perturbation theory. The precise suppression factor depends
not only on the Higgs-stop-antistop coupling but also on the
stop width. We remind the reader that, because our focus is
on the formulation of the calculation and on the qualitative
features of the threshold physics, we have computed the
Higgs couplings to digluons and diphotons at the one-loop
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level, and, so, one should take care in comparing our
numerical results with those in the literature, which often
include two-loop effects.
Although we have concentrated on the case of the Higgs-

stop-antistop interaction, the theoretical framework that we
have developed is applicable to the coupling of Higgs
bosons to other scalar particles in the region near the
particle-antiparticle threshold. It can also be generalized
easily to the case of a Higgs boson coupled to heavy
fermions and to calculations of rates to different final states.
For example, one could study the case of a τþτ− final state
by replacing the γγ short-distance coefficients in Eq. (31a)
with the corresponding τþτ− short-distance coefficients.14

We reserve the study of these additional cases for a separate
publication.
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APPENDIX: DIAGONAL FORM OF THE
AMPLITUDE IN THE GENERAL CASE

In the general case, which includes the example of the
Coulomb-Schrödinger Green’s function, we can write
Eq. (31a) as

Atotðgg → γγÞ ¼ ðCggH Ĉgg~t ~t Þ
�
S−1H ðŝÞ −ĈH~t ~t

−ĈH~t ~t Ĝ−1
~t ~t ðŝÞ

�−1�CγγH

Ĉγγ~t ~t

�
; ðA1Þ

where Ĝ~t ~tðŝÞ ¼ ~G~t ~tðŝÞ=N2
~t ~t, with N

2
~t ~t given in Eq. (40).

15 The eigenvalues of the matrix in Eq. (A1) whose inverse is taken
are given by

α�ðŝÞ ¼ −
i
2

8<
: 1

−iSHðŝÞ
þ 1

−i ~G~t ~tðŝÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

−iSHðŝÞ
−

1

−i ~G~t ~tðŝÞ

�
2

þ 4jCH~t ~tj2
s 9=

;; ðA2Þ

and the tangent of the rotation angle of the similarity transformation that diagonalizes that matrix is given by

tan½θðŝÞ� ¼ 2jĈH~t ~tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

−iSHðŝÞ −
1

−i ~G~t ~tðŝÞ

�
2

þ 4jĈH~t ~tj2
s

þ
�

1
−iSHðŝÞ −

1

−i ~G~t ~tðŝÞ

� : ðA3Þ

We see that both the eigenvalues and the rotation angle now
depend on ŝ.
The physical-state poles are located at the values ŝ ¼ ŝ�

for which α�ðŝÞ vanishes. [Note that there may be more

than one value of ŝ� for which α�ðŝÞ vanishes.] Near a
pole, the eigenvalues of the inverse matrix that appears in
Eq. (A1) are

i
Z−1
� ðŝ −m2

�Þ þ iI�
¼ iZ�

ŝ −m2
� þ im�Γ�

; ðA4aÞ

where

m2
� ¼ Reðŝ�Þ; ðA4bÞ

14We note that Cτþτ−~t ~t vanishes if one neglects electromagnetic
and weak interactions.

15The choice of N2
~t ~t is somewhat arbitrary. Here, we have

chosen N2
~t ~t so as to be consistent with the choice that we made in

the Breit-Wigner case.
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I� ¼ Im½iα�ðŝÞ�jŝ¼m2
�
; ðA4cÞ

Z−1
� ¼ ∂

∂ŝRe½iα�ðŝÞ�jŝ¼m2
�
; ðA4dÞ

m�Γ� ¼ I�Z�; ðA4eÞ
and the tangent of the rotation angle is given by

tan½θðm2
�Þ� ¼ tan½θðŝÞ�jŝ¼m� : ðA4fÞ

[1] H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).
[2] H. P. Nilles, Phys. Rep. 110, 1 (1984).
[3] M. Drees, R. Godbole, and P. Roy, Theory and Phenom-

enology of Sparticles (World Scientific, Singapore, 2004).
[4] H. Baer and X. Tata, Weak Scale Supersymmetry: From

Superfields to Scattering Events (Cambridge University
Press, Cambridge, England, 2006).

[5] S. P. Martin, Adv. Ser. Dir. High Energy Phys. 21, 1 (2010);
18, 1 (1998).

[6] M. Drees and M.M. Nojiri, Phys. Rev. D 49, 4595 (1994).
[7] S. P. Martin, Phys. Rev. D 77, 075002 (2008).
[8] S. P. Martin and J. E. Younkin, Phys. Rev. D 80, 035026

(2009).
[9] J. E. Younkin and S. P. Martin, Phys. Rev. D 81, 055006

(2010).
[10] Y. Kats and M. J. Strassler, J. High Energy Phys. 05 (2016)

092.
[11] D. Choudhury and K. Ghosh, arXiv:1605.00013.
[12] M. Carena, P. Huang, A. Ismail, I. Low, N. R. Shah, and

C. E. M. Wagner, Phys. Rev. D 94, 115001 (2016).
[13] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.

Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).
[14] M. Drees and K. I. Hikasa, Phys. Rev. D 41, 1547 (1990).
[15] A. Djouadi and A. Pilaftsis, Phys. Lett. B 765, 175 (2017).
[16] K. Melnikov, M. Spira, and O. I. Yakovlev, Z. Phys. C 64,

401 (1994).
[17] W. E. Caswell and G. P. Lepage, Phys. Lett. 167B, 437

(1986).
[18] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.

Hornbostel, Phys. Rev. D 46, 4052 (1992).
[19] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D

51, 1125 (1995); 55, 5853(E) (1997).
[20] ATLAS Collaboration, Report No. ATLAS-CONF-2016-

029.
[21] CMS Collaboration, Report No. CMS-PAS-EXO-16-018.
[22] A. Strumia, arXiv:1605.09401.
[23] J. A. Casas, A. Lleyda, and C. Munoz, Nucl. Phys. B471, 3

(1996).
[24] N. Blinov and D. E. Morrissey, J. High Energy Phys. 03

(2014) 106.
[25] D. Chowdhury, R. M. Godbole, K. A. Mohan, and S. K.

Vempati, J. High Energy Phys. 02 (2014) 110.
[26] C. Kim, A. Idilbi, T. Mehen, and Y.W. Yoon, Phys. Rev. D

89, 075010 (2014).
[27] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys.

Rev. D 63, 114020 (2001).

[28] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas, Nucl.
Phys. B453, 17 (1995).

[29] R. V. Harlander, S. Liebler, and H. Mantler, Comput. Phys.
Commun. 184, 1605 (2013).

[30] E. Bagnaschi, R. V. Harlander, S. Liebler, H. Mantler, P.
Slavich, and A. Vicini, J. High Energy Phys. 06 (2014) 167.

[31] S. Dittmaier, P. Häfliger, M. Krämer, M. Spira, and M.
Walser, Phys. Rev. D 90, 035010 (2014).

[32] F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977).
[33] J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos, and C. T.

Sachrajda, Phys. Lett. 83B, 339 (1979).
[34] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson,

Front. Phys. 80, 1 (2000).
[35] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl.

Phys. B106, 292 (1976).
[36] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I.

Zakharov, Yad. Fiz. 30, 1368 (1979) [Sov. J. Nucl. Phys. 30,
711 (1979)].

[37] A. Djouadi, M. Spira, and P. M. Zerwas, Phys. Lett. B 311,
255 (1993).

[38] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys.
B566, 275 (2000).

[39] H. K. Dreiner, M. E. Krauss, B. O’Leary, T. Opferkuch, and
F. Staub, Phys. Rev. D 94, 055013 (2016).

[40] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D.
Lane, and T. M. Yan, Phys. Rev. Lett. 34, 369 (1975); 36,
1276(E) (1976).

[41] K.MelnikovandA.Yelkhovsky,Nucl. Phys.B528, 59 (1998).
[42] Y. Kiyo, A. Pineda, and A. Signer, Nucl. Phys. B841, 231

(2010).
[43] G. S. Bali, B. Bolder, N. Eicker, T. Lippert, B. Orth, P.

Ueberholz, K. Schilling, and T. Struckmann (SESAM and
TΧL Collaborations), Phys. Rev. D 62, 054503 (2000).

[44] S. Kim, Phys. Rev. D 92, 094505 (2015).
[45] K. Hagiwara, K. Kato, A. D. Martin, and C. K. Ng, Nucl.

Phys. B344, 1 (1990).
[46] M. Baumgart and A. Katz, J. High Energy Phys. 08 (2012)

133.
[47] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M.

Nadolsky, and W. K. Tung, J. High Energy Phys. 07
(2002) 012.

[48] B. C. Allanach, P. S. B. Dev, and K. Sakurai, Phys. Rev. D
93, 035010 (2016).

[49] E. Braaten and J. P. Leveille, Phys. Rev. D 22, 715 (1980).
[50] M. Drees and K. I. Hikasa, Phys. Lett. B 240, 455 (1990);

262, 497(E) (1991).

BODWIN, CHUNG, and WAGNER PHYSICAL REVIEW D 95, 015013 (2017)

015013-22

http://dx.doi.org/10.1016/0370-1573(85)90051-1
http://dx.doi.org/10.1016/0370-1573(84)90008-5
http://dx.doi.org/10.1142/9789814307505_0001
http://dx.doi.org/10.1142/9789812839657_0001
http://dx.doi.org/10.1103/PhysRevD.49.4595
http://dx.doi.org/10.1103/PhysRevD.77.075002
http://dx.doi.org/10.1103/PhysRevD.80.035026
http://dx.doi.org/10.1103/PhysRevD.80.035026
http://dx.doi.org/10.1103/PhysRevD.81.055006
http://dx.doi.org/10.1103/PhysRevD.81.055006
http://dx.doi.org/10.1007/JHEP05(2016)092
http://dx.doi.org/10.1007/JHEP05(2016)092
http://arXiv.org/abs/1605.00013
http://dx.doi.org/10.1103/PhysRevD.94.115001
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://dx.doi.org/10.1103/PhysRevD.41.1547
http://dx.doi.org/10.1016/j.physletb.2016.12.011
http://dx.doi.org/10.1007/BF01560100
http://dx.doi.org/10.1007/BF01560100
http://dx.doi.org/10.1016/0370-2693(86)91297-9
http://dx.doi.org/10.1016/0370-2693(86)91297-9
http://dx.doi.org/10.1103/PhysRevD.46.4052
http://dx.doi.org/10.1103/PhysRevD.51.1125
http://dx.doi.org/10.1103/PhysRevD.51.1125
http://dx.doi.org/10.1103/PhysRevD.55.5853
http://arXiv.org/abs/1605.09401
http://dx.doi.org/10.1016/0550-3213(96)00194-0
http://dx.doi.org/10.1016/0550-3213(96)00194-0
http://dx.doi.org/10.1007/JHEP03(2014)106
http://dx.doi.org/10.1007/JHEP03(2014)106
http://dx.doi.org/10.1007/JHEP02(2014)110
http://dx.doi.org/10.1103/PhysRevD.89.075010
http://dx.doi.org/10.1103/PhysRevD.89.075010
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://dx.doi.org/10.1016/j.cpc.2013.02.006
http://dx.doi.org/10.1016/j.cpc.2013.02.006
http://dx.doi.org/10.1007/JHEP06(2014)167
http://dx.doi.org/10.1103/PhysRevD.90.035010
http://dx.doi.org/10.1103/PhysRevLett.39.1304
http://dx.doi.org/10.1016/0370-2693(79)91122-5
http://dx.doi.org/10.1016/0550-3213(76)90382-5
http://dx.doi.org/10.1016/0550-3213(76)90382-5
http://dx.doi.org/10.1016/0370-2693(93)90564-X
http://dx.doi.org/10.1016/0370-2693(93)90564-X
http://dx.doi.org/10.1016/S0550-3213(99)00693-8
http://dx.doi.org/10.1016/S0550-3213(99)00693-8
http://dx.doi.org/10.1103/PhysRevD.94.055013
http://dx.doi.org/10.1103/PhysRevLett.34.369
http://dx.doi.org/10.1103/PhysRevLett.36.1276
http://dx.doi.org/10.1103/PhysRevLett.36.1276
http://dx.doi.org/10.1016/S0550-3213(98)00348-4
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.007
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.007
http://dx.doi.org/10.1103/PhysRevD.62.054503
http://dx.doi.org/10.1103/PhysRevD.92.094505
http://dx.doi.org/10.1016/0550-3213(90)90683-5
http://dx.doi.org/10.1016/0550-3213(90)90683-5
http://dx.doi.org/10.1007/JHEP08(2012)133
http://dx.doi.org/10.1007/JHEP08(2012)133
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://dx.doi.org/10.1103/PhysRevD.93.035010
http://dx.doi.org/10.1103/PhysRevD.93.035010
http://dx.doi.org/10.1103/PhysRevD.22.715
http://dx.doi.org/10.1016/0370-2693(90)91130-4
http://dx.doi.org/10.1016/0370-2693(91)90629-5

