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We suggest two alternative schemes to predict lepton mixing angles as well as CP violating phases from
a discrete flavor symmetry group combined with CP symmetry. In the first scenario, the flavor and CP
symmetry is broken to the residual groups of the structure Z, x CP in the neutrino and charged lepton
sectors. The resulting lepton mixing matrix depends on two free parameters 6, and 0,. This type of breaking
pattern is extended to the quark sector. In the second scenario, an Abelian subgroup of the flavor group is
preserved by the charged lepton mass matrix and the neutrino mass matrix is invariant under a single
remnant CP transformation, all lepton mixing parameters are determined in terms of three free parameters
0, ,3. We derive the most general criterion to determine whether two distinct residual symmetries lead to
the same mixing pattern if the redefinition of the free parameters 0, ; and 0, , ; is taken into account. We
have studied the lepton mixing patterns arising from the flavor group S, and CP symmetry which are
subsequently broken to all of the possible residual symmetries discussed in this work.

DOI: 10.1103/PhysRevD.95.015012

I. INTRODUCTION

The neutrino oscillation experiments have made great
progress in the last twenty years [1-3]. It has been firmly
established that neutrinos must be massive particles and
different flavor eigenstates are mixed. The three lepton
mixing angles 6,, 03, and 6,3 as well as two mass squared
differences Am3, and Am2, have been precisely measured
[4-7]. However, we still do not know the neutrino mass
ordering (Am3, > 0 or Am3, < 0), and the signal of CP
violation in the lepton sector has not been observed. The
preliminary T2K data favor a maximal Dirac CP violation
phase 6.p = —x/2 [8], and the latest global fits of neutrino
mixing parameters show a weak evidence for a negative
Dirac phase —7 < dcp < 0 [5-7]. The primary objectives
of near future neutrino experiments are to determine the
ordering of the neutrino masses and to measure the value
of 6cp.

On the theoretical side, the origin of neutrino mass and
lepton flavor mixing is still unknown, although there have
been lots of theoretical studies. Motivated by the observa-
tion that the simple tribimaximal mixing possibly originates
from a A, flavor group, non-Abelian discrete flavor
symmetry has been extensively exploited to explain the
observed lepton mixing angles. Many other symmetries
such as Sy, As, A(3n?), A(6n?), etc., have been considered
over the years. Please see Refs. [9-13] for a review on
discrete flavor symmetry and its application in model
building. Significant progress in recent years is the precise
measurement of the reactor mixing angle 63 [14-18]. The
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discovery of a somewhat large value of 6,5 rules out the
tribimaximal mixing patterns and many flavor models
which predicted small or zero 0,53. Many approaches have
been pursued to explain such a largish 65. Within the
paradigm of the discrete flavor symmetry, a model-
independent scan of the lepton sector reveals that only
large flavor symmetry groups (e.g. (Zg X Zg)x.S3 with the
group identification [648, 259]) can produce mixing
patterns compatible with experimental data and the Dirac
CP phase is generally trivial if the whole lepton mixing
matrix is fully fixed by the symmetry alone [19-23]. In this
approach, the lepton flavor mixing matrix is determined by
the assumed residual symmetries and their embedding into
the parent flavor symmetry group, and the breaking
mechanism is irrelevant; i.e., we do not need to consider
how the vacuum configuration achieving the residual
symmetries is dynamically realized.

In order to accommodate a nonzero 6,5 and a nontrivial
Dirac CP phase simultaneously, it is interesting to combine
flavor symmetry with CP symmetry. This approach can
generate a rich structure of mixing patterns which are in
good agreement with the experimental data, and it allows us
to predict all the mixing angles and CP phases in terms of a
small number of input parameters [24-26]. From the
bottom-up point of view, the generic neutrino and charged
lepton mass matrices have both residual CP symmetry and
residual flavor symmetry, and the residual flavor symmetry
can be generated from the residual CP transformations
[27-29]. Hence, it is natural to assume that the residual
flavor and CP symmetry arises from a large flavor and CP
symmetry group at the high energy scale. In this approach,
the CP symmetry nontrivially acts on the flavor space such
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that the consistency condition Xp*(g)X~! = p(¢) has to be
fulfilled in order for the theory to be consistent [24,30-32],
where X is the CP transformation and p(g) is the repre-
sentation matrix of the element g contained in the flavor
group. There has been intense theoretical activity on the
flavor symmetry in combination with CP symmetry. Many
flavor symmetry groups and their predictions for lepton
mixing parameters have been studied such as A, [33-37],
Sy [24,38-43], A5 [44-47], A(27) [48,49], A(48) [50,51],
A(96) [52], and Z(36 x 3) [53] as well as A(3n?) [54,55],
A(6n?) [54,56,57], and Délngn [58] group series for a generic
integer n. Recently, a comprehensive scan of leptonic mixing
parameters which can be obtained from finite discrete
groups of order less than 2000 and CP symmetry has been
performed [59]. Moreover, the phenomenological implica-
tions of flavor and CP symmetry in neutrinoless double
decay [37,39,43,44,57-60] and leptogenesis [59—61] have
been investigated. It is remarkable that the residual CP
symmetry provides a bridge between flavored leptogenesis
and low energy leptonic CP violation.

It is usually assumed that the residual flavor symmetry in
the charged lepton is an Abelian subgroup which can
distinguish among the three generations, and the residual
symmetry in the neutrino sector is a direct product of Z,
and CP. As a consequence, the lepton mixing matrix
turns out to depend on a single real parameter ¢, and all
mixing parameters are strongly correlated with each other.
In the present work, we shall discuss the other possible
approaches to predict lepton mixing parameters from flavor
and CP symmetry, and two scenarios will be considered. In
the first one, the neutrino and charged lepton mass matrices
are invariant under two distinct Z, x CP subgroups.
Consequently, all mixing parameters including mixing
angles and CP phases are predicted in terms of two real
parameters 8; and 6,. In the second scheme, the original
flavor symmetry is broken down to a residual Abelian
subgroup with three or more elements in the charged lepton
sector while a single residual CP transformation is pre-
served by the neutrino mass matrix, the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix would depend
on three real parameters 6, , ;. For an example, we present a
detailed analysis for the S4 flavor symmetry group and CP
symmetry. All possible independent combinations of rem-
nant symmetries and the predictions for lepton mixing
parameters are studied analytically and numerically.

The paper is organized as follows. In Sec. II, we study the
symmetry breaking pattern in which a flavor symmetry
combined with a CP symmetry is broken to Z, x CP in
both the neutrino and charged lepton sectors. The resulting
consequence for the prediction of the lepton mixing matrix is
discussed, and the technical steps in the derivation are
explained. We derive the conditions under which two distinct
residual symmetries give rise to the same mixing pattern.
Moreover, we analyze the independent mixing patterns
which can be obtained from the popular flavor group S,
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and CP in this scheme. In Sec. 11, our approach is extended
to the quark sector. In Sec. IV, we explore another proposal
in which the charged lepton and neutrino mass matrices
are invariant under the action of a residual Abelian subgroup
and a single CP transformation respectively. Finally, Sec. V
concludes this paper. Moreover, Appendix A contains the
necessary group theory of S, as well as its Abelian sub-
groups. Appendix B gives the conditions under which two
distinct residual symmetries of the structure Z, x CP in both
the up and down quark sectors lead to the same Cabbibo-
Kobayashi-Maskawa (CKM) mixing matrix in the case that
the fixed element is neither O nor 1.

II. LEPTON FLAVOR MIXING FROM RESIDUAL
SYMMETRY Z, x CP IN BOTH CHARGED
LEPTON AND NEUTRINO SECTORS

In the widely studied direct and semidirect approaches
[11-13], it is assumed that the neutrino mass matrix m,
possesses residual symmetry Z, x Z, and Z, x CP respec-
tively, and the charged lepton mass matrix is invariant
under an Abelian subgroup contained in the flavor group.
In this section, we shall be concerned with the scenario that
the remnant symmetry preserved by both the neutrino and
charged lepton mass matrices is of the structure Z, x CP.
Notice that the case of a flavor symmetry without CP
broken to residual symmetries G, = Z, in the charged
lepton sector and G, = Z, in the neutrino sector has been
discussed in Refs. [62]. The three generations of left-
handed leptons are assigned to a faithful irreducible triplet 3
of the flavor symmetry group.

A. General form of the PMNS matrix

We shall denote the residual Z, flavor symmetry of the
charged lepton sector as Z5 = {1, g;} with g7 = 1, and the
remnant CP transformation is X;. In order for the theory to
be consistent, the following consistency condition has to be
fulfilled [24,39],

Xip5(9)X7" = pa(gih) = ps(91). (2.1)

where p3(g;) denote the representation matrix of the element

g; in the three-dimensional representation 3. The charged
i

lepton mass matrix m2; m; is invariant under the action of the
residual symmetry Z‘gl x X, and it fulfills [24,39,42,43]

X{mfmiX, = (mfm)", (2.20)

p5(gr)mimups(gr) = mjm. (2.2b)
The unitary transformation U, which diagonalizes the
Hermitian matrix m]m; with U} m|m,U,=diag(m2,m2,m?)
is strongly constrained by the postulated residual symmetry.
In the following, we shall show how to determine U, from

p3(g;) and X;. As the order of g, is 2, the eigenvalues of p3(g;)
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are (1,—1,-1) or (=1, 1, 1), and we take the first case as an
example without loss of generality. Assuming X;; is a
diagonalization matrix of p(g;) and it satisfies

2hp3(g)Zy = diag(1,—1,-1) = p3(g),  (2.3)

then we have

p3(91) = Zupa(g)x, (2.4)
The residual CP has to be consistent with the residual flavor

symmetry, and therefore the following consistency condition
should be fulfilled [43,58]:

Xips(a)X] = pa(gih). (2.5)

Inserting Eq. (2.4) into the above equation and considering
g =1, we get

XiZip3(g)ZhX] = Zupa(g)Zh. (2.6)
which leads to
(ZHXZ)p3(90) (ERXIZ0) = palan), (2.7)
which means
(2}-1)(1271 P3(gr) = /33(91)(2;1)(1271)- (2.8)

Therefore, Z,TIX /25, is a block diagonal and symmetric
matrix, and its most general form is given by

fege (€00
I Xixy = / ’

2.9
0 uy, (29)

. . l .
where &, is an arbitrary real number and u5,, is a two-

dimensional symmetric unitary matrix. We denote the Takagi

ati ! ! : I _ gl T
factorization of u5 ., as o,,, fulfilling u5, , = 65,,05,,,

where 6}, is a two-dimensional unitary matrix. As a result,
the matrix ZITI XX}, can be written into

i . eifl/2 0 ei‘:]/z 0
=Xz = 1 b ) (210)

0 02x2 0 02x2

Then, we can obtain the Takagi factorization of X; as

ei‘fl/2 O ei§1/2 0 T
X, =12 z
= ) )

=337 (2.11)

with
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Zl - le < ) .
0 612><2

It is straightforward to check that the remnant flavor trans-
formation p3(g;) is diagonalized by X,

(2.12)

2 p3(g))Z; = diag(1, -1, -1). (2.13)

From Eq. (2.2a), we can obtain that the constraint on the
unitary transformation U, from the residual CP transforma-
tion X, is

UiX,U; = diag(ee, ePu, ey = 03, (2.14)

where f3, , . are arbitrary real parameters. Thus, we have

U/ U; = 0] (2.15)

which leads to

ErurorhHr(=ru; o) = 1. (2.16)
Hence, the combination X/ U;Q;" is an orthogonal matrix,
and it is also a unitary matrix. Therefore, =7 U; Q7! is a real
orthogonal matrix denoted by O5,;. Then, the unitary trans-
formation U, takes the following form:
Ul - 2103X3Ql_]' (217)

Furthermore, Eq. (2.2b) implies that U, is also subject to the
constraint of the residual flavor symmetry as follows,
U;p3(g,)Ul = Pdiag(1,~1,-1)P], (2.18)

where P; is a generic permutation matrix, and it can take six
possible forms, 1, Py,, Py3, Py3, P3Py, and Py Py; with

01 0 0 0 1
Pro=11 0 0], Ps=|0 1 0],
0 0 1 1 00
1 00
Py=|0 0 1 (2.19)
0 1 0

Plugging the expression of U, in Eq. (2.17) into Eq. (2.18), we
obtain

PTQ,0] 3% p3(91)%103,: Q7' Py = diag(1, -1, -1).
(2.20)

Using Eq. (2.13), we have
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(03,307 P)]diag(1, -1, —1)[03,307 ' P)]

= diag(1,—1,-1). (2.21)

Therefore, the combination 03,307 P, is a block diagonal
unitary matrix, and it can be parametrized as

. e 0
03,30, P = e

2.22
0 30 ( )

where &, is a real number and v}, is a two-dimensional
unitary matrix. Thus, we have

(03,307 P)) (03,307 P)) = PT Q7P

< e2i§2 0 )
= T ’
0 03000

(2.23)

which implies

e 0 , TT/e% 0 ,
PTQ,P PIQP,| = 1.
(o wrer) (G o, )rien

(2.24)

( e's2 0
O 1}12><2
orthogonal matrix, and it takes the form

Hence, JPTQ,P, is a block diagonal real

e 0 T T
/ Pl QZPI — S23(91), (225)
0 30
where S»3(0;) is a rotation matrix with
1 0 0
S3(0,)=10 cosf, sind, (2.26)
0 —sinf; cosé,

As a consequence, the unitary transformation U; is fixed by
the residual symmetry Z, x CP to be

U =585 (0)PTO;. (2.27)
Hence, the unitary transformation U, can be easily obtained
by determining the Takagi factorization matrix %;. Notice that
if ¥, is a Takagi factorization of X;, X;5,3(¢}) is also a valid
Takagi factorization fulfilling Eq. (2.13), where S,3(6}) is an
arbitrary rotation in the (23)-plane and it can be absorbed into
S»3(6;) through parameter redefinition. As a consequence,
the result for U; in Eq. (2.27) is not changed. Similarly,
the residual flavor symmetry of the neutrino mass matrix
is denoted as Z% ={l,g,} with ¢ =1, the residual
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CP transformation is X,, and CP should commute with
Z3 as well,

X.p3(9.)X." = pa(a.)- (2.28)
The invariance of the neutrino mass matrix under the residual
symmetry Z5 x X, requires [24,39]

pg(gu)mbp.’:(gu) = my, szuXu = m: (229)
Plugging UI'm,U, = diag(m,, m,, m3) into this equation,
we can derive the following constraints on the unitary
transformation U,

Ulps(g,)U, = diag(£1,£1,41),  (2.30a)

UlX,U: = diag(+1,+1,+1) = 02, (2.30Db)
where Q, is a diagonal and unitary matrix with nonvanishing
entries equal to =1 and +-i. Without loss of generality, O, can
be parametrized as

1 0 O
o,=|0 ik o], (2.31)
0 0 i*

with k1, = 0, 1, 2, 3. First, we can diagonalize the residual
flavor symmetry transformation p3(g,) by a unitary trans-
formation X, as

Z0p3(9.)50 = palg,) = diag(1.~1.-1).  (2.32)

The consistency condition of remnant symmetry is [24,39]

X,p3(9.)X5 = p3(g;") = p3(9,). (2.33)

which leads to
szzflﬁ;(gu)zglxll = 2u1ﬁ3(gu)211' (234)

Thus, we have
(221Xv2§1)ﬁ§(9u)(Zzlxvzzfl)T = /33(%)' (2-35)

Hence, Z:1Xu2*1 is a block diagonal matrix, and it is of the

following form,

+ e 0
axm=(%0)

2.36
0 ung ( )

where {; is an arbitrary real number and 5, is a two-
dimensional symmetric unitary matrix. u5, , can be factorized
: 2 vT : v vt

into the form %, = 65,,0%,, with 6%, ,05,, = 1. Then, we
obtain
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ZZIXDE;I = Z1/22‘32’ (237)

o= .
. ( 0 65><2 )

As a consequence, the Takagi factorization of the residual CP
transformation X, is given by

where

(2.38)

X, =z, (2.39)
with X, = X1 Z,,. Itis easy to check that the residual flavor
transformation p3(g,) is diagonalized by %, as well,

ZZpL&(gu)ZV = 222231'”3(%)2”2”2
=3/ diag(1,-1,-1)%,,

= diag(1,-1,-1). (2.40)
Now, we proceed to discuss the constraint on U, from

the remnant CP transformation. Substituting the relation
X, = 2,27 into Eq. (2.30b), we get

(Ql/ ZZD)(QUU:ZD)T = 1' (2'4])

This implies that Q, U} %, is a real orthogonal matrix denoted
as Os,3. Therefore, the unitary transformation U, is of the
form
U,= Zuogx,% vt (2.42)
Subsequently, we consider the constraint from the residual
flavor symmetry given in Eq. (2.30a),
Ubps(9.)U, = Pldiag(1,=1.=1)P,.  (2.43)
where P, is a permutation matrix, since the neutrino masses

are unconstrained in the present framework and the neutrino
mass spectrum can be either normal hierarchy (NH) or

inverted hierarchy (IH). Inserting Eq. (2.42) into
Eq. (2.43), one finds
Q;l 03><3ZZ/03(9D)2110:{X3Q1/
= 0;'03,3diag(1,-1,-1)0% ,0,
= Pldiag(1,-1,-1)P,, (2.44)

which gives rise to

diag(l’_l’_l)(0§x3QbPZ) = (O.Z;x?:QuPE)diag(l’_l?_l)‘
(2.45)
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Therefore, 0% ;0, P! is ablock-diagonal unitary matrix, and
we can parametrize it as

e 0
07,,0,PT = ( )

2.46
0 1}12/><2 ( )

where {, is real and 7%, is a two-dimensional unitary matrix.
Both sides of this equation multiply with their transpose, and
we obtain

(03Tx3 DPZ>T(O3Tx3 uPuT) =P,0;P]
o2t 0
- ( 0 ”lﬁzzvixz)’
(2.47)

which implies

i Tr /el ()
Ke )PVQ;’PZ} Ke )PDQ;'PZ] —1.
0 ’UEXZ O UZXZ

(2.48)

s
Therefore, (¢ 0 : , 9
2x2

orthogonal matrix, and it is of the following form,

)P,0;'PI is a block-diagonal real

PuQ; Pl/ = 523(911)’ (249)
0 7}12/><2

where 0, is real. Consequently, the unitary transformation U,
is fixed to be
UU = ZDS23(6u)PuQU' (250)

The lepton mixing matrix Upyns is a result of the mismatch
between U; and U, . Hence, we find Upyng is of the form

Upmns = UzTUu = Q1P1523(‘91)2}2y523(9u)Pqu (2.51)

where the phase matrix Q; can be absorbed by redefinition
of the charged lepton fields. We see that the lepton
mixing matrix depends on two free continuous parameters
0, and 6,, and one entry of the PMNS matrix is fixed to
be some constant value by the postulated residual
symmetry. Notice that Sy3(0+7)=S,3(0)diag(1,—-1,—-1)=
diag(1,—1,—1)S,3(@) where the diagonal matrix can be
absorbed into the matrices Q; and Q,, and consequently
the fundamental interval of the parameters 6; and 8, is [0, 7).

If two pairs of residual subgroups {Zgl x X/, Zg/” x X}
and {Z§ x X;,Z% x X,} are related by a similarity
transformation

015012-5



JUN-NAN LU and GUI-JUN DING
p3(h)Xp3(h)" = X,
p3(h)X,p3(h)" = X,

hgih™" = 9

hg,h™" = g, (2.52)
with i € Sy, then the unitary transformations of the
changed lepton and neutrino fields are related by

U = p3(h)U,, U, =p3(h)U,.  (2.53)
Therefore, the same result for the PMNS matrix would be
obtained.

B. Criterion for the equivalence
of two mixing patterns

In some cases, two distinct residual symmetries lead to
the same mixing pattern, if a possible shift in the continu-
ous free parameters 6; and 0, is taken into account. Then,
we shall call these two mixing patterns are equivalent.
In this section, we shall derive the criterion to determine
whether two resulting mixing patterns are equivalent or not.
In our approach, the lepton mixing matrices derived from
two generic residual symmetries take the form

Upmns = Q1P1523(91)21+2u523 (0,)P,0,, (2.54)

Upins = Q1P1S5(0)Z [ Z055(6)PLQ.  (2.55)
Obviously, the fixed element has to be equal if the two
mixing patterns are equivalent, and without loss of general-
ity, we assume it is the (11) entry of the PMNS matrix. As a
result, the permutation matrices P,, P,, P}, and P;, can only
be 1 and P,3. Because the identities

P53853(0;) = diag(1, —1,1)8,3(0;, — /2),

8§23(0,)Pr3 = $23(6, + /2)diag(1, —1,1) (2.56)
are satisfied, and the diagonal matrix can be absorbed into
the matrices Q; and Q,, we could choose P; =P, =
P; =P, = 1. For any given values of ;, and 6, and the
matrices Q;, P;, Q,, and P,, if the corresponding solutions
of ) and @, as well as Q), P}, Q,,, and P,, can be found such
that the equality Upyns = Upyns i fulfilled, these two
mixing patterns would be equivalent, i.e.,

015253(01)US23(0,)0, = Q)S2(0)U'S2(6,)Q,.  (2.57)
where U = Z}LZU and U' =%/ ;Z; Then, we have
0153(0))USx3(0,)Qn = S3(0)U'Sx3(0,),  (2.58)

where Q; = O’ IT 0, is a generic diagonal phase matrix and
Oy = 0,0, is also diagonal with entries 4-1 and +i. The
matrices on both sides of Eq. (2.58) multiplying with their
transpose leads to

PHYSICAL REVIEW D 95, 015012 (2017)

01.5253(60,)US»(6,)03.55(6,)UT SL,(6,) 0,

= $53(0)U'U'TS35(6). (2.59)

Subsequently, taking the trace, we obtain

Tr[S35(0,) 07 S23(0,) US»3(6,) 05,53:(6,)UT] = Te[U'U'].
(2.60)
Since the right-hand side of this equality is a constant and it

does not depend on 6, and 6,, the phase matrices Q; and
Oy should be of the form

e 0 0
Or=1| 0 ¢€* 0 ,
0 0 ke
m 0 0
Ov=10 m 0 [, (2.61)
0 0 kmn

where k;, = £1, 6, , are real parameters and 7, , are &1
and £i with ey, = 1. Thus, from Eq. (2.58), we can
derive

Q,UQy = S5(0))U'S»(6)). (2.62)

with

0] =0, — k0,0 =0, — k,0,. (2.63)
Once the residual symmetries are specified, the unitary
matrices U and U’ can be determined by following the
procedures listed in Sec. IT A. Generically, U and U’ can be
written as

a) ap as by by b
U= a, ds dag |, U/: b4 b5 bé (264)
ar dag dg by bg b

A necessary condition for the equivalence of Upyng and
Upuns 18 @1 = by, which cannot be 0 or 1 in order to be
compatible with experimental data. First, let us consider a
special case with

100 100
0,=10¢e% 0|, Oy=]010 (2.65)
0 0 e 001

Solving Eq. (2.62) for the variables 8/, 8, and 6, we can
obtain the condition for the existence of a solution:
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() b3+ b3 +#0,b3+ b3 #0:
In this case, the solutions for &}, 8}, and 6 are
given by

a4b4+a7b7 is a4b7—a7b4 is

cost) =—————"e, sinf/ =————5—¢",
T ¢ T
s 43t a3
by +b3
a2b2+a3b3 . a3b2—a2b3
cos/=—=——=°  sinf/=—-—="-
Y b+ b3 Y b3+D3
(2.66)

Since ¢/, 0, and § are real parameters, a; and b;
should be subject to the following constraints:

(asbs + azb7)(a3b; — a7b}) € R,
a3 + a3| = [bF + b3,

(azby + azbs)(a3b5 — a3bs) € R,
a® +a} = b3+ bi. (2.67)

Inserting Eq. (2.66) into Eq. (2.62), we find that the
equivalence of these two mixing patterns requires

(xbs + ybg)z + (xbg + ybo)w

as = ,
’ (b3 + b3)(b3 + b2)
_ (xbs = ybs)z + (xbg — ybg)w
ae = 7 N2 7 )
(b3 + b3) (b + b3)

(xbg + ybg)z — (xbs + ybe)w
(b5 +a3)(b; +b3) 7

ag =

(xbg — ybg)z — (xbe — ybs)w
— , 2.68
“ =T B BB+ b)) (268)

with

X = ar)by + asbs, Yy = abs — asb,,

7 = agby + a;b, w = asb; — a;by. (2.69)
(i) b3+ b3 =0,b3+b3+#0:
This case requires
by=is|b,, az=is;a,, with s;==+1. (2.70)

The parameters 8/, 6/, and § are determined to be

(iii)
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a4b4—|—a7b7 is a4b7—a7b4 is

cosf! = e, sinf! = e,
R ' bi+b}
~2i5 _ aj +a3
b3 +b3’
cost) =N(ay/by), sinb)=—s,3(ay/b,),
(2.71)
with the constraints
(asby + azb7)(a3b; — ajb;) € R,
la + a3 = |b% + b3|. (2.72)

These two PMNS matrices would be equivalent if
and only if the following conditions are fulfilled:

as(b; + b3) = s1(zbg + who)I(ay/by)
+ (zbs + wbg)N(as/by),
ag(b + b3) = —s,(zbs + wbg)I(az/b,)
+ (zbg +wbo)N(ay/b,),
ag(bj + b7) = s51(zbg — whe)I(ay/b,)
+ (zbg — wbs) N (ay/by),
ag(bj + b3) = —s(zbg — wbs)I(ay/b,)

+ (zby — whe)R(an/by).  (2.73)

b3 + b3 #0,b7+ b3 =0:

From b2 + b3 =0, we obtain b; = is,b, with
s, = =1. Moreover, the equality a; = is,a4 should
be satisfied; otherwise, Upyns and Upyng are two

different mixing patterns. The condition of equiv-
alence in Eq. (2.62) gives rise to

6T, —1;T;=0, 1,/T;€R, with i,j=5,6,8,9,
(2.74)

where

ts = zas — wbs — vby,

te = zag — whg + vbs,

tg = —zag + wbg + vby,

ty = —zag + why — vbg,

Ts = —izas + s,(wbg + vby),

T = —izag + so(wby — vby),

Ty = izag + s,(wbs + vbyg),

Ty = izag + so(Wbg — vbs), (2.75)

and
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2= by (b3 + b3),
w = ay(arby + azbs),

V= a4(a2b3 - a3b2). (276)

The values of the rotation angles 6/ and 6, are

COS 97 = m(a4€i6/b4), Siﬂ@?’ = sz?s(a4ei5/b4),

oS 9/, _ 612[72 + a3b3 sin 9” _ (13172 - a2b3
v bs+ b3 v b+ b3
(2.77)
with the constraints
(a2by + asbs) (a3 — a3b3) € R,
as + a} = b3 + bi. (2.78)
The phase ¢ is determined by
S(ase/b t;
Slage?/by) _ 1i (2.79)

R(ase”/by) T

(iv) b3+ b3 =0,b% + b2 =0:
In the same fashion as in previous cases, we find
b3 = iS3 bz,

a3:is3a2, S3ZZ|21,

b7:iS4b4, a7:is4a4, S4:Z|21. (280)

The condition of equivalence in Eq. (2.62) would be
fulfilled if

1/T,eR, with i,j=5,6,8.9,
(2.81)

tT,—1;T; =0,

where

ts = asby — ay[s3b63(ay/by) + bsN(aa/by)),
te = agby + as[s3b53(ay/by) — beN(as/by)),
ty = agby — ay[s3b93(ay/by) + bgN(ay/by)),
ty = agby + ag[s3bg3(ay/by) — boN(az/by)),
T§ = —iasby + 54a4]53b93(ay/by) + bgNi(ay/bs)],
T = —iaghy — 54a4[53b33(ay/by) — boM(ay/bs)],
Ty = —iaghy — s4a4[s3b63(ay/by) + bsN(ay/bs)]
Ty = —iaghy + 54a4]53b53(ay/by) — bsN(ay/bs)]

(2.82)

El
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The solutions for 8}, €, and & are

cos 0] = R(aue®/by),
S(age®/by) 1

W(aed/by) T}
cos @) = N(a,/b,),

sin@) = 543(ase®/by),

(2.83)

For the most general values of the diagonal matrices Q;
and Qy,

't 00
Qr=1 0 €2 0 |,
0 0 ke
m 0 0
Ov=10 m 0 |, (2.84)
0 0 ko

the condition for the equivalence of two generic mixing
patterns can be obtained from the above results by making
the following substitutions:

-1 —1
dy = 11 1ady, az — k2’11 mas,

ds — Ihds,

Cll i al,
ay = MN1dy, as — konpag,
ag — kymas, ag = kikymag.

(2.85)

a; = kynay,

C. Possible mixing patterns from S, and CP
and numerical results

We shall perform a comprehensive study of the lepton
mixing patterns arising from the breaking of S; and CP
symmetry into two distinct residual groups of the structure
Z, x CP in the charged lepton and neutrino sectors. The
basic properties of the S4 group and its representation are
collected in Appendix A. It turns out that the most general
CP transformation compatible with S, is of the same form
as the flavor symmetry transformation in our chosen basis
[39,42]. Each of the nine different Z, symmetries in
Eq. (A3) together with the compatible CP transformation
can be residual symmetry of the neutrino and charged
lepton mass matrices.

By applying the similarity transformation and the equiv-
alence criterion derived in Sec. II B, we find that it is
sufficient to only consider a number of independent cases
which lead to different results for mixing angles and CP
phases. All possible permutations of the rows and columns
of the mixing matrix would be considered. We exclude all
patterns that can not describe the experimental data on
lepton mixing angles at the 3¢ level for certain values of the

015012-8
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free parameters 6, and 6,. As a result, we find in total 18
phenomenologically viable cases. The residual flavor
symmetry of the neutrino and charged lepton sectors can

be chosen to be Z57°SV, ZIU or Z$; the corresponding
residual CP transformation X, and the Takagi factorization
matrix X are summarized in Table I. As shown in Sec. IT A,
the Takagi factorization X satisfies

X, =337, 2p3(g,)E = diag(1,-1,-1), (2.86)
where g, is the generator of G,.. Notice that p3(g,) X is also
aresidual CP symmetry of the neutrino sector, and it leads
to the same constraint on the neutrino mass matrix as X,.
For each possible residual symmetry, the lepton mixing
matrix can be straightforwardly obtained by using the
master formula of Eq. (2.51). If two cases possess the
same residual symmetry but differ in the choice of the row
permutation with P, = P, and P, = P 5 respectively, then
the resulting mixing matrices are effectively related through
the exchange of the second and the third rows, because the
identity

TABLE 1. The residual flavor symmetries G, = ZgTZSU , 23,
Z5 and the corresponding residual CP transformations X,
consistent with G, and the Takagi factorization matrix Z. Let
us denote the generator of G, as g,; then, p3(g,)X, is also a
residual CP symmetry, and it is given in parentheses. For
simplicity of notation, we do not distinguish between the abstract
elements of the S, group and their representation matrices in 3.

G, X, z
2 2 2
z3"sv T*(TST*U) 2 0 -2
\/Lg e 3¢5 —\/2e5

e 3 \/ge_% \/Ee_%”
U(ST?S) TRRNGY 0
% —e7% \/Ee‘%{ —\/§e%
e —\/Ee% \/ge_%!

zr T(U) 0 0 V2
% —e»‘%” e‘_%" 0
e €3 0
STS(T*STU) 0 2; V2
% \/§e% et —\/fef%
V3e™t  —e6  —\/2é%
z5 1(S) V2 -1 -3
Liv2 2 o
NG
V2 -1 V3
SU(U) NG 0 -
7| V2i =B
V2i V3
TST*U(T*STU) (1 i 1 )
L1 e% —eF
Vi 1 —ef  —ef

PHYSICAL REVIEW D 95, 015012 (2017)
P3P 138,3(0) = diag(—1,1, 1)P3553(0 — 7/2) (2.87)

is satisfied. Subsequently, we can extract the lepton mixing
parameters, and the results for the mixing angles sin® 6,5,
sin® @,,, sin® 0,5 and the CP invariants Jp, I, and I, are
listed in Tables I and III for all the viable cases. Here, J -p,
I, and I, are conventionally defined as [63,64]

X * *
Jep = 3(Upmns, 11 Upmns 33 Upmins,13Upnins 31 ),

1
=3 sin 26, sin 20,3 sin 26,3 cos O3 sin6¢p,  (2.88)
Iy = S(UI%MNS.IZU;S%/INS,II)
= sin? 0}, cos® 1, cos* O3 sinay,  (2.89)
I, = %(UI%MNS.ISUEIZ\/INS,II)
= sin’ 05 cos? 0,3 cos? O}, sin(az; — 25¢p),  (2.90)

where J¢p is the Dirac CP-violating phase and a,; and a3,
are the Majorana CP phases in the standard parametrization
[65]. One notices that the invariants Jp, I;, and [, are
exactly vanishing such that all three CP phases dcp, @1,
and az; are trivial in some cases. Furthermore, we
perform a conventional > analysis that includes the three
mixing angles, and the results for the mixing parameters
and the best fit values (6,,0,), are displayed in Tables IV,
V, VI, and VIL. For the residual flavor symmetry (G;, G,) =
(Z8TSU, ZTU), one element of the PMNS matrix is fixed to
be 1/2. From Tables IV and V, we can see that the CP
phases are predicted to be §cp = 1.5697, ay;(mod ) =
0.728z and a3;(mod 7) =0.8087 in the case of
(XI’XINPI’PD) = (TZ,T,Plz,P12), while all three CP
phases are conserved for the remaining cases. In the same
manner, for another residual flavor symmetry (G;,G,) =
(ZgTzSU, 73), the fixed element is 1/1/2, and we find that
all that both Dirac and Majorana phases are trivial except
(Xl’ Xw PI’ Pl/) = (Tz’ SU, P127 P13)’ (Tz’ SU, P127 Pl3)
which give rise to Ocp = 0.458z, 0.542z, 1.458z or
1.542z. Moreover, the atmospheric mixing angle 6,3 is
predicted to be nonmaximal in all the cases studied. The
latest results from T2K and NOvA show a weak evidence
for a nearly maximal CP-violating phase 6qp ~ 37/2
[66,67], and hits of §-p ~ 37/2 also show up in the global
analysis of neutrino oscillation data [4-7]. On the other
hand, NOvA excludes maximal mixing at 2.5¢, while the
experimental data of T2K are consistent with maximal
mixing [66,67]. Hence, the above mixing patterns pre-
dicting 6cp = 1.5697, 1.458z, and 1.5427 are slightly
favored over the remaining cases by the present exper-
imental data.

The numerical results listed in Tables IV, V, VI, and VII
can be easily seen by plotting the contour regions of the
mixing angle sin’ 0;; in the plane 0, vs 6;, as shown in
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TABLEIL Results of the mixing parameters for the independent and viable cases with (G, G,) = (Z375V, ZIU). Note that the factors
(=1)% and (=1)*% are omitted in the expressions of I, and I, respectively, and they arise from the CP parity matrix
Q, = diag(1,i%,i*2). For notational simplicity, here we introduce A; = cos26,(3 — 11cos26,) — 81/2sin26, cos> 6, +
125in 26, sin @, (v/2sin 6, + 2cosh,) and A, = cos26,(11cos 26, — 3) — 8+/2sin 26, sin> @, — 12 sin 26, sin 6, (/2 sin b, + 2 cosh,).

(G1.G,) = (z§75V, Z1V)

(X, X,.P..P,) (U.T, P, 1) (U,STS,Py,.1)
sin? 013 (cos 0;(V2sin 6,42 cos §,)—3 sin 6, sin 6, )? (255in? 0 cos® 0, +sin 0, (sin 6,—v/2 cos §,)?)
: 2 4
sin® 0, 1— 6(21/2 5in 26, +c0s 20,+3) 1— 2(2V/2 5in 26, 4-cos 26,43)
Aj+7cos260,+33 4+/2 sin 26,5106, +c0s 260, +cos 26, (3 cos 20, +1)+11
sin? 013 4(sin§,-2v/2 cos 6,)? 2(c0s20,+3)
Ay +7cos 20,+33 4/2 5in 20,5100, +c0s 26, +cos 20, (3 cos 20,+1)+11
Jep 0 sin 26, (sin 26,—2v/2 cos 20))
32
I 0 (sin §,—3 sin 36;) sin 26, (v/2 sin 6,42 cos 6;)
64
I 0 __ (sin@,—35in36;) sin 26, (v2 sin 6,+2 cos 6;)
64
(X1, X,,P.P,) (U.T.Pyp.Py) (U.STS. Py, P1p)
sin? 013 (cos ,(v/2sin6,+2cos6,)—3sin 6, sind,)> (2sin® , cos® 8, +sin? 0, (sin §,—/2 cos §,)?)
12 4
sin? 0, 12(sin ;+v2 cos ;) 4(sin0,++/2 cos 6,)2
Ay+7co0s26,+33 4+/2 sin 26, sin? 6, +cos 26, +cos 26, (3 cos 26, +1)+11
sin? 0y 4(sin6,—2+/2 cos 6, )? 2(cos 20, +3)
Ay +7cos 20,433 4/2 5in 26,5106, +c0s 26, +cos 26, (3 cos 260, +1)+11
Jep 0 sin 26, (2/2 cos 260,—sin 20))
32
I 0 __ (sin@,—35in36;) sin 26, (v2 sin 6,+2 cos 6;)
64
12 0 sin 6, sin 26, (v/2(3 sin 6,47 sin 36,)—14 cos ;-2 cos 36,)
64
(X, X,.P..P,) (U.T,Py3.1) (U,STS,Py3.1)
sin? 013 (sin;(v2sin 0,42 cos d,)+3sin 6, cos §))? (2 cos® 0; cos? 0, +sin” 0, (cos 0,+V/2 sin §,)%)
. 12 4
sin2 015 1+ 6(2V/2 sin 26, 4-cos 26,-3) 1 — 2(2v/2 sin 26, 4cos 26,-3)
Ay+7cos260,+33 4+/2 sin 26, sin? 6, —cos 26, +cos 26, (3 cos 26, +1)—11
sin? 0y 1— 4(sin6,—2+/2 cos 6, )? 1+ 2(cos 20, +3)
Ay+7 cos 20,433 4+/2 5in 26, sin? 6, —cos 26, +cos 26, (3 cos 26, +1)—11
Jep 0 sin 26, (sin 26,-2v/2 cos 26))
32
Il 0 sin 26, (cos 6;+3 cos 36;)(v/2 cos 6,—2 sin 4
64
[2 0 __sin26,(cos@,+3 cos 36,)(v/2 cos 6,~25in ;)
64
(X1.X,.P.P,) (U.T.Py3.Py) (U.STS. P13, P1p)
sin? 0,3 (sin 0,(v/2sin 6,42 cos B,)+3 sin 6, cos ;) (2cos? 0, cos? 0, +sin® 6, (cos 0,+\/2 sin 6,)?)
: 2 4
sin? 0> 12(cos ,—/2sin 6,)? _ 4(cos 6,—/2sin6,)?
Ay+7cos26,+33 4+/2 5in 26, sin? 6, —cos 26, +cos 26, (3 cos 26, +1)—11
sin? 923 1— 4(sin,—2+/2 cos 6, )? 1+ 2(c0s 26, +3)
Ay+7 cos 260,433 4+/25in 20, sin? 0, —cos 26, +cos 26, (3 cos 260, +1)—11
Jep 0 sin 20, (2v/2 cos 20,—sin 26,)
32
I, 0 _ (cos 6,43 cos 30,) sin 26, (v/2 cos 6,—2 sin 6))
64
[2 0 cos 0, sin29,,(\/§(3 cos 0;—7 cos 30;)+14 sin §,—2sin 36,)
64
2
(X1, X,,P.P,) (T*,T, P2, Py3)
sin? 013 (95in? 0, cos® 0;+sin® 0,(v/25in 6,42 cos 0,)%)
. 12
sin? 912 _ 6(cos 20,-3)
—8v/25in 26, sin? 0,47 cos 26, +cos 20, (11 cos 20,—3)+33
sin® 63 _ 4(sin 6,—2v/2 cos ,)?
8+v/2 sin 20, sin® 0,+cos 20,(3—11 cos 20,)—7 cos 20,33
Jep __ sin20,(7in 26, +4v/2 cos 26,
96
I (sin46,(124/2—13 sin 26, )+14 sin 26, sin 26, +8+/2(sin 20,+sin 46, ) cos 26,)
192
14 sin 26,411 sin sin + sin” @, cos 0; cos
I, 45in260,+11 sin 46,) sin 20, +32y/2 sin’ 6, cos 6, cos 26),
192
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ALTERNATIVE SCHEMES OF PREDICTING LEPTON ... PHYSICAL REVIEW D 95, 015012 (2017)

TABLEIII. Results of the mixing parameters for the independent and viable cases with (G, G,) = (257°5V, Z3).
Note that the factors (—1)* and (—1)* are omitted in the expressions of I, and I, respectively, and they arise from

the CP parity matrix Q, = diag(1, i*1, i*).

(G1.G,) = (8", Z5)

2 2
(X1, X,.P.P,) (T%,1, P13, Py3) (T%,SU, Pyy., Py3)
in2 1+cos 26, 1+cos 26,
sin” 03 i Lroos20)
sin® 0, | V/Isin26,cos (20,12) 1y $in20,(1-3¢0526))
27 3—cos 26, 2 2(3—cos 26;)
12 2 2
sin 923 3—co0s 26, 3—cos 20,
J _ sin 20, sin (26, +%) __sin26, cos 26,
cp 2 8v2
1, (25in 20,—3 sin 40, ) sin (20, +%) (3sin460,—25in 26, ) cos 26,
16V2 16v2
I, cos? ;(2v/2 sin 20,—cos(26,+%)(cos 26,-3)) __sin6; cos® ; cos 26,
16 2V2
2 2
(X17Xy7P13P1_/) (T ,TST U,Plz,P13) (U,l,P]Q,PB)
L) 1+cos 26, 1—cos 26,
sin” 03 e B
sin? 0, (v/25in 6, cos 6,—2sin 0, cos 6, ) | V2sin26,sin (26,+%)
3—co0s 20, 27 3tcos20,
) 2 2
S 923 3—cos 20, 3+4-cos 26,
JCP 0 sin 20 cos (26, +%)
8v2
Il 0 (25in 26,43 sin 46, ) cos (26, +£)
16v2
I, 0 sin? 6;(3 cos 26,+1) cos (26, +%)
- 16
2 2
(XhXD’P]vPl/) (T*]7P137P13) (T?SU’P13’P13)
12 1—cos 26, 1—cos 26,
sin” 043 — I —
in2 V2si s x sin 26, (143 cos 26))
sin 912 1 25in 26, cos (260, +%) 1 y i
7T 3+cos 20, 2T 2(3+cos20)
) _ 2 _ 2
s 923 1 3+co0s 20, 1 3+cos 26,
JCP __ sin20,sin (26,+%) __sin26,cos 26,
82 8v2
I, _ (25in20,+35in46,) sin (20, +%) (3sin 40,2 sin 26,) cos 26,
16v2 16v2
I, sin? 0;((cos 26,+3) cos (26, +£)—2+/2 sin 26,) cos ) sin® 6 cos 26,
16 2V2
(X1, X,. P, P,) (T2, TST*U, P35, Py3) (U, 1,P13,P13)
102 1—cos 26, 14-cos 26,
S 913 - 4
sin? 6, (v/2in 6 5in 6, +2 cos 6, cos 6, ) |, V2sin20,sin (20,+5)
3+c0s 20, it e
102 _ 2 _ 2
sSin 023 1 3+cos 20, 1 3—cos 26,
‘]CP 0 sin 26, cos (20, +%)
8v2
I 0 (25in26,-3 sin 40;) cos (20, +%)
162
I, 0 cos? 6;(3 cos 20,—1) cos (20, +%)
16
2 2
(X, X,,P,,P,) (T2, TST*U, P35, P,)
sin? 013 (v/25in 6, cos §,—2sin §, cos 6;)*
P
Sin2 912 4sin” 0,
2+/2 sin 26, sin 26, +cos 20, +cos 26, (3 cos 26, —1)+5
sin? 013 1— 4co0s’ 0,
2+/2'5in 20, sin 26, +cos 26, +cos 26, (3 cos 26, —1)+5
I, 0
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TABLEIV. The results of the y2 analysis for the independent and viable cases with (G, G,) = (Z57°5V, ZI) under the assumption of
NH neutrino mass spectrum. y2. is the global minimum of y? at the best fitting values (6;, 0, ), for 6, and 6,. We give the values of the
mixing angles sin® @3, sin? 0,, and sin? O3 and the CP-violating phases 8¢p, ay, and az; for (6;,6,) = (0;,0,)

(X1, X,, P, P,) Loin (01,0,)y/7 sin?@;;  sin?@;, sin?6,;  Scp/m ay/m (mod 1) as/z (mod 1)
(U.T, Py, 1) 0.6354 Egﬁgg: 8:22% 0022 0311 0437 0 0 0

(U.T, Py, 1) 4.6454 Eg:ggg: o éég; 0022 0317 0551 1 0 0

(U.T, Py, Ppy) 3.3522 Eg:gg: 8:%; 0022 0308 0546 0 0 0

(U.T, Py, Pyy) 0.0010 Eg:ig: 8:%; 0022 0304 0451 1 0 0
(U,STS, Py, 1) 173268 Eg:gzi: ?i 0024 0344 0512 0 0 0
(U.STS.P3,1) 164425 Eg:g;}: (1)3 0024 0344 0488 1 0 0
(U,STS, P1p, Py) 173286 Eg:g;g: (3 0024 0344 0512 0 0 0
(U,STS, P13, Pry) 164425 Eg:fég: ?i 0024 0344 0488 1 0 0
(T2.7,Py, Py) 257405 QOIS 0029 6000 0270 0644 1569 0.728 0.808

(0.925, 0.024)

Figs. 1, 2, and 3. The most stringent constraint arises from
the reactor neutrino mixing angle 6,3, which has been
measured quite precisely [4-7]. One sees that the three
lepton mixing angles 6,, 0,3, and 6,3 can be simulta-
neously compatible with the experimental data at 3¢ level
only in a rather narrow region of the 8, — 6, plane. Hence,
the mixing angles and CP phases should be able to only

V, VI, and VII, and consequently the present approach is
very predictive. As an example, in Fig. 4, we display the
predictions for the CP phases d¢p, a1, and a3; in the plane
0, vs 0, for the residual symmetry (G, G,,X;.X,)=
(287°5V,Z5.1.5U) with (P}.P,)=(P13.P13), (P13.Py3),
where the small black areas represent the regions in
which the experimental data on lepton mixing can be

vary a bit around the numerical values found in Tables IV, accommodated.

TABLE V. The results of the y2 analysis for the independent and viable cases with (G;, G,) = (Z37°SV, ZIV) under the assumption of
the IH neutrino mass spectrum. ;(Qmin is the global minimum of »? at the best fitting values (0;, 9, ), for 8, and 6,. We give the values of
the mixing angles sin 63, sin® @,,, and sin® 6,3 and the CP-violating phases d¢p, @y, and az; for (6,,0,) = (6,,0,).

(X, X,, P, P,) Xoin (01,0,)pe/7 sin?@y3  sin?60y,  sin*0y;  Scp/m ay/m(mod 1) a3 /7 (mod 1)
(U.T, Py, 1) 11.7471 Eg:gé}: 8%;‘8; 0023 0328 0474 0 0 0

(U.T, Py, 1) 0.0011 Eg:gg‘;z 8%?% 0022 0304 0580 I 0 0

(U.T, Py, P1y) 0.6316 Eg:g?g: 8:2?2; 0022 0302 0550 0 0 0

(U.T, Py, Pyy) 11.0992 Eg:ii;‘: 8%3; 002 0315 0460 1 0 0
(U.STS, P, 1) 17.6652 Eg:g;}: ?i 0.024 0344 0512 0 0 0
(U,STS,Pis. 1) 205458 Eg:g;}: ?i 0024 0344 0488 | 0 0
(U,STS, P1y, P1y) 176652 Eg:ggg: (g 0024 0344 0512 0 0 0
(U,STS, Py, Pp) 205458 Eg:fég: (1)3 0024 0344 0488 I 0 0

(12,7, Py Py) 178338 QOIS 0029600 0270 0644 1569 0.728 0.808

(0.925, 0.024)
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TABLE VI.  The results of the y2 analysis for the independent and viable cases with (G;, G,) = (Z37°5V, Z3) under the assumption of
the NH neutrino mass spectrum. 2. is the global minimum of ? at the best fitting values (6, 8, ),; for 9, and 9,. We give the values of
the mixing angles sin 3, sin®@,,, and sin® 6,5 and the CP-violating phases d¢p, @y, and az; for (6,,0,) = (6,,0,)..

(X;,X,,P..P,) 2o (0,,0,)/7 sin@,;  sin?@;, sin®6,;  Scp/m oy /m(mod 1) as/7 (mod 1)
2
(T2, 1, P13, Py3) 17.3286 Eg'i;;’ g'gi;; 0024 0344 0512 0 0 05
2 T
(T%,1,Py3,Py3) 16.4425 Eg'gg’ 8"91%;; 0.024 0.344 0.488 1 0 0.5
58.4512, 8'323 0.542 0.208 0.146
(T2, SU, Py, Py3) 12935  (0-567.0. 0022 0304 0511
(0.567. 0.567)
0433 0933) 1458 0.792 0.854
(0.933. 0.567)
2 0067, 0933) 1542 0.208 0.146
(T2, SU. P15, P)3) 0.5023 0022 0304 0489
: (0.067, 0.567)
0933 0933) 0.458 0.792 0.854
(0.433. 0.266) 0 0 0
s (0.567. 0.734)
(1% TST?U. P, Pi) 12935 (0 00 0022 0304 0511 1 . ;
(0.567, 0.362)
(0.933, 0.266) . 0 .
(T2, TST?U, Pys, Pyy) 05023 Q0670738 000 0304 0489
(0.933. 0.638) 0 0 0
(0.067. 0.362)
(U, 1,Py, Py3) 17.3286 Egg;;’ 8@2;5 0024 0344 0512 0 0 0
(0571, 0.167)
(U.1,Py5.P3) 164425 (0o ooy 0024 034 0488 1 0 0
(T2, TST?U, Pps, Pyy) 100552 (027601655 000 0207 0614 0 0 0

(0.724, 0.835)

Carefully examining all the numerical results, we see that
the predictions for the reactor mixing angel 6,5 are almost
the same while the values of 0,,, 60,3, and J.p are
considerably different in distinct cases. The current oscil-
lation experiments T2K and NOvA are able to exclude
certain ranges of 6,3 and J.p around the maximal values, if
running in both the neutrino and the antineutrino modes is
completed. The forthcoming reactor neutrino oscillation
experiments such as JUNO [68] and RENO [69] expect to
make a very precise measurement of the solar mixing angle
0,,, and the error of sin® @,, can be reduced to about 0.3%
[68]. The planned long baseline experiments such as
DUNE [70] and Hyper-K [71,72] could significantly
improve the precision on 6,3 and Sqp. Hence, future
neutrino facilities have the potential to discriminate among
the above possible cases, or rule them out completely.

The neutrinoless double (Ovff) decay is a lepton
number-violating process. It is an important probe of the
Majorana nature of neutrinos, and it can provide us with
precious information on the neutrino mass scale and
ordering. Searching for Ovff decay has a long history.
There are many new sensitive Oy} experiments which are
in various stages of planning and construction. The Ovfp
decay rate is proportional to the effective Majorana mass

|m,.| which is expressed in terms of neutrino masses and
lepton mixing parameters as [65]

_ 2 2 2
[Mee| = M Upyins.1 + M2Uppins. 1o + M3Upyins 13
= |m,c0s%0,,c0820,5 + m,sin’@,,cos>0 ;'

+ m5sin®@,5e!(@1=2cr)| (2.91)
where m , 3 are light neutrino masses. For each admissible
case, the allowed regions of the effective Majorana mass
|m,.| as a function of the lightest neutrino mass are shown
in Figs. 5, 6, and 7. Both parameters 8, and 6, freely vary
between 0 and z, and the three lepton mixing angles are
required to lie in their current 36 ranges [6]. Notice that
|m,.| does not depend on 6,3. Hence, if two cases have the
same residual symmetry but differ in the permutation
matrices with P, = P, and P, = P;3 respectively, the
same predictions for |m,,| would be obtained. For the
case of the IH neutrino mass spectrum, the effective
Majorana mass is almost independent of the value of k,.
The reason is because the term in |m,,| proportional to m;
is suppressed by both sin” 6,5 and the small value of m;
itself. Moreover, we see that |m,,| is predicted to be around
the upper boundary 0.048 eV, lower boundary 0.015 eV, or

015012-13



JUN-NAN LU and GUI-JUN DING PHYSICAL REVIEW D 95, 015012 (2017)

TABLE VII.  The results of the 42 analysis for the independent and viable cases with (G, G,) = (Z57°SV, Z$) under the assumption of
the TH neutrino mass spectrum. 2. is the global minimum of y? at the best fitting values (6;, 0, ),; for 9, and ,. We give the values of

the mixing angles sin 3, sin®@,,, and sin® 6,3 and the CP-violating phases d¢p, @y, and az; for (6,,0,) = (6,,0,)..

(X1, X,, P, P,) Xoin (01,0,)/7 sin@,;  sin?@;, sin®6,;  Scp/m oy /m(mod 1) as/7 (mod 1)
2 (0.571, 0.417)
(T2.1.Py,. P13) 176652 (i gr7) 0024 0344 0512 0 0 0.5
2 (0.071, 0.417)
(T2.1.Py5. P3) 205458 (00 gory) 0024 0344 0488 1 0 0.5
58.4512, 8'323 0.542 0.209 0.147
(2. SU. Py, P3) 33575 (0agr 056y 002 0304 0sll
(0.433. 0.933) 1.458 0.791 0.853
Eggé;’ g;g;; 1.542 0.208 0.146
(T?,SU, P35, Py3) 5.9412 (0.067’ 0.567) 0.022 0.304 0.489
POSSaNe 0.458 0.792 0.854
(0.933, 0.933)
(0.433, 0.266) 0 0 0
2 2 (0.567, 0.734)
(T%TST?U. P Pyy) 33575 (0053 g6yg) 0022 0304 0511 1 ; ;
(0.567, 0.362)
(0.933, 0.266) 1 0 0
(T?, TST?U, P35, Py3) 5.9412 (0.067, 0.734) 0.022 0.304 0.489
> (0.933, 0.638) 0 0 0
(0.067, 0.362)
(0.071, 0.167)
(U1, Py, Pys) 176652 (000 gy 0024 034 0512 0 0 0
(0571, 0.167)
(U.1.P3. Pyy) 205458 (o 0aey 0024 0344 0488 1 0 0
(T2, TST?U, Pps, Pyy) 22779 (02760165 000 0207 0614 0 0 0

(0.724, 0.835)

close to 0.028 eV for IH. Although these predictions are
beyond the reach of the facilities in running, the next
generation elaborate Oyff decay experiments are capable
of covering the full IH region, such that the present
predictions could be tested in near future. For the case of
the NH mass spectrum, cancellation between different terms
in |m,,| could occur for certain values of the lightest neutrino
mass, and consequently the effective mass can be smaller
than 10~ V. However, the range of mygyes in which |m,, |
can be quite small is significantly reduced with respect to the
generic case. We can even find a nontrivial lower bound on
|m,.| in some cases; see e.g. Fig. 5 for the remnant symmetry

(G1.G,.X,.X,) = (Z5T°5V ZIU T2 T) with P, = P, = Py,.

III. QUARK FLAVOR MIXING FROM
RESIDUAL SYMMETRY Z, x CP IN UP AND
DOWN QUARK SECTORS

The Lagrangian for the quark masses and the charged
current interactions reads as

E = —URmuUL - DRmDDL +%UL}/#DLW; + H.C.,

5
(3.1)

where Uy = (ug, cp, tg)", Up = (up,cp,t;)7, Dgp =
(dg,sg,bg)!, and D; = (d;,s;,b;)T denote the three
left-handed and right-handed up type quark and down
type quark fields respectively. It is well known that the
mass matrices mg; and mp, can be diagonalized by biunitary
transformations,

VimyU, = diag(m,, m.,m,) = iy,

VjimDUd = diag(my, my, my,) = fp. (3.2)
The CKM matrix is given by
Uckm = UlU,. (33)

In this section, we assume that the parent flavor and CP
symmetry is broken down to Z5" x X, and Z%' x X, in the
up and down quark sectors respectively, where g, and g,
denote the generators of the Z, residual flavor symmetry
groups with g2 = g5 = 1. Similarly to the lepton sector,
we assign the three generations of left-handed quarks to a
three-dimensional representation 3. The mass matrices
my and mp respect the residual symmetries Z3* x X,
and Z5' x X, respectively, and they should fulfill
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T

T 1=

T

'0:5
01/7('

FIG. 1. The contour plots of sin” 6, ; in the plane 6, vs 0,. The
red, blue, and green areas denote the 3¢ regions of sin®#@s,
sin” @,3, and sin® @, respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin” §,3 depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The residual flavor symmetry is (G,,G,) = (257", ZIV) in
this case. The first row corresponds to (X;,X,,P;,P,) =
(U,T,P5,1) on the left panel and (X, X,,P;,P,)=
(U,T,P5,P,) on the right panel, and the last row is for
(X,,X,,P,P,)=(U,STS,P»,1), (U,STS,Py,,Py,). The
foreground and background differ in the values of P; which
are equal to Py, and P35 respectively.

0.25F 5

6,/n
&
0,/n

025 0. 0.75 025 05 075 1
6,/n 6,/n

=
(=3

FIG. 2. The contour plots of sin’ 8, ; in the plane 0, vs 0,. The
red, blue, and green areas denote the 3¢ regions of sin’6,3,
sin? 0,5, and sin® @, respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin? #,; depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The left and right panels correspond to (G;, G, X;, X,, P;, P,) =
(ZSTSU ZIU T2 T, Py, Pyy) and (Z37°SU, ZS8, T2, TST?U, Py3,
P,) respectively.
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1 13 =

0.5 0.5 0.75 1
01/ /4 0[/ T

0.25

FIG. 3. The contour plots of sin”#6; ; in the plane 6, vs 0,. The
red, blue, and green areas denote the 3¢ regions of sin 63,
sin” @3, and sin® @, respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin® #,; depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The residual flavor symmetry is (G, G,) = (Z57°SV, Z5) in
this case. The first row corresponds to (X;,X,,P;,P,) =
(T?,1,P,,Py3) on the left panel and (X,,X,,P,,P,) =
(T?,SU, Py,, P3) on the right panel, and the last row is for
(X, X,,P;,P,) = (T>, TST>U, P35, P13), (U,1,P5,P13). The
foreground and background differ in the values of P; which
are equal to Py, and P,3 respectively.

Py(g)mymyps(g,) =mymy,  XimymyX,=(mymy)*,
;(gd)m,gmpm(gd) :mLmD’ inm;)mDXd: (mLmD)*-
(3.4)

Following the procedures presented in Sec. IT A, the
constraints on the unitary transformations U, and U, from
the postulated residual symmetries can be straightforwardly
extracted. A critical step is the Takagi factorization of the
residual CP transformations X, and X, which have the
following properties:

X, =52, Zips(g.)Z, = diag(1,-1,-1),  (3.5)

X, =220, Yp3(94)Zq = diag(1,—1,-1).  (3.6)

Then following the same procedure of deriving Eq. (2.51),
we can obtain the CKM mixing matrix is of the form
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Scp/m
a a, dads
Uq = a, das dg |,
as ag do
by by bs
U/q - b4 b5 b6 5 (38)
b; by by

0 0.25 0.5 0.75 1 0 . 0.25 0.5 0.75 1 . .
o/n o/ where a; and b, are fixed by remnant symmetries up to an

am/m(mod 1) ay/r(mod 1) overall phase. The corresponding CKM mixing matrices
' i ‘ cannot be effectively the same one if |a;| # |b;|. In the
following, we shall focus on the case of a; = b; = 0. The
results for the most general case |a;| = |b;|#0, 1 are
summarized in Appendix B. After some straightforward
algebra, the conditions of equivalence can be described as
follows:
(i) b5+ b3#0, b7+ b3 #0:
The assumed remnant symmetries would lead to
the same quark mixing pattern if the following

6,/ 6i/x equalities are satisfied,
a3 /m(mod 1) a31/n(mod 1)

0 0.25 0.5 0.75 1

a3 + a3| = [b3 + b3,
(axby + asbsz)(ash; — a3b;) €R,
a3 + a3| = |bj + b3,
(asby + azbs)(a;b; — a3b;) € R
tlT] - t]Tl = 0,

0 025 05 075 1 0 0.'25 05 075 1 lt;| =T,

6, 6,
i & ij=56809 (3.9
FIG. 4. The contour plots of the CP-violation phases §¢p, a5,

and a3 in the plane 6, vs 0,. The black areas denote the regions in where
which the lepton mixing angles are compatible with experimental
data at 3¢ level. The residual symmetry is (G;,G,,X;,X,) = ts = (xbs + ybe)z + (xbg + ybo)w,
(Z8T*SU_ 75,72, SU). The figures on the right-hand and lefthand
sides correspond to the row and column permutations (P;, P,) = = (xbs — ybs)z + (xbg — ybg)w,
(P1y, Py3) and (P;, P,) = (P3, Py3) respectively. = (xbg + ybo)z — (xbs + ybe)w.
Uckm = QuP.S2(0,)Z0Z4523(00)PaQq.  (3.7) = (xby = ybs)z = (xbg = ybs)w. (3.10)

where Q, and Q, are generic diagonal matrices of phases, and

they can be removed by utilizing the rephasing freedom of s
the up and down quarks, and P, and P, are permutation = (b3 + b3) (b3 + b7)as,
matrices. Similarly to the master formula of the lepton = (b3 + b2)(b2 + b3)ag,
flavor mixing in Eq. (2.51), the CKM mixing matrix is ) N
determined up to possible permutations of rows and = (B340 )( +b7)as,
columns, and it depends on two free parameters 6, and = (b3 + b3)(b] + b3)ay, (3.11)
6, which can take values between 0 and 7.

In the same fashion as Sec. II B, we can find the with
condition under which the CKM matrices predicted by
two distinct residual symmetries are equivalent. We generi-

cally denote the combination U, = ZI,Zd for any two
postulated residual symmetries as 7= a4by + azbs, W = ayby — azby. (3.12)

X = Clzbz + a3b3, y = Clzbg, - a3b2,
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FIG.5. The predictions for the possible values of the effective Majorana mass |m,,| as a function of the lightest neutrino mass. The red
(blue) dashed lines indicate the most general allowed regions for the IH (NH) neutrino mass spectrum obtained by varying the mixing
parameters over the 3o ranges [6]. The residual flavor symmetry is (G;, G,) = (Z§TZSU, ZIUY in this case. The first row corresponds to
(X;,X,,P;,P,)=(U,T,P;,1) on the left and (X,,X,,P;,P,)=(U,T,Pj5,P;) on the right, the middle row is for
(X1, X,,P,,P,) = (U,STS,P5, 1), (U,STS, P15, Py,), and the last row is for (X;, X,, P;, P,) = (T, T, P», P\,). The present most
stringent upper limits |m,,| < 0.120 eV from EXO-200 [73,74] and KamLAND-ZEN [75] are shown by a horizontal gray band. The
vertical gray exclusion band is the current limit on the lightest neutrino masses from the cosmological data > m; < 0.230 eV at
95% confidence level obtained by the Planck Collaboration [76].
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FIG. 7. The predictions for the effective Majorana mass |m,,|, where we use the same conventions as in Fig. 5. The residual flavor
symmetry is (G, G,) = (Z57*5V, Z3) in this case. The panels on the right-hand and left-hand sides correspond to (X;, X, P}, P,) =
(T?,1,P,,P3) and (X,,X,,P,P,) = (U,1,P,, P;) respectively. Notice that |m,,| is invariant under the transformations

GUI-JUN DING

PHYSICAL REVIEW D 95, 015012 (2017)

|

Disfavored by 0vB8B

Disfavored by 0vgB

10’15—

& -
E %
£ =
[=} o
o E
= =
=
T
St
<
>
&
2
& i
1 Lol L1 —4 Lol
10
102 107! 1 107+ 10

-

- Disfavored by Cosmology

Myightest [eV]

|

Disfavored by 0vB8B

‘ -

\\ E

N N ]

\ \ ]

AV W
N

-3 10-2
Myjghtest [CV]

- Disfavored by Cosmology *,|

IH: (k;.k2)=(0,0), (0,1)
IH: (k;.k2)=(1,0), (1,1)
NH: (k;,k2)=(0,0)
NH: (k;,k2)=(0,1)
NH: (k;.k2)=(1,0)
NH: (k;.k2)=(1,1)

Myightest [GV]

15 T T T "'/',93 15 T T T
3 1 3
Disfavored by 0vgB / ; Disfavored by 0vBB
L ) A L
-1 - // = -1 v 4 -
107 = E 1077 = E
F > ] F B ]
78 1c g
- f < 172 ¢t S
102k g 4 —wk g o
E S 3 3 F e
: o} £k o}
> - >
L 2 2
= =
10-3 g < 1073 g -
S E E S E
F > 3 F >
o S
2 \ 2
1074 L1 i1 ahial Loy ]()74 L .......I‘ L e TR T | R
1074 1073 1072 107! 1 1074 1073 1072 107! 1

Myightest [eV]

Myightest [CV]

[ IH: (k;,k2)=(0,0), (0,1) mm IH: (k;.k2)=(1,0), (1,1) mm NH: (k;.,k»)=(0,0), (0,1) mm NH: (k;.k»)=(1,0), (1,1) ]

0, >r—0,0,—0,+r/2 and k, > k, + 1, and hence the effective mass is independent of k, in this case.
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(i) b3+ b3 =0, b3+ b3 #0:
The necessary and sufficient conditions for
the equivalence of these two CKM matrices are
found to be

a3 +a3| = b} + b3,
(a4by+ azbq)(a;b; —a;b;) €R,
a2b2 +a3b3 :0,

lsTg—t8T5 :O,
|ts| =Ts|,
5| =Ts], (3.13)

with

ts = (zbs + wbg)as,
Ts = (b421 + b%)béas,

ty = (zbg — wbs)a,
(3.14)

(iii) b3+ b3 #0, b2+ b3 =0:
In this case, the equivalence condition is given by

a5 + a3| = |b5 + b3

’

(a2by + azbs)(a3b5 — a3b3) € R,
ayby + azby =0,
tsTg —tsT5s =0,
5| = |Ts].
6] = [T, (3.15)

0.97431 +0.00015  0.22512 + 0.00067
0.22497 + 0.00067  0.97344 + 0.00015

|UCKM| =

PHYSICAL REVIEW D 95, 015012 (2017)

where

ts = (xbs + ybg)aj,
Ts= (b% + b%)biias,

t6 = ()Cb6 —_ yb5)a1,
Ts = (b3 + b3)bjas.
(3.16)

(iv) b3+ b} =0,b3 4 b3 =0:
After the freedom to redefine the free parameters
0, and 6, is taken into account, the same quark
mixing pattern would be obtained if the parameters
a; and b; are subject to the following constraints:

(12[92 + a3b3 = O, a4b4 + a7b7 = 0 (317)

Notice that if the conditions of any of the above four
cases are satisfied under the substitutions

ap, — ap, a, — dj, as — $pad,,
ag — dy, as — ds, aeg — S»dg,
az = s14z, ag — spas, dg = 8185249,

(3.18)

with s, = %1, the assumed remnant symmetries
would give rise to the same quark mixing.
So far, the CKM mixing matrix has been measured quite
accurately. The present global fit result for the magnitude of
each CKM matrix element is [77]

0.00365 + 0.00012

0.04255 4+ 0.00069 (3.19)

0.00869 + 0.00014  0.04156 +£ 0.00056  0.999097 £ 0.000024

The full fit values of three quark mixing angles read as [77]

sin@{, =0.22497 +0.00069,
sin@f; =0.00368 +0.00010.

sin@%;, =0.04229 +0.00057,
(3.20)

Now, let us concentrate on the S, flavor symmetry group as
an illustrative example. Considering all the possible residual
subgroups Z, x CP arising from the original S; and CP
symmetry, we find the fixed element can be 0, 1/2, 1//2, or
1. According to experimental data shown in Eq. (3.19), a
vanishing (13) or (31) element of the CKM matrix is a good
leading order approximation, since the (13) and (31) entries
are very small and this tiny discrepancy could be easily
resolved in an explicit model with small corrections. All

|
three quark mixing angles except 675 can be accommodated
very well for the representative remnant symmetries G, =
757U x T2 and G4 = Z1V x T? in the up and down quark
sectors respectively. The corresponding Takagi factorization
matrices X, and X, are determined to be

. 2 0 -2
Zu — _6 ein/.’: _\/§eiﬂ/3 \/ieiﬂ/?’
e—in/3 \/§e—iﬂ/3 \/ie—iﬂﬁ
. 0 0 V2
2y = ﬁ —eA’”/3 e”A’/3 0 (3.21)
e—m/3 e—m/S 0

015012-19



JUN-NAN LU and GUI-JUN DING

PHYSICAL REVIEW D 95, 015012 (2017)

For the permutation matrices P, = 1 and P, = Py3, we find Ucgy(1,3) = 0, and the CKM matrix takes the form

V2cos @, + sinf,

1
Uckm = 7 (V2sin@,; —cos8,)sin@, (v/2cos@, +sinb,)sin6,
(v/2sin6, — cos 8,) cos 8,

from which we can extract the quark mixing angles as

2099 —
sin“0|; = 0,

[OSTI

2099, —
sin“6|, =

The best fitting values of 67, and 6%, in Eq. (3.20) can be obtained for

(0,.6,) = (0.5137,0.124x),

(0.5137,0.2687),

cos @, —/2sinb, 0
V3cosh, |. (3.22)
(v2cos @, + sin@,) cosd, —+/3sinb,
(cos B, — V/2sin6,)?, sin*6%; = cos?0,. (3.23)
(0.4877,0.124%),  (0.4877,02687).  (3.24)

We expect that the small mixing angle 67, as well as the CP-violation phase can be generated by higher order contributions in
a concrete model. For the values P, = P35 and P; = 1, we have Ucgy(3,1) = 0. The CKM mixing matrix is given by

. —V/3sinf, (V/2cosf,+sinb,)cosh, (\/2sin@, —cosh,)cosh,
Uckm = 7 V3cosf, (V2cos@,+sin@,)sind, (\/2sinf, —cosb,)sind, (3.25)
0 cos8, —\/2sin6, V2cos @, +sind,

The mixing angles read

sin? 6%, = %cos2 0, (cosf,—/2sinb,)?,
4¢0s20,(sinf, +v/2cosb,)>
9—3c0s26, +2c0s26,(2v/2sin20, +cos26,)’
4sin6,(cosf, —+/2sinb,)?
9—3c0s26, 4 2c0s20,(2+/2sin20, +cos20,)
(3.26)

207, —
sin“ 0|, =

209 —
sin” 05, =

In this case, the central values of 69, and 6%; can be
obtained for

(6,.0,) = (0.4287,0.182x),
(0.5727,0.1827).

(0.4287,0.210x),

(0.5727,0.2107).  (3.27)

We display the contour plot of sin §%;, sin 67,, and sin 64, in
the plane 0, vs 0, in Fig. 8. If the best fit values of 67, and
04, are reproduced, we see that sin 87, would be approx-
imately three times as large as its measured value. However,
accordance with the experimental data could be easily
achieved in a concrete model after subleading corrections
are taken into account.

[
IV. LEPTON FLAVOR MIXING FROM SINGLE
RESIDUAL CP TRANSFORMATION IN THE
NEUTRINO SECTOR

In this section, we shall instead consider the scenario in
which the residual symmetry of the charged lepton sector is
an Abelian subgroup and the neutrino mass matrix m,, is

0.25

0.225

% 0.2
SN
0.175
0.15 1 NS S S S (N N Sl S S S N v ST e VA
0.4 0.45 0.5 0.55 0.6
6,/n

FIG. 8. The contour plot of sinf?,, sin6?,, and sin@3; in the
0, — 6, plane. The blue and red lines denote the central values of
sin0?, and sin 01, respectively. The different shading areas from
dark green to light green represent three interesting regions of sin 97,
such as 0.5(sin@%;),; = (sinf%y)y, (sin€%)ps — 2(sin6;) s, and
2(sin 07;)yr — 3(sin0%;)y;, where we use (sin 67;),; = 0.00368.
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invariant under a single residual CP transformation X, . In
order to avoid partially degenerate neutrino masses, X,
should be a symmetric unitary matrix with X, = X7 and
X, X; = 1[24,27-29]. As aresult, m, is invariant under the
action of X,

X'm,X, = m?. (4.1)
Without reconstructing the neutrino mass matrix, from
this equation, we can derive that the unitary transformation
U,, which is the a diagonalization matrix of m, with
Ul'm,U, = diag(m,, m,, m3), is subject to the following
constraint [27,29],

UlX,U: = diag(+1,+1,+1) = 02, (4.2)
where Q, is a diagonal matrix with nonvanishing entries
+1 and +i to make the light neutrino masses positive
definite, and it can be parametrized as Eq. (2.31).
Performing Takagi factorization X, = X, X! where X, is
unitary, we obtain

(X U;0)"(EU;0,) = L. (4.3)
Therefore, T U;Q, is a real orthogonal matrix
ZZUﬁQb = 03><3’ (44)
where O;,3 can be parametrized as
1 0 0 cosf, 0O sinb,
O3,3=10 ~cos@; sinf 0 1 0
0 —sind; cosb,; —sind, 0 cosé,
cos@; sinf; O
X | —sinf3 cosf; O |,
0 0 1

where the fundamental interval of the real parameters 6 5 3
is [0, ). Thus, the neutrino mixing matrix is determined to
be of the form [25,26]

Uy = 2p03><3Qy- (45)
The flavor symmetry is assumed to be broken to an Abelian
subgroup G; in the charged lepton sector, and the generator

of G, is denoted as g,.l The charged lepton mass matrix m;
would fulfill

]

P;(Ql)m;-mlps (91) = m} m. (4-6)

'Here, we assume G, is generated by a single generator, and
the generalization to the case in which G, has several generators is
straightforward.
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Thus, we find that the unitary transformation U; which
diagonalizes m;ml is constrained to satisfy

Uips(g)U, = pé“ag(gz), (4.7)

where pgiag(gl) is a diagonal phase matrix. That is to say,
the charged lepton mixing matrix U; can be obtained by
diagonalizing the representation matrix of the generator g,
without resorting to the mass matrix. Here, we assume that
the residual symmetry G; can distinguish among the
three charged leptons, and consequently U; is uniquely
determined up to permutations and phases of its column
vectors. As a result, the PMNS mixing matrix is found to be
of the form
Upwns = QiP1U}E,030,. (4.8)
where P; is an arbitrary three-dimensional permutation
matrix, Q,; is a diagonal unitary matrix which can be
absorbed into the charged lepton fields. If two pairs of
residual subgroups {G,, X, } and {G}, X),} are related by a
similarity transformation €,
p3(g)) = Qp3(9)Q", X}, = QX,QT, (4.9)
both pairs would lead to the same result for Upyns. The

reason is because the Takagi factorization of X/, is Q¥ and
p3(g)) is diagonalized by QU,.

A. Condition for the equivalence of two mixing patterns

Let us assume two different residual symmetries
{G,,X,} and {G), X)}; accordingly, the PMNS matrices
are predicted to be

Upmns = QIPIU;-ZUOT»GQW (4.10)

Upyins = O/PUSTE, 03,50, (4.11)
For any given value of the real orthogonal matrix Os,s3, if
one can always find a corresponding orthogonal matrix
0%, as well as Q), P}, and Q,, such that the equality

Upmns = Uppins (4.12)

is fulfilled, then these two mixing patterns would be

essentially the same. From Eq. (4.12), we can obtain the
condition

U033 = Q P LU 05,50y, (4.13)

with
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U=Ulx,
0, = PTQ; 0P,

U=uyy, P =PIP,

Oy =0,0!. (4.14)
Both sides of Eq. (4.13) multiply with their transpose, and
we have
UUT = Q,PLUO4 5 QX OL,UTPIQ,.  (415)
Notice that Qy is a diagonal matrix with entries 1 and =i,
and Eq. (4.15) is satisfied for a generic orthogonal matrix
O%5- This requires Q% = +diag(1,1,1), and Q% can be
set to be an identity matrix by choosing suitable values of
Q, and Q.. Thus, the condition for the equivalence of the
two mixing patterns in this scenario simplifies into
UUT:QLPLU,U,TP{QL. (416)
Inversely, if we can find a permutation matrix P; and a
phase matrix Q; such that Eq. (4.16) is fulfilled, the

postulated residual symmetries would lead to the same
lepton mixing pattern.

B. Examples in S, and CP

In this section, we shall analyze the lepton mixing
patterns which arise from the breaking of the flavor group
S4 and CP symmetry to an Abelian subgroup G; in the
charged lepton sector and to a residual CP X, in the
neutrino sector. We shall consider all possibilities for G,
ie., G; = Z3,7Z4, Ky, and all possible residual CP trans-
formation X, which should be a unitary symmetric matrix,
|

Upwns = PUj203,30,
cos 0, cos 5
= | —cos0;sin6;sinf, —cos b sin O,

—cos 6 cos 65 sin 6, + sin O, sin 64

where the unphysical phase matrix Q; on the far left is
omitted. The mixing angles and CP-violation phases can be
read off as

sin6,; = sin’6,

(4.19)

sin’0,3 = sin’@,,  sin’#,, = sin’6;,

Sinécp = Sina21 = Sina31 =0.

We see that all three CP phases are predicted to be trivial,
and the measured values of the lepton mixing angles can be
reproduced for certain values of the parameters 6, ; 3.
(i) G, =2zI,Xx,=§:
This case differs from the previous one in the
value of the residual CP transformation X,, and we
have

cos 8, cos 03 — sin 0 sin 6, sin 65

—cos 5 sinf; — cos O sin @, sin O

PHYSICAL REVIEW D 95, 015012 (2017)
X, ={1,8,T,T% STS,ST*S,U,SU, TST*U, T*>*STU},
(4.17)

where we do not distinguish between the abstract elements
of the S, group and their representation matrices in 3 for
simplicity of notation. In fact, it is not necessary to study
the mixing patterns comprehensively for all possible
combinations of G; and X,. By applying the general
equivalence criterion in Eq. (4.16), we find there are only
five independent cases with (G, X,) = (Z%,1), (Z%,S),

(Z1,U), (ZF.SU), and (K™Y, T). In the following, we
take into account all possible row permutations of the
mixing matrix in each case, and the predictions for lepton
mixing angles and CP-violation phases as well as neu-
trinoless double decay will be investigated:
() G =278 Xx,=1:
In this case, the unitary matrices U; and X, are

given by
100 100
u=10101], £=]010 (4.18)
001 001

Moreover, we find that the six row permutations of
the mixing matrix lead to the same mixing pattern.
Consequently, we shall choose P; = 1 without loss
of generality, and thus the PMNS matrix is of
the form

cos 0, sin 05 sin 6,
cosf,sin6; |0Q,,

cos @ cos O,

1 00
u=|(01 0],
0 0 1
0 2i V2
zy:\% V3i - V2 (4.20)
—V3i —i V2

The six row permutations of the PMNS matrix are
related through shifts in the free parameters 6 , 3.
We take P; = 1, and then the lepton mixing angles
can be extracted as follows
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1
sin?0,; = ¢ (3 — cos 26, )cos?0,,
2(cos 20, + 3) cos 205 — 2 sin 26, sin 6, sin 265
c0s 20, + (cos20; —3)cos20, + 9 '

l 3 21/3sin 0, sin 26,
2 cos26, + (cos26; —3)cos26, +9

sin%6,, = sin’6; +

sin2 923 =

and the CP-odd weak basis invariants are given by

1
Jep = m [—20 sin 6, sin 265 cos O,c0s%0; + 4(cos 30, — 5 cos ;) sin 20, cos 205 + (sin 30, — 15sin @, ) sin 265 cos 365,
(=R . 5 . . ,
I, = [8 sin 26, sin*0, cos 265 + ((7 cos 26, + 3) sin 6, — (cos 20, — 3) sin 36,) sin 26;],
36v2
(=1)k . . . . 5
I, = 5 [V2((cos 26, — 3) sin 6, cos 05 — sin 26, sin 05 sin O3c0s26,]. (4.21)
We perform a numerical analysis by treating the free 100 0 V2i
parameters 0,3 as random numbers in the range of U=lo10] = :L _ 4.9
[0, z]. The three mixing angles 6;,, 0,3, and 6,3 as well ! Y2 l 0 —1 (4.22)
as CP-violating phases 6¢p, @y, and a3 are calculated for 001 i 0 1

each random point, and only points which agree with the
global fit data at 3¢ level with global fit data are retained.
We plot the correlations among the mixing angles and CP
phases in Fig. 9. We see that any value of the Dirac CP
phase 8¢p in the interval [0, 2z can be achieved. However, : e
the Majorana phases are strongly constrained, and their data. The PMNS matrices arising form P, =1 or
values lie in the ranges a,|(mod z) € [0,0.137]U[0.87x, 7] Py = Py; are equivalent. The others give rise to

and a3, (mod ”) [0,0.257)U[0.757, 7]. either tan 63 = sin 0,3 or tan @3 = cos 6,3 such that
(i) G, =271.X, = U: the experimental data of 63 and 6,3 cannot be

accommodated simultaneously. For the case of
P, =1, the lepton mixing angles and the CP-
violation phases are found to be of the form

Out of the six possible row permutations, only P; =
1 and P; = P,; lead to a pattern compatible with

This case is exactly the y — 7 reflection symmetry
in the charged lepton diagonal basis. One can
straightforwardly read out U; and Z, as follows:

sin?6,; = sin’0,cos’6,, sin?6,; = 3
4(cos 0, cos 205 — sin @, sin 0, sin 265) cos 6,
c0s 26, — 2sin%0, cos 26, + 3

sin?6,, = sin’6; +

’

|Sin5CP| = 1, sin x| = sin a3z = 0. (423)

Hence, both the atmospheric mixing angle 6,; and the

Dirac phase J.p are predicted to be maximal, while the 1

solar as well as reactor mixing angles are not constrained. U=1|0

There is evidence showing that the Dirac CP-violating 0

phase ¢p is close to —z/2 (or 37/2) [66,67]. If these data

are further confirmed in the near future, this mixing pattern

would be an excellent leading order approximation. L
(iv) G, =Z7Z%,X, = SU: V30

We can read out U, and X, as

0
O )
1

0 Vol @24

0

1

0

<\/61 2i =2v5
NG
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FIG.9. Correlations between different mixing parameters in the case of (G, X,) = (Z%, S), where the three lepton mixing angles are
required to be compatible with the experimental data at 3¢ level [6].
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For the six possible permutations of rows, only the mixing patterns with P; = 1 and P; = P,5 can accommodate the
experimental data of the mixing angles for certain values of the parameters 0, ; ;. The PMNS matrices arising from
P, = 1and P, = P,; are essentially the same if the redefinition of 6, , 5 and relabeling of k; , are taken into account.
Using the actual form of the PMNS matrix given in Eq. (4.8), we find

1
sin%0,; = s [(vV/3sin0, + V/2s5in 6, cos 0,)? + 10cos26, cos26,],

4(2c0s 26, — 3) cos 205 — 2(4 sin 26, sin 6, + /6 cos @, cos ) sin 265
2/6 sin @, sin 26, + 8 cos 20,c0s20, + 3 cos 26, — 21
5(2 cos 26, — 3)cos*6,

sin?6,, = sin®6; +

’

sin20,; = 4.25
> 21/65in 0, sin 20, + 8 cos 20,c0s20, + 3 cos 20, — 21 ( )
and
1
Jop = ———1[(v/65in 360, (cos 30, — 5cos 0,) — 2v/6 sin ; (cos O, + 3 cos 30
cp 144\@[( 1 ( ) 2) 1(cos 0, 2)
+ 36'5in 6, cos? 0,) sin 205 4 4v/6(cos 309, — 2 cos 0, ) sin 26, cos 265),
(=1)k ) .
I, = V6((cos 30, — 5cos,) sin 30, + 10sin @, cos® O
=505 [[ve(( ) 2) | ! 2)

+ (255in 6, — 7 sin 36,) cos 20, ] sin 205 + ((10 — 22 cos 26,) sin 260, + 4v/6 sin 26, cos 30, ) cos 26;],

(=1)k ) ) . )
I, = 5v/65sin 6, sin 0, sin 20, — v/6 sin 30, (cos 30, — 5 cos O
2 903 [( 1 2 2 i ( ) »)

— (5sin6, — 7sin 36,) cos 26, ) sin 205 — 10 sin 26, cos® @, + (17 cos 26, + 5) sin 20, cos 20,
—V6((8c0s 26, + 1) cos 205 + 5) sin 26, cos 6.

The numerical results for the correlations among different mixing parameters are shown in Fig. 10. We notice that
both Majorana phases a,; and as; are determined to be around 0 and 7, the solar mixing angle 0, near its 36 upper
limit €, ~ 35° is preferred, and atmospheric mixing angle 6,5 and Dirac phase d.p are correlated. The forthcoming
reactor and long baseline neutrino experiments, which are expected to make precise measurement of 0,,, 0,3, and
dcp, have the potential to exclude this mixing pattern.
v G =Kk x, =T
The unitary transformations U, and X, are fixed to be

. 2 V2 0 1 0 0
U,:% -1 v2 V3 |, =10 % 0 (4.26)
-1 V2 -3 0 0 ef

The agreement with experimental data on lepton mixing angles can only be achieved for P, = 1, P; = Py3, P; = Py3,
and P; = P,3P 5. The two permutations P; = 1 and P; = P»3 lead to equivalent PMNS mixing matrices as P; = P53
and P, = P,3P;; respectively. In the case of P, = P,3P;3, we can read out the mixing angles and CP invariants as
follows:
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FIG. 10. Correlations between different mixing parameters in the case of (G;, X,) = (Z%, SU), where the three lepton mixing angles
are required to be compatible with the experimental data at 3¢ level [6].
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FIG. 12. The allowed regions of the effective Majorana mass |m,,| with respect to the lightest neutrino mass. The red (blue) dashed
lines indicate the most general allowed regions for the IH (NH) neutrino mass spectrum obtained by varying the mixing parameters over

their 3¢ ranges [6]. The top row corresponds to the residual symmetry (G;, X,) = (ZI, 1) on the leftand (G, X,) = (Z%, S) on the right,

the middle row is for (G;, X,) = (Z{ U) and (G, X,) = (Z3T SU), and the bottom row is for (G;, X,) = ( A(‘S’U), T). The present most

stringent upper limits |m,,| < 0.120 eV from EX0-200 [73,74] and KamLAND-ZEN [75] are shown by the horizontal gray band. The
vertical gray exclusion band is the current limit on the lightest neutrino masses from the cosmological data > m; < 0.230 eV at
95% confidence level obtained by the Planck Collaboration [76].
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1
sin’@,3 = 1 (sin 260, + 2)cos?6,,
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(sin 26 — 2) cos 265 + sin 6, sin 265 cos 26,

sin%0,, = sin’0; +

N 2(V2sin(0; + Z) sin 20, — sin®6,) N 1
23 = T3 05 20, + sin26,c0520, —3) | 3’

1
Jop=——
P 1283 [

cos 26, + sin26,cos?6, — 3

’

4 sin 0, sin 20 + 4 sin 30, sin 265 — 8v/2(sin 26, + 2) sin 26, cos (91 + %) cos 205

— 21/2(sin 20, + 4) sin (91 + %) sin 265 cos 36,

- \/5(3 sin (91 + g) + 5cos (361 + %) ) sin 205 cos 92} ,

(-k

I:
Y

-1 ky+1
I, = L V/3[((sin 26, + 2) sin 6, cos 65 + sin 65 cos 26, ) sin f3c0s26,).

8

For another independent permutation P; = P 3, the atmos-
pheric angle changes from 0,3 to /2 — 6,3, the Dirac phase
turns out to be 7 + 6cp, and the expressions of the other
mixing parameters are not changed. The numerical results
for P; = P53 and P; = P,; P53 are plotted in Fig. 11. There
are no preferred values of d.-p within the viable parameter
space. The atmospheric mixing angle 6,3 is nonmaximal,
and it lies in the interval [38.3° 40.5°|U[49.5°,51.7°].

Moreover, we explore the phenomenological predictions
for neutrinoless double beta (Ov3f) decay in each case. The
effective mass |m,,| as a function of the lightest neutrino
mass is plotted in Fig. 12. We find that |m,,| is around
0.015, 0.024, or 0.048 eV for the IH spectrum, while |m,,|
depends on the neutrino masses, and it is strongly sup-
pressed to be smaller than 10™* eV for certain values of the
lightest neutrino mass in the case of NH.

V. SUMMARY AND CONCLUSIONS

In recent years, discrete flavor symmetry in combination
with CP symmetry has been pursued to describe the
experimental data on lepton mixing in particularly to
predict the CP-violating phases. Generally, it is assumed
that the original flavor and CP symmetry is broken down to
an Abelian subgroup and Z, x CP in the charged lepton
and neutrino sectors respectively. In this work, we have
considered other possible choices for the residual sym-
metry. In the first scenario, the residual subgroups pre-
served by the neutrino and charged lepton mass matrices
are of the structure Z, x CP. The lepton mixing matrix is
found to depend on two free parameters ; and 0,, which
vary between 0 and z, and generally one element is fixed
to be a certain constant by the residual symmetry. The
procedure to extract the PMNS mixing matrix is presented.

V/3[[(4cos26, + sin 26, (cos 20, — 3)) sin 2605 + 4 sin 6, cos 20, cos 205] sin 0],

(4.27)

|
Moreover, we derive the criterion to determine whether two
distinct remnant subgroups lead to the same mixing pattern
if the freedom of redefining 9, and 6, is taken into account.
In order to show concrete examples and find new interest-
ing mixing patterns, we have performed a comprehensive
analysis for the popular S, flavor symmetry group. All
possible residual groups Z, x CP have been considered,
and we find 18 phenomenologically viable cases which can
accommodate the experimentally measured values of the
mixing angles for particular values of 8, and 8,, as shown in
Tables II-VII. This scheme is quite predictive since the
allowed regions of 6; and 6, are strongly constrained in
order to accommodate the experimentally measured values
of the mixing angles. In light of the recent experimental
results of 6¢cp ~ 37/2 from T2K and NOvA [66,67], the
cases with (G,,G,,X;,X,,P,P,) = (ZgTzSU, zZiv T,
T,Pyy,Ppy), (Z87°5Y,25,T%,SU, Py, Pi3), (Z37Y,Z5,
T?,8U, Py, Py3) are preferred because they predict the
Dirac phase could be 1.5697z, 1.4587, and 1.5427 respec-
tively. In all 18 cases, the effective Majorana masses |m,,|
are determined to be around 0.015, 0.028, or 0.048 eV for
IH, which are within the sensitivity of the near future Ovff
decay experiments.

Discrete flavor symmetry has also been employed to
explain the quark flavor mixing described by the well-
known CKM matrix as well. A extensive scan of finite
groups showed that only the Cabbibo mixing in the quark
sector can be reproduced at leading order without resorting
to special model-dependent corrections [23,78], regardless
of whether the three left-handed quark fields are assigned to
an irreducible triplet or doublet plus singlet. In the approach
with flavor and CP symmetry, if the remnant symmetries
preserved by the down and up quark mass matrices are
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chosen to be an Abelian subgroup and Z, x CP, the correct
size of the quark mixing angles and CP phase still cannot
be obtained. In this work, we propose the scheme with the
residual symmetry Z, x CP in both the up and down quark
sectors. The expressions for the CKM matrix and the
equivalence condition are derived. From the S, flavor group
along with a CP symmetry, we find an interesting leading
order quark mixing pattern in which the experimentally
preferred values of the quark mixing angles 67, and 67,
can be accommodated, while 67, is a bit large. It could be
brought into agreement with the experimental data in a
concrete model with small subleading corrections. We
comment that large flavor groups can accommodate well
the precisely measured CKM mixing matrix without
corrections in this approach [79].

Furthermore, we consider another type of residual
symmetry. The postulated flavor and CP symmetry is
broken to an Abelian subgroup contained in the flavor
group in the charged lepton sector and to a single remnant
CP transformation in the neutrino sector. The lepton
mixing angles and CP-violation phases are determined
in terms of three free parameters 6 , 5 in the interval [0, 7).
In general, this scenario is less predictive than the previous
one; each mixing parameter can vary in a relatively wide
range. For an example, we find that the flavor group Sy
combined with CP symmetry gives rise to five independent
mixing patterns which can describe the experimental data
on lepton mixing angles. The correlation between different
mixing parameters and the predictions for the neutrinoless
double beta decay are studied. Given the above rich results
from the S, group, we expect that many other new mixing
patterns compatible with experimental data could be
obtained in our proposal for other choices of the flavor
symmetry group such as As and A(6n2).

In summary, among all the above phenomenologically
viable cases discussed, the cases with (G;,G,,X;,X,,
P, P,) = (237U, Z8V T2, T, Py, Pry), (Z373V, 25, T2,
SU, Py, Pi3), (Z3T°SU, 78, T2, SU, P, P13) which predict
Ocp = 1.5697, 1.458xz, and 1.5427z respectively are most
attractive. Their predictions for 8,5, 053, a0y, and asz; are
distinct, as shown in Tables IV-VI, and VII. The meas-
urement of a possible CP-violation phase in the lepton
sector is very challenging and significant. The current
experiments T2K and NOvA expect to be able to test the
maximality of 0,3 and 6cp if running in both the neutrino
and the antineutrino modes. The upcoming long baseline
neutrino oscillation experiments can significantly improve
the sensitivity to dcp, 015, and 6,3, and therefore we could
exclude these mixing patterns or find strong evidence for
their relevance with future facilities.

In the present work, we propose alternative schemes to
understand the puzzle of quark and lepton flavor mixings
from flavor and CP symmetry. The implications of our
proposal for the flavor mixing are completely determined
by the assumed residual symmetries and are independent of
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the underlying theory; they are just a consequence of group
theory. It is interesting to construct explicit models to
dynamically achieve the breaking patterns of flavor and CP
symmetry. The required size of 8; and 0, (or 0, , 3) as well
as the charged lepton mass hierarchy should be obtained in
such models.
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APPENDIX A: GROUP THEORY OF S,

S4 is the permutation group of four distinct objects,
and geometrically it is the symmetry group of a regular
octahedron. S, can be defined by three generators S, 7', and
U, which satisfy [39,42,43]

§?=T3=U?=(ST)} = (SU)> = (TU)?> = (STU)* = 1.

(A1)
The 24 elements of the group belong to five conjugacy
classes,
1¢, = {1},
3C, = {S,TST?, T>ST}
6C, = {U,TU,SU,T*U,STSU, ST*SU}
8C; = {T,ST,TS,STS, T?, ST*, T*S,ST*S}
6Cy = {STU,TSU,T*>SU,ST*U,TST*U, T*STU},

(A2)
where kC, designates a conjugacy class of k elements of
which the order is n. The group structure of S, has been
studied in detail in Ref. [80]. The residual flavor symmetry
group can only be in the Abelian group in order to avoid the
degenerate mass spectrum. The Abelian subgroups of Sy

are given as follows:
(i) Z, subgroups:

7578V = {1,8T2SUY, 73V ={1,TU},
Z5TSU — {1,8TSUY,  ZF'U = {1,T*U},
ZV={1,U},  Z8V ={1,5U},
75 ={1,8},  ZI'ST ={1,71%ST},

71T = {1, TST?}, (A3)
where the superscripts denote the generators of the
subgroups. The first six Z, subgroups are related to
each other by group conjugation, and the last three
subgroups are conjugate to each other as well.
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(i) Z; subgroups:

Z8T = {1,ST.T?S},
78TS = {1, STS, ST*S},

zZr={1,T,7%},
ZIS ={1,TS, ST*}.
(A4)
All the above Z; subgroups are conjugate among
each other.
(iii) Z4 subgroups:
71TV — (1, TST*U, S, T*STUY,
75TV = {1, ST*U, TST?, T*SU},

ZISU = {1, TSU, T*ST, STU, (A3)

which are related with each other under group
conjugation.
(iv) K, subgroups:

KSTST) = 78 % ZIST* = (1,8, TST2, T2ST?,
Kff'u) =275 x 7Y ={1,5,U,5U},
TSTZ.TZU 2 2
KT = 2357 28

= {1,TST?, T*U, ST*SU},

T2ST,TU 2
K\STTU) = 18T o 71U

= {1,T2ST,TU,STSU}, (A6)

where K (S.TST?) is a normal subgroup of S, and the

remaining three K, subgroups are conjugate to

each other.
The group S, has five irreducible representations: two
singlets 1 and 1/, one doublet 2, and two triplets 3 and 3'.
The representation matrices for the generators S, 7, and U
in each of the irreducible representations are summarized in
Table VIII. Notice that the representations 3 and 3" differ
in the overall sign of the generator U. As has been shown in
previous work [39,42], the generalized CP transformation
compatible with the S, flavor symmetry is of the same form
as the flavor group transformation in our working basis.

TABLE VIII. The representation matrices of the generators S,
T, and U in different irreducible representations of S, where
w = eZni/S'

S T U
1,1 1 1 +1

i GV G ()

3,3 -1 2 2 1 0 O 1 00
%( 2 -1 2 ) (0 @’ 0> F (0 0 1)
2 2 -1 0 0 o 010
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APPENDIX B: EQUIVALENCE CONDITIONS
FOR TWO CKM MATRICES WITH
|a1| = |b1| ?é 0, 1

Following the methods in Secs. II B and III, we can find
out the criterion to determine whether two distinct residual
symmetries of the structure Z, x CP in both the up and
down type quark sectors lead to the same CKM matrix for
the general case with |a,| = |by| # 0, 1, if possible shifts of
the free parameters 0, and 6, are considered. The expres-
sion for the combination U, = = X, is written as Eq. (3.8).
One can always set a; and b, to be real and positive by
redefining the quark fields. We shall report the results in the
following:

() b3+ b3 #0, b5+ b3 #0:

In this case, the conditions under which essen-
tially the same quark mixing is obtained are given by

|a3 + a3| = |b} + b3,
(axb; + azbs)(azb;
|af + a3| = |b3 + b3,
(asby + azbq)(azb; — ajb;) €R,
(xbs + ybg)z + (xbg + ybg)w

—aib}) €R,

N [ I
ag — (xbe — ybs)z + (xbg — ybg)w’
(b3 + b3) (b3 + b3)
ag = (xbg + ybg)z — (xbs + ybg)w
(b3 +a3) (b3 +03)
xbg — ybg)z — (xbg — ybs)w
o = O e )

with

X = ayby + azbs, Yy = axby — azb,,

7= auby + abs, w = asby — ab,. (B2)

(i) b3+0b3=0, b3+ b3 #0:

The equivalent conditions are found to be

a)by, + azb; =0,
6 + 3| = 16+ b}

(agby + azb7)(a3b; — azb;) € R,

tT;—t;T; =0,

t/T; €R,
i,j=5,6,8,9,

’

with (B3)

where
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ts = vasb, — (zbs + wbg)a,,

ty = vagby — (zbg — wbs)ay,

T5 = —ansbz - i(Zbé + ng)(l3,

Ty = —ivagb, — i(zby — whg)as,

with

vzbﬁ—l—b%.

(i) b2 + b2 #0, b2 + b2 = 0:

PHYSICAL REVIEW D 95, 015012 (2017)
te = —vaghy + (zbg + whg)a,,
ty = —vaghy + (zbg — whg)a,,
T = ivagh, — i(zbs + wbg)as,

T9 = i’U(l9b2 - i(Zbg - Wbs)a_“,, (B4)

(BS)

The resulting CKM matrices would be related through redefinition of the parameters 6, and 6, if the following

constraints are fulfilled,

a4b4 + a7b7 =0,

tT; = 1T, =0, 1T, € R,
where
ts = uasby — (xbs + ybg)ay,
ty = —uagby + (xbg + ybg)ay,
Ty = —iuasby — i(xbg + yby)ay,
Ty = iuagby — i(xbs + ybg)ay,
with

|a3 + a3] = b3 + b3].
with

(arby + azbs)(asby — azbs) € R,

i,j=15,6,8,9, (B6)
t/6 = M(16b4 — ()Cbﬁ — be)a4’
tlg = —ua9b4 + (ng - ybg)a4,
Ty = —iuaghy — i(xby — ybg)ay,
Ty = iuagb, — i(xbg — ybs)as, (B7)
U= b% + b%. (B8)

(v) b2+ b2 =0, b2+ b2 =0:

The postulated residual symmetries would give rise to the same quark mixing pattern if the following conditions

are satisfied:

02b2 + a3b3 =0,

Cl4b4 + Cl7b7 = 0,

azay(bybs — bsbg) = byby(aras — asag). (B9)

Note that the above results are valid up to the transformations in Eq. (3.18).
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