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We suggest two alternative schemes to predict lepton mixing angles as well as CP violating phases from
a discrete flavor symmetry group combined with CP symmetry. In the first scenario, the flavor and CP
symmetry is broken to the residual groups of the structure Z2 × CP in the neutrino and charged lepton
sectors. The resulting lepton mixing matrix depends on two free parameters θν and θl. This type of breaking
pattern is extended to the quark sector. In the second scenario, an Abelian subgroup of the flavor group is
preserved by the charged lepton mass matrix and the neutrino mass matrix is invariant under a single
remnant CP transformation, all lepton mixing parameters are determined in terms of three free parameters
θ1;2;3. We derive the most general criterion to determine whether two distinct residual symmetries lead to
the same mixing pattern if the redefinition of the free parameters θν;l and θ1;2;3 is taken into account. We
have studied the lepton mixing patterns arising from the flavor group S4 and CP symmetry which are
subsequently broken to all of the possible residual symmetries discussed in this work.
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I. INTRODUCTION

The neutrino oscillation experiments have made great
progress in the last twenty years [1–3]. It has been firmly
established that neutrinos must be massive particles and
different flavor eigenstates are mixed. The three lepton
mixing angles θ12, θ13, and θ23 as well as two mass squared
differences Δm2

21 and Δm2
31 have been precisely measured

[4–7]. However, we still do not know the neutrino mass
ordering (Δm2

31 > 0 or Δm2
31 < 0), and the signal of CP

violation in the lepton sector has not been observed. The
preliminary T2K data favor a maximal Dirac CP violation
phase δCP ≃ −π=2 [8], and the latest global fits of neutrino
mixing parameters show a weak evidence for a negative
Dirac phase −π < δCP < 0 [5–7]. The primary objectives
of near future neutrino experiments are to determine the
ordering of the neutrino masses and to measure the value
of δCP.
On the theoretical side, the origin of neutrino mass and

lepton flavor mixing is still unknown, although there have
been lots of theoretical studies. Motivated by the observa-
tion that the simple tribimaximal mixing possibly originates
from a A4 flavor group, non-Abelian discrete flavor
symmetry has been extensively exploited to explain the
observed lepton mixing angles. Many other symmetries
such as S4, A5, Δð3n2Þ, Δð6n2Þ, etc., have been considered
over the years. Please see Refs. [9–13] for a review on
discrete flavor symmetry and its application in model
building. Significant progress in recent years is the precise
measurement of the reactor mixing angle θ13 [14–18]. The

discovery of a somewhat large value of θ13 rules out the
tribimaximal mixing patterns and many flavor models
which predicted small or zero θ13. Many approaches have
been pursued to explain such a largish θ13. Within the
paradigm of the discrete flavor symmetry, a model-
independent scan of the lepton sector reveals that only
large flavor symmetry groups (e.g. ðZ18 × Z6Þ⋊S3 with the
group identification [648, 259]) can produce mixing
patterns compatible with experimental data and the Dirac
CP phase is generally trivial if the whole lepton mixing
matrix is fully fixed by the symmetry alone [19–23]. In this
approach, the lepton flavor mixing matrix is determined by
the assumed residual symmetries and their embedding into
the parent flavor symmetry group, and the breaking
mechanism is irrelevant; i.e., we do not need to consider
how the vacuum configuration achieving the residual
symmetries is dynamically realized.
In order to accommodate a nonzero θ13 and a nontrivial

Dirac CP phase simultaneously, it is interesting to combine
flavor symmetry with CP symmetry. This approach can
generate a rich structure of mixing patterns which are in
good agreement with the experimental data, and it allows us
to predict all the mixing angles and CP phases in terms of a
small number of input parameters [24–26]. From the
bottom-up point of view, the generic neutrino and charged
lepton mass matrices have both residual CP symmetry and
residual flavor symmetry, and the residual flavor symmetry
can be generated from the residual CP transformations
[27–29]. Hence, it is natural to assume that the residual
flavor and CP symmetry arises from a large flavor and CP
symmetry group at the high energy scale. In this approach,
the CP symmetry nontrivially acts on the flavor space such
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that the consistency condition Xρ�ðgÞX−1 ¼ ρðg0Þ has to be
fulfilled in order for the theory to be consistent [24,30–32],
where X is the CP transformation and ρðgÞ is the repre-
sentation matrix of the element g contained in the flavor
group. There has been intense theoretical activity on the
flavor symmetry in combination with CP symmetry. Many
flavor symmetry groups and their predictions for lepton
mixing parameters have been studied such as A4 [33–37],
S4 [24,38–43], A5 [44–47], Δð27Þ [48,49], Δð48Þ [50,51],
Δð96Þ [52], and Σð36 × 3Þ [53] as well as Δð3n2Þ [54,55],
Δð6n2Þ [54,56,57], andDð1Þ

9n;3n [58] group series for a generic
integer n. Recently, a comprehensive scan of leptonic mixing
parameters which can be obtained from finite discrete
groups of order less than 2000 and CP symmetry has been
performed [59]. Moreover, the phenomenological implica-
tions of flavor and CP symmetry in neutrinoless double
decay [37,39,43,44,57–60] and leptogenesis [59–61] have
been investigated. It is remarkable that the residual CP
symmetry provides a bridge between flavored leptogenesis
and low energy leptonic CP violation.
It is usually assumed that the residual flavor symmetry in

the charged lepton is an Abelian subgroup which can
distinguish among the three generations, and the residual
symmetry in the neutrino sector is a direct product of Z2

and CP. As a consequence, the lepton mixing matrix
turns out to depend on a single real parameter θ, and all
mixing parameters are strongly correlated with each other.
In the present work, we shall discuss the other possible
approaches to predict lepton mixing parameters from flavor
and CP symmetry, and two scenarios will be considered. In
the first one, the neutrino and charged lepton mass matrices
are invariant under two distinct Z2 × CP subgroups.
Consequently, all mixing parameters including mixing
angles and CP phases are predicted in terms of two real
parameters θl and θν. In the second scheme, the original
flavor symmetry is broken down to a residual Abelian
subgroup with three or more elements in the charged lepton
sector while a single residual CP transformation is pre-
served by the neutrino mass matrix, the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix would depend
on three real parameters θ1;2;3. For an example, we present a
detailed analysis for the S4 flavor symmetry group and CP
symmetry. All possible independent combinations of rem-
nant symmetries and the predictions for lepton mixing
parameters are studied analytically and numerically.
The paper is organized as follows. In Sec. II, we study the

symmetry breaking pattern in which a flavor symmetry
combined with a CP symmetry is broken to Z2 × CP in
both the neutrino and charged lepton sectors. The resulting
consequence for the prediction of the leptonmixingmatrix is
discussed, and the technical steps in the derivation are
explained.We derive the conditions under which two distinct
residual symmetries give rise to the same mixing pattern.
Moreover, we analyze the independent mixing patterns
which can be obtained from the popular flavor group S4

and CP in this scheme. In Sec. III, our approach is extended
to the quark sector. In Sec. IV, we explore another proposal
in which the charged lepton and neutrino mass matrices
are invariant under the action of a residual Abelian subgroup
and a single CP transformation respectively. Finally, Sec. V
concludes this paper. Moreover, Appendix A contains the
necessary group theory of S4 as well as its Abelian sub-
groups. Appendix B gives the conditions under which two
distinct residual symmetries of the structureZ2 × CP in both
the up and down quark sectors lead to the same Cabbibo-
Kobayashi-Maskawa (CKM) mixing matrix in the case that
the fixed element is neither 0 nor 1.

II. LEPTON FLAVOR MIXING FROM RESIDUAL
SYMMETRY Z2 × CP IN BOTH CHARGED

LEPTON AND NEUTRINO SECTORS

In the widely studied direct and semidirect approaches
[11–13], it is assumed that the neutrino mass matrix mν

possesses residual symmetry Z2 × Z2 and Z2 × CP respec-
tively, and the charged lepton mass matrix is invariant
under an Abelian subgroup contained in the flavor group.
In this section, we shall be concerned with the scenario that
the remnant symmetry preserved by both the neutrino and
charged lepton mass matrices is of the structure Z2 × CP.
Notice that the case of a flavor symmetry without CP
broken to residual symmetries Ge ¼ Z2 in the charged
lepton sector and Gν ¼ Z2 in the neutrino sector has been
discussed in Refs. [62]. The three generations of left-
handed leptons are assigned to a faithful irreducible triplet 3
of the flavor symmetry group.

A. General form of the PMNS matrix

We shall denote the residual Z2 flavor symmetry of the
charged lepton sector as Zgl

2 ≡ f1; glg with g2l ¼ 1, and the
remnant CP transformation is Xl. In order for the theory to
be consistent, the following consistency condition has to be
fulfilled [24,39],

Xlρ
�
3ðglÞX−1

l ¼ ρ3ðg−1l Þ ¼ ρ3ðglÞ; ð2:1Þ

where ρ3ðglÞ denote the representation matrix of the element
gl in the three-dimensional representation 3. The charged
lepton mass matrix m†

l ml is invariant under the action of the
residual symmetry Zgl

2 × Xl, and it fulfills [24,39,42,43]

X†
l m

†
l mlXl ¼ ðm†

l mlÞ�; ð2:2aÞ

ρ†3ðglÞm†
l mlρ3ðglÞ ¼ m†

l ml: ð2:2bÞ

The unitary transformation Ul which diagonalizes the
Hermitian matrix m†

l ml with U†
l m

†
l mlUl¼diagðm2

e;m2
μ;m2

τÞ
is strongly constrained by the postulated residual symmetry.
In the following, we shall show how to determine Ul from
ρ3ðglÞ andXl. As the order of gl is 2, the eigenvalues of ρ3ðglÞ
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are ð1;−1;−1Þ or ð−1; 1; 1Þ, and we take the first case as an
example without loss of generality. Assuming Σl1 is a
diagonalization matrix of ρðglÞ and it satisfies

Σ†
l1ρ3ðglÞΣl1 ¼ diagð1;−1;−1Þ≡ ρ̂3ðglÞ; ð2:3Þ

then we have

ρ3ðglÞ ¼ Σl1ρ̂3ðglÞΣ†
l1: ð2:4Þ

The residual CP has to be consistent with the residual flavor
symmetry, and therefore the following consistency condition
should be fulfilled [43,58]:

Xlρ
�
3ðglÞX†

l ¼ ρ3ðg−1l Þ: ð2:5Þ

Inserting Eq. (2.4) into the above equation and considering
g2l ¼ 1, we get

XlΣ�
l1ρ̂3ðglÞΣT

l1X
†
l ¼ Σl1ρ̂3ðglÞΣ†

l1; ð2:6Þ

which leads to

ðΣ†
l1XlΣ�

l1Þρ̂3ðglÞðΣT
l1X

†
lΣl1Þ ¼ ρ̂3ðglÞ; ð2:7Þ

which means

ðΣ†
l1XlΣ�

l1Þρ̂3ðglÞ ¼ ρ̂3ðglÞðΣ†
l1XlΣ�

l1Þ: ð2:8Þ

Therefore, Σ†
l1XlΣ�

l1 is a block diagonal and symmetric
matrix, and its most general form is given by

Σ†
l1XlΣ�

l1 ¼
�
eiξ1 0

0 ul2×2

�
; ð2:9Þ

where ξ1 is an arbitrary real number and ul2×2 is a two-
dimensional symmetric unitary matrix. We denote the Takagi
factorization of ul2×2 as σl2×2 fulfilling ul2×2 ¼ σl2×2σ

lT
2×2,

where σl2×2 is a two-dimensional unitary matrix. As a result,
the matrix Σ†

l1XlΣ�
l1 can be written into

Σ†
l1XlΣ�

l1 ¼
�
eiξ1=2 0

0 σl2×2

��
eiξ1=2 0

0 σlT2×2

�
: ð2:10Þ

Then, we can obtain the Takagi factorization of Xl as

Xl ¼
�
Σl1

�
eiξ1=2 0

0 σl2×2

���
Σl1

�
eiξ1=2 0

0 σl2×2

��
T

≡ ΣlΣT
l ð2:11Þ

with

Σl ¼ Σl1

�
eiξ1=2 0

0 σl2×2

�
: ð2:12Þ

It is straightforward to check that the remnant flavor trans-
formation ρ3ðglÞ is diagonalized by Σl,

Σ†
l ρ3ðglÞΣl ¼ diagð1;−1;−1Þ: ð2:13Þ

From Eq. (2.2a), we can obtain that the constraint on the
unitary transformation Ul from the residual CP transforma-
tion Xl is

U†
l XlU�

l ¼ diagðeiβe ; eiβμ ; eiβτÞ≡Q2
l ; ð2:14Þ

where βe;μ;τ are arbitrary real parameters. Thus, we have

U†
lΣlΣT

l U
�
l ¼ Q2

l ; ð2:15Þ

which leads to

ðΣT
l U

�
l Q

−1
l ÞTðΣT

l U
�
l Q

−1
l Þ ¼ 1: ð2:16Þ

Hence, the combination ΣT
l U

�
l Q

−1
l is an orthogonal matrix,

and it is also a unitary matrix. Therefore, ΣT
l U

�
l Q

−1
l is a real

orthogonal matrix denoted by O3×3. Then, the unitary trans-
formation Ul takes the following form:

Ul ¼ ΣlO3×3Q−1
l : ð2:17Þ

Furthermore, Eq. (2.2b) implies that Ul is also subject to the
constraint of the residual flavor symmetry as follows,

U†
l ρ3ðglÞUl ¼ Pldiagð1;−1;−1ÞPT

l ; ð2:18Þ

where Pl is a generic permutation matrix, and it can take six
possible forms, 1, P12, P13, P23, P23P12, and P23P13 with

P12 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; P13 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

P23 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð2:19Þ

Plugging the expressionofUl inEq. (2.17) intoEq. (2.18),we
obtain

PT
l QlO

†
3×3Σ

†
l ρ3ðglÞΣlO3×3Q−1

l Pl ¼ diagð1;−1;−1Þ:
ð2:20Þ

Using Eq. (2.13), we have
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½O3×3Q−1
l Pl�†diagð1;−1;−1Þ½O3×3Q−1

l Pl�
¼ diagð1;−1;−1Þ: ð2:21Þ

Therefore, the combination O3×3Q−1
l Pl is a block diagonal

unitary matrix, and it can be parametrized as

O3×3Q−1
l Pl ¼

�
eiξ2 0

0 vl2×2

�
; ð2:22Þ

where ξ2 is a real number and vl2×2 is a two-dimensional
unitary matrix. Thus, we have

ðO3×3Q−1
l PlÞTðO3×3Q−1

l PlÞ ¼ PT
l Q

−2
l Pl

¼
�
e2iξ2 0

0 vlT2×2v
l
2×2

�
;

ð2:23Þ

which implies

��
eiξ2 0

0 vl2×2

�
PT
l QlPl

�T�� eiξ2 0

0 vl2×2

�
PT
l QlPl

�
¼ 1:

ð2:24Þ

Hence, ð e
iξ2 0

0 vl2×2
ÞPT

l QlPl is a block diagonal real

orthogonal matrix, and it takes the form

�
eiξ2 0

0 vl2×2

�
PT
l QlPl ¼ ST23ðθlÞ; ð2:25Þ

where S23ðθlÞ is a rotation matrix with

S23ðθlÞ≡
0
B@

1 0 0

0 cos θl sin θl
0 − sin θl cos θl

1
CA: ð2:26Þ

As a consequence, the unitary transformation Ul is fixed by
the residual symmetry Z2 × CP to be

Ul ¼ ΣlST23ðθlÞPT
l Q

−1
l : ð2:27Þ

Hence, the unitary transformation Ul can be easily obtained
by determining the Takagi factorizationmatrixΣl. Notice that
if Σl is a Takagi factorization of Xl, ΣlS23ðθ0lÞ is also a valid
Takagi factorization fulfilling Eq. (2.13), where S23ðθ0lÞ is an
arbitrary rotation in the (23)-plane and it can be absorbed into
S23ðθlÞ through parameter redefinition. As a consequence,
the result for Ul in Eq. (2.27) is not changed. Similarly,
the residual flavor symmetry of the neutrino mass matrix
is denoted as Zgν

2 ≡ f1; gνg with g2ν ¼ 1, the residual

CP transformation is Xν, and CP should commute with
Zgν
2 as well,

Xνρ
�
3ðgνÞX−1

ν ¼ ρ3ðgνÞ: ð2:28Þ

The invariance of the neutrino mass matrix under the residual
symmetry Zgν

2 × Xν requires [24,39]

ρT3 ðgνÞmνρ3ðgνÞ ¼ mν; XT
νmνXν ¼ m�

ν: ð2:29Þ

Plugging UT
νmνUν ¼ diagðm1; m2; m3Þ into this equation,

we can derive the following constraints on the unitary
transformation Uν,

U†
νρ3ðgνÞUν ¼ diagð�1;�1;�1Þ; ð2:30aÞ

U†
νXνU�

ν ¼ diagð�1;�1;�1Þ≡Q2
ν; ð2:30bÞ

whereQν is a diagonal and unitary matrix with nonvanishing
entries equal to�1 and�i.Without loss of generality,Qν can
be parametrized as

Qν ¼

0
B@

1 0 0

0 ik1 0

0 0 ik2

1
CA; ð2:31Þ

with k1;2 ¼ 0, 1, 2, 3. First, we can diagonalize the residual
flavor symmetry transformation ρ3ðgνÞ by a unitary trans-
formation Σν1 as

Σ†
ν1ρ3ðgνÞΣν1 ¼ ρ̂3ðgνÞ ¼ diagð1;−1;−1Þ: ð2:32Þ

The consistency condition of remnant symmetry is [24,39]

Xνρ
�
3ðgνÞX†

ν ¼ ρ3ðg−1ν Þ ¼ ρ3ðgνÞ; ð2:33Þ

which leads to

XνΣ�
ν1ρ̂

�
3ðgνÞΣT

ν1X
†
ν ¼ Σν1ρ̂3ðgνÞΣ†

ν1: ð2:34Þ

Thus, we have

ðΣ†
ν1XνΣ�

ν1Þρ̂�3ðgνÞðΣ†
ν1XνΣ�

ν1Þ† ¼ ρ̂3ðgνÞ: ð2:35Þ

Hence, Σ†
ν1XνΣ�

ν1 is a block diagonal matrix, and it is of the
following form,

Σ†
ν1XνΣ�

ν1 ¼
�
eiζ1 0

0 uν2×2

�
; ð2:36Þ

where ζ1 is an arbitrary real number and uν2×2 is a two-
dimensional symmetric unitarymatrix.uν2×2 can be factorized
into the form uν2×2 ¼ σν2×2σ

νT
2×2 with σ

ν
2×2σ

ν†
2×2 ¼ 1. Then, we

obtain
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Σ†
ν1XνΣ�

ν1 ¼ Σν2ΣT
ν2; ð2:37Þ

where

Σν2 ¼
�
eiζ1=2 0

0 σν2×2

�
: ð2:38Þ

As a consequence, the Takagi factorization of the residualCP
transformation Xν is given by

Xν ¼ ΣνΣT
ν ð2:39Þ

with Σν ¼ Σν1Σν2. It is easy to check that the residual flavor
transformation ρ3ðgνÞ is diagonalized by Σν as well,

Σ†
νρ3ðgνÞΣν ¼ Σ†

ν2Σ
†
ν1ρ3ðgνÞΣν1Σν2

¼ Σ†
ν2diagð1;−1;−1ÞΣν2

¼ diagð1;−1;−1Þ: ð2:40Þ

Now, we proceed to discuss the constraint on Uν from
the remnant CP transformation. Substituting the relation
Xν ¼ ΣνΣT

ν into Eq. (2.30b), we get

ðQνU
†
νΣνÞðQνU

†
νΣνÞT ¼ 1: ð2:41Þ

This implies thatQνU
†
νΣν is a real orthogonal matrix denoted

as O3×3. Therefore, the unitary transformation Uν is of the
form

Uν ¼ ΣνOT
3×3Qν: ð2:42Þ

Subsequently, we consider the constraint from the residual
flavor symmetry given in Eq. (2.30a),

U†
νρ3ðgνÞUν ¼ PT

ν diagð1;−1;−1ÞPν; ð2:43Þ

where Pν is a permutation matrix, since the neutrino masses
are unconstrained in the present framework and the neutrino
mass spectrum can be either normal hierarchy (NH) or
inverted hierarchy (IH). Inserting Eq. (2.42) into
Eq. (2.43), one finds

Q−1
ν O3×3Σ

†
νρ3ðgνÞΣνOT

3×3Qν

¼ Q−1
ν O3×3diagð1;−1;−1ÞOT

3×3Qν

¼ PT
ν diagð1;−1;−1ÞPν; ð2:44Þ

which gives rise to

diagð1;−1;−1ÞðOT
3×3QνPT

ν Þ¼ðOT
3×3QνPT

ν Þdiagð1;−1;−1Þ:
ð2:45Þ

Therefore,OT
3×3QνPT

ν is a block-diagonal unitarymatrix, and
we can parametrize it as

OT
3×3QνPT

ν ¼
�
eiζ2 0

0 vν2×2

�
; ð2:46Þ

where ζ2 is real and vν2×2 is a two-dimensional unitarymatrix.
Both sides of this equation multiply with their transpose, and
we obtain

ðOT
3×3QνPT

ν ÞTðOT
3×3QνPT

ν Þ ¼ PνQ2
νPT

ν

¼
�
e2iζ2 0

0 vνT2×2v
ν
2×2

�
;

ð2:47Þ

which implies

��
eiζ2 0

0 vν2×2

�
PνQ−1

ν PT
ν

�T��eiζ2 0

0 vν2×2

�
PνQ−1

ν PT
ν

�
¼ 1:

ð2:48Þ

Therefore, ð e
iζ2 0

0 vν2×2
ÞPνQ−1

ν PT
ν is a block-diagonal real

orthogonal matrix, and it is of the following form,

�
eiζ2 0

0 vν2×2

�
PνQ−1

ν PT
ν ¼ S23ðθνÞ; ð2:49Þ

where θν is real. Consequently, the unitary transformationUν

is fixed to be

Uν ¼ ΣνS23ðθνÞPνQν: ð2:50Þ

The lepton mixing matrix UPMNS is a result of the mismatch
between Ul and Uν. Hence, we find UPMNS is of the form

UPMNS ¼ U†
l Uν ¼ QlPlS23ðθlÞΣ†

lΣνS23ðθνÞPνQν; ð2:51Þ

where the phase matrix Ql can be absorbed by redefinition
of the charged lepton fields. We see that the lepton
mixing matrix depends on two free continuous parameters
θl and θν, and one entry of the PMNS matrix is fixed to
be some constant value by the postulated residual
symmetry. Notice that S23ðθþπÞ¼S23ðθÞdiagð1;−1;−1Þ¼
diagð1;−1;−1ÞS23ðθÞ where the diagonal matrix can be
absorbed into the matrices Ql and Qν, and consequently
the fundamental interval of the parameters θl and θν is ½0; πÞ.
If two pairs of residual subgroups fZg0l

2 × X0
l; Z

g0ν
2 × X0

νg
and fZgl

2 × Xl; Z
gν
2 × Xνg are related by a similarity

transformation
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hglh−1 ¼ g0l; ρ3ðhÞXlρ3ðhÞT ¼ X0
l;

hgνh−1 ¼ g0ν; ρ3ðhÞXνρ3ðhÞT ¼ X0
ν ð2:52Þ

with h ∈ S4, then the unitary transformations of the
changed lepton and neutrino fields are related by

U0
l ¼ ρ3ðhÞUl; U0

ν ¼ ρ3ðhÞUν: ð2:53Þ

Therefore, the same result for the PMNS matrix would be
obtained.

B. Criterion for the equivalence
of two mixing patterns

In some cases, two distinct residual symmetries lead to
the same mixing pattern, if a possible shift in the continu-
ous free parameters θl and θν is taken into account. Then,
we shall call these two mixing patterns are equivalent.
In this section, we shall derive the criterion to determine
whether two resulting mixing patterns are equivalent or not.
In our approach, the lepton mixing matrices derived from
two generic residual symmetries take the form

UPMNS ¼ QlPlS23ðθlÞΣ†
lΣνS23ðθνÞPνQν; ð2:54Þ

U0
PMNS ¼ Q0

lP
0
lS23ðθ0lÞΣ0†

lΣ0
νS23ðθ0νÞP0

νQ0
ν: ð2:55Þ

Obviously, the fixed element has to be equal if the two
mixing patterns are equivalent, and without loss of general-
ity, we assume it is the (11) entry of the PMNS matrix. As a
result, the permutation matrices Pl, Pν, P0

l, and P
0
ν can only

be 1 and P23. Because the identities

P23S23ðθlÞ ¼ diagð1;−1; 1ÞS23ðθl − π=2Þ;
S23ðθνÞP23 ¼ S23ðθν þ π=2Þdiagð1;−1; 1Þ ð2:56Þ

are satisfied, and the diagonal matrix can be absorbed into
the matrices Ql and Qν, we could choose Pl ¼ Pν ¼
P0
l ¼ P0

ν ¼ 1. For any given values of θl and θν and the
matrices Ql, Pl, Qν, and Pν, if the corresponding solutions
of θ0l and θ

0
ν as well asQ0

l, P
0
l,Q

0
ν, and P0

ν can be found such
that the equality UPMNS ¼ U0

PMNS is fulfilled, these two
mixing patterns would be equivalent, i.e.,

QlS23ðθlÞUS23ðθνÞQν ¼ Q0
lS23ðθ0lÞU0S23ðθ0νÞQ0

ν; ð2:57Þ

where U ≡ Σ†
lΣν and U0 ≡ Σ0†

lΣ0
ν. Then, we have

QLS23ðθlÞUS23ðθνÞQN ¼ S23ðθ0lÞU0S23ðθ0νÞ; ð2:58Þ

where QL ¼ Q0†
l Ql is a generic diagonal phase matrix and

QN ¼ QνQ0
ν
† is also diagonal with entries �1 and �i. The

matrices on both sides of Eq. (2.58) multiplying with their
transpose leads to

QLS23ðθlÞUS23ðθνÞQ2
NS

T
23ðθνÞUTST23ðθlÞQL

¼ S23ðθ0lÞU0U0TST23ðθ0lÞ: ð2:59Þ

Subsequently, taking the trace, we obtain

Tr½ST23ðθlÞQ2
LS23ðθlÞUS23ðθνÞQ2

NS
T
23ðθνÞUT � ¼ Tr½U0U0T �:

ð2:60Þ

Since the right-hand side of this equality is a constant and it
does not depend on θl and θν, the phase matrices QL and
QN should be of the form

QL ¼

0
B@

eiδ1 0 0

0 eiδ2 0

0 0 k1eiδ2

1
CA;

QN ¼

0
B@

η1 0 0

0 η2 0

0 0 k2η2

1
CA; ð2:61Þ

where k1;2 ¼ �1, δ1;2 are real parameters and η1;2 are �1

and �i with eiδ1η1 ¼ 1. Thus, from Eq. (2.58), we can
derive

QLUQN ¼ S23ðθ00l ÞU0S23ðθ00νÞ; ð2:62Þ

with

θ00l ¼ θ0l − k1θl; θ00ν ¼ θ0ν − k2θν: ð2:63Þ

Once the residual symmetries are specified, the unitary
matrices U and U0 can be determined by following the
procedures listed in Sec. II A. Generically, U and U0 can be
written as

U¼

0
B@
a1 a2 a3
a4 a5 a6
a7 a8 a9

1
CA; U0 ¼

0
B@
b1 b2 b3
b4 b5 b6
b7 b8 b9

1
CA: ð2:64Þ

A necessary condition for the equivalence of UPMNS and
U0

PMNS is a1 ¼ b1, which cannot be 0 or 1 in order to be
compatible with experimental data. First, let us consider a
special case with

QL¼

0
B@
1 0 0

0 eiδ 0

0 0 eiδ

1
CA; QN ¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA: ð2:65Þ

Solving Eq. (2.62) for the variables θ00l , θ
00
ν , and δ, we can

obtain the condition for the existence of a solution:
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(i) b22 þ b23 ≠ 0; b24 þ b27 ≠ 0:
In this case, the solutions for θ00l , θ

00
ν , and δ are

given by

cosθ00l ¼
a4b4þa7b7
b24þb27

eiδ; sinθ00l ¼
a4b7−a7b4
b24þb27

eiδ;

e−2iδ¼a24þa27
b24þb27

;

cosθ00ν ¼
a2b2þa3b3
b22þb23

; sinθ00ν ¼
a3b2−a2b3
b22þb23

:

ð2:66Þ

Since θ00l , θ
00
ν , and δ are real parameters, ai and bi

should be subject to the following constraints:

ða4b4 þ a7b7Þða�4b�7 − a�7b
�
4Þ ∈ R;

ja24 þ a27j ¼ jb24 þ b27j;
ða2b2 þ a3b3Þða�2b�3 − a�3b

�
2Þ ∈ R;

a2 þ a23 ¼ b22 þ b23: ð2:67Þ

Inserting Eq. (2.66) into Eq. (2.62), we find that the
equivalence of these two mixing patterns requires

a5 ¼
ðxb5 þ yb6Þzþ ðxb8 þ yb9Þw

ðb22 þ b23Þðb24 þ b27Þ
;

a6 ¼
ðxb6 − yb5Þzþ ðxb9 − yb8Þw

ðb22 þ b23Þðb24 þ b27Þ
;

a8 ¼
ðxb8 þ yb9Þz − ðxb5 þ yb6Þw

ðb22 þ a23Þðb24 þ b27Þ
;

a9 ¼
ðxb9 − yb8Þz − ðxb6 − yb5Þw

ðb22 þ b23Þðb24 þ b27Þ
; ð2:68Þ

with

x ¼ a2b2 þ a3b3; y ¼ a2b3 − a3b2;

z ¼ a4b4 þ a7b7; w ¼ a4b7 − a7b4: ð2:69Þ

(ii) b22 þ b23 ¼ 0; b24 þ b27 ≠ 0:
This case requires

b3¼ is1b2; a3¼ is1a2; with s1¼�1: ð2:70Þ

The parameters θ00l , θ
00
ν , and δ are determined to be

cosθ00l ¼
a4b4þa7b7
b24þb27

eiδ; sinθ00l ¼
a4b7−a7b4
b24þb27

eiδ;

e−2iδ¼a24þa27
b24þb27

;

cosθ00ν ¼ℜða2=b2Þ; sinθ00ν ¼−s1ℑða2=b2Þ;
ð2:71Þ

with the constraints

ða4b4 þ a7b7Þða�4b�7 − a�7b
�
4Þ ∈ R;

ja24 þ a27j ¼ jb24 þ b27j: ð2:72Þ

These two PMNS matrices would be equivalent if
and only if the following conditions are fulfilled:

a5ðb24 þ b27Þ ¼ s1ðzb6 þ wb9Þℑða2=b2Þ
þ ðzb5 þ wb8Þℜða2=b2Þ;

a6ðb24 þ b27Þ ¼ −s1ðzb5 þ wb8Þℑða2=b2Þ
þ ðzb6 þ wb9Þℜða2=b2Þ;

a8ðb24 þ b27Þ ¼ s1ðzb9 − wb6Þℑða2=b2Þ
þ ðzb8 − wb5Þℜða2=b2Þ;

a9ðb24 þ b27Þ ¼ −s1ðzb8 − wb5Þℑða2=b2Þ
þ ðzb9 − wb6Þℜða2=b2Þ: ð2:73Þ

(iii) b22 þ b23 ≠ 0; b24 þ b27 ¼ 0:
From b24 þ b27 ¼ 0, we obtain b7 ¼ is2b4 with

s2 ¼ �1. Moreover, the equality a7 ¼ is2a4 should
be satisfied; otherwise, UPMNS and U0

PMNS are two
different mixing patterns. The condition of equiv-
alence in Eq. (2.62) gives rise to

tiTj− tjTi¼0; ti=Ti∈R; with i;j¼5;6;8;9;

ð2:74Þ

where

t5 ¼ za5 − wb5 − vb6;

t6 ¼ za6 − wb6 þ vb5;

t8 ¼ −za8 þ wb8 þ vb9;

t9 ¼ −za9 þ wb9 − vb8;

T5 ¼ −iza5 þ s2ðwb8 þ vb9Þ;
T6 ¼ −iza6 þ s2ðwb9 − vb8Þ;
T8 ¼ iza8 þ s2ðwb5 þ vb6Þ;
T9 ¼ iza9 þ s2ðwb6 − vb5Þ; ð2:75Þ

and
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z≡ b4ðb22 þ b23Þ;
w≡ a4ða2b2 þ a3b3Þ;
v≡ a4ða2b3 − a3b2Þ: ð2:76Þ

The values of the rotation angles θ00l and θ00ν are

cos θ00l ¼ ℜða4eiδ=b4Þ; sin θ00l ¼ s2ℑða4eiδ=b4Þ;

cos θ00ν ¼
a2b2 þ a3b3
b22 þ b23

; sin θ00ν ¼
a3b2 − a2b3
b22 þ b23

;

ð2:77Þ

with the constraints

ða2b2 þ a3b3Þða�2b�3 − a�3b
�
2Þ ∈ R;

a22 þ a23 ¼ b22 þ b23: ð2:78Þ

The phase δ is determined by

ℑða4eiδ=b4Þ
ℜða4eiδ=b4Þ

¼ ti
Ti

: ð2:79Þ

(iv) b22 þ b23 ¼ 0; b24 þ b27 ¼ 0:
In the same fashion as in previous cases, we find

b3¼ is3b2; a3¼ is3a2; s3¼�1;

b7¼ is4b4; a7¼ is4a4; s4¼�1: ð2:80Þ

The condition of equivalence in Eq. (2.62) would be
fulfilled if

t0iT
0
j− t0jT

0
i¼0; t0i=T

0
i∈R; with i;j¼5;6;8;9;

ð2:81Þ

where

t05 ¼ a5b4 − a4½s3b6ℑða2=b2Þ þ b5ℜða2=b2Þ�;
t06 ¼ a6b4 þ a4½s3b5ℑða2=b2Þ − b6ℜða2=b2Þ�;
t08 ¼ a8b4 − a4½s3b9ℑða2=b2Þ þ b8ℜða2=b2Þ�;
t09 ¼ a9b4 þ a4½s3b8ℑða2=b2Þ − b9ℜða2=b2Þ�;
T 0
5 ¼ −ia5b4 þ s4a4½s3b9ℑða2=b2Þ þ b8ℜða2=b2Þ�;

T 0
6 ¼ −ia6b4 − s4a4½s3b8ℑða2=b2Þ − b9ℜða2=b2Þ�;

T 0
8 ¼ −ia8b4 − s4a4½s3b6ℑða2=b2Þ þ b5ℜða2=b2Þ�;

T 0
9 ¼ −ia9b4 þ s4a4½s3b5ℑða2=b2Þ − b6ℜða2=b2Þ�:

ð2:82Þ

The solutions for θ00l , θ
00
ν , and δ are

cos θ00l ¼ ℜða4eiδ=b4Þ; sin θ00l ¼ s4ℑða4eiδ=b4Þ;
ℑða4eiδ=b4Þ
ℜða4eiδ=b4Þ

¼ t0i
T 0
i
;

cos θ00ν ¼ ℜða2=b2Þ; sin θ00ν ¼ −s3ℑða2=b2Þ:
ð2:83Þ

For the most general values of the diagonal matrices QL
and QN ,

QL ¼

0
B@

η−11 0 0

0 eiδ 0

0 0 k1eiδ

1
CA;

QN ¼

0
B@

η1 0 0

0 η2 0

0 0 k2η2

1
CA; ð2:84Þ

the condition for the equivalence of two generic mixing
patterns can be obtained from the above results by making
the following substitutions:

a1 → a1; a2 → η−11 η2a2; a3 → k2η−11 η2a3;

a4 → η1a4; a5 → η2a5; a6 → k2η2a6;

a7 → k1η1a7; a8 → k1η2a8; a9 → k1k2η2a9:

ð2:85Þ

C. Possible mixing patterns from S4 and CP
and numerical results

We shall perform a comprehensive study of the lepton
mixing patterns arising from the breaking of S4 and CP
symmetry into two distinct residual groups of the structure
Z2 × CP in the charged lepton and neutrino sectors. The
basic properties of the S4 group and its representation are
collected in Appendix A. It turns out that the most general
CP transformation compatible with S4 is of the same form
as the flavor symmetry transformation in our chosen basis
[39,42]. Each of the nine different Z2 symmetries in
Eq. (A3) together with the compatible CP transformation
can be residual symmetry of the neutrino and charged
lepton mass matrices.
By applying the similarity transformation and the equiv-

alence criterion derived in Sec. II B, we find that it is
sufficient to only consider a number of independent cases
which lead to different results for mixing angles and CP
phases. All possible permutations of the rows and columns
of the mixing matrix would be considered. We exclude all
patterns that can not describe the experimental data on
lepton mixing angles at the 3σ level for certain values of the
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free parameters θl and θν. As a result, we find in total 18
phenomenologically viable cases. The residual flavor
symmetry of the neutrino and charged lepton sectors can
be chosen to be ZST2SU

2 , ZTU
2 , or ZS

2; the corresponding
residual CP transformation Xr and the Takagi factorization
matrix Σ are summarized in Table I. As shown in Sec. II A,
the Takagi factorization Σ satisfies

Xr ¼ ΣΣT; Σ†ρ3ðgrÞΣ ¼ diagð1;−1;−1Þ; ð2:86Þ

where gr is the generator of Gr. Notice that ρ3ðgrÞXr is also
a residual CP symmetry of the neutrino sector, and it leads
to the same constraint on the neutrino mass matrix as Xr.
For each possible residual symmetry, the lepton mixing
matrix can be straightforwardly obtained by using the
master formula of Eq. (2.51). If two cases possess the
same residual symmetry but differ in the choice of the row
permutation with Pl ¼ P12 and Pl ¼ P13 respectively, then
the resulting mixing matrices are effectively related through
the exchange of the second and the third rows, because the
identity

P23P12S23ðθÞ ¼ diagð−1; 1; 1ÞP13S23ðθ − π=2Þ ð2:87Þ

is satisfied. Subsequently, we can extract the lepton mixing
parameters, and the results for the mixing angles sin2 θ13,
sin2 θ12, sin2 θ23 and the CP invariants JCP, I1, and I2 are
listed in Tables II and III for all the viable cases. Here, JCP,
I1, and I2 are conventionally defined as [63,64]

JCP ¼ ℑðUPMNS;11UPMNS;33U�
PMNS;13U

�
PMNS;31Þ;

¼ 1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP; ð2:88Þ

I1 ¼ ℑðU2
PMNS;12U

�2
PMNS;11Þ

¼ sin2 θ12 cos2 θ12 cos4 θ13 sin α21; ð2:89Þ

I2 ¼ ℑðU2
PMNS;13U

�2
PMNS;11Þ

¼ sin2 θ13 cos2 θ13 cos2 θ12 sinðα31 − 2δCPÞ; ð2:90Þ

where δCP is the Dirac CP-violating phase and α21 and α31
are the MajoranaCP phases in the standard parametrization
[65]. One notices that the invariants JCP, I1, and I2 are
exactly vanishing such that all three CP phases δCP, α21,
and α31 are trivial in some cases. Furthermore, we
perform a conventional χ2 analysis that includes the three
mixing angles, and the results for the mixing parameters
and the best fit values ðθl; θνÞbf are displayed in Tables IV,
V, VI, and VII. For the residual flavor symmetry ðGl; GνÞ ¼
ðZST2SU

2 ; ZTU
2 Þ, one element of the PMNS matrix is fixed to

be 1=2. From Tables IV and V, we can see that the CP
phases are predicted to be δCP ≃ 1.569π, α21ðmod πÞ≃
0.728π and α31ðmod πÞ≃ 0.808π in the case of
ðXl; Xν; Pl; PνÞ ¼ ðT2; T; P12; P12Þ, while all three CP
phases are conserved for the remaining cases. In the same
manner, for another residual flavor symmetry ðGl; GνÞ ¼
ðZST2SU

2 ; ZS
2Þ, the fixed element is 1=

ffiffiffi
2

p
, and we find that

all that both Dirac and Majorana phases are trivial except
ðXl; Xν; Pl; PνÞ ¼ ðT2; SU; P12; P13Þ, ðT2; SU; P12; P13Þ
which give rise to δCP ≃ 0.458π, 0.542π, 1.458π or
1.542π. Moreover, the atmospheric mixing angle θ23 is
predicted to be nonmaximal in all the cases studied. The
latest results from T2K and NOνA show a weak evidence
for a nearly maximal CP-violating phase δCP ∼ 3π=2
[66,67], and hits of δCP ∼ 3π=2 also show up in the global
analysis of neutrino oscillation data [4–7]. On the other
hand, NOνA excludes maximal mixing at 2.5σ, while the
experimental data of T2K are consistent with maximal
mixing [66,67]. Hence, the above mixing patterns pre-
dicting δCP ≃ 1.569π, 1.458π, and 1.542π are slightly
favored over the remaining cases by the present exper-
imental data.
The numerical results listed in Tables IV, V, VI, and VII

can be easily seen by plotting the contour regions of the
mixing angle sin2 θij in the plane θν vs θl, as shown in

TABLE I. The residual flavor symmetries Gr ¼ ZST2SU
2 , ZTU

2 ,
ZS
2 and the corresponding residual CP transformations Xr

consistent with Gr and the Takagi factorization matrix Σ. Let
us denote the generator of Gr as gr; then, ρ3ðgrÞXr is also a
residual CP symmetry, and it is given in parentheses. For
simplicity of notation, we do not distinguish between the abstract
elements of the S4 group and their representation matrices in 3.

Gr Xr Σ

ZST2SU
2

T2ðTST2UÞ
1ffiffi
6

p

0
B@ 2 0 −

ffiffiffi
2

p
e
iπ
3

ffiffiffi
3

p
e
iπ
3 −

ffiffiffi
2

p
e
iπ
3

e−
iπ
3

ffiffiffi
3

p
e−

iπ
3

ffiffiffi
2

p
e−

iπ
3

1
CA

UðST2SÞ
1ffiffi
6

p

0
B@ 2i

ffiffiffi
2

p
i 0

−e−iπ
6

ffiffiffi
2

p
e−

iπ
6 −

ffiffiffi
3

p
e
iπ
3

e
iπ
6 −

ffiffiffi
2

p
e
iπ
6

ffiffiffi
3

p
e−

iπ
3

1
CA

ZTU
2

TðUÞ
1ffiffi
2

p

0
B@ 0 0

ffiffiffi
2

p
−e−iπ

3 e−
iπ
3 0

e
iπ
3 e

iπ
3 0

1
CA

STSðT2STUÞ
1ffiffi
6

p

0
B@ 0 2i

ffiffiffi
2

pffiffiffi
3

p
e
iπ
6 e

iπ
6 −

ffiffiffi
2

p
e−

iπ
3ffiffiffi

3
p

e−
iπ
6 −e−iπ

6 −
ffiffiffi
2

p
e
iπ
3

1
CA

ZS
2

1ðSÞ
1ffiffi
6

p

0
B@

ffiffiffi
2

p
−1 −

ffiffiffi
3

pffiffiffi
2

p
2 0ffiffiffi

2
p

−1
ffiffiffi
3

p

1
CA

SUðUÞ
1ffiffi
6

p

0
B@

ffiffiffi
2

p
i 0 −2ffiffiffi

2
p

i −
ffiffiffi
3

p
i 1ffiffiffi

2
p

i
ffiffiffi
3

p
i 1

1
CA

TST2UðT2STUÞ
1ffiffi
3

p

 
1 i 1

1 e−
iπ
6 −e−iπ

3

1 −eiπ
6 −eiπ

3

!
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TABLE II. Results of the mixing parameters for the independent and viable cases with ðGl; GνÞ ¼ ðZST2SU
2 ; ZTU

2 Þ. Note that the factors
ð−1Þk1 and ð−1Þk2 are omitted in the expressions of I1 and I2 respectively, and they arise from the CP parity matrix
Qν ¼ diagð1; ik1 ; ik2Þ. For notational simplicity, here we introduce Δ1 ¼ cos 2θlð3 − 11 cos 2θνÞ − 8

ffiffiffi
2

p
sin 2θν cos2 θl þ

12 sin 2θl sin θνð
ffiffiffi
2

p
sin θν þ 2 cos θνÞ and Δ2 ¼ cos 2θlð11 cos 2θν − 3Þ − 8

ffiffiffi
2

p
sin 2θν sin2 θl − 12 sin 2θl sin θνð

ffiffiffi
2

p
sin θν þ 2 cos θνÞ.

ðGl; GνÞ ¼ ðZST2SU
2 ; ZTU

2 Þ
ðXl; Xν; Pl; PνÞ ðU; T; P12; 1Þ ðU; STS; P12; 1Þ
sin2 θ13 ðcos θlð

ffiffi
2

p
sin θνþ2 cos θνÞ−3 sin θl sin θνÞ2

12

ð2 sin2 θl cos2 θνþsin2 θνðsin θl−
ffiffi
2

p
cos θlÞ2Þ

4

sin2 θ12 1 − 6ð2 ffiffi2p
sin 2θlþcos 2θlþ3Þ

Δ1þ7 cos 2θνþ33
1 − 2ð2 ffiffi2p

sin 2θlþcos 2θlþ3Þ
4
ffiffi
2

p
sin 2θlsin2θνþcos 2θνþcos 2θlð3 cos 2θνþ1Þþ11

sin2 θ23 4ðsin θν−2
ffiffi
2

p
cos θνÞ2

Δ1þ7 cos 2θνþ33

2ðcos 2θνþ3Þ
4
ffiffi
2

p
sin 2θlsin2θνþcos 2θνþcos 2θlð3 cos 2θνþ1Þþ11

JCP 0 sin 2θνðsin 2θl−2
ffiffi
2

p
cos 2θlÞ

32

I1 0 ðsin θl−3 sin 3θlÞ sin 2θνð
ffiffi
2

p
sin θlþ2 cos θlÞ

64

I2 0 − ðsin θl−3 sin 3θlÞ sin 2θνð
ffiffi
2

p
sin θlþ2 cos θlÞ

64

ðXl; Xν; Pl; PνÞ ðU; T; P12; P12Þ ðU; STS; P12; P12Þ
sin2 θ13 ðcos θlð

ffiffi
2

p
sin θνþ2 cos θνÞ−3 sin θl sin θνÞ2

12

ð2 sin2 θl cos2 θνþsin2 θνðsin θl−
ffiffi
2

p
cos θlÞ2Þ

4

sin2 θ12 12ðsin θlþ
ffiffi
2

p
cos θlÞ2

Δ1þ7 cos 2θνþ33

4ðsin θlþ
ffiffi
2

p
cos θlÞ2

4
ffiffi
2

p
sin 2θl sin2 θνþcos 2θνþcos 2θlð3 cos 2θνþ1Þþ11

sin2 θ23 4ðsin θν−2
ffiffi
2

p
cos θνÞ2

Δ1þ7 cos 2θνþ33

2ðcos 2θνþ3Þ
4
ffiffi
2

p
sin 2θlsin2θνþcos 2θνþcos 2θlð3 cos 2θνþ1Þþ11

JCP 0 sin 2θνð2
ffiffi
2

p
cos 2θl−sin 2θlÞ
32

I1 0 − ðsin θl−3 sin 3θlÞ sin 2θνð
ffiffi
2

p
sin θlþ2 cos θlÞ

64

I2 0 sin θl sin 2θνð
ffiffi
2

p ð3 sin θlþ7 sin 3θlÞ−14 cos θl−2 cos 3θlÞ
64

ðXl; Xν; Pl; PνÞ ðU; T; P13; 1Þ ðU; STS; P13; 1Þ
sin2 θ13 ðsin θlð

ffiffi
2

p
sin θνþ2 cos θνÞþ3 sin θν cos θlÞ2

12

ð2 cos2 θl cos2 θνþsin2 θνðcos θlþ
ffiffi
2

p
sin θlÞ2Þ

4

sin2 θ12 1þ 6ð2 ffiffi2p
sin 2θlþcos 2θl−3Þ

Δ2þ7 cos 2θνþ33
1 − 2ð2 ffiffi2p

sin 2θlþcos 2θl−3Þ
4
ffiffi
2

p
sin 2θl sin2 θν−cos 2θνþcos 2θlð3 cos 2θνþ1Þ−11

sin2 θ23 1 − 4ðsin θν−2
ffiffi
2

p
cos θνÞ2

Δ2þ7 cos 2θνþ33
1þ 2ðcos 2θνþ3Þ

4
ffiffi
2

p
sin 2θl sin2 θν−cos 2θνþcos 2θlð3 cos 2θνþ1Þ−11

JCP 0 sin 2θνðsin 2θl−2
ffiffi
2

p
cos 2θlÞ

32

I1 0 sin 2θνðcos θlþ3 cos 3θlÞð
ffiffi
2

p
cos θl−2 sin θlÞ

64

I2 0 − sin 2θνðcos θlþ3 cos 3θlÞð
ffiffi
2

p
cos θl−2 sin θlÞ

64

ðXl; Xν; Pl; PνÞ ðU; T; P13; P12Þ ðU; STS; P13; P12Þ
sin2 θ13 ðsin θlð

ffiffi
2

p
sin θνþ2 cos θνÞþ3 sin θν cos θlÞ2

12

ð2 cos2 θl cos2 θνþsin2 θνðcos θlþ
ffiffi
2

p
sin θlÞ2Þ

4

sin2 θ12 12ðcos θl−
ffiffi
2

p
sin θlÞ2

Δ2þ7 cos 2θνþ33
− 4ðcos θl−

ffiffi
2

p
sin θlÞ2

4
ffiffi
2

p
sin 2θl sin2 θν−cos 2θνþcos 2θlð3 cos 2θνþ1Þ−11

sin2 θ23 1 − 4ðsin θν−2
ffiffi
2

p
cos θνÞ2

Δ2þ7 cos 2θνþ33
1þ 2ðcos 2θνþ3Þ

4
ffiffi
2

p
sin 2θl sin2 θν−cos 2θνþcos 2θlð3 cos 2θνþ1Þ−11

JCP 0 sin 2θνð2
ffiffi
2

p
cos 2θl−sin 2θlÞ
32

I1 0 − ðcos θlþ3 cos 3θlÞ sin 2θνð
ffiffi
2

p
cos θl−2 sin θlÞ

64

I2 0 cos θl sin 2θνð
ffiffi
2

p ð3 cos θl−7 cos 3θlÞþ14 sin θl−2 sin 3θlÞ
64

ðXl; Xν; Pl; PνÞ ðT2; T; P12; P12Þ
sin2 θ13 ð9 sin2 θν cos2 θlþsin2 θlð

ffiffi
2

p
sin θνþ2 cos θνÞ2Þ

12

sin2 θ12 − 6ðcos 2θl−3Þ
−8
ffiffi
2

p
sin 2θν sin2 θlþ7 cos 2θνþcos 2θlð11 cos 2θν−3Þþ33

sin2 θ23 − 4ðsin θν−2
ffiffi
2

p
cos θνÞ2

8
ffiffi
2

p
sin 2θν sin2 θlþcos 2θlð3−11 cos 2θνÞ−7 cos 2θν−33

JCP − sin 2θlð7 sin 2θνþ4
ffiffi
2

p
cos 2θνÞ

96

I1 ðsin 4θlð12
ffiffi
2

p
−13 sin 2θνÞþ14 sin 2θl sin 2θνþ8

ffiffi
2

p ðsin 2θlþsin 4θlÞ cos 2θνÞ
192

I2 ðð14 sin 2θlþ11 sin 4θlÞ sin 2θνþ32
ffiffi
2

p
sin3 θl cos θl cos 2θνÞ

192
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TABLE III. Results of the mixing parameters for the independent and viable cases with ðGl;GνÞ ¼ ðZST2SU
2 ; ZS

2Þ.
Note that the factors ð−1Þk1 and ð−1Þk2 are omitted in the expressions of I1 and I2 respectively, and they arise from
the CP parity matrix Qν ¼ diagð1; ik1 ; ik2Þ.

ðGl;GνÞ ¼ ðZST2SU
2 ; ZS

2Þ
ðXl; Xν; Pl; PνÞ ðT2; 1; P12; P13Þ ðT2; SU; P12; P13Þ
sin2 θ13 1þcos 2θl

4
1þcos 2θl

4

sin2 θ12 1
2
−
ffiffi
2

p
sin 2θl cos ð2θνþπ

6
Þ

3−cos 2θl
1
2
þ sin 2θνð1−3 cos 2θlÞ

2ð3−cos 2θlÞ

sin2 θ23 2
3−cos 2θl

2
3−cos 2θl

JCP − sin 2θl sin ð2θνþπ
6
Þ

8
ffiffi
2

p − sin 2θl cos 2θν
8
ffiffi
2

p

I1 ð2 sin 2θl−3 sin 4θlÞ sin ð2θνþπ
6
Þ

16
ffiffi
2

p ð3 sin 4θl−2 sin 2θlÞ cos 2θν
16
ffiffi
2

p

I2 cos2 θlð2
ffiffi
2

p
sin 2θl−cosð2θνþπ

6
Þðcos 2θl−3ÞÞ

16
− sin θl cos3 θl cos 2θν

2
ffiffi
2

p

ðXl; Xν; Pl; PνÞ ðT2; TST2U;P12; P13Þ ðU; 1; P12; P13Þ
sin2 θ13 1þcos 2θl

4
1−cos 2θl

4

sin2 θ12 ð ffiffi2p
sin θν cos θl−2 sin θl cos θνÞ2

3−cos 2θl
1
2
−
ffiffi
2

p
sin 2θl sin ð2θνþπ

6
Þ

3þcos 2θl

sin2 θ23 2
3−cos 2θl

2
3þcos 2θl

JCP 0 sin 2θl cos ð2θνþπ
6
Þ

8
ffiffi
2

p

I1 0 − ð2 sin 2θlþ3 sin 4θlÞ cos ð2θνþπ
6
Þ

16
ffiffi
2

p

I2 0 − sin2 θlð3 cos 2θlþ1Þ cos ð2θνþπ
6
Þ

16

ðXl; Xν; Pl; PνÞ ðT2; 1; P13; P13Þ ðT2; SU; P13; P13Þ
sin2 θ13 1−cos 2θl

4
1−cos 2θl

4

sin2 θ12 1
2
þ

ffiffi
2

p
sin 2θl cos ð2θνþπ

6
Þ

3þcos 2θl

1
2
þ sin 2θνð1þ3 cos 2θlÞ

2ð3þcos 2θlÞ

sin2 θ23 1 − 2
3þcos 2θl

1 − 2
3þcos 2θl

JCP − sin 2θl sin ð2θνþπ
6
Þ

8
ffiffi
2

p − sin 2θl cos 2θν
8
ffiffi
2

p

I1 − ð2 sin 2θlþ3 sin 4θlÞ sin ð2θνþπ
6
Þ

16
ffiffi
2

p ð3 sin 4θlþ2 sin 2θlÞ cos 2θν
16
ffiffi
2

p

I2 sin2 θlððcos 2θlþ3Þ cos ð2θνþπ
6
Þ−2 ffiffi2p

sin 2θlÞ
16

cos θl sin3 θl cos 2θν
2
ffiffi
2

p

ðXl; Xν; Pl; PνÞ ðT2; TST2U;P13; P13Þ ðU; 1; P13; P13Þ
sin2 θ13 1−cos 2θl

4
1þcos 2θl

4

sin2 θ12 ð ffiffi2p
sin θl sin θνþ2 cos θl cos θνÞ2

3þcos 2θl
1
2
þ

ffiffi
2

p
sin 2θl sin ð2θνþπ

6
Þ

3−cos 2θl

sin2 θ23 1 − 2
3þcos 2θl

1 − 2
3−cos 2θl

JCP 0 sin 2θl cos ð2θνþπ
6
Þ

8
ffiffi
2

p

I1 0 ð2 sin 2θl−3 sin 4θlÞ cos ð2θνþπ
6
Þ

16
ffiffi
2

p

I2 0 cos2 θlð3 cos 2θl−1Þ cos ð2θνþπ
6
Þ

16

ðXl; Xν; Pl; PνÞ ðT2; TST2U;P13; P12Þ
sin2 θ13 ð ffiffi2p

sin θl cos θν−2 sin θν cos θlÞ2
4

sin2 θ12 4 sin2 θl
2
ffiffi
2

p
sin 2θl sin 2θνþcos 2θνþcos 2θlð3 cos 2θν−1Þþ5

sin2 θ23 1 − 4 cos2 θν
2
ffiffi
2

p
sin 2θl sin 2θνþcos 2θνþcos 2θlð3 cos 2θν−1Þþ5

JCP 0
I1 0
I2 0
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Figs. 1, 2, and 3. The most stringent constraint arises from
the reactor neutrino mixing angle θ13, which has been
measured quite precisely [4–7]. One sees that the three
lepton mixing angles θ12, θ13, and θ23 can be simulta-
neously compatible with the experimental data at 3σ level
only in a rather narrow region of the θl − θν plane. Hence,
the mixing angles and CP phases should be able to only
vary a bit around the numerical values found in Tables IV,

V, VI, and VII, and consequently the present approach is
very predictive. As an example, in Fig. 4, we display the
predictions for the CP phases δCP, α21, and α31 in the plane
θν vs θl for the residual symmetry ðGl;Gν;Xl;XνÞ¼
ðZST2SU

2 ;ZS
2;T

2;SUÞ with ðPl;PνÞ¼ðP12;P13Þ, ðP13;P13Þ,
where the small black areas represent the regions in
which the experimental data on lepton mixing can be
accommodated.

TABLE IV. The results of the χ2 analysis for the independent and viable cases with ðGl; GνÞ ¼ ðZST2SU
2 ; ZTU

2 Þ under the assumption of
NH neutrino mass spectrum. χ2min is the global minimum of χ2 at the best fitting values ðθl; θνÞbf for θl and θν. We give the values of the
mixing angles sin2 θ13, sin2 θ12, and sin2 θ23 and the CP-violating phases δCP, α21, and α31 for ðθl; θνÞ ¼ ðθl; θνÞbf.
ðXl; Xν; Pl; PνÞ χ2min ðθl; θνÞbf=π sin2 θ13 sin2 θ12 sin2 θ23 δCP=π α21=π (mod 1) α31=π (mod 1)

ðU; T; P12; 1Þ 0.6354
(0.299, 0.120)

0.022 0.311 0.437 0 0 0
(0.093, 0.664)

ðU; T; P13; 1Þ 4.6454
(0.803, 0.114)

0.022 0.317 0.551 1 0 0
(0.589, 0.669)

ðU; T; P12; P12Þ 3.3522
(0.477, 0.072)

0.022 0.308 0.546 0 0 0
(0.915, 0.711)

ðU; T; P13; P12Þ 0.0010
(0.979, 0.071)

0.022 0.304 0.451 1 0 0
(0.413, 0.713)

ðU; STS; P12; 1Þ 17.3268
(0.071, 0)

0.024 0.344 0.512 0 0 0
(0.071, 1)

ðU; STS; P13; 1Þ 16.4425
(0.571, 0)

0.024 0.344 0.488 1 0 0
(0.571, 1)

ðU; STS; P12; P12Þ 17.3286
(0.929, 0)

0.024 0.344 0.512 0 0 0
(0.929, 1)

ðU; STS; P13; P12Þ 16.4425
(0.429, 0)

0.024 0.344 0.488 1 0 0
(0.429, 1)

ðT2; T; P12; P12Þ 25.7405
(0.075, 0.024)

0.024 0.270 0.644 1.569 0.728 0.808
(0.925, 0.024)

TABLE V. The results of the χ2 analysis for the independent and viable cases with ðGl; GνÞ ¼ ðZST2SU
2 ; ZTU

2 Þ under the assumption of
the IH neutrino mass spectrum. χ2min is the global minimum of χ2 at the best fitting values ðθl; θνÞbf for θl and θν. We give the values of
the mixing angles sin2 θ13, sin2 θ12, and sin2 θ23 and the CP-violating phases δCP, α21, and α31 for ðθl; θνÞ ¼ ðθl; θνÞbf.
ðXl; Xν; Pl; PνÞ χ2min ðθl; θνÞbf=π sin2 θ13 sin2 θ12 sin2 θ23 δCP=π α21=π (mod 1) α31=π (mod 1)

ðU; T; P12; 1Þ 11.7471
(0.311, 0.140)

0.023 0.328 0.474 0 0 0
(0.081, 0.680)

ðU; T; P13; 1Þ 0.0011
(0.794, 0.126)

0.022 0.304 0.580 1 0 0
(0.597, 0.657)

ðU; T; P12; P12Þ 0.6316
(0.480, 0.070)

0.022 0.302 0.550 0 0 0
(0.912, 0.714)

ðU; T; P13; P12Þ 11.0992
(0.974, 0.075)

0.022 0.315 0.460 1 0 0
(0.417, 0.709)

ðU; STS; P12; 1Þ 17.6652
(0.071, 0)

0.024 0.344 0.512 0 0 0
(0.071, 1)

ðU; STS; P13; 1Þ 20.5458
(0.571, 0)

0.024 0.344 0.488 1 0 0
(0.571, 1)

ðU; STS; P12; P12Þ 17.6652
(0.929, 0)

0.024 0.344 0.512 0 0 0
(0.929, 1)

ðU; STS; P13; P12Þ 20.5458
(0.429, 0)

0.024 0.344 0.488 1 0 0
(0.429, 1)

ðT2; T; P12; P12Þ 17.8338
(0.075, 0.024)

0.024 0.270 0.644 1.569 0.728 0.808
(0.925, 0.024)
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Carefully examining all the numerical results, we see that
the predictions for the reactor mixing angel θ13 are almost
the same while the values of θ12, θ23, and δCP are
considerably different in distinct cases. The current oscil-
lation experiments T2K and NOνA are able to exclude
certain ranges of θ23 and δCP around the maximal values, if
running in both the neutrino and the antineutrino modes is
completed. The forthcoming reactor neutrino oscillation
experiments such as JUNO [68] and RENO [69] expect to
make a very precise measurement of the solar mixing angle
θ12, and the error of sin2 θ12 can be reduced to about 0.3%
[68]. The planned long baseline experiments such as
DUNE [70] and Hyper-K [71,72] could significantly
improve the precision on θ23 and δCP. Hence, future
neutrino facilities have the potential to discriminate among
the above possible cases, or rule them out completely.
The neutrinoless double ð0νββÞ decay is a lepton

number-violating process. It is an important probe of the
Majorana nature of neutrinos, and it can provide us with
precious information on the neutrino mass scale and
ordering. Searching for 0νββ decay has a long history.
There are many new sensitive 0νββ experiments which are
in various stages of planning and construction. The 0νββ
decay rate is proportional to the effective Majorana mass

jmeej which is expressed in terms of neutrino masses and
lepton mixing parameters as [65]

jmeej ¼ jm1U2
PMNS;11 þm2U2

PMNS;12 þm3U2
PMNS;13j

¼ jm1cos2θ12cos2θ13 þm2sin2θ12cos2θ13eiα21

þm3sin2θ13eiðα31−2δCPÞj; ð2:91Þ

where m1;2;3 are light neutrino masses. For each admissible
case, the allowed regions of the effective Majorana mass
jmeej as a function of the lightest neutrino mass are shown
in Figs. 5, 6, and 7. Both parameters θ1 and θ2 freely vary
between 0 and π, and the three lepton mixing angles are
required to lie in their current 3σ ranges [6]. Notice that
jmeej does not depend on θ23. Hence, if two cases have the
same residual symmetry but differ in the permutation
matrices with Pl ¼ P12 and Pl ¼ P13 respectively, the
same predictions for jmeej would be obtained. For the
case of the IH neutrino mass spectrum, the effective
Majorana mass is almost independent of the value of k2.
The reason is because the term in jmeej proportional to m3

is suppressed by both sin2 θ13 and the small value of m3

itself. Moreover, we see that jmeej is predicted to be around
the upper boundary 0.048 eV, lower boundary 0.015 eV, or

TABLE VI. The results of the χ2 analysis for the independent and viable cases with ðGl;GνÞ ¼ ðZST2SU
2 ; ZS

2Þ under the assumption of
the NH neutrino mass spectrum. χ2min is the global minimum of χ2 at the best fitting values ðθl; θνÞbf for θl and θν. We give the values of
the mixing angles sin2 θ13, sin2 θ12, and sin2 θ23 and the CP-violating phases δCP, α21, and α31 for ðθl; θνÞ ¼ ðθl; θνÞbf.
ðXl; Xν; Pl; PνÞ χ2min ðθl; θνÞbf=π sin2 θ13 sin2 θ12 sin2 θ23 δCP=π α21=π (mod 1) α31=π (mod 1)

ðT2; 1; P12; P13Þ 17.3286
(0.571, 0.417)

0.024 0.344 0.512 0 0 0.5
(0.429, 0.917)

ðT2; 1; P13; P13Þ 16.4425
(0.071, 0.417)

0.024 0.344 0.488 1 0 0.5
(0.929, 0.917)

ðT2; SU; P12; P13Þ 1.2935

(0.433, 0.567)

0.022 0.304 0.511
0.542 0.208 0.146

(0.567, 0.933)
(0.567, 0.567)

1.458 0.792 0.854
(0.433, 0.933)

ðT2; SU; P13; P13Þ 0.5023

(0.933, 0.567)

0.022 0.304 0.489
1.542 0.208 0.146

(0.067, 0.933)
(0.067, 0.567)

0.458 0.792 0.854
(0.933, 0.933)

ðT2; TST2U;P12; P13Þ 1.2935

(0.433, 0.266)

0.022 0.304 0.511
0 0 0

(0.567, 0.734)
(0.433, 0.638)

1 0 0
(0.567, 0.362)

ðT2; TST2U;P13; P13Þ 0.5023

(0.933, 0.266)

0.022 0.304 0.489
1 0 0

(0.067, 0.734)
(0.933, 0.638)

0 0 0
(0.067, 0.362)

ðU; 1; P12; P13Þ 17.3286
(0.071, 0.167)

0.024 0.344 0.512 0 0 0
(0.929, 0.667)

ðU; 1; P13; P13Þ 16.4425
(0.571, 0.167)

0.024 0.344 0.488 1 0 0
(0.429, 0.667)

ðT2; TST2U;P13; P12Þ 10.0552
(0.276, 0.165)

0.022 0.297 0.614 0 0 0
(0.724, 0.835)
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close to 0.028 eV for IH. Although these predictions are
beyond the reach of the facilities in running, the next
generation elaborate 0νββ decay experiments are capable
of covering the full IH region, such that the present
predictions could be tested in near future. For the case of
the NH mass spectrum, cancellation between different terms
in jmeej could occur for certain values of the lightest neutrino
mass, and consequently the effective mass can be smaller
than 10−4 eV. However, the range of mlightest in which jmeej
can be quite small is significantly reduced with respect to the
generic case. We can even find a nontrivial lower bound on
jmeej in some cases; see e.g. Fig. 5 for the remnant symmetry
ðGl;Gν;Xl;XνÞ¼ðZST2SU

2 ;ZTU
2 ;T2;TÞ with Pl ¼ Pν ¼ P12.

III. QUARK FLAVOR MIXING FROM
RESIDUAL SYMMETRY Z2 × CP IN UP AND

DOWN QUARK SECTORS

The Lagrangian for the quark masses and the charged
current interactions reads as

L ¼ −ŪRmUUL − D̄RmDDL þ gffiffiffi
2

p ŪLγ
μDLWþ

μ þ H:c:;

ð3:1Þ

where UR ¼ ðuR; cR; tRÞT , UL ¼ ðuL; cL; tLÞT , DR ¼
ðdR; sR; bRÞT , and DL ¼ ðdL; sL; bLÞT denote the three
left-handed and right-handed up type quark and down
type quark fields respectively. It is well known that the
mass matricesmU andmD can be diagonalized by biunitary
transformations,

V†
umUUu ¼ diagðmu;mc;mtÞ≡ m̂U;

V†
dmDUd ¼ diagðmd;ms;mbÞ≡ m̂D: ð3:2Þ

The CKM matrix is given by

UCKM ¼ U†
uUd: ð3:3Þ

In this section, we assume that the parent flavor and CP
symmetry is broken down to Zgu

2 × Xu and Zgd
2 × Xd in the

up and down quark sectors respectively, where gu and gd
denote the generators of the Z2 residual flavor symmetry
groups with g2u ¼ g2d ¼ 1. Similarly to the lepton sector,
we assign the three generations of left-handed quarks to a
three-dimensional representation 3. The mass matrices
mU and mD respect the residual symmetries Zgu

2 × Xu

and Zgd
2 × Xd respectively, and they should fulfill

TABLE VII. The results of the χ2 analysis for the independent and viable cases with ðGl;GνÞ ¼ ðZST2SU
2 ; ZS

2Þ under the assumption of
the IH neutrino mass spectrum. χ2min is the global minimum of χ2 at the best fitting values ðθl; θνÞbf for θl and θν. We give the values of
the mixing angles sin2 θ13, sin2 θ12, and sin2 θ23 and the CP-violating phases δCP, α21, and α31 for ðθl; θνÞ ¼ ðθl; θνÞbf.
ðXl; Xν; Pl; PνÞ χ2min ðθl; θνÞbf=π sin2 θ13 sin2 θ12 sin2 θ23 δCP=π α21=π (mod 1) α31=π (mod 1)

ðT2; 1; P12; P13Þ 17.6652
(0.571, 0.417)

0.024 0.344 0.512 0 0 0.5
(0.429, 0.917)

ðT2; 1; P13; P13Þ 20.5458
(0.071, 0.417)

0.024 0.344 0.488 1 0 0.5
(0.929, 0.917)

ðT2; SU; P12; P13Þ 3.3575

(0.433, 0.567)

0.022 0.304 0.511
0.542 0.209 0.147

(0.567, 0.933)
(0.567, 0.567)

1.458 0.791 0.853
(0.433, 0.933)

ðT2; SU; P13; P13Þ 5.9412

(0.933, 0.567)

0.022 0.304 0.489
1.542 0.208 0.146

(0.067, 0.933)
(0.067, 0.567)

0.458 0.792 0.854
(0.933, 0.933)

ðT2; TST2U;P12; P13Þ 3.3575

(0.433, 0.266)

0.022 0.304 0.511
0 0 0

(0.567, 0.734)
(0.433, 0.638)

1 0 0
(0.567, 0.362)

ðT2; TST2U;P13; P13Þ 5.9412

(0.933, 0.266)

0.022 0.304 0.489
1 0 0

(0.067, 0.734)
(0.933, 0.638)

0 0 0
(0.067, 0.362)

ðU; 1; P12; P13Þ 17.6652
(0.071, 0.167)

0.024 0.344 0.512 0 0 0
(0.929, 0.667)

ðU; 1; P13; P13Þ 20.5458
(0.571, 0.167)

0.024 0.344 0.488 1 0 0
(0.429, 0.667)

ðT2; TST2U;P13; P12Þ 2.2779
(0.276, 0.165)

0.022 0.297 0.614 0 0 0
(0.724, 0.835)
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ρ†3ðguÞm†
UmUρ3ðguÞ¼m†

UmU; X†
um

†
UmUXu¼ðm†

UmUÞ�;
ρ†3ðgdÞm†

DmDρ3ðgdÞ¼m†
DmD; X†

dm
†
DmDXd¼ðm†

DmDÞ�:
ð3:4Þ

Following the procedures presented in Sec. II A, the
constraints on the unitary transformations Uu and Ud from
the postulated residual symmetries can be straightforwardly
extracted. A critical step is the Takagi factorization of the
residual CP transformations Xu and Xd which have the
following properties:

Xu ¼ ΣuΣT
u ; Σ†

uρ3ðguÞΣu ¼ diagð1;−1;−1Þ; ð3:5Þ

Xd ¼ ΣdΣT
d ; Σ†

dρ3ðgdÞΣd ¼ diagð1;−1;−1Þ: ð3:6Þ

Then following the same procedure of deriving Eq. (2.51),
we can obtain the CKM mixing matrix is of the form

FIG. 1. The contour plots of sin2 θij in the plane θν vs θl. The
red, blue, and green areas denote the 3σ regions of sin2 θ13,
sin2 θ23, and sin2 θ12 respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin2 θ23 depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The residual flavor symmetry is ðGl; GνÞ ¼ ðZST2SU

2 ; ZTU
2 Þ in

this case. The first row corresponds to ðXl; Xν; Pl; PνÞ ¼
ðU; T; P12; 1Þ on the left panel and ðXl; Xν; Pl; PνÞ ¼
ðU; T; P12; P12Þ on the right panel, and the last row is for
ðXl; Xν; Pl; PνÞ ¼ ðU; STS; P12; 1Þ, ðU; STS; P12; P12Þ. The
foreground and background differ in the values of Pl which
are equal to P12 and P13 respectively.

FIG. 2. The contour plots of sin2 θij in the plane θν vs θl. The
red, blue, and green areas denote the 3σ regions of sin2 θ13,
sin2 θ23, and sin2 θ12 respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin2 θ23 depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The left and right panels correspond to ðGl; Gν; Xl; Xν; Pl; PνÞ ¼
ðZST2SU

2 ; ZTU
2 ; T2; T; P12; P12Þ and ðZST2SU

2 ; ZS
2 ; T

2; TST2U;P13;
P12Þ respectively.

FIG. 3. The contour plots of sin2 θij in the plane θν vs θl. The
red, blue, and green areas denote the 3σ regions of sin2 θ13,
sin2 θ23, and sin2 θ12 respectively. The dashed (or solid) lines
indicate the best fit values of the mixing angles. Notice that the
best fit value of sin2 θ23 depends on the neutrino mass ordering,
and the solid and dashed lines are for NH and IH respectively.
The residual flavor symmetry is ðGl; GνÞ ¼ ðZST2SU

2 ; ZS
2Þ in

this case. The first row corresponds to ðXl; Xν; Pl; PνÞ ¼
ðT2; 1; P12; P13Þ on the left panel and ðXl; Xν; Pl; PνÞ ¼
ðT2; SU; P12; P13Þ on the right panel, and the last row is for
ðXl; Xν; Pl; PνÞ ¼ ðT2; TST2U;P13; P13Þ, ðU; 1; P12; P13Þ. The
foreground and background differ in the values of Pl which
are equal to P12 and P13 respectively.
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UCKM ¼ QuPuS23ðθuÞΣ†
uΣdS23ðθdÞPdQd; ð3:7Þ

where Qu and Qd are generic diagonal matrices of phases,
they can be removed by utilizing the rephasing freedom of
the up and down quarks, and Pu and Pd are permutation
matrices. Similarly to the master formula of the lepton
flavor mixing in Eq. (2.51), the CKM mixing matrix is
determined up to possible permutations of rows and
columns, and it depends on two free parameters θu and
θd which can take values between 0 and π.
In the same fashion as Sec. II B, we can find the

condition under which the CKM matrices predicted by
two distinct residual symmetries are equivalent. We generi-
cally denote the combination Uq ≡ Σ†

uΣd for any two
postulated residual symmetries as

Uq ¼

0
B@

a1 a2 a3
a4 a5 a6
a7 a8 a9

1
CA;

U0
q ¼

0
B@

b1 b2 b3
b4 b5 b6
b7 b8 b9

1
CA; ð3:8Þ

where a1 and b1 are fixed by remnant symmetries up to an
overall phase. The corresponding CKM mixing matrices
cannot be effectively the same one if ja1j ≠ jb1j. In the
following, we shall focus on the case of a1 ¼ b1 ¼ 0. The
results for the most general case ja1j ¼ jb1j ≠ 0, 1 are
summarized in Appendix B. After some straightforward
algebra, the conditions of equivalence can be described as
follows:

(i) b22 þ b23 ≠ 0, b24 þ b27 ≠ 0:
The assumed remnant symmetries would lead to

the same quark mixing pattern if the following
equalities are satisfied,

ja22 þ a23j ¼ jb22 þ b23j;
ða2b2 þ a3b3Þða�2b�3 − a�3b

�
2Þ ∈ R;

ja24 þ a27j ¼ jb24 þ b27j;
ða4b4 þ a7b7Þða�4b�7 − a�7b

�
4Þ ∈ R;

tiTj − tjTi ¼ 0;

jtij ¼ jTij;
i; j ¼ 5; 6; 8; 9; ð3:9Þ

where

t5 ¼ ðxb5 þ yb6Þzþ ðxb8 þ yb9Þw;
t6 ¼ ðxb6 − yb5Þzþ ðxb9 − yb8Þw;
t8 ¼ ðxb8 þ yb9Þz − ðxb5 þ yb6Þw;
t9 ¼ ðxb9 − yb8Þz − ðxb6 − yb5Þw; ð3:10Þ

and

T5 ¼ ðb22 þ b23Þðb24 þ b27Þa5;
T6 ¼ ðb22 þ b23Þðb24 þ b27Þa6;
T8 ¼ ðb22 þ b23Þðb24 þ b27Þa8;
T9 ¼ ðb22 þ b23Þðb24 þ b27Þa9; ð3:11Þ

with

x ¼ a2b2 þ a3b3; y ¼ a2b3 − a3b2;

z ¼ a4b4 þ a7b7; w ¼ a4b7 − a7b4: ð3:12Þ

FIG. 4. The contour plots of the CP-violation phases δCP, α21,
and α31 in the plane θν vs θl. The black areas denote the regions in
which the lepton mixing angles are compatible with experimental
data at 3σ level. The residual symmetry is ðGl;Gν; Xl; XνÞ ¼
ðZST2SU

2 ; ZS
2 ; T

2; SUÞ. The figures on the right-hand and lefthand
sides correspond to the row and column permutations ðPl; PνÞ ¼
ðP12; P13Þ and ðPl; PνÞ ¼ ðP13; P13Þ respectively.
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IH: k1,k2 0,0 , 0,1

IH: k1,k2 1,0 , 1,1

NH: k1,k2 0,0

NH: k1,k2 0,1

NH: k1,k2 1,0

NH: k1,k2 1,1

FIG. 5. The predictions for the possible values of the effective Majorana mass jmeej as a function of the lightest neutrino mass. The red
(blue) dashed lines indicate the most general allowed regions for the IH (NH) neutrino mass spectrum obtained by varying the mixing
parameters over the 3σ ranges [6]. The residual flavor symmetry is ðGl; GνÞ ¼ ðZST2SU

2 ; ZTU
2 Þ in this case. The first row corresponds to

ðXl; Xν; Pl; PνÞ ¼ ðU; T; P12; 1Þ on the left and ðXl; Xν; Pl; PνÞ ¼ ðU; T; P12; P12Þ on the right, the middle row is for
ðXl; Xν; Pl; PνÞ ¼ ðU; STS; P12; 1Þ, ðU; STS; P12; P12Þ, and the last row is for ðXl; Xν; Pl; PνÞ ¼ ðT2; T; P12; P12Þ. The present most
stringent upper limits jmeej < 0.120 eV from EXO-200 [73,74] and KamLAND-ZEN [75] are shown by a horizontal gray band. The
vertical gray exclusion band is the current limit on the lightest neutrino masses from the cosmological data

P
mi < 0.230 eV at

95% confidence level obtained by the Planck Collaboration [76].
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NH: k1,k2 0,0

NH: k1,k2 0,1

NH: k1,k2 1,0

NH: k1,k2 1,1

FIG. 6. The predictions for the effective Majorana mass jmeej, where we use the same conventions as in Fig. 5. The residual flavor
symmetry is ðGl; GνÞ ¼ ðZST2SU

2 ; ZS
2Þ in this case. The top left panel corresponds to ðXl; Xν; Pl; PνÞ ¼ ðT2; TST2U;P12; P13Þ, the top

right panel is for ðXl; Xν; Pl; PνÞ ¼ ðT2; TST2U;P13; P12Þ, and the last one is for ðXl; Xν; Pl; PνÞ ¼ ðT2; SU; P12; P13Þ.
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IH: k1,k2 0,0 , 0,1 IH: k1,k2 1,0 , 1,1 NH: k1,k2 0,0 , 0,1 NH: k1,k2 1,0 , 1,1

FIG. 7. The predictions for the effective Majorana mass jmeej, where we use the same conventions as in Fig. 5. The residual flavor
symmetry is ðGl; GνÞ ¼ ðZST2SU

2 ; ZS
2Þ in this case. The panels on the right-hand and left-hand sides correspond to ðXl; Xν; Pl; PνÞ ¼

ðT2; 1; P12; P13Þ and ðXl; Xν; Pl; PνÞ ¼ ðU; 1; P12; P13Þ respectively. Notice that jmeej is invariant under the transformations
θl → π − θl, θν → θν þ π=2 and k2 → k2 þ 1, and hence the effective mass is independent of k2 in this case.
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(ii) b22 þ b23 ¼ 0, b24 þ b27 ≠ 0:
The necessary and sufficient conditions for

the equivalence of these two CKM matrices are
found to be

ja24þa27j¼ jb24þb27j;
ða4b4þa7b7Þða�4b�7−a�7b

�
4Þ∈R;

a2b2þa3b3¼0;

t5T8− t8T5¼0;

jt5j¼ jT5j;
jt8j¼ jT8j; ð3:13Þ

with

t5 ¼ ðzb5 þ wb8Þa�2; t8 ¼ ðzb8 − wb5Þa�2;
T5 ¼ ðb24 þ b27Þb�2a5; T8 ¼ ðb24 þ b27Þb�2a8:

ð3:14Þ

(iii) b22 þ b23 ≠ 0, b24 þ b27 ¼ 0:
In this case, the equivalence condition is given by

ja22 þ a23j ¼ jb22 þ b23j;
ða2b2 þ a3b3Þða�2b�3 − a�3b

�
2Þ ∈ R;

a4b4 þ a7b7 ¼ 0;

t5T6 − t6T5 ¼ 0;

jt5j ¼ jT5j;
jt6j ¼ jT6j; ð3:15Þ

where

t5 ¼ ðxb5 þ yb6Þa�4; t6 ¼ ðxb6 − yb5Þa�4;
T5 ¼ ðb22 þ b23Þb�4a5; T6 ¼ ðb22 þ b23Þb�4a6:

ð3:16Þ

(iv) b22 þ b23 ¼ 0; b24 þ b27 ¼ 0:
After the freedom to redefine the free parameters

θu and θd is taken into account, the same quark
mixing pattern would be obtained if the parameters
ai and bi are subject to the following constraints:

a2b2 þ a3b3 ¼ 0; a4b4 þ a7b7 ¼ 0: ð3:17Þ

Notice that if the conditions of any of the above four
cases are satisfied under the substitutions

a1 → a1; a2 → a2; a3 → s2a2;

a4 → a4; a5 → a5; a6 → s2a6;

a7 → s1a7; a8 → s1a8; a9 → s1s2a9;

ð3:18Þ

with s1;2 ¼ �1, the assumed remnant symmetries
would give rise to the same quark mixing.

So far, the CKM mixing matrix has been measured quite
accurately. The present global fit result for the magnitude of
each CKM matrix element is [77]

jUCKMj ¼

0
B@

0.97431� 0.00015 0.22512� 0.00067 0.00365� 0.00012

0.22497� 0.00067 0.97344� 0.00015 0.04255� 0.00069

0.00869� 0.00014 0.04156� 0.00056 0.999097� 0.000024

1
CA: ð3:19Þ

The full fit values of three quark mixing angles read as [77]

sinθq12¼0.22497�0.00069; sinθq23¼0.04229�0.00057;

sinθq13¼0.00368�0.00010: ð3:20Þ

Now, let us concentrate on the S4 flavor symmetry group as
an illustrative example. Considering all the possible residual
subgroups Z2 × CP arising from the original S4 and CP
symmetry, we find the fixed element can be 0, 1=2, 1=

ffiffiffi
2

p
, or

1. According to experimental data shown in Eq. (3.19), a
vanishing (13) or (31) element of the CKM matrix is a good
leading order approximation, since the (13) and (31) entries
are very small and this tiny discrepancy could be easily
resolved in an explicit model with small corrections. All

three quark mixing angles except θq13 can be accommodated
very well for the representative remnant symmetries Gu ¼
ZST2SU
2 × T2 andGd ¼ ZT2U

2 × T2 in the up and down quark
sectors respectively. The corresponding Takagi factorization
matrices Σu and Σd are determined to be

Σu ¼
1ffiffiffi
6

p

0
B@

2 0 −
ffiffiffi
2

p

eiπ=3 −
ffiffiffi
3

p
eiπ=3

ffiffiffi
2

p
eiπ=3

e−iπ=3
ffiffiffi
3

p
e−iπ=3

ffiffiffi
2

p
e−iπ=3

1
CA;

Σd ¼
1ffiffiffi
2

p

0
B@

0 0
ffiffiffi
2

p

−eiπ=3 eiπ=3 0

e−iπ=3 e−iπ=3 0

1
CA: ð3:21Þ
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For the permutation matrices Pu ¼ 1 and Pd ¼ P13, we find UCKMð1; 3Þ ¼ 0, and the CKM matrix takes the form

UCKM ¼ 1ffiffiffi
3

p

0
B@

ffiffiffi
2

p
cos θd þ sin θd cos θd −

ffiffiffi
2

p
sin θd 0

ð ffiffiffi
2

p
sin θd − cos θdÞ sin θu ð ffiffiffi

2
p

cos θd þ sin θdÞ sin θu
ffiffiffi
3

p
cos θu

ð ffiffiffi
2

p
sin θd − cos θdÞ cos θu ð ffiffiffi

2
p

cos θd þ sin θdÞ cos θu −
ffiffiffi
3

p
sin θu

1
CA; ð3:22Þ

from which we can extract the quark mixing angles as

sin2θq13 ¼ 0; sin2θq12 ¼
1

3
ðcos θd −

ffiffiffi
2

p
sin θdÞ2; sin2θq23 ¼ cos2θu: ð3:23Þ

The best fitting values of θq12 and θq23 in Eq. (3.20) can be obtained for

ðθu; θdÞ ¼ ð0.513π; 0.124πÞ; ð0.513π; 0.268πÞ; ð0.487π; 0.124πÞ; ð0.487π; 0.268πÞ: ð3:24Þ

We expect that the small mixing angle θq13 as well as the CP-violation phase can be generated by higher order contributions in
a concrete model. For the values Pu ¼ P13 and Pd ¼ 1, we have UCKMð3; 1Þ ¼ 0. The CKM mixing matrix is given by

UCKM ¼ 1ffiffiffi
3

p

0
B@

−
ffiffiffi
3

p
sin θu ð ffiffiffi

2
p

cos θd þ sin θdÞ cos θu ð ffiffiffi
2

p
sin θd − cos θdÞ cos θuffiffiffi

3
p

cos θu ð ffiffiffi
2

p
cos θd þ sin θdÞ sin θu ð ffiffiffi

2
p

sin θd − cos θdÞ sin θu
0 cos θd −

ffiffiffi
2

p
sin θd

ffiffiffi
2

p
cos θd þ sin θd

1
CA: ð3:25Þ

The mixing angles read

sin2θq13¼
1

3
cos2θuðcosθd−

ffiffiffi
2

p
sinθdÞ2;

sin2θq12¼
4cos2θuðsinθdþ

ffiffiffi
2

p
cosθdÞ2

9−3cos2θuþ2cos2θuð2
ffiffiffi
2

p
sin2θdþcos2θdÞ

;

sin2θq23¼
4sin2θuðcosθd−

ffiffiffi
2

p
sinθdÞ2

9−3cos2θuþ2cos2θuð2
ffiffiffi
2

p
sin2θdþcos2θdÞ

:

ð3:26Þ

In this case, the central values of θq12 and θq23 can be
obtained for

ðθu; θdÞ ¼ ð0.428π; 0.182πÞ; ð0.428π; 0.210πÞ;
ð0.572π; 0.182πÞ; ð0.572π; 0.210πÞ: ð3:27Þ

We display the contour plot of sin θq13, sin θ
q
12, and sin θ

q
23 in

the plane θd vs θu in Fig. 8. If the best fit values of θq12 and
θq23 are reproduced, we see that sin θq13 would be approx-
imately three times as large as its measured value. However,
accordance with the experimental data could be easily
achieved in a concrete model after subleading corrections
are taken into account.

IV. LEPTON FLAVOR MIXING FROM SINGLE
RESIDUAL CP TRANSFORMATION IN THE

NEUTRINO SECTOR

In this section, we shall instead consider the scenario in
which the residual symmetry of the charged lepton sector is
an Abelian subgroup and the neutrino mass matrix mν is

FIG. 8. The contour plot of sin θq13, sin θ
q
12, and sin θq23 in the

θd − θu plane. The blue and red lines denote the central values of
sin θq12 and sin θq23 respectively. The different shading areas from
dark green to light green represent three interesting regions of sin θq13
such as 0.5ðsinθq13Þbf → ðsinθq13Þbf , ðsinθq13Þbf →2ðsinθq13Þbf , and
2ðsin θq13Þbf → 3ðsin θq13Þbf , where we use ðsin θq13Þbf ¼ 0.00368.
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invariant under a single residual CP transformation Xν. In
order to avoid partially degenerate neutrino masses, Xν

should be a symmetric unitary matrix with Xν ¼ XT
ν and

XνX�
ν ¼ 1 [24,27–29]. As a result,mν is invariant under the

action of Xν,

XT
νmνXν ¼ m�

ν: ð4:1Þ

Without reconstructing the neutrino mass matrix, from
this equation, we can derive that the unitary transformation
Uν, which is the a diagonalization matrix of mν with
UT

νmνUν ¼ diagðm1; m2; m3Þ, is subject to the following
constraint [27,29],

U†
νXνU�

ν ¼ diagð�1;�1;�1Þ≡Q2
ν; ð4:2Þ

where Qν is a diagonal matrix with nonvanishing entries
�1 and �i to make the light neutrino masses positive
definite, and it can be parametrized as Eq. (2.31).
Performing Takagi factorization Xν ¼ ΣνΣT

ν where Σν is
unitary, we obtain

ðΣT
νU�

νQνÞTðΣT
νU�

νQνÞ ¼ 1: ð4:3Þ

Therefore, ΣT
νU�

νQν is a real orthogonal matrix

ΣT
νU�

νQν ¼ O3×3; ð4:4Þ

where O3×3 can be parametrized as

O3×3 ¼

0
B@

1 0 0

0 cos θ1 sin θ1
0 − sin θ1 cos θ1

1
CA
0
B@

cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

1
CA

×

0
B@

cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

1
CA;

where the fundamental interval of the real parameters θ1;2;3
is ½0; πÞ. Thus, the neutrino mixing matrix is determined to
be of the form [25,26]

Uν ¼ ΣνO3×3Qν: ð4:5Þ

The flavor symmetry is assumed to be broken to an Abelian
subgroup Gl in the charged lepton sector, and the generator
of Gl is denoted as gl.

1 The charged lepton mass matrix ml
would fulfill

ρ†3ðglÞm†
l mlρ3ðglÞ ¼ m†

l ml: ð4:6Þ

Thus, we find that the unitary transformation Ul which
diagonalizes m†

l ml is constrained to satisfy

U†
l ρ3ðglÞUl ¼ ρdiag3 ðglÞ; ð4:7Þ

where ρdiag3 ðglÞ is a diagonal phase matrix. That is to say,
the charged lepton mixing matrix Ul can be obtained by
diagonalizing the representation matrix of the generator gl
without resorting to the mass matrix. Here, we assume that
the residual symmetry Gl can distinguish among the
three charged leptons, and consequently Ul is uniquely
determined up to permutations and phases of its column
vectors. As a result, the PMNSmixing matrix is found to be
of the form

UPMNS ¼ QlPlU
†
lΣνO3×3Qν; ð4:8Þ

where Pl is an arbitrary three-dimensional permutation
matrix, Ql is a diagonal unitary matrix which can be
absorbed into the charged lepton fields. If two pairs of
residual subgroups fGl; Xνg and fG0

l; X
0
νg are related by a

similarity transformation Ω,

ρ3ðg0lÞ ¼ Ωρ3ðglÞΩ†; X0
ν ¼ ΩXνΩT; ð4:9Þ

both pairs would lead to the same result for UPMNS. The
reason is because the Takagi factorization of X0

ν is ΩΣν and
ρ3ðg0lÞ is diagonalized by ΩUl.

A. Condition for the equivalence of two mixing patterns

Let us assume two different residual symmetries
fGl; Xνg and fG0

l; X
0
νg; accordingly, the PMNS matrices

are predicted to be

UPMNS ¼ QlPlU
†
lΣνO3×3Qν; ð4:10Þ

U0
PMNS ¼ Q0

lP
0
lU

0
l
†Σ0

νO3×3
0Q0

ν: ð4:11Þ

For any given value of the real orthogonal matrix O3×3, if
one can always find a corresponding orthogonal matrix
O0

3×3 as well as Q0
l, P

0
l, and Q0

ν, such that the equality

UPMNS ¼ U0
PMNS ð4:12Þ

is fulfilled, then these two mixing patterns would be
essentially the same. From Eq. (4.12), we can obtain the
condition

UO3×3 ¼ QLPLU0O0
3×3QN; ð4:13Þ

with

1Here, we assume Gl is generated by a single generator, and
the generalization to the case in whichGl has several generators is
straightforward.
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U ≡U†
lΣν; U0 ≡U0

l
†Σ0

ν; PL ≡ PT
l P

0
l;

QL ≡ PT
l Q

†
l Q

0
lPl; QN ≡Q0

νQ
†
ν: ð4:14Þ

Both sides of Eq. (4.13) multiply with their transpose, and
we have

UUT ¼ QLPLU0O0
3×3Q

2
NO

0T
3×3U

0TPT
LQL: ð4:15Þ

Notice thatQN is a diagonal matrix with entries�1 and�i,
and Eq. (4.15) is satisfied for a generic orthogonal matrix
O0

3×3. This requires Q
2
N ¼ �diagð1; 1; 1Þ, and Q2

N can be
set to be an identity matrix by choosing suitable values of
Qν and Q0

ν. Thus, the condition for the equivalence of the
two mixing patterns in this scenario simplifies into

UUT ¼ QLPLU0U0TPT
LQL: ð4:16Þ

Inversely, if we can find a permutation matrix PL and a
phase matrix QL such that Eq. (4.16) is fulfilled, the
postulated residual symmetries would lead to the same
lepton mixing pattern.

B. Examples in S4 and CP

In this section, we shall analyze the lepton mixing
patterns which arise from the breaking of the flavor group
S4 and CP symmetry to an Abelian subgroup Gl in the
charged lepton sector and to a residual CP Xν in the
neutrino sector. We shall consider all possibilities for Gl,
i.e., Gl ¼ Z3; Z4; K4, and all possible residual CP trans-
formation Xν which should be a unitary symmetric matrix,

Xν ¼ f1; S; T; T2; STS; ST2S;U; SU; TST2U; T2STUg;
ð4:17Þ

where we do not distinguish between the abstract elements
of the S4 group and their representation matrices in 3 for
simplicity of notation. In fact, it is not necessary to study
the mixing patterns comprehensively for all possible
combinations of Gl and Xν. By applying the general
equivalence criterion in Eq. (4.16), we find there are only
five independent cases with ðGl; XνÞ ¼ ðZT

3 ; 1Þ, ðZT
3 ; SÞ,

ðZT
3 ; UÞ, ðZT

3 ; SUÞ, and ðKðS;UÞ
4 ; TÞ. In the following, we

take into account all possible row permutations of the
mixing matrix in each case, and the predictions for lepton
mixing angles and CP-violation phases as well as neu-
trinoless double decay will be investigated:

(i) Gl ¼ ZT
3 ; Xν ¼ 1:

In this case, the unitary matrices Ul and Σν are
given by

Ul¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA; Σν¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA: ð4:18Þ

Moreover, we find that the six row permutations of
the mixing matrix lead to the same mixing pattern.
Consequently, we shall choose Pl ¼ 1 without loss
of generality, and thus the PMNS matrix is of
the form

UPMNS ¼ PlU
†
lΣO3×3Qν

¼

0
B@

cos θ2 cos θ3 cos θ2 sin θ3 sin θ2
− cos θ3 sin θ1 sin θ2 − cos θ1 sin θ3 cos θ1 cos θ3 − sin θ1 sin θ2 sin θ3 cos θ2 sin θ1
− cos θ1 cos θ3 sin θ2 þ sin θ1 sin θ3 − cos θ3 sin θ1 − cos θ1 sin θ2 sin θ3 cos θ1 cos θ2

1
CAQν;

where the unphysical phase matrix Ql on the far left is
omitted. The mixing angles andCP-violation phases can be
read off as

sin2θ13 ¼ sin2θ2; sin2θ12 ¼ sin2θ3; sin2θ23 ¼ sin2θ1;

sinδCP ¼ sinα21 ¼ sinα31 ¼ 0: ð4:19Þ

We see that all three CP phases are predicted to be trivial,
and the measured values of the lepton mixing angles can be
reproduced for certain values of the parameters θ1;2;3.
(ii) Gl ¼ ZT

3 ; Xν ¼ S:
This case differs from the previous one in the

value of the residual CP transformation Xν, and we
have

Ul ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA;

Σν ¼
1ffiffiffi
6

p

0
B@

0 2i
ffiffiffi
2

p
ffiffiffi
3

p
i −i

ffiffiffi
2

p

−
ffiffiffi
3

p
i −i

ffiffiffi
2

p

1
CA: ð4:20Þ

The six row permutations of the PMNS matrix are
related through shifts in the free parameters θ1;2;3.
We take Pl ¼ 1, and then the lepton mixing angles
can be extracted as follows
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sin2θ13 ¼
1

6
ð3 − cos 2θ1Þcos2θ2;

sin2θ12 ¼ sin2θ3 þ
2ðcos 2θ1 þ 3Þ cos 2θ3 − 2 sin 2θ1 sin θ2 sin 2θ3

cos 2θ1 þ ðcos 2θ1 − 3Þ cos 2θ2 þ 9
;

sin2θ23 ¼
1

2
−

2
ffiffiffi
3

p
sin θ1 sin 2θ2

cos 2θ1 þ ðcos 2θ1 − 3Þ cos 2θ2 þ 9

and the CP-odd weak basis invariants are given by

JCP ¼ 1

96
ffiffiffi
6

p ½−20 sin θ1 sin 2θ3 cos θ2cos2θ1 þ 4ðcos 3θ1 − 5 cos θ1Þ sin 2θ2 cos 2θ3 þ ðsin 3θ1 − 15 sin θ1Þ sin 2θ3 cos 3θ2�;

I1 ¼
ð−1Þk1
36

ffiffiffi
2

p ½8 sin 2θ1sin2θ2 cos 2θ3 þ ðð7 cos 2θ1 þ 3Þ sin θ2 − ðcos 2θ1 − 3Þ sin 3θ2Þ sin 2θ3�;

I2 ¼
ð−1Þk2

9
½
ffiffiffi
2

p
ððcos 2θ1 − 3Þ sin θ2 cos θ3 − sin 2θ1 sin θ3Þ sin θ3cos2θ2�: ð4:21Þ

We perform a numerical analysis by treating the free
parameters θ1;2;3 as random numbers in the range of
½0; π�. The three mixing angles θ12, θ13, and θ23 as well
as CP-violating phases δCP, α21, and α31 are calculated for
each random point, and only points which agree with the
global fit data at 3σ level with global fit data are retained.
We plot the correlations among the mixing angles and CP
phases in Fig. 9. We see that any value of the Dirac CP
phase δCP in the interval ½0; 2π� can be achieved. However,
the Majorana phases are strongly constrained, and their
values lie in the ranges α21ðmod πÞ ∈ ½0; 0.13π�∪½0.87π; π�
and α31ðmod πÞ∈ ½0; 0.25π�∪½0.75π; π�.
(iii) Gl ¼ ZT

3 ; Xν ¼ U:
This case is exactly the μ − τ reflection symmetry

in the charged lepton diagonal basis. One can
straightforwardly read out Ul and Σν as follows:

Ul¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA; Σν¼

1ffiffiffi
2

p

0
B@
0

ffiffiffi
2

p
i 0

i 0 −1
i 0 1

1
CA: ð4:22Þ

Out of the six possible row permutations, only Pl ¼
1 and Pl ¼ P23 lead to a pattern compatible with
data. The PMNS matrices arising form Pl ¼ 1 or
Pl ¼ P23 are equivalent. The others give rise to
either tan θ13 ¼ sin θ23 or tan θ13 ¼ cos θ23 such that
the experimental data of θ13 and θ23 cannot be
accommodated simultaneously. For the case of
Pl ¼ 1, the lepton mixing angles and the CP-
violation phases are found to be of the form

sin2θ13 ¼ sin2θ1cos2θ2; sin2θ23 ¼
1

2
;

sin2θ12 ¼ sin2θ3 þ
4ðcos θ1 cos 2θ3 − sin θ1 sin θ2 sin 2θ3Þ cos θ1

cos 2θ1 − 2sin2θ1 cos 2θ2 þ 3
;

j sin δCPj ¼ 1; sin α21 ¼ sin α31 ¼ 0: ð4:23Þ

Hence, both the atmospheric mixing angle θ23 and the
Dirac phase δCP are predicted to be maximal, while the
solar as well as reactor mixing angles are not constrained.
There is evidence showing that the Dirac CP-violating
phase δCP is close to −π=2 (or 3π=2) [66,67]. If these data
are further confirmed in the near future, this mixing pattern
would be an excellent leading order approximation.
(iv) Gl ¼ ZT

3 ; Xν ¼ SU:
We can read out Ul and Σν as

Ul ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA;

Σν ¼
1ffiffiffiffiffi
30

p

0
B@

ffiffiffi
6

p
i 2i −2

ffiffiffi
5

p

0 5i
ffiffiffi
5

p

2
ffiffiffi
6

p
i −i

ffiffiffi
5

p

1
CA: ð4:24Þ
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FIG. 9. Correlations between different mixing parameters in the case of ðGl; XνÞ ¼ ðZT
3 ; SÞ, where the three lepton mixing angles are

required to be compatible with the experimental data at 3σ level [6].
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For the six possible permutations of rows, only the mixing patterns with Pl ¼ 1 and Pl ¼ P23 can accommodate the
experimental data of the mixing angles for certain values of the parameters θ1;2;3. The PMNS matrices arising from
Pl ¼ 1 and Pl ¼ P23 are essentially the same if the redefinition of θ1;2;3 and relabeling of k1;2 are taken into account.
Using the actual form of the PMNS matrix given in Eq. (4.8), we find

sin2θ13 ¼
1

15
½ð
ffiffiffi
3

p
sin θ2 þ

ffiffiffi
2

p
sin θ1 cos θ2Þ2 þ 10cos2θ1cos2θ2�;

sin2θ12 ¼ sin2θ3 þ
4ð2 cos 2θ1 − 3Þ cos 2θ3 − 2ð4 sin 2θ1 sin θ2 þ

ffiffiffi
6

p
cos θ1 cos θ2Þ sin 2θ3

2
ffiffiffi
6

p
sin θ1 sin 2θ2 þ 8 cos 2θ1cos2θ2 þ 3 cos 2θ2 − 21

;

sin2θ23 ¼
5ð2 cos 2θ1 − 3Þcos2θ2

2
ffiffiffi
6

p
sin θ1 sin 2θ2 þ 8 cos 2θ1cos2θ2 þ 3 cos 2θ2 − 21

ð4:25Þ

and

JCP ¼ 1

144
ffiffiffi
5

p ½ð
ffiffiffi
6

p
sin 3θ1ðcos 3θ2 − 5 cos θ2Þ − 2

ffiffiffi
6

p
sin θ1ðcos θ2 þ 3 cos 3θ2Þ

þ 36 sin θ2 cos2 θ2Þ sin 2θ3 þ 4
ffiffiffi
6

p
ðcos 3θ1 − 2 cos θ1Þ sin 2θ2 cos 2θ3�;

I1 ¼
ð−1Þk1
90

ffiffiffi
5

p ½½
ffiffiffi
6

p
ððcos 3θ2 − 5 cos θ2Þ sin 3θ1 þ 10 sin θ1 cos3 θ2Þ

þ ð25 sin θ2 − 7 sin 3θ2Þ cos 2θ1� sin 2θ3 þ ðð10 − 22 cos 2θ2Þ sin 2θ1 þ 4
ffiffiffi
6

p
sin 2θ2 cos 3θ1Þ cos 2θ3�;

I2 ¼
ð−1Þk2
90

ffiffiffi
5

p ½ð5
ffiffiffi
6

p
sin θ1 sin θ2 sin 2θ2 −

ffiffiffi
6

p
sin 3θ1ðcos 3θ2 − 5 cos θ2Þ

− ð5 sin θ2 − 7 sin 3θ2Þ cos 2θ1Þ sin 2θ3 − 10 sin 2θ1 cos2 θ2 þ ð17 cos 2θ2 þ 5Þ sin 2θ1 cos 2θ3
−

ffiffiffi
6

p
ðð8 cos 2θ1 þ 1Þ cos 2θ3 þ 5Þ sin 2θ2 cos θ1�:

The numerical results for the correlations among different mixing parameters are shown in Fig. 10. We notice that
both Majorana phases α21 and α31 are determined to be around 0 and π, the solar mixing angle θ12 near its 3σ upper
limit θ12 ∼ 35° is preferred, and atmospheric mixing angle θ23 and Dirac phase δCP are correlated. The forthcoming
reactor and long baseline neutrino experiments, which are expected to make precise measurement of θ12, θ23, and
δCP, have the potential to exclude this mixing pattern.

(v) Gl ¼ KðS;UÞ
4 ; Xν ¼ T:

The unitary transformations Ul and Σν are fixed to be

Ul ¼
1ffiffiffi
6

p

0
B@

2
ffiffiffi
2

p
0

−1
ffiffiffi
2

p ffiffiffi
3

p

−1
ffiffiffi
2

p
−
ffiffiffi
3

p

1
CA; Σν ¼

0
B@

1 0 0

0 e−i
π
3 0

0 0 ei
π
3

1
CA: ð4:26Þ

The agreement with experimental data on lepton mixing angles can only be achieved for Pl ¼ 1, Pl ¼ P13, Pl ¼ P23,
and Pl ¼ P23P13. The two permutations Pl ¼ 1 and Pl ¼ P23 lead to equivalent PMNSmixing matrices as Pl ¼ P13

and Pl ¼ P23P13 respectively. In the case of Pl ¼ P23P13, we can read out the mixing angles and CP invariants as
follows:
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FIG. 10. Correlations between different mixing parameters in the case of ðGl; XνÞ ¼ ðZT
3 ; SUÞ, where the three lepton mixing angles

are required to be compatible with the experimental data at 3σ level [6].
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FIG. 11. Correlations between different mixing parameters in the case of ðGl; XνÞ ¼ ðKðS;UÞ
4 ; TÞ, where the three lepton mixing angles

are required to be compatible with the experimental data at 3σ level [6].
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IH: k1,k2 0,0 , 0,1

IH: k1,k2 1,0 , 1,1

NH: k1,k2 0,0

NH: k1,k2 0,1

NH: k1,k2 1,0

NH: k1,k2 1,1

FIG. 12. The allowed regions of the effective Majorana mass jmeej with respect to the lightest neutrino mass. The red (blue) dashed
lines indicate the most general allowed regions for the IH (NH) neutrino mass spectrum obtained by varying the mixing parameters over
their 3σ ranges [6]. The top row corresponds to the residual symmetry ðGl; XνÞ ¼ ðZT

3 ; 1Þ on the left and ðGl; XνÞ ¼ ðZT
3 ; SÞ on the right,

the middle row is for ðGl; XνÞ ¼ ðZT
3 ; UÞ and ðGl; XνÞ ¼ ðZT

3 ; SUÞ, and the bottom row is for ðGl; XνÞ ¼ ðKðS;UÞ
4 ; TÞ. The present most

stringent upper limits jmeej < 0.120 eV from EXO-200 [73,74] and KamLAND-ZEN [75] are shown by the horizontal gray band. The
vertical gray exclusion band is the current limit on the lightest neutrino masses from the cosmological data

P
mi < 0.230 eV at

95% confidence level obtained by the Planck Collaboration [76].
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sin2θ13 ¼
1

4
ðsin 2θ1 þ 2Þcos2θ2;

sin2θ12 ¼ sin2θ3 þ
ðsin 2θ1 − 2Þ cos 2θ3 þ sin θ2 sin 2θ3 cos 2θ1

cos 2θ2 þ sin 2θ1cos2θ2 − 3
;

sin2θ23 ¼
2ð ffiffiffi

2
p

sinðθ1 þ π
4
Þ sin 2θ2 − sin2θ2Þ

3ðcos 2θ2 þ sin 2θ1cos2θ2 − 3Þ þ 1

3
;

JCP ¼ 1

128
ffiffiffi
3

p
�
4 sin θ2 sin 2θ3 þ 4 sin 3θ2 sin 2θ3 − 8

ffiffiffi
2

p
ðsin 2θ1 þ 2Þ sin 2θ2 cos

�
θ1 þ

π

4

�
cos 2θ3

− 2
ffiffiffi
2

p
ðsin 2θ1 þ 4Þ sin

�
θ1 þ

π

4

�
sin 2θ3 cos 3θ2

−
ffiffiffi
2

p �
3 sin

�
θ1 þ

π

4

�
þ 5 cos

�
3θ1 þ

π

4

��
sin 2θ3 cos θ2

�
;

I1 ¼
ð−1Þk1
32

ffiffiffi
3

p
½½ð4cos2θ2 þ sin 2θ1ðcos 2θ2 − 3ÞÞ sin 2θ3 þ 4 sin θ2 cos 2θ1 cos 2θ3� sin θ2�;

I2 ¼
ð−1Þk2þ1

8

ffiffiffi
3

p
½ððsin 2θ1 þ 2Þ sin θ2 cos θ3 þ sin θ3 cos 2θ1Þ sin θ3cos2θ2�: ð4:27Þ

For another independent permutation Pl ¼ P13, the atmos-
pheric angle changes from θ23 to π=2 − θ23, the Dirac phase
turns out to be π þ δCP, and the expressions of the other
mixing parameters are not changed. The numerical results
for Pl ¼ P13 and Pl ¼ P23P13 are plotted in Fig. 11. There
are no preferred values of δCP within the viable parameter
space. The atmospheric mixing angle θ23 is nonmaximal,
and it lies in the interval ½38.3°; 40.5°�∪½49.5°; 51.7°�.
Moreover, we explore the phenomenological predictions

for neutrinoless double beta (0νββ) decay in each case. The
effective mass jmeej as a function of the lightest neutrino
mass is plotted in Fig. 12. We find that jmeej is around
0.015, 0.024, or 0.048 eV for the IH spectrum, while jmeej
depends on the neutrino masses, and it is strongly sup-
pressed to be smaller than 10−4 eV for certain values of the
lightest neutrino mass in the case of NH.

V. SUMMARY AND CONCLUSIONS

In recent years, discrete flavor symmetry in combination
with CP symmetry has been pursued to describe the
experimental data on lepton mixing in particularly to
predict the CP-violating phases. Generally, it is assumed
that the original flavor and CP symmetry is broken down to
an Abelian subgroup and Z2 × CP in the charged lepton
and neutrino sectors respectively. In this work, we have
considered other possible choices for the residual sym-
metry. In the first scenario, the residual subgroups pre-
served by the neutrino and charged lepton mass matrices
are of the structure Z2 × CP. The lepton mixing matrix is
found to depend on two free parameters θl and θν, which
vary between 0 and π, and generally one element is fixed
to be a certain constant by the residual symmetry. The
procedure to extract the PMNS mixing matrix is presented.

Moreover, we derive the criterion to determine whether two
distinct remnant subgroups lead to the same mixing pattern
if the freedom of redefining θl and θν is taken into account.
In order to show concrete examples and find new interest-
ing mixing patterns, we have performed a comprehensive
analysis for the popular S4 flavor symmetry group. All
possible residual groups Z2 × CP have been considered,
and we find 18 phenomenologically viable cases which can
accommodate the experimentally measured values of the
mixing angles for particular values of θl and θν, as shown in
Tables II–VII. This scheme is quite predictive since the
allowed regions of θl and θν are strongly constrained in
order to accommodate the experimentally measured values
of the mixing angles. In light of the recent experimental
results of δCP ∼ 3π=2 from T2K and NOνA [66,67], the
cases with ðGl; Gν; Xl; Xν; Pl; PνÞ ¼ ðZST2SU

2 ; ZTU
2 ; T2;

T; P12; P12Þ, ðZST2SU
2 ; ZS

2; T
2; SU; P12; P13Þ, ðZST2SU

2 ; ZS
2;

T2; SU; P12; P13Þ are preferred because they predict the
Dirac phase could be 1.569π, 1.458π, and 1.542π respec-
tively. In all 18 cases, the effective Majorana masses jmeej
are determined to be around 0.015, 0.028, or 0.048 eV for
IH, which are within the sensitivity of the near future 0νββ
decay experiments.
Discrete flavor symmetry has also been employed to

explain the quark flavor mixing described by the well-
known CKM matrix as well. A extensive scan of finite
groups showed that only the Cabbibo mixing in the quark
sector can be reproduced at leading order without resorting
to special model-dependent corrections [23,78], regardless
of whether the three left-handed quark fields are assigned to
an irreducible triplet or doublet plus singlet. In the approach
with flavor and CP symmetry, if the remnant symmetries
preserved by the down and up quark mass matrices are
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chosen to be an Abelian subgroup and Z2 × CP, the correct
size of the quark mixing angles and CP phase still cannot
be obtained. In this work, we propose the scheme with the
residual symmetry Z2 × CP in both the up and down quark
sectors. The expressions for the CKM matrix and the
equivalence condition are derived. From the S4 flavor group
along with a CP symmetry, we find an interesting leading
order quark mixing pattern in which the experimentally
preferred values of the quark mixing angles θq12 and θq23
can be accommodated, while θq13 is a bit large. It could be
brought into agreement with the experimental data in a
concrete model with small subleading corrections. We
comment that large flavor groups can accommodate well
the precisely measured CKM mixing matrix without
corrections in this approach [79].
Furthermore, we consider another type of residual

symmetry. The postulated flavor and CP symmetry is
broken to an Abelian subgroup contained in the flavor
group in the charged lepton sector and to a single remnant
CP transformation in the neutrino sector. The lepton
mixing angles and CP-violation phases are determined
in terms of three free parameters θ1;2;3 in the interval ½0; πÞ.
In general, this scenario is less predictive than the previous
one; each mixing parameter can vary in a relatively wide
range. For an example, we find that the flavor group S4
combined with CP symmetry gives rise to five independent
mixing patterns which can describe the experimental data
on lepton mixing angles. The correlation between different
mixing parameters and the predictions for the neutrinoless
double beta decay are studied. Given the above rich results
from the S4 group, we expect that many other new mixing
patterns compatible with experimental data could be
obtained in our proposal for other choices of the flavor
symmetry group such as A5 and Δð6n2Þ.
In summary, among all the above phenomenologically

viable cases discussed, the cases with ðGl; Gν; Xl; Xν;
Pl; PνÞ ¼ ðZST2SU

2 ; ZTU
2 ; T2; T; P12; P12Þ, ðZST2SU

2 ; ZS
2; T

2;
SU; P12; P13Þ, ðZST2SU

2 ; ZS
2; T

2; SU; P12; P13Þ which predict
δCP ≃ 1.569π, 1.458π, and 1.542π respectively are most
attractive. Their predictions for θ12, θ23, α21, and α31 are
distinct, as shown in Tables IV–VI, and VII. The meas-
urement of a possible CP-violation phase in the lepton
sector is very challenging and significant. The current
experiments T2K and NOνA expect to be able to test the
maximality of θ23 and δCP if running in both the neutrino
and the antineutrino modes. The upcoming long baseline
neutrino oscillation experiments can significantly improve
the sensitivity to δCP, θ12, and θ23, and therefore we could
exclude these mixing patterns or find strong evidence for
their relevance with future facilities.
In the present work, we propose alternative schemes to

understand the puzzle of quark and lepton flavor mixings
from flavor and CP symmetry. The implications of our
proposal for the flavor mixing are completely determined
by the assumed residual symmetries and are independent of

the underlying theory; they are just a consequence of group
theory. It is interesting to construct explicit models to
dynamically achieve the breaking patterns of flavor and CP
symmetry. The required size of θl and θν (or θ1;2;3) as well
as the charged lepton mass hierarchy should be obtained in
such models.
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APPENDIX A: GROUP THEORY OF S4

S4 is the permutation group of four distinct objects,
and geometrically it is the symmetry group of a regular
octahedron. S4 can be defined by three generators S, T, and
U, which satisfy [39,42,43]

S2 ¼ T3 ¼ U2 ¼ ðSTÞ3 ¼ ðSUÞ2 ¼ ðTUÞ2 ¼ ðSTUÞ4 ¼ 1:

ðA1Þ

The 24 elements of the group belong to five conjugacy
classes,

1C1 ¼ f1g;
3C2 ¼ fS; TST2; T2STg
6C0

2 ¼ fU; TU; SU; T2U; STSU; ST2SUg
8C3 ¼ fT; ST; TS; STS; T2; ST2; T2S; ST2Sg
6C4 ¼ fSTU; TSU; T2SU; ST2U; TST2U; T2STUg;

ðA2Þ

where kCn designates a conjugacy class of k elements of
which the order is n. The group structure of S4 has been
studied in detail in Ref. [80]. The residual flavor symmetry
group can only be in the Abelian group in order to avoid the
degenerate mass spectrum. The Abelian subgroups of S4
are given as follows:

(i) Z2 subgroups:

ZST2SU
2 ¼ f1; ST2SUg; ZTU

2 ¼ f1; TUg;
ZSTSU
2 ¼ f1; STSUg; ZT2U

2 ¼ f1; T2Ug;
ZU
2 ¼ f1; Ug; ZSU

2 ¼ f1; SUg;
ZS
2 ¼ f1; Sg; ZT2ST

2 ¼ f1; T2STg;
ZTST2

2 ¼ f1; TST2g; ðA3Þ

where the superscripts denote the generators of the
subgroups. The first six Z2 subgroups are related to
each other by group conjugation, and the last three
subgroups are conjugate to each other as well.
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(ii) Z3 subgroups:

ZST
3 ¼ f1; ST; T2Sg; ZT

3 ¼ f1; T; T2g;
ZSTS
3 ¼ f1; STS; ST2Sg; ZTS

3 ¼ f1; TS; ST2g:
ðA4Þ

All the above Z3 subgroups are conjugate among
each other.

(iii) Z4 subgroups:

ZTST2U
4 ¼ f1; TST2U; S; T2STUg;
ZST2U
4 ¼ f1; ST2U; TST2; T2SUg;
ZTSU
4 ¼ f1; TSU; T2ST; STUg; ðA5Þ

which are related with each other under group
conjugation.

(iv) K4 subgroups:

KðS;TST2Þ
4 ≡ ZS

2 × ZTST2

2 ¼ f1; S; TST2; T2STg;
KðS;UÞ

4 ≡ ZS
2 × ZU

2 ¼ f1; S; U; SUg;
KðTST2;T2UÞ

4 ≡ ZTST2

2 × ZT2U
2

≡ f1; TST2; T2U; ST2SUg;
KðT2ST;TUÞ

4 ≡ ZT2ST
2 × ZTU

2

¼ f1; T2ST; TU; STSUg; ðA6Þ

where KðS;TST2Þ
4 is a normal subgroup of S4 and the

remaining three K4 subgroups are conjugate to
each other.

The group S4 has five irreducible representations: two
singlets 1 and 10, one doublet 2, and two triplets 3 and 30.
The representation matrices for the generators S, T, and U
in each of the irreducible representations are summarized in
Table VIII. Notice that the representations 3 and 30 differ
in the overall sign of the generatorU. As has been shown in
previous work [39,42], the generalized CP transformation
compatible with the S4 flavor symmetry is of the same form
as the flavor group transformation in our working basis.

APPENDIX B: EQUIVALENCE CONDITIONS
FOR TWO CKM MATRICES WITH

ja1j= jb1j ≠ 0, 1

Following the methods in Secs. II B and III, we can find
out the criterion to determine whether two distinct residual
symmetries of the structure Z2 × CP in both the up and
down type quark sectors lead to the same CKM matrix for
the general case with ja1j ¼ jb1j ≠ 0, 1, if possible shifts of
the free parameters θu and θd are considered. The expres-
sion for the combination Uq ≡ Σ†

uΣd is written as Eq. (3.8).
One can always set a1 and b1 to be real and positive by
redefining the quark fields. We shall report the results in the
following:

(i) b22 þ b23 ≠ 0, b24 þ b27 ≠ 0:
In this case, the conditions under which essen-

tially the same quark mixing is obtained are given by

ja22 þ a23j ¼ jb22 þ b23j;
ða2b2 þ a3b3Þða�2b�3 − a�3b

�
2Þ ∈ R;

ja24 þ a27j ¼ jb24 þ b27j;
ða4b4 þ a7b7Þða�4b�7 − a�7b

�
4Þ ∈ R;

a5 ¼
ðxb5 þ yb6Þzþ ðxb8 þ yb9Þw

ðb22 þ b23Þðb24 þ b27Þ
;

a6 ¼
ðxb6 − yb5Þzþ ðxb9 − yb8Þw

ðb22 þ b23Þðb24 þ b27Þ
;

a8 ¼
ðxb8 þ yb9Þz − ðxb5 þ yb6Þw

ðb22 þ a23Þðb24 þ b27Þ
;

a9 ¼
ðxb9 − yb8Þz − ðxb6 − yb5Þw

ðb22 þ b23Þðb24 þ b27Þ
; ðB1Þ

with

x≡ a2b2 þ a3b3; y≡ a2b3 − a3b2;

z≡ a4b4 þ a7b7; w≡ a4b7 − a7b4: ðB2Þ

(ii) b22 þ b23 ¼ 0, b24 þ b27 ≠ 0:
The equivalent conditions are found to be

a2b2 þ a3b3 ¼ 0;

ja24 þ a27j ¼ jb24 þ b27j;
ða4b4 þ a7b7Þða�4b�7 − a�7b

�
4Þ ∈ R;

tiTj − tjTi ¼ 0;

ti=Ti ∈ R;

with i; j ¼ 5; 6; 8; 9; ðB3Þ

where

TABLE VIII. The representation matrices of the generators S,
T, and U in different irreducible representations of S4, where
ω ¼ e2πi=3.

S T U

1, 10 1 1 �1
2 �

1 0

0 1

� �ω 0

0 ω2

� �
0 1

1 0

�
3, 30

1
3

 −1 2 2

2 −1 2

2 2 −1

!  
1 0 0

0 ω2 0

0 0 ω

!
∓
 
1 0 0

0 0 1

0 1 0

!
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t5 ¼ va5b2 − ðzb5 þ wb8Þa2; t6 ¼ −va6b2 þ ðzb6 þ wb9Þa2;
t8 ¼ va8b2 − ðzb8 − wb5Þa2; t9 ¼ −va9b2 þ ðzb9 − wb6Þa2;
T5 ¼ −iva5b2 − iðzb6 þ wb9Þa3; T6 ¼ iva6b2 − iðzb5 þ wb8Þa3;
T8 ¼ −iva8b2 − iðzb9 − wb6Þa3; T9 ¼ iva9b2 − iðzb8 − wb5Þa3; ðB4Þ

with

v≡ b24 þ b27: ðB5Þ

(iii) b22 þ b23 ≠ 0, b24 þ b27 ¼ 0:
The resulting CKM matrices would be related through redefinition of the parameters θu and θd if the following

constraints are fulfilled,

a4b4 þ a7b7 ¼ 0; ja22 þ a23j ¼ jb22 þ b23j; ða2b2 þ a3b3Þða�2b�3 − a�3b
�
2Þ ∈ R;

t0iT
0
j − t0jT

0
i ¼ 0; t0i=T

0
i ∈ R; with i; j ¼ 5; 6; 8; 9; ðB6Þ

where

t05 ¼ ua5b4 − ðxb5 þ yb6Þa4; t06 ¼ ua6b4 − ðxb6 − yb5Þa4;
t08 ¼ −ua8b4 þ ðxb8 þ yb9Þa4; t09 ¼ −ua9b4 þ ðxb9 − yb8Þa4;
T 0
5 ¼ −iua5b4 − iðxb8 þ yb9Þa7; T 0

6 ¼ −iua6b4 − iðxb9 − yb8Þa7;
T 0
8 ¼ iua8b4 − iðxb5 þ yb6Þa7; T 0

9 ¼ iua9b4 − iðxb6 − yb5Þa7; ðB7Þ

with

u≡ b22 þ b23: ðB8Þ

(iv) b22 þ b23 ¼ 0, b24 þ b27 ¼ 0:
The postulated residual symmetries would give rise to the same quark mixing pattern if the following conditions

are satisfied:

a2b2 þ a3b3 ¼ 0; a4b4 þ a7b7 ¼ 0; a22a4ðb2b5 − b3b6Þ ¼ b22b4ða2a5 − a3a6Þ: ðB9Þ

Note that the above results are valid up to the transformations in Eq. (3.18).

[1] T. Kajita, Rev. Mod. Phys. 88, 030501 (2016).
[2] A. B. McDonald, Rev. Mod. Phys. 88, 030502 (2016).
[3] Special Issue on Neutrino oscillations: Celebrating the

Nobel Prize in Physics 2015, edited by T. Ohlsson, Nucl.
Phys. B908, 1 (2016).

[4] F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino,
and A. Palazzo, Phys. Rev. D 89, 093018 (2014).

[5] D. V. Forero, M. Tortola, and J. W. F. Valle, Phys. Rev. D 90,
093006 (2014).

[6] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, J.
High Energy Phys. 11 (2014) 052.

[7] F. Capozzi, E. Lisi, A. Marrone, D. Montanino, and A.
Palazzo, Nucl. Phys. B908, 218 (2016).

[8] K. Abe et al. (T2K Collaboration), Phys. Rev. D 91, 072010
(2015).

[9] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701
(2010).

[10] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada,
and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).

[11] S. F. King and C. Luhn, Rep. Prog. Phys. 76, 056201
(2013).

[12] S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M.
Tanimoto, New J. Phys. 16, 045018 (2014).

[13] S. F. King, J. Phys. G 42, 123001 (2015).
[14] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107,

041801 (2011).

JUN-NAN LU and GUI-JUN DING PHYSICAL REVIEW D 95, 015012 (2017)

015012-32

http://dx.doi.org/10.1103/RevModPhys.88.030501
http://dx.doi.org/10.1103/RevModPhys.88.030502
http://dx.doi.org/10.1016/j.nuclphysb.2016.04.024
http://dx.doi.org/10.1016/j.nuclphysb.2016.04.024
http://dx.doi.org/10.1103/PhysRevD.89.093018
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://dx.doi.org/10.1007/JHEP11(2014)052
http://dx.doi.org/10.1007/JHEP11(2014)052
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.016
http://dx.doi.org/10.1103/PhysRevD.91.072010
http://dx.doi.org/10.1103/PhysRevD.91.072010
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://dx.doi.org/10.1143/PTPS.183.1
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://dx.doi.org/10.1088/1367-2630/16/4/045018
http://dx.doi.org/10.1088/0954-3899/42/12/123001
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.107.041801


[15] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett.
107, 181802 (2011).

[16] Y. Abe et al. (Double Chooz Collaboration), Phys. Rev.
Lett. 108, 131801 (2012); Phys. Rev. D 86, 052008 (2012).

[17] F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett.
108, 171803 (2012); Chin. Phys. C 37, 011001 (2013).

[18] J. K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108,
191802 (2012).

[19] M. Holthausen, K. S. Lim, and M. Lindner, Phys. Lett. B
721, 61 (2013).

[20] S. F. King, T. Neder, and A. J. Stuart, Phys. Lett. B 726, 312
(2013).

[21] R. M. Fonseca and W. Grimus, J. High Energy Phys. 09
(2014) 033.

[22] J. Talbert, J. High Energy Phys. 12 (2014) 058.
[23] C. Y. Yao and G. J. Ding, Phys. Rev. D 92, 096010 (2015).
[24] F. Feruglio, C. Hagedorn, and R. Ziegler, J. High Energy

Phys. 07 (2013) 027.
[25] P. Chen, G. J. Ding, F. Gonzalez-Canales, and J. W. F. Valle,

Phys. Lett. B 753, 644 (2016).
[26] P. Chen, G. J. Ding, F. Gonzalez-Canales, and J. W. F. Valle,

Phys. Rev. D 94, 033002 (2016).
[27] P. Chen, C. C. Li, and G. J. Ding, Phys. Rev. D 91, 033003

(2015).
[28] L. L. Everett, T. Garon, and A. J. Stuart, J. High Energy

Phys. 04 (2015) 069.
[29] P. Chen, C. Y. Yao, and G. J. Ding, Phys. Rev. D 92, 073002.
[30] W. Grimus and M. N. Rebelo, Phys. Rep. 281, 239 (1997).
[31] M. Holthausen, M. Lindner, and M. A. Schmidt, J. High

Energy Phys. 04 (2013) 122.
[32] M. C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz,

and A. Trautner, Nucl. Phys. B883, 267 (2014).
[33] G. J. Ding, S. F. King, and A. J. Stuart, J. High Energy Phys.

12 (2013) 006.
[34] C. C. Nishi, Phys. Rev. D 93, 093009 (2016).
[35] G. N. Li and X. G. He, Phys. Lett. B 750, 620 (2015).
[36] E. Ma, Phys. Rev. D 92, 051301 (2015).
[37] C. C. Li, J. N. Lu, and G. J. Ding, Nucl. Phys. B913, 110

(2016).
[38] R. N. Mohapatra and C. C. Nishi, Phys. Rev. D 86, 073007

(2012).
[39] G. J. Ding, S. F. King, C. Luhn, and A. J. Stuart, J. High

Energy Phys. 05 (2013) 084.
[40] F. Feruglio, C. Hagedorn, and R. Ziegler, Eur. Phys. J. C 74,

2753 (2014).
[41] C. Luhn, Nucl. Phys. B875, 80 (2013).
[42] C. C. Li and G. J. Ding, Nucl. Phys. B881, 206 (2014).
[43] C. C. Li and G. J. Ding, J. High Energy Phys. 08 (2015) 017.
[44] C. C. Li and G. J. Ding, J. High Energy Phys. 05 (2015) 100.
[45] A. Di Iura, C. Hagedorn, and D. Meloni, J. High Energy

Phys. 08 (2015) 037.
[46] P. Ballett, S. Pascoli, and J. Turner, Phys. Rev. D 92, 093008

(2015).
[47] J. Turner, Phys. Rev. D 92, 116007 (2015).
[48] G. C. Branco, I. de Medeiros Varzielas, and S. F. King,

Phys. Rev. D 92, 036007 (2015).
[49] G. C. Branco, I. de Medeiros Varzielas, and S. F. King,

Nucl. Phys. B899, 14 (2015).
[50] G. J. Ding and Y. L. Zhou, Chin. Phys. C 39, 021001 (2015).

[51] G. J. Ding and Y. L. Zhou, J. High Energy Phys. 06 (2014)
023.

[52] G. J. Ding and S. F. King, Phys. Rev. D 89, 093020 (2014).
[53] S. j. Rong, arXiv:1604.08482.
[54] C. Hagedorn, A. Meroni, and E. Molinaro, Nucl. Phys.

B891, 499 (2015).
[55] G. J. Ding and S. F. King, Phys. Rev. D 93, 025013 (2016).
[56] S. F. King and T. Neder, Phys. Lett. B 736, 308 (2014).
[57] G. J. Ding, S. F. King, and T. Neder, J. High Energy Phys.

12 (2014) 007.
[58] C. C. Li, C. Y. Yao, and G. J. Ding, J. High Energy Phys. 05

(2016) 007.
[59] C. Y. Yao and G. J. Ding, Phys. Rev. D 94, 073006 (2016).
[60] C. Hagedorn and E. Molinaro, arXiv:1602.04206.
[61] P. Chen, G. J. Ding, and S. F. King, J. High Energy Phys. 03

(2016) 206.
[62] I. Girardi, S. T. Petcov, A. J. Stuart, and A. V. Titov, Nucl.

Phys. B902, 1 (2016); I. Girardi, S. T. Petcov, and A. V.
Titov, Nucl. Phys. B911, 754 (2016).

[63] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[64] G. C. Branco, L. Lavoura, and M. N. Rebelo, Phys. Lett. B

180, 264 (1986); E. E. Jenkins and A. V. Manohar, Nucl.
Phys. B792, 187 (2008); G. C. Branco, R. G. Felipe, and
F. R. Joaquim, Rev. Mod. Phys. 84, 515 (2012).

[65] K. A. Olive et al. (Particle Data Group Collaboration), Chin.
Phys. C 38, 090001 (2014).

[66] K. Iwamoto (for the T2K Collaboration), ICHEP 2016,
Chicago, 2016 (unpublished), http://indico.cern.ch/event/
432527/contributions/2143636/.

[67] J. Bian (for the NOνA Collaboration), ICHEP 2016,
Chicago, 2016 (unpublished), http://indico.cern.ch/event/
432527/contributions/2144798/.

[68] F. An et al. (JUNO Collaboration), J. Phys. G 43, 030401
(2016).

[69] S. B. Kim, Nucl. Part. Phys. Proc. 265–266, 93 (2015).
[70] R. Acciarri et al. (DUNE Collaboration), arXiv:

1601.05471; R. Acciarri et al. (DUNE Collaboration),
arXiv:1512.06148; J. Strait et al. (DUNE Collaboration),
arXiv:1601.05823; R. Acciarri et al. (DUNE Collabora-
tion), arXiv:1601.02984.

[71] E. Kearns et al. (Hyper-Kamiokande Working Group
Collaboration), arXiv:1309.0184.

[72] K. Abe et al. (Hyper-Kamiokande Working Group
Collaboration), arXiv:1412.4673.

[73] M. Auger et al. (EXO-200 Collaboration), Phys. Rev. Lett.
109, 032505 (2012).

[74] J. B. Albert et al. (EXO-200 Collaboration), Nature
(London) 510, 229 (2014).

[75] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev.
Lett. 110, 062502 (2013).

[76] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 571, A16 (2014).

[77] M. Bona et al. (UTfit Collaboration), J. High Energy Phys.
10 (2006) 081; for updated results of the global fit, see
http://www.utfit.org/UTfit/.

[78] M. Holthausen and K. S. Lim, Phys. Rev. D 88, 033018
(2013).

[79] C. C. Li and G. J. Ding (unpublished).
[80] G. J. Ding, Nucl. Phys. B827, 82 (2010).

ALTERNATIVE SCHEMES OF PREDICTING LEPTON … PHYSICAL REVIEW D 95, 015012 (2017)

015012-33

http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevD.86.052008
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1088/1674-1137/37/1/011001
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1016/j.physletb.2013.02.047
http://dx.doi.org/10.1016/j.physletb.2013.02.047
http://dx.doi.org/10.1016/j.physletb.2013.08.052
http://dx.doi.org/10.1016/j.physletb.2013.08.052
http://dx.doi.org/10.1007/JHEP09(2014)033
http://dx.doi.org/10.1007/JHEP09(2014)033
http://dx.doi.org/10.1007/JHEP12(2014)058
http://dx.doi.org/10.1103/PhysRevD.92.096010
http://dx.doi.org/10.1007/JHEP07(2013)027
http://dx.doi.org/10.1007/JHEP07(2013)027
http://dx.doi.org/10.1016/j.physletb.2015.12.069
http://dx.doi.org/10.1103/PhysRevD.94.033002
http://dx.doi.org/10.1103/PhysRevD.91.033003
http://dx.doi.org/10.1103/PhysRevD.91.033003
http://dx.doi.org/10.1007/JHEP04(2015)069
http://dx.doi.org/10.1007/JHEP04(2015)069
http://dx.doi.org/10.1103/PhysRevD.92.073002
http://dx.doi.org/10.1016/S0370-1573(96)00030-0
http://dx.doi.org/10.1007/JHEP04(2013)122
http://dx.doi.org/10.1007/JHEP04(2013)122
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.023
http://dx.doi.org/10.1007/JHEP12(2013)006
http://dx.doi.org/10.1007/JHEP12(2013)006
http://dx.doi.org/10.1103/PhysRevD.93.093009
http://dx.doi.org/10.1016/j.physletb.2015.09.061
http://dx.doi.org/10.1103/PhysRevD.92.051301
http://dx.doi.org/10.1016/j.nuclphysb.2016.09.005
http://dx.doi.org/10.1016/j.nuclphysb.2016.09.005
http://dx.doi.org/10.1103/PhysRevD.86.073007
http://dx.doi.org/10.1103/PhysRevD.86.073007
http://dx.doi.org/10.1007/JHEP05(2013)084
http://dx.doi.org/10.1007/JHEP05(2013)084
http://dx.doi.org/10.1140/epjc/s10052-014-2753-2
http://dx.doi.org/10.1140/epjc/s10052-014-2753-2
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.003
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.002
http://dx.doi.org/10.1007/JHEP08(2015)017
http://dx.doi.org/10.1007/JHEP05(2015)100
http://dx.doi.org/10.1007/JHEP08(2015)037
http://dx.doi.org/10.1007/JHEP08(2015)037
http://dx.doi.org/10.1103/PhysRevD.92.093008
http://dx.doi.org/10.1103/PhysRevD.92.093008
http://dx.doi.org/10.1103/PhysRevD.92.116007
http://dx.doi.org/10.1103/PhysRevD.92.036007
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.024
http://dx.doi.org/10.1088/1674-1137/39/2/021001
http://dx.doi.org/10.1007/JHEP06(2014)023
http://dx.doi.org/10.1007/JHEP06(2014)023
http://dx.doi.org/10.1103/PhysRevD.89.093020
http://arXiv.org/abs/1604.08482
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.013
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.013
http://dx.doi.org/10.1103/PhysRevD.93.025013
http://dx.doi.org/10.1016/j.physletb.2014.07.043
http://dx.doi.org/10.1007/JHEP12(2014)007
http://dx.doi.org/10.1007/JHEP12(2014)007
http://dx.doi.org/10.1007/JHEP05(2016)007
http://dx.doi.org/10.1007/JHEP05(2016)007
http://dx.doi.org/10.1103/PhysRevD.94.073006
http://arXiv.org/abs/1602.04206
http://dx.doi.org/10.1007/JHEP03(2016)206
http://dx.doi.org/10.1007/JHEP03(2016)206
http://dx.doi.org/10.1016/j.nuclphysb.2015.10.020
http://dx.doi.org/10.1016/j.nuclphysb.2015.10.020
http://dx.doi.org/10.1016/j.nuclphysb.2016.08.019
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://dx.doi.org/10.1016/0370-2693(86)90307-2
http://dx.doi.org/10.1016/0370-2693(86)90307-2
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.031
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.031
http://dx.doi.org/10.1103/RevModPhys.84.515
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://indico.cern.ch/event/432527/contributions/2143636/
http://indico.cern.ch/event/432527/contributions/2143636/
http://indico.cern.ch/event/432527/contributions/2143636/
http://indico.cern.ch/event/432527/contributions/2143636/
http://indico.cern.ch/event/432527/contributions/2144798/
http://indico.cern.ch/event/432527/contributions/2144798/
http://indico.cern.ch/event/432527/contributions/2144798/
http://indico.cern.ch/event/432527/contributions/2144798/
http://dx.doi.org/10.1088/0954-3899/43/3/030401
http://dx.doi.org/10.1088/0954-3899/43/3/030401
http://dx.doi.org/10.1016/j.nuclphysbps.2015.06.024
http://arXiv.org/abs/1601.05471
http://arXiv.org/abs/1601.05471
http://arXiv.org/abs/1512.06148
http://arXiv.org/abs/1601.05823
http://arXiv.org/abs/1601.02984
http://arXiv.org/abs/1309.0184
http://arXiv.org/abs/1412.4673
http://dx.doi.org/10.1103/PhysRevLett.109.032505
http://dx.doi.org/10.1103/PhysRevLett.109.032505
http://dx.doi.org/10.1038/nature13432
http://dx.doi.org/10.1038/nature13432
http://dx.doi.org/10.1103/PhysRevLett.110.062502
http://dx.doi.org/10.1103/PhysRevLett.110.062502
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://www.utfit.org/UTfit/
http://www.utfit.org/UTfit/
http://www.utfit.org/UTfit/
http://dx.doi.org/10.1103/PhysRevD.88.033018
http://dx.doi.org/10.1103/PhysRevD.88.033018
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.021

