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We study supersymmetric (SUSY) models derived from the ten-dimensional SUSY Yang-Mills theory
compactified on magnetized orbifolds, with nonvanishing Fayet-Iliopoulos (FI) terms induced by magnetic
fluxes in extra dimensions. Allowing the presence of FI-terms relaxes a constraint on flux configurations in
SUSY model building based on magnetized backgrounds. In this case, charged fields develop their vacuum
expectation values to cancel the FI-terms in the D-flat directions of fluxed gauge symmetries, which break the
gauge symmetries and lead to a SUSY vacuum. Based on this idea, we propose a new class of SUSY
magnetized orbifold models with three generations of quarks and leptons. Especially, we construct a model
where the right-handed sneutrinos develop their vacuum expectation values which restore the supersymmetry
but yield lepton number violating terms below the compactification scale, and show their phenomenological
consequences.

DOI: 10.1103/PhysRevD.95.015005

I. INTRODUCTION

There remain several puzzles in the standard model (SM)
even though the last missing piece, the Higgs boson, was
discovered at the Large Hadron Collider [1]. In particular,
an origin of the flavor structure is a remarkable one in
particle physics, that is, the reason why our world consists
of three generations of the quarks and the leptons, what is
more, with hierarchical Yukawa couplings.
The extra dimensions of space are known as great

candidates for the new physics beyond the SM, which
provides a source of hierarchy [2] for explaining the flavor
structure and they have been studied actively so far. This is
also preferable from a theoretical point of view because
superstring theories, candidates for the unified theory, are
defined in ten-dimensional (10D) spacetime. We usually
consider ten- or other higher-dimensional supersymmetric
Yang-Mills (SYM) theory to study compactifications of the
extra dimensional space, because they provide simple
frameworks for such a purpose and, even more, are well
motivated by superstring theories. We expect that a non-
trivial structure in the extra compact space generates the
observed flavor structures of the SM and realistic models
would be obtained as four-dimensional (4D) effective field
theories of the higher-dimensional SYM theories.
It is known thatmagnetic fluxes in the compact space have

a potential to realize the hierarchical flavor structures [3,4].
Furthermore, in higher-dimensional SYM theories compac-
tified on a product of two-dimensional (2D) tori with

magnetic fluxes, an analytic form of zero-mode wave
functions can be obtained by solving the Dirac equation,
which lead to an explicit form of 4D effective Yukawa
couplings [4]. In accordance with this result, a concrete
model consistent with the minimal supersymmetric SM
(MSSM) was constructed with a (semi-)realistic pattern of
themasses and themixing angles of quarks and leptons [5,6].
We can utilize ZN orbifolding for constructing more

realistic models well in the magnetized toroidal compacti-
fications. While the three-generation structure is uniquely
given with a Δð27Þ flavor symmetry on magnetized tori
without orbifolding, the orbifold projections as well as
certain classes of Wilson lines lead to a broad variety of
three-generation structures with different types of flavor
symmetries [7], and furthermore it can eliminate some
phenomenologically disfavored extra massless field con-
tents. The three-generation structures were systematically
studied with Z2 orbifolds [8,9] and Z3;4;6 ones [10].
It is not straightforward to find a supersymmetric

(SUSY) SM vacuum on magnetized backgrounds, because
magnetic flux in extra compact space generically produces
the Fayet-Iliopoulos (FI) term [11] for the hypercharge and/
or extra Uð1Þ factors. When there are charged fields
without their mass terms in the superpotential, the FI-term
makes the charged fields develop nonvanishing vacuum
expectation values (VEVs), which break the fluxed gauge
symmetry and lead to sizable D-term contributions to the
charged scalar masses. Thus, in previous works [5,12], it
has been required that the FI-terms produced on three 2D
tori are canceled out by each other in the SUSY model
building based on magnetized SYM theories.
In the present paper, we allow configurations of mag-

netic fluxes which induce nonvanishing FI-terms for extra
Uð1Þ gauge symmetries other than theUð1Þ hypercharge to
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construct a new class of models. An anomalous Uð1Þ
symmetry with a nonvanishing FI-term has been intensively
studied in generic 4D SUSY models, motivated by string
models [13]. In such works, they found that the presence of
FI-terms can play a significant role in the phenomenology
of particle physics and cosmology. This motivates us to
study the magnetized orbifold models with FI-terms clas-
sically produced by the magnetic fluxes and we expect that
the models with FI-terms lead to phenomenological impli-
cations very different from those without the FI-terms.
In the presence of a FI-term in a Uð1Þ sector, charged

scalars tend to develop their VEVs for theD-term to vanish.
In the magnetized models, the typical scale of the VEVs is
almost equal to the compactification scale. Since that is
usually as high as the grand unification theory (GUT) scale
or Planck scale, the responsible fields must be a SM singlet.
In this paper, we especially focus on the right-handed
sneutrinos, which are SM singlets but can play phenom-
enologically relevant roles in the MSSM sector, and
consider their nonvanishing VEVs in the D-flat directions
of fluxed Uð1Þ symmetries to cancel the FI-term.
This paper is organized as follows. In Sec. II, we give an

overview of magnetized orbifold models and show some
basic ideas for realizing a new class of models with flux-
induced FI-terms. We first explain the D-terms in the
toroidal compactification of 10D SYM theories with
magnetic fluxes and the orbifolding in Sec. II A, and show
how to construct the MSSM-like models by introducing
flux-induced FI-terms in some Uð1Þ subgroups of Uð8Þ
SYM theory on a magnetized orbifold in Sec. II B.
Subsequently, in Sec. III, we construct a SUSY model

with flux-induced FI-terms for certain Uð1Þ subgroups of
Uð8Þ, which make the right-handed sneutrinos develop
their VEVs in the D-flat directions leading to a SUSY
minimum. We show the almost unique flux configuration
which realizes three generations of quarks and leptons at
the SUSY minimum where the sneutrinos have VEVs in
Sec. III A. In Sec. III B, we show the superpotential of our
model and discuss a relation between the textures of the
μ-terms and the lepton number violating mass terms. Their
interplay modifies the flavor structure of the leptons. We
estimate the mass ratios and mixing angles of the quarks
and the leptons in a numerical calculation in Sec. III C,
where we show that our model leads to a hopeful spectrum
of the SM matter fields. Finally, we summarize our result
and discuss its future prospect in Sec. IV.
The analytic forms of Yukawa couplings are shown in

the Appendix for the model shown in Sec. III A.

II. FLUX-INDUCED FI-TERMS ON
MAGNETIZED ORBIFOLDS

We briefly review the magnetized compactification
with/without orbifolding in 10D SYM theories. It will
be shown that the magnetic fluxes break the gauge
symmetry down to a product of several unbroken gauge

subgroups and bifundamental gaugino fields of the unbro-
ken subgroups have degenerate zero modes with their
conjugate ones eliminated; that is, generations of chiral
fermions like the SM are obtained.
The magnetic fluxes, in general, produce FI-terms for

some of the unbroken gauge subgroups. In previous works
[5,12] for SUSY model building, it has been required that
the FI-terms do not appear for any of the subgroups;
otherwise SUSY is broken or those can lead to color and/or
electromagnetism breaking vacua in some cases. The
conditions for the FI-terms to vanish is so strong that we
have been found a few configurations of magnetic fluxes
which lead to three generations of the quarks and leptons
preserving SUSY so far [12].
In the present paper, we consider model building such

that the flux-induced FI-terms are nonvanishing for some
Uð1Þs [other than the hypercharge Uð1Þ] and the charged
(but SM-singlet) scalar fields develop their VEVs to cancel
the FI-terms in the D-term potential, leading to a SUSY
minimum of the scalar potential. Then we will see in the
following and in the next section that the allowed flux
configurations for the SUSY model building and the
resultant phenomenologies are quite different from those
with vanishing FI-terms.

A. D-terms on magnetized tori

First we review the 10D SYM theories compactified on
magnetized tori and orbifolds. We exclusively consider a
product of three 2D tori as a six-dimensional extra compact
space, which are described by complex coordinates ðzi; ziÞ
(i ¼ 1, 2, 3). The 10D SYM theory contains a pair of 10D
gauge field AM (M ¼ 0; 1;…; 9) and 10D Majorana-Weyl
spinor field λ.
We decompose them into a 4D vector Aμ (μ ¼ 0, 1, 2, 3),

three 4D complex scalars φi, and four 4D Weyl spinor
fields λ��� as

AM ¼ ðAμ;φiÞ; λ ¼ ðλþþþ; λþ−−; λ−þ−; λ−−þÞ:

Here, the complex scalar field φi is defined in accordance
with the complex coordinate zi. Each subscript “�”
accompanied with 4D Weyl spinors λ��� represents the
chirality on one of the three 2D tori. 4D Weyl spinors with
other combinations of �’s, e.g., λ−−−, do not appear
because here the 10D spinor field λ is an eigenstate of a
10D chirality operator with a positive eigenvalue as a result
of the Majorana-Weyl condition.
These component fields form 4DN ¼ 1 supermultiplets

with auxiliary fields Fi and D as

V ≡ −θσμθAμ þ iθ θ θλ0 − iθθθλ0 þ
1

2
θθθ θD;

ϕi ≡ 1ffiffiffi
2

p Ai þ
ffiffiffi
2

p
θλi þ θθFi;
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where ðλ0; λ1; λ2; λ3Þ ¼ ðλþþþ; λþ−−; λ−þ−; λ−−þÞ. In
Refs. [14,15], the 10D SYM action is expressed in the
4D N ¼ 1 superspace by using these superfields. We
compactify it on a product of the 4D Minkowski spacetime
and three 2D tori, M4 × T2 × T2 × T2, and introduce
Abelian constant magnetic fluxes on the tori, which was
studied in Ref. [16] and its 4D effective action is derived in
a systematic way shown there.
Let us consider 10D UðNÞ SYM theories compactified

on three 2D tori with magnetic fluxes of the (1,1) form, e.g.,

Fzizi
¼2πMðiÞ ¼2π

�
MðiÞ

a 1Na
0

0 MðiÞ
b 1Nb

�
; MðiÞ

a ; MðiÞ
b ∈Z;

in theUðNÞ gauge space with N ¼ Na þ Nb, where integer

values of MðiÞ
a and MðiÞ

b represent the quantized magnetic
fluxes and 1Na

denotes the ðNa × NaÞ unit matrix. When

the fluxes, MðiÞ
a and MðiÞ

b , are different from each other, the
gauge symmetry is broken as UðNÞ → UðNaÞ ×UðNbÞ. In
this paper, we will not consider magnetic fluxes of the other
forms, i.e., (2,0) and (0,2) forms. On this magnetized
background, UðNÞ-adjoint field is decomposed as

V ¼
�
Vaa Vab

Vba Vbb

�
; ϕi ¼

� ðϕiÞaa ðϕiÞab
ðϕiÞba ðϕiÞbb

�
: ð1Þ

The VEVs of zero modes of auxiliary fieldsDa and ðFiÞa
in UðNaÞ-adjoint vector and chiral superfields Vaa and
ðϕiÞaa are determined by their equations of motion respec-
tively as

Da ¼
�

1

Að1ÞM
ð1Þ
a þ 1

Að2Þ M
ð2Þ
a þ 1

Að3Þ M
ð3Þ
a

�
× 1Na

;

ðFiÞa ¼ 0 × 1Na
; ð2Þ

where we denote the ith 2D torus area by AðiÞ. Then the
conditions for preserving 4D N ¼ 1 SUSY are simply
described by Da ¼ 0, i.e.,

1

Að1Þ M
ð1Þ
a þ 1

Að2ÞM
ð2Þ
a þ 1

Að3ÞM
ð3Þ
a ¼ 0; ð3Þ

as long as we restrict ourselves to the case with vanishing
VEVs of fields in the bifundamental representations
ðNa; NbÞ and/or ðNa; NbÞ carried by ðϕiÞab and/or ðϕiÞba.
Similar arguments hold for UðNbÞ-adjoint superfields by
replacing awith b in Eqs. (2) and (3). These give constraints

on magnetic fluxes MðiÞ
a and MðiÞ

b , and the supersymmetric
model building on magnetized tori and orbifolds suffers
from them.
The bifundamental fields in ðϕiÞab feel theMðiÞ

ab ≡MðiÞ
a −

MðiÞ
b unit of magnetic fluxes on the ith 2D torus. For the

positive values ofMðiÞ
ab, the magnetic fluxes give rise toMðiÞ

ab

degenerate zero modes for ðϕiÞab and ðϕj≠iÞba, and their
conjugate ones, ðϕiÞba and ðϕj≠iÞab, are then eliminated in
the low-energy spectrum, which yield generations of chiral

fermions [3,4]. For the negative values of MðiÞ
ab, in contrast,

jMðiÞ
abj degenerate zero modes are produced for ðϕiÞba and

ðϕj≠iÞab, while ðϕiÞab and ðϕj≠iÞba have no zero modes.

Note that, with the vanishing value of MðiÞ
ab, all of repre-

sentations have a single zero mode with a flat wave
function.
Next, we go on to the compactification on magnetized

orbifolds. Systematic studies of ZN (N ¼ 3,4,6) orbifolds
with magnetic fluxes have been recently done [10]. In this
paper we concentrate on the Z2 orbifolds [8,9], where all
field contents are assigned into either even or odd modes
under the Z2 parity. The numbers of degenerate even or odd
zero modes produced by the magnetic fluxes are reduced
because of the orbifold projection and these zero-modes
numbers are shown in Table I [8].
It is also remarkable in our discussion that these Z2

parities are assigned by respecting the superfield formu-
lation where the 4D N ¼ 1 SUSY is manifest. This
determines the transformation low of the superfields under
the Z2. For example, under a Z2 operation given by
ðz1; z2; z3Þ → ð−z1;−z2; z3Þ, they transform as

V → þPVP−1;

ϕ1 → −Pϕ1P−1;

ϕ2 → −Pϕ2P−1;

ϕ3 → þPϕ3P−1;

where P is a projection operator (P2 ¼ 1) and is an N × N
matrix in UðNÞ cases.

B. Uð8Þ models with FI-terms

In the following, we discuss the FI-term induced by the
magnetic fluxes in three-generation magnetized orbifold
models. The Pati-Salam-like gauge group Uð4ÞC ×
Uð2ÞL ×Uð2ÞR can realize a realistic model based on
magnetized backgrounds. This is derived from the Uð8Þ
SYM theory with magnetic fluxes of the form

MðiÞ ¼

0
BBB@

MðiÞ
C × 14 0 0

0 MðiÞ
L × 12 0

0 0 MðiÞ
R × 12;

1
CCCA; ð4Þ

TABLE I. The number of degenerate zero modes on magnet-
ized Z2 orbifolds where n ∈ N [8].

M 0 1 2 3 4 5 6 7 8 9 2n 2nþ 1

Even 1 1 2 2 3 3 4 4 5 5 nþ 1 nþ 1
Odd 0 0 0 1 1 2 2 3 3 4 n − 1 n
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which breaks Uð8Þ down to Uð4ÞC × Uð2ÞL × Uð2ÞR. The
representation ð1; 2; 2Þ of the respective unbroken sub-
groups contains the Higgs multiplets. The left-handed and
right-handed matter fields are assigned into the represen-
tation ð4; 2; 1Þ and ð4; 1; 2Þ, respectively. The right-handed
sneutrinos (to get nonvanishing VEVs later) are contained
in the representation ð4; 1; 2Þ.
These magnetic fluxes generically produce FI-terms for

the Abelian part of each unbroken gauge subgroup. For
example, in the Uð4ÞC sector, the magnetic fluxes on the
three 2D tori yield constant contributions in the D-term of
Uð4ÞC,

DC ¼
�

1

Að1ÞM
ð1Þ
C þ 1

Að2ÞM
ð2Þ
C þ 1

Að3Þ M
ð3Þ
C

�
× 14; ð5Þ

like in Eq. (2), due to the presence of FI-term for the Uð4ÞC
vector superfield induced by the fluxes MðiÞ

C × 14. In this
paper, we adopt such flux configurations, which generate
nonvanishing FI-terms for the fluxed Uð1Þ vector multiplet,
and consider the case that some SM singlets develop their
VEVs to cancel the FI-terms in the 4D effective field theories
[17] restoring the N ¼ 1 SUSY.
Let us consider the D-term of the UðNaÞ subgroup with

the VEVs of matter fields in its fundamental representation.
The coupling of such a matter chiral superfield Φ and the
gauge multiplet is described byZ

d4θðΦ�ÞiðeVÞijðΦÞj;

where V is the UðNaÞ gauge superfield, and i; j ¼
1; 2;…; Na are now UðNaÞ indices. Without the flux-
induced FI-term, the D-term of UðNaÞ is given by Dij ¼
hðΦ�ÞiihðΦÞji which can be always diagonalized as

Dij ¼ diagðx; 0;…; 0Þ; ð6Þ

by a certain UðNaÞ rotation, where x is a real constant. In
the presence of the FI-term, a SUSY vacuum is obtained
when the following condition is satisfied:

δij

�
1

Að1ÞM
ð1Þ
a þ 1

Að2ÞM
ð2Þ
a þ 1

Að3ÞM
ð3Þ
a

�
þhðΦ�ÞiihðΦÞji¼0:

ð7Þ

For Na > 1, this cannot be satisfied because the first
contribution is rank Na but the second one is rank 1 as
we see in Eq. (6). Therefore we find that Eq. (7) can be
satisfied only in the case with Na ¼ 1.
From the above argument we expect that, when the

unbroken subgroup which has the nonvanishing FI-term is
Uð1Þ, the FI-term can be canceled by the VEVs of charged
fields. In this case, the scale of VEVs is comparable to the

compactification scale, which would be typically set to
MGUT or MPlanck. In the Pati-Salam-like model obtained by
the flux configuration (4), such a large value of VEV is
phenomenologically allowed only for the right-handed
sneutrinos. We identify them as the responsible field for
canceling the FI-term. In the following, we adopt the flux
configurations where all the unbroken gauge subgroups
related to the right-handed neutrinos areUð1Þ, and consider
the case that their flux-induced FI-terms are canceled by the
VEVs of right-handed sneutrinos, yielding a new class of
SUSY vacua.
In the Pati-Salam-like model, the right-handed neutrinos

are carried by the bifundamental representation of
Uð4ÞC ×Uð2ÞR. In accordance with the above discussion,
these two gauge groups have to be further broken by the
magnetic fluxes down to Uð3ÞC ×Uð1Þl and Uð1Þr ×
Uð1Þr0 from the beginning. This gauge symmetry breaking
is realized by the magnetic fluxes of the form,

MðiÞ ¼

0
BBBBBBBBBB@

MðiÞ
C × 13 0 0 0 0

0 MðiÞ
l 0 0 0

0 0 MðiÞ
L × 12 0 0

0 0 0 MðiÞ
r 0

0 0 0 0 MðiÞ
r0

1
CCCCCCCCCCA
;

ð8Þ

where each flux number of MðiÞ
C , MðiÞ

l , MðiÞ
L , MðiÞ

r , and MðiÞ
r0

takes a different value from the others on at least one of
three 2D tori i ¼ 1, 2, 3; otherwise the unbroken gauge
symmetry is enhanced. Note that this form of the magnetic
fluxes can be shifted as MðiÞ → MðiÞ þ α × 18 without
changing the spectrum in the low-energy effective field

theory, and in the following we set the value of MðiÞ
C to

vanish by using this degree of freedom.
On this magnetized background, the gauge symmetry

is broken as Uð8Þ → Uð3ÞC ×Uð1Þl ×Uð2ÞL ×Uð1Þr ×
Uð1Þr0 . We can then assign the MSSM fields into the
decomposed adjoint fields as

Φadj ¼

0
BBBBBB@

� � Q � �
� � L � �
� � � Hu Hd

U N � � �
D E � � �

1
CCCCCCA
: ð9Þ

The substructure of this 8 × 8 matrix Φadj is exactly the
same as Eq. (8). The fields denoted by Q, L, U, D, N, E,
Hu, and Hd correspond to the left-handed quarks, the
left-handed leptons, the right-handed up-type quarks, the
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right-handed down-type quarks, the right-handed neutri-
nos, the right-handed charged leptons, the up-type Higgs
fields, and the down-type Higgs fields, respectively. The
other elements symbolically expressed by � represent extra
fields which can be eliminated by the interplay between the
magnetic fluxes and orbifold projections. The VEVs of the
right-handed sneutrinos can give rise to new contributions
in Uð1Þl and Uð1Þr D-terms. The sneutrino VEVs break
one linear combination of these two Uð1Þ’s while the other
(orthogonal) combination is preserved, and the latter one is
a part of the Uð1Þ hypercharge.
Because it is required for our purpose that each flux

number ofMðiÞ
C ,MðiÞ

l ,MðiÞ
L ,MðiÞ

r , andMðiÞ
r0 in Eq. (8) takes a

different value from the others on at least one of three 2D tori,
in order to obtain three generations of quarks Q, U, D and
leptons L, N E, certain orbifold projections are necessary.
Without orbifolding, the three-generation structure is gen-
erated by M ¼ 3 units of magnetic fluxes exclusively, and
any flux configurationswhich induce three generations of the
quarks and leptons cannot realize the required pattern of
gauge symmetry breaking. In contrast, as we find in Table I,
three generations appear with M ¼ 4, 5, 7, or 8 units of
magnetic fluxes [18], which allow us to construct three-
generation models with the desired patterns of gauge
symmetry breaking for our purpose.
If we do not allow any nonvanishing VEVs of off-

diagonal (bifundamental) fields in Eq. (9) in our model
building, the SUSY preserving conditions (3) for all the
unbroken gauge subgroups a ¼ C, l, L, r, and r0 severely
restrict the patterns of original flux configurations. Indeed,
SUSY configurations of the magnetic fluxes which lead to
a product gauge group with more than three subgroups have
never been found [19]. On the other hand, if we consider a
situation that any off-diagonal fields in Eq. (9), especially
the right-handed sneutrinos denoted by N from the phe-
nomenological viewpoint in the Pati-Salam-like model,
develop their nonvanishing VEVs, there appear to be
additional contributions in the D-flat conditions and the
SUSY preserving condition (3) is modified as

1

Að1Þ M
ð1Þ þ 1

Að2Þ M
ð2Þ þ 1

Að3ÞM
ð3Þ þ X ¼ 0; ð10Þ

where MðiÞ is shown in Eq. (8), and the (8 × 8) matrix X
represents the contributions due to the VEVs h~νii of
right-handed sneutrinos. Because the right-handed neutrinos
are charged under Uð1Þl and Uð1Þr, the matrix X is
described as

X ¼

0
BBBBBB@

0 0 0 0 0

0 qx 0 0 0

0 0 0 0 0

0 0 0 −qx 0

0 0 0 0 0

1
CCCCCCA
; ð11Þ

which is parametrized by x ¼Pih~νii2 and q ¼ �1. The
modified SUSY condition (10) allows a new class of SUSY
vacua onmagnetized orbifolds, which we demonstrate in the
next section.

III. SUPERSYMMETRIC MODELS
WITH FI-TERMS

Magnetized orbifolds provide a wide variety of three-
generation structures. One of the key points to construct
phenomenological models is that three-generation struc-
tures for quarks and leptons must be produced on a single
2D torus, otherwise the rank of Yukawa matrices is reduced
to one. For this reason, we concentrate on a 2D torus for a
while. The model building based on magnetized Z2

orbifolds was studied systematically in Refs. [9,19]. On
(untwisted) magnetized Z2 orbifolds, three generations of
chiral fermions are produced by the jMj ¼ 4, 5 units of
fluxes for Z2 even modes, and jMj ¼ 7, 8 for odd modes as
shown in Table I. There is a severe constraint, as well as the
SUSY preserving condition, on the flux configurations due
to the requirement that the numbers of Hu and Hd have to
be equal to each other in order to avoid the anomaly of
Uð1Þ hypercharges.

A. The three-generation model

A systematic search performed in Ref. [19] shows that
there are only four patterns of magnetic fluxes and Z2 parity
assignments on one of three 2D tori, which would be
available for our purpose, namely, the gauge symmetry is
suitably broken as Uð8Þ → Uð3ÞC ×Uð1Þl × Uð2ÞL×
Uð1Þr ×Uð1Þr0 , and three generations of quarks and
leptons as well as pairs of Hu and Hd are obtained. One
of them adopted in the following analysis is shown in
Table II, where five pairs of the Higgs fields appear. Note
that the assignment of Z2 parity in this model is consistent
with the nonvanishing Yukawa couplings required in (MS)

TABLE II. An example of magnetic fluxes felt by MSSM fields
and the parity assignments for them under the Z2 projection zi →
−zi is shown.

Number of Fluxes Z2 Parity
Number of
Zero Modes

Q MðiÞ
C −MðiÞ

L ¼ −4 Even 3

L MðiÞ
l −MðiÞ

L ¼ −5 Even 3

U MðiÞ
r −MðiÞ

C ¼ −5 Even 3

D MðiÞ
r0 −MðiÞ

C ¼ −8 Odd 3

N MðiÞ
r −MðiÞ

l ¼ −4 Even 3

E MðiÞ
r0 −MðiÞ

l ¼ −7 Odd 3

Hu MðiÞ
L −MðiÞ

r ¼ 9 Even 5

Hd MðiÞ
L −MðiÞ

r0 ¼ 12 Odd 5
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SM. Other three patterns are obtained by exchanging the
assignment of flux and parity between the quark and lepton
sectors, and/or, the up and down sectors in the above
example.
The flux configurations and the Z2 parity assignment on

the other two 2D tori are mainly determined in order to
satisfy the modified version of the SUSY preserving
condition (10) and induce no extra generations of quarks
and leptons. These two conditions are indeed so severe that
there exists one and only possible configuration which we
find in a systematic search. That is given by

Mð1Þ ¼

0
BBBBBB@

0 0 0 0 0

0 −1 0 0 0

0 0 4 0 0

0 0 0 −8 0

0 0 0 0 −5

1
CCCCCCA
;

Mð2Þ ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 0 −1

1
CCCCCCA
;

Mð3Þ ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCCA
; ð12Þ

and

X ¼

0
BBBBBB@

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 0

1
CCCCCCA
:

This matrix X corresponds to Eq. (11) with q ¼ x ¼ þ1.
These satisfy the SUSY preserving conditions (10) with
Að1Þ=Að2Þ ¼ 4 and Að1Þ=Að3Þ ¼ 9. In this case, the sneu-

trino VEVs are given in the unit of 1=
ffiffiffiffiffiffiffiffiffi
Að1Þ

p
, which we

identify with the compactification scale because this is just
the mass scale of the first excited Kaluza-Klein mode. Note
that, exchanging flux configurations on the three 2D tori
leads to different models on first glance, but they are
physically equivalent to each other. It is just a matter of
labeling the complex coordinates of three 2D tori.

On this magnetized background, we can obtain the three
generations of quarks and leptons and the five pairs of
Higgs fields when the Z2 parities on each 2D torus ðzi; ziÞ
are assigned as shown in Table III. The orbifolding in
ðz2; z2Þ and ðz3; z3Þ directions are not necessary to realize
the three generations, but we impose them on the two 2D
tori because they are useful to eliminate extra field contents,
such as phenomenologically disfavored chiral exotics and
massless adjoint fields. Note that, all the MSSM fields are
assigned to the Z2 even mode on these two 2D tori
otherwise they are eliminated in the 4D low-energy
spectrum.
We consider a T6=Z2 × Z0

2 orbifold to realize the desired
parity assignment for our purpose. The orbifold projection
operators are assigned as mentioned at the end of Sec. II A;
ϕi → �PϕiP−1. We find that the following ones lead to the
desirable Z2 parities:

Z2∶ðz1; z2; z3Þ → ð−z1;−z2; z3Þ

with P ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

1
CCCCCCA
;

Z0
2∶ðz1; z2; z3Þ → ðz1;−z2;−z3Þ

with P0 ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

1
CCCCCCA
: ð13Þ

On this magnetized orbifold, chiral superfields ϕi produce
the following zero modes:

TABLE III. We summarize the effective magnetic fluxes felt by
each of the MSSM fields and the suitable Z2 parities.

ðz1; z̄1Þ ðz2; z̄2Þ ðz3; z̄3Þ
Q −4, even +1, even 0, even
L −5, even +1, even 0, even
U −8, odd 0, even +1, even
D −5, even −1, even +1, even
N −7, odd 0, even +1, even
E −4, even −1, even +1, even
Hu +12, odd −1, even −1, even
Hd +9, even 0, even −1, even
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ϕ1 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 Hu Hd

0 0 0 0 0

0 0 0 S 0

1
CCCCCCA
;

ϕ2 ¼

0
BBBBBB@

0 0 Q 0 0

0 0 L 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
;

ϕ3 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

U N 0 0 0

D E 0 0 0

1
CCCCCCA
:

Thanks to the structural interplay between chirality pro-
jections caused by the magnetic fluxes (12) and the above
orbifold projections (13), almost all the phenomenologi-
cally unwanted extra massless modes are eliminated in the
4D spectrum, except for two generations of chiral exotic
modes S which have the same hypercharge as the right-
handed electrons. We also find that, in another similar
pattern of suitable T6=Z2 × Z0

2 orbifold, these exotics
remain after all. In the following, we propose a way to
eliminate them for getting realistic models.
It seems that the simplest way to eliminate the exotics is

to twist the orbifold boundary conditions. The zero-mode
structure on twisted orbifolds is different from that on
untwisted ones [20], and it is also known that this twisting
is equivalent to turning on a gauge field background with a
vortex configuration [21]. Although we will skip the details
here, we explain only the essence we need for our purpose,
that is, how to eliminate the exotics without spoiling the
nonvanishing Yukawa couplings among quarks, leptons,
and Higgs bosons obtained above.
Let us consider a twisted boundary condition of orbi-

folding in the Rez3 or Imz3 direction, only in the Uð1Þr0
sector. The twisting phase is uniquely specified on Z2

orbifolds. We notice that only the exotics S feel a vanishing
magnetic flux on the third 2D torus in the Uð1Þr0 sector. As
a consequence, their zero modes are eliminated by the
twist, because the vanishing flux gives rise to a flat zero-
mode wave function which cannot satisfy the twisted
boundary condition. As for the other Uð1Þr0 charged fields,
D, E, and Hd, the number of their zero modes are not
changed since they feel jMj ¼ 1 units of magnetic fluxes.
All of the other Uð1Þr0 singlet fields are obviously
unaffected by this twisting. Thus, we can eliminate the
exotic field S in the low-energy spectrum and derive a

MSSM-like model without any of the massless extra fields.
This is one of the great features of our model.
The VEVs of the right-handed sneutrinos lead to the

lepton number violating term,

yνh~νRiLHu; ð14Þ

in the superpotential. This term clearly breaks the usual R
parity but we can find that our model has another discrete
symmetry to prohibit the rapid proton decay. That is a Z3

symmetry, so-called baryon triality [22], under which the
MSSM fields transform in accordance with the charge
assignment shown in Table IV. This symmetry allows the
presence of the μ-term and lepton number violating terms
but not baryon number violations, suppressing the proton
decay. Within the MSSM matter contents, this can be an
anomaly-free discrete gauge symmetry. Discrete sym-
metries without an anomaly means that such symmetries
cannot be violated even by nonperturbative effects.
Although our model contains extra heavy Higgs fields
other than the MSSMHiggs fields, this Z3 symmetry can be
anomaly-free because the copies of ðHu;HdÞ cannot
contribute to the anomaly with the charge assignment
shown in Table IV [23]. We stop discussing the whole
anomalies here because it is necessary to construct a full
system that contains hidden sectors as well as the MSSM
sector to study them completely.

B. Mass eigenstates with sneutrino VEVs

We study the phenomenological impact of the lepton
number violating mass term (14) in the superpotential. The
total superpotential of our model is given by

W ¼ yuijmQiUjHum þ ydijmQiDjHdm þ yνijmLiNjHum

þ yeijmLiEjHdm þ μmnHumHdn þ ~MimLiHum;

where i, j ¼ 1, 2, 3 and m, n ¼ 1, 2, 3, 4, 5. The right-
handed neutrino superfield Nj represents the fluctuation
around the vacuum with nonvanishing sneutrino VEVs in
the D-flat direction satisfying Eq. (10). The last term
violating the lepton number is generated by the VEVs of
sneutrinos ~νj as

~MimLiHum¼ðyνi1mh~ν1iþyνi2mh~ν2iþyνi3mh~ν3iÞLiHum: ð15Þ

On the other hand, the second-to-last term, the so-called
μ-term, does not appear perturbatively in the 10D SYM

TABLE IV. We show the transformation low of the MSSM
fields under the Z3 symmetry with α ¼ Expð2πi=3Þ.
Q U D L N E Hu Hd

1 α2 α α2 1 α2 α α2
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theory compactified on tori, but is necessary for realizing
electroweak symmetry breaking and some other phenom-
enological reasons. Because our magnetized SYMmodel is
expected to be embedded into some D-brane configurations
or other stringy setup, we assume that certain nonpertur-
bative effects [26], higher-dimensional operators, or some
other extrinsic effects generate this term in our model and
here treat the components of this (5 × 5) matrix ~Mim as
parameters.
Let us consider the following rotation of the basis to

diagonalize the mass terms of Hu,Hd and L:

H0
u ¼ UHu;

�
L0

H0
d

�
¼ V

�
L

Hd

�
; ð16Þ

where U and V are (5 × 5)- and (8 × 8)-unitary matrices,
respectively. The superpotential (15) is rewritten as

W ¼ y0uijmQiUjH0
um þ y0dijmQiDjH0

dm þ y0νijmL
0
iUjH0

um

þ y0eijmL
0
iEjH0

dm þ ~μmnH0
umH0

dn þWL; ð17Þ

where

~μmn ¼ diagðm1; m2;…; m5Þ: ð18Þ

We identifyH0
u1 andH0

d1 with the MSSM Higgs fields, and
the first entrym1 in Eq. (18) corresponds to the μ parameter
of the MSSM. The other H0

um≠1 and H0
dm≠1 must be heavy

enough to suppress the flavor changing neutral currents
(FCNCs) and we assume mm≠1 ≳Oð10 TeVÞ.
The last termWL in the superpotential (17) represents the

lepton number violating terms in the present diagonal basis
of H0

u,H0
d and L0,

WL ¼ λ1QDL0 þλ2L0L0Eþλ3NH0
uH0

dþλ4EH0
dH

0
d; ð19Þ

which are generated from the Yukawa couplings in the
original basis. Thanks to the baryon triality, we need not be
concerned about the proton decay process caused by WL.
However, studying the effect of these terms on the collider
physics is interesting, because we can explicitly calculate
all of the coupling constants except for the μ parameter in
our model. This is one of the attractive features for building
models based on magnetized toroidal compactifications.
The Yukawa couplings yuijm, y

d
ijm, y

ν
ijm, and yeijm in the

original basis are determined by the magnetic fluxes (12)
and the projection operators (13), and their analytic forms
can be derived. With these Yukawa couplings, the VEVs of
multiple Higgs fields Hum and Hdm generate the mass
matrices of quarks and leptons, e.g.,

ðMuÞij ¼ yuij1hHu1i þ yuij2hHu2i þ yuij3hHu3i
þ yuij4hHu4i þ yuij5hHu5i;

in the original basis. Here we remark that the sneutrino
VEVs deform the lepton mass matrices through the
diagonalization of Hu,Hd and L, because the part of the
diagonalizing matrix V which rotates Li in Eq. (16) can be
nonunitary [even though the whole (8 × 8) matrix V is
unitary]. We show this explicitly in the following based on
a simplified situation. We here note that such an effect will
be taken into account when we evaluate the mass ratios and
mixing angles of quarks and leptons in Sec. III C.
We can extract information about the desired structure of

the matrix μmn which we expect to be generated by extrinsic
effects. For such a purpose, let us consider a simplified
situation.We denote the relevant part of the superpotential by

WLH ¼ μmnHumHdn þ ~MimLiHum:

Instead of the rotation (16), let us suppose that the rotation of

Hum → H0
um ¼ UðuÞ

mnHun;

Hdm → H0
dm ¼ UðdÞ

mnHdn;

Li → L0
i ¼ VijLj; ð20Þ

can diagonalize the matrices μmn and ~Mim simultaneously as

WLH ¼
X3
i¼1

ðμ0iH0
uiH0

di þ ~M0
iL0

iH
0
uiÞ þ

X5
q¼4

μ0qH0
uqH0

dq;

where μ0i and μ
0
q are the eigenvalues of matrix μmn. The three

singular values of the (3 × 5) matrix ~Mim are represented by
~M0
i, which we can calculate explicitly on concrete magnet-

ized backgrounds.
After the subsequent rotation,

H0
di → H00

di ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0iÞ2 þ ð ~M0

iÞ2
q ðμ0iH0

di þ ~M0
iL0

iÞ;

L0
i → L00

i ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0iÞ2 þ ð ~M0

iÞ2
q ð− ~M0

iH0
di þ μ0iL

0
iÞ;

we find the final form of the superpotential as

WLH ¼
X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0iÞ2 þ ð ~M0

iÞ2
q

H0
uiH00

di þ
X5
q¼4

μ0qH0
uqH0

dq:

As we mentioned, in this diagonal basis of L00, H0
u and H00

d,
the mass matrices of charged leptons and neutrinos are
deformed, e.g.,

ðMeÞij ¼ MikV�
klðyelj1hHd1i þ yelj2hHd2i þ yelj3hHd3i

þ yelj4hHd4i þ yelj5hHd5iÞ;
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where the unitary matrix Vij is given in Eq. (20), and

M¼

0
BBBBBB@

μ0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ0
1
Þ2þð ~M0

1Þ2
p 0 0

0
μ0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ0
2
Þ2þð ~M0

2Þ2
p 0

0 0
μ0
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ0
3
Þ2þð ~M0

3Þ2
p

1
CCCCCCA
: ð21Þ

Matrices M and V can change the mass eigenvalues and
mixing angles of the leptons because their product MV is
not unitary.
In general, the largest one among the three values of ~M0

i
is of Oð1Þ × h~νi, where h~νi represents the typical scale of
sneutrino VEVs, and a numerical analysis tells us that the
other two values cannot be smaller thanOð10−3Þ × h~νi in a
wide parameter space. The scale of h~νi is comparable to the
compactification scale because the flux-induced FI-terms
are canceled by the sneutrino VEVs in our model. If
h~νi ∼MGUT ∼ 1016 GeV, the values of ~M0

i are realized to
be inside 1013 ∼ 1016 GeV. In this case, we want also μ0i
(i ¼ 1, 2, 3) to be so heavy because the effective Yukawa
couplings of left-handed leptons L00 have the following
factor:

μ0i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0iÞ2 þ ð ~M0

iÞ2
q

: ð22Þ

When μ0i ≪ ~M0
i, this would lead to an exceeding suppres-

sion, which causes some problems, clearly, in the charged-
lepton sector.
For this reason, we expect that the matrix μmn has the

typical scale ofOðMGUTÞ, and the rank of μmn is required to
be at least three (the full rank is five). In order to suppress the
FCNC due to the extra Higgs multiplets and realize a
“natural” SUSY scenarios, one finds that the desirable rank
of this matrix is four.We can then identify either fH0

u4; H0
d4g

or fH0
u5; H0

d5g with the MSSM Higgs doublets, because the
othersmust be heavyowing to ~M0

i discussed above.When the
matrix μmn is rank deficient, we can further infer its structure,
becausemassive linear combinations ofHum indicated by the
matrix ~Mim must also be mass eigenstates of μmn with
nonvanishingmass eigenvalues.Otherwise, someor all of the
left-handed leptons are decoupled from the other MSSM
matter fields. This clearly restricts the texture of the matrix
μmn. Although we are studying the simplified situation given
in Eq. (20), a similar discussion could be available also in
more general cases.
We can adopt an alternative scenario with tiny values of

the neutrino Yukawa couplings. It is known that a global
suppression factor of Yukawa couplings can be induced in
some special SYM systems compactified on magnetized
tori, and the suppression can be strong enough to explain
the tiny neutrino masses [31]. In the case with the tiny

neutrino Yukawa couplings, the mass of ~MimLiHum, is very
light even when h~νi ∼MGUT, because the mass is given by
a product of neutrino Yukawa couplings and sneutrino
VEVs as shown in Eq. (15). In this case, the mass of
μmnHumHun dominates ~M0

i, and there is no constraint on
μmn to avoid exceeding suppressions of lepton Yukawa
matrices as discussed below Eq. (22). As a result, this
alternative scenario permits that the typical scale of μmn can
be much lower than MGUT [but that should be at least
Oð10Þ TeV in order to avoid the dangerous FCNC proc-
esses]. This is very different from the previous scenario.
For example, let us consider the case that a suppression

factor of Oð10−12Þ is realized for the neutrino Yukawa
couplings. The heaviest neutrino (Dirac) mass is then
estimated as mν ∼ vu ×Oð10−12Þ ∼Oð0.1Þ eV (vu is the
VEVof the up-type Higgs field of the MSSM). We find the
three singular values ~M0

i are roughly of Oð10 ∼ 104Þ GeV,
which cannot induce the destructive suppression in the
factor (22) even when μ0i is comparable to the electroweak
scale. For the case with μmn ≫ Oð10Þ TeV, the natural
SUSY scenarios require that the rank of μmn should be four.
However, in the case with μmn ∼Oð10Þ TeV, the full rank
of matrix μmn might be consistent with low-scale SUSY
breaking scenarios.

C. Mass ratios and mixing angles of quarks and leptons

We have constructed a MSSM-like model with the
concrete configuration of magnetic fluxes (12) on the
Z2 × Z0

2 orbifold characterized by the projection operators
(13). Finally, we study the masses and mixing angles of
quarks and leptons in our model.
The 4D effective Yukawa couplings in magnetized

orbifold models can be expressed as linear combinations
of ηN defined by

ηN ≡ ϑ

�
N=M

0

�
ð0; τMÞ; ð23Þ

whereM and N are determined by the magnetic fluxes, and
the Jacobi-theta function is given by

ϑ

�
a

b

�
ðp; qÞ ¼

X
l∈Z

eπiðaþlÞ2qe2πiðaþlÞðbþpÞ:

In our model, the parameter τ in Eq. (23) is identified with
the complex structure of the first 2D torus in ðz1; z1Þ
directions where the flavor structure of SM is produced.
The parameter M is given by a product of the effective
magnetic fluxes felt by the left-handed matter, the right-
handed matters, and the Higgs fields on this 2D torus.
Specifically, for the up-type quarks, the value of M is
4 × 8 × 12 ¼ 384. It is similarly given as M ¼ 180, 420,
and 180 for the down-type quarks, neutrinos, and charged
leptons, respectively. With these numerical values, certain
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suitable hierarchies for the masses and the mixing angles
can be reasonably obtained thanks to the Gaussian profile
in ηN [9,19].
The analytic forms of the Yukawa couplings (before the

right-handed sneutrinos develop their VEVs) are explicitly
shown in the Appendix. These also determine the texture of
the lepton number violating mass ~M (15) as discussed in the
previous section. Based on them, we analyze the mass
ratios of quarks and charged leptons as well as Cabibbo-
Kobayashi-Maskawa (CKM) [32] and Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) [33] mixing angles but not
neutrino mass squared differences here, because the neu-
trino mass spectrum depends on whether they are Dirac or
Majorana.
The numerical analyses are simply performed for some

sample values of parameters τ, Mii and VEVs h~νii,
vum ¼ hHumi, and vdm ¼ hHdmi. Note that Mii is a
diagonal entry of matrix M given in Eq. (21), and can
be controlled by ~μi although the value of ~M0

i is determined
by the other parameters. The VEVs must satisfy the
following conditions:

X3
i¼1

h~νii2 ¼ 1;
X5
m¼1

v2um ¼ v2u;
X5
m¼1

v2dm ¼ v2d;

where vu and vd are the VEVs of the MSSM Higgs
doublets. The first one is required to satisfy the modified
SUSY condition (10) on the magnetized background (12).
Since our interest here is the mass ratios and mixing angles,
the ratios of these VEVs are important. Note also that the
effects of renormalization group equations are not included
in the analysis.
It is found that the following set

τ¼5i; h~ν3i¼1; M22=M11¼3; M33=M11¼25;

vu3=vu5¼2; vu4=vu5¼4; vd3=vd2¼12; vd4=vd2¼14;

and h~ν1i ¼ h~ν2i ¼ vu0 ¼ vu1 ¼ vd0 ¼ vd4 ¼ 0 leads to a
hopeful pattern of the mass ratios and the mixing angles as

shown in Table V. Although there are some unacceptable
deviations from the observed values especially in the quark
sector, we remark that these theoretical values are derived
from very limited sample choices of parameters. We expect
that a more realistic pattern would be obtained by thorough
analyses which remain as future works. It is interesting that
the observed Cabibbo angle is obtained even in this simple
analysis, which is almost unchanged by the renormalization
group equation effects [35].

IV. SUMMARY

We have studied a new class of supersymmetric models
on a magnetized orbifold, where the nonvanishing FI-terms
are induced by magnetic fluxes in the extra compact space.
Scalar fields charged under the fluxed gauge symmetries
tend to develop nonvanishing VEVs in the D-flat directions
to cancel the FI-terms and SUSY is recovered on such
vacua. This idea has broadened the variety of magnetized
models. Especially, as a concrete phenomenological exam-
ple, we have analyzed the case that the fluxed gauge
symmetries possessing nonvanishing FI-terms are two
Uð1Þ symmetries under which the right-handed neutrinos
are charged. In this case, the sneutrino VEVs along the
D-flat directions cancel the FI-terms out leading to a new
class of SUSY vacua, where all the unwanted chiral
exotics and massless adjoint fields, which generically
appear in string or string-inspired models, are eliminated
completely.
We have also studied the phenomenology of this model

focusing on the effects of right-handed sneutrino VEVs
which induce a mass term LHu in the superpotential. It
violates the lepton number, and our model does not have
the R parity that is usually assumed to suppress the proton
decay. Instead, we have found that our model has the Z3

symmetry, called the baryon triality, which forbids baryon
number violating processes and ensures the long lifetime of
a proton to be consistent with the nonobservations of its
decay. After diagonalizing the whole mass matrices of L,
Hu, and Hd, the lepton number violating masses are

TABLE V. The sample theoretical values of the mass ratios of quarks and charged leptons as well as CKM and
PMNS mixing matrices are shown. We quote the observed values from Ref. [34].

Sample Values Observed

ðmu=mt;mc=mtÞ ð6.6 × 10−5; 6.8 × 10−2Þ ð1.3 × 10−5; 7.4 × 10−3Þ
ðmd=mb;ms=mbÞ ð2.0 × 10−4; 3.5 × 10−2Þ ð1.1 × 10−3; 2.3 × 10−2Þ
ðme=mτ; mμ=mτÞ ð1.7 × 10−3; 1.6 × 10−2Þ ð2.9 × 10−4; 6.0 × 10−2Þ
jVCKMj  

0.97 0.24 0.030
0.23 0.95 0.22
0.081 0.20 0.98

!  
0.97 0.23 0.0035
0.23 0.97 0.041

0.0087 0.040 1.0

!

jVPMNSj  
0.91 0.37 0.13
0.32 0.90 0.29
0.23 0.23 0.95

!  
0.82 0.55 0.16
0.51 0.58 0.64
0.26 0.61 0.75

!
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eliminated and consequently the lepton flavor structure is
modified in this new basis. Such a correction for leptonic
Yukawa couplings is determined by the interplay between
the lepton number violating mass and the SUSY Higgs
mass (so called μ parameters) in the superpotential.
By introducing Higgs VEVs, we have finally per-

formed a rough analysis for parameters which yield semi-
realistic flavor structures, and shown sample theoretical
values of mass ratios and mixing angles of quarks and
leptons. Yukawa couplings in certain magnetized orbifold
models have a texture which induces suitable hierarchies
reasonably and yields a semirealistic pattern of the
hierarchies without hierarchical input parameters [19].
The texture is modified in our model due to the lepton
number violating mass. Although the rough estimation in
Sec. III C shows some deviations from the observed
values, we expect that they would be improved by the
thorough analyses in future works, where CP-violating
phases should also be studied (CP-violating phases of the
quark sector in the magnetized orbifold models were
recently studied in Ref. [36]).
Accepting flux-induced FI-terms provides a new class

of SUSY models in SYM theories compactified on
magnetized tori/orbifolds. We expect that the scenario
of cancellation between the FI-terms and the VEVs of
bifundamental fields can be applied to the other model
building for visible (e.g., from other gauge groups [37]),
hidden (e.g., SUSY breaking [38]), and moduli stabiliza-
tion sectors. Furthermore, if the localized fluxes like
vortex configurations [21] also contribute to the FI-terms,
it might be possible to generate nontrivial wave function
profiles of charged fields [39] as in the five-dimensional
SUSY [40] and supergravity [41] models. It is also
interesting to consider the fluxed Uð1Þ symmetry to be
anomalous, and study the combination of flux-induced
FI-terms and loop-corrected ones [13] caused by the
anomaly.
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APPENDIX: YUKAWA COUPLINGS

We show the analytic forms of Yukawa couplings for the
model given in Sec. III A, where all the (super)fields Qi,

Uj, Di, Li, Nj, Ej,Hum, and Hdm are in their original basis
before the sneutrinos develop VEVs.
For the quark sector, the Yukawa couplings involvingQi,

Uj, and Hum are given by

yuij1 ¼

0
B@

yb 0 −yl
0 1ffiffi

2
p ðye − yiÞ 0

−yf 0 yh

1
CA;

yuij2 ¼

0
B@

0 yc − yk 0

1ffiffi
2

p ðyb − yhÞ 0 1ffiffi
2

p ðyf − ylÞ
0 0 0

1
CA;

yuij3 ¼

0
B@

−yj 0 yd

0 1ffiffi
2

p ðya − ymÞ 0

yd 0 −yj

1
CA;

yuij4 ¼

0
B@

0 0 0

1ffiffi
2

p ðyf − ylÞ 0 1ffiffi
2

p ðyb − yhÞ
0 yc − yk 0

1
CA;

yuij5 ¼

0
B@

yh 0 −yf
0 1ffiffi

2
p ðye − yiÞ 0

−yl 0 yb

1
CA; ðA1Þ

where

ya ¼ η0 þ η96 þ η192 þ η96;

yb ¼ η4 þ η100 þ η188 þ η92;

yc ¼ η8 þ η104 þ η184 þ η88;

yd ¼ η12 þ η108 þ η180 þ η84;

ye ¼ η16 þ η112 þ η176 þ η80;

yf ¼ η20 þ η116 þ η172 þ η76;

yg ¼ η24 þ η120 þ η168 þ η72;

yh ¼ η28 þ η124 þ η164 þ η68;

yi ¼ η32 þ η128 þ η160 þ η64;

yj ¼ η36 þ η132 þ η156 þ η60;

yk ¼ η40 þ η136 þ η152 þ η56;

yl ¼ η44 þ η140 þ η148 þ η52;

ym ¼ η48 þ η144 þ η144 þ η48;

while those among Qi, Dj, and Hdm are given by
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ydij1 ¼

0
BB@

η0
ffiffiffi
2

p
η36

ffiffiffi
2

p
η72ffiffiffi

2
p

η45 η9 þ η81 η27 þ η63

η90
ffiffiffi
2

p
η54

ffiffiffi
2

p
η18

1
CCA;

ydij2 ¼

0
BB@

1ffiffi
2

p ðη20 þ η40Þ η4 þ η76 η32 þ η68

η5 þ η85
1ffiffi
2

p ðη31 þ η41 þ η49 þ η59Þ 1ffiffi
2

p ðη13 þ η23 þ η67 þ η77Þffiffiffi
2

p
η50 η44 þ η64 η22 þ η58

1
CCA;

ydij3 ¼

0
BB@

1ffiffi
2

p ðη20 þ η40Þ η44 þ η64 η8 þ η28

η35 þ η55
1ffiffi
2

p ðη1 þ η19 þ η71 þ η89Þ 1ffiffi
2

p ðη17 þ η37 þ η53 þ η73Þffiffiffi
2

p
η10 η26 þ η46 η62 þ η82

1
CCA;

ydij4 ¼

0
BB@

1ffiffi
2

p ðη60 þ η80Þ η24 þ η84 η12 þ η48

η15 þ η75
1ffiffi
2

p ðη21 þ η39 þ η51 þ η69Þ 1ffiffi
2

p ðη3 þ η33 þ η57 þ η87Þffiffiffi
2

p
η30 η6 þ η26 η42 þ η78

1
CCA;

ydij5 ¼

0
BB@

1ffiffi
2

p ðη60 þ η80Þ η16 þ η56 η52 þ η88

η25 þ η65
1ffiffi
2

p ðη11 þ η29 þ η61 þ η79Þ 1ffiffi
2

p ðη7 þ η43 þ η47 þ η83Þffiffiffi
2

p
η70 η34 þ η74 η2 þ η38

1
CCA: ðA2Þ

For the lepton sector, the Yukawa couplings between Li, Nj, and Hum are given by

yνij1 ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p ðη5 − η65Þ
ffiffiffi
2

p ðη185 − η115Þ
ffiffiffi
2

p ðη55 þ η125Þ
η173 − η103 − η187 þ η163 η67 − η137 − η53 þ η17 η113 − η43 − η127 þ η197

η79 − η149 − η19 þ η89 η101 − η31 − η199 þ η151 η139 − η209 − η41 þ η29

1
CCA;

yνij2 ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p ðη170 − η110Þ
ffiffiffi
2

p ðη10 − η130Þ
ffiffiffi
2

p ðη190 þ η50Þ
η2 − η142 − η58 þ η82 η178 − η38 − η122 þ η158 η62 − η202 − η118 þ η22

η166 − η26 − η194 þ η94 η74 − η206 − η46 þ η94 η106 − η34 − η134 þ η146

1
CCA;

yνij3 ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p ðη75 − η135Þ
ffiffiffi
2

p ðη165 − η45Þ
ffiffiffi
2

p ðη15 − η195Þ
η177 − η33 − η117 þ η93 η3 − η207 − η123 þ η87 η183 − η27 − η57 þ η153

η9 − η201 − η51 þ η81 η171 − η39 − η129 þ η81 η69 − η141 − η111 þ η99

1
CCA;

yνij4 ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p ðη100 − η140Þ
ffiffiffi
2

p ðη80 − η200Þ
ffiffiffi
2

p ðη160 − η20Þ
η68 − η208 − η128 þ η152 η172 − η32 − η52 þ η88 η8 − η148 − η188 þ η92

η184 − η44 − η124 þ η164 η4 − η136 − η116 þ η164 η176 − η104 − η64 þ η76

1
CCA;

yνij5 ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p ðη145 − η205Þ
ffiffiffi
2

p ðη95 − η25Þ
ffiffiffi
2

p ðη85 − η155Þ
η107 − η37 − η47 þ η23 η73 − η143 − η193 þ η157 η167 − η97 − η13 þ η83

η61 − η131 − η121 þ η11 η179 − η109 − η59 þ η11 η1 − η71 − η181 þ η169

1
CCA: ðA3Þ

As for the Yukawa couplings yeijm involving Li, Ej, and Hdm, the 3 × 3 matrices yeijm for each m are equivalent to the
corresponding transposed matrices for the down-type quarks, that is, yeijm ¼ ydjim.
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