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We present a lattice QCD study of Nπ scattering in the positive-parity nucleon channel, where the
puzzling Roper resonance N�ð1440Þ resides in experiment. The study is based on the PACS-CS ensemble
of gauge configurations with Nf ¼ 2þ 1 Wilson-clover dynamical fermions, mπ ≃ 156 MeV and
L≃ 2.9 fm. In addition to a number of qqq interpolating fields, we implement operators for Nπ in
p-wave and Nσ in s-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV.
They are dominated by Nð0Þ, Nð0Þπð0Þπð0Þ [mixed with Nð0Þσð0Þ] and NðpÞπð−pÞ with p≃ 2π=L,
where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states
are found in this channel. The experimental Nπ phase shift would—in the approximation of purely elastic
Nπ scattering—imply an additional eigenstate near the Roper massmR ≃ 1.43 GeV for our lattice size. We
do not observe any such additional eigenstate, which indicates that Nπ elastic scattering alone does not
render a low-lying Roper. Coupling with other channels, most notably with Nππ, seems to be important for
generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated
resonance. Our results are in line with most of the previous lattice studies based just on qqq interpolators,
which did not find a Roper eigenstate below 1.65 GeV. The study of the coupled-channel scattering
including a three-particle decay Nππ remains a challenge.

DOI: 10.1103/PhysRevD.95.014510

I. INTRODUCTION

Pion-nucleon scattering in the JP ¼ 1=2þ channel cap-
tures the information on the excitations of the nucleon
(N ¼ p, n). The Nπ scattering in p-wave is elastic only
below the inelastic thresholdmN þ 2mπ for Nππ. The main
feature in this channel at low energies is the so-called
Roper resonance with mR ¼ ð1.41–1.45Þ GeV and ΓR ¼
ð0.25–0.45Þ GeV [1] that was first introduced by Roper [2]
to describe the experimental Nπ scattering. The resonance
decays to Nπ in p-wave with a branching ratio Br≃
55%–75% and to Nππ with Br≃ 30%–40% [including
NðππÞI¼0

s-wave, Δπ and Nρ], while isospin-breaking and
electromagnetic decays lead to a Br well below one percent.
Phenomenological approaches that considered the

N�ð1440Þ resonance as a dominantly qqq state, for example
quark models [3–5], gave a mass that is too high and a width
that is too small in comparison to experiment. This led to
several suggestions on its nature and a large number of
phenomenological studies. One possibility is a dynamically
generated Roper resonance where the coupled-channel

scattering Nπ=Nσ=Δπ describes the Nπ experimental
scattering data without any excited qqq core [6–9]. The
scenarios with significant qqqqq̄ Fock components [10,11]
and hybrids qqqG with gluon excitations [12,13] were also
explored. The excited qqq core, where the interaction of
quarks is supplemented by the pion exchange, brings the
mass closer to experiment [14,15]. A similar effect is found
as a result of some other mechanisms that accompany the
qqq core, for example a vibrating πσ contribution [16] or
coupling to all allowed channels [17]. These models are not
directly based on QCD, while the effective field theories
contain a large number of low-energy constants that need to
be determined by other means. The rigorous Roy-Steiner
approach is based on phase shift data and dispersion
relations implementing unitarity, analyticity and crossing
symmetry; it leads to Nπ scattering amplitudes at energies
E ≤ 1.38 GeV that do not cover the whole region of the
Roper resonance [18]. The implications of the present
simulation on various scenarios are discussed in Sec. IV.
All previous lattice QCD simulations, except for [19],

addressed excited states in this channel using three-quark
operators; this has conceptual issues for a strongly decaying
resonance where coupling to multi-hadron states is essen-
tial. In principle multi-hadron eigenstates can also arise
from the qqq interpolators in a dynamical lattice QCD
simulation but in practical calculations the coupling to qqq
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was too weak for an effect. Another assumption of the
simple operator approach is that the energy of the first
excited eigenstate is identified with the mass of N�ð1440Þ,
which is a drastic approximation for a wide resonance. The
more rigorous Lüscher approach [20,21] assuming elastic
scattering predicts an eigenstate in the energy region within
the resonance width (see Fig. 7).
The masses of the Roper obtained in the recent dynami-

cal lattice simulations [22–28] using the qqq approach are
summarized in [29]. Extrapolating these to physical quark
masses, where mu=d ≃mphys

u=d , the Roper mass was found
above 1.65 GeV by all dynamical studies except [22], so
most of the studies disfavor a low-lying Roper qqq core.
The only dynamical study that observes a mass around
1.4 GeV was done by the χQCD collaboration [22]; it was
based on the fermions with good chiral properties (domain-
wall sea quarks and overlap valence quarks) and employed
a sequential empirical Bayesian (SEB) method to extract
eigenenergies from a single correlator. It is not yet finally
settled [22,29–31] whether the discrepancy of [22] with
other results is related to the chiral properties of quarks, use
of SEB or poor variety of interpolator spatial widths in
some studies.1 Linear combinations of operators with
different spatial widths allow to form the radially excited
eigenstate with a node in the radial wave function, which
was found at r≃ 0.8 fm in [22,28,32].
An earlier quenched simulation [33] based on qqq inter-

polators used overlap fermions and the SEBmethod to extract
eigenenergies. The authors find a crossover between first
excited 1=2þ state and ground 1=2− state as a function of the
quark mass, approaching the experimental situation. A more
recent quenched calculation [34] using Fat link irrelevant
clover (FLIC) fermions with improved chiral properties and
variational approach also reported a similar observation.
In continuum theN�ð1440Þ is not an asymptotic state but

a strongly decaying resonance that manifests itself in the
continuum of Nπ and Nππ states. The spectrum of those
states becomes discrete on the finite lattice of size L. For
noninteracting N and π the periodic boundary conditions in
space constrain the momenta to multiples of 2π=L. The
interactions modify the energies of these discrete multi-
hadron states and possibly render additional eigenstates.
The multi-hadron states have never been established in

the previous lattice simulations of the Roper channel,
although they should inevitably appear as eigenstates in
dynamical lattice QCD. In addition to being important
representatives of the Nπ and Nππ continuum, their
energies and number in principle provide phase shifts
for the scattering of nucleons and pions. These, in turn,
provide information on the Roper resonance that resides in

this channel. In the approximation when Nπ is decoupled
from other channels the Nπ phase shift and the scattering
matrix are directly related to eigenenergies via the Lüscher
method [20,21]. The determination of the scattering matrix
for coupled two-hadron channels has been proposed in
[35,36] and was recently extracted from a lattice QCD
simulation [37,38] for other cases. The presence of the three-
particle decay mode Nππ in the Roper channel, however,
poses a significant challenge to the rigorous treatment, as the
scattering matrix for three-hadron decay has not been
extracted from the lattice yet, although impressive progress
on the analytic side has been made [39].
The purpose of the present paper is to determine the

complete discrete spectrum for the interacting system with
JP ¼ 1=2þ, including multi-hadron eigenstates. Zero total
momentum is considered since parity is a good quantum
number in this case. In addition to qqq interpolating fields,
we incorporate for the first time Nπ in p-wave in order to
address their scattering. TheNσ in s-wave is also employed
to account for NðππÞI¼0

s-wave. We aim at the energy region
below 1.65 GeV, where the Roper resonance is observed in
experiment. In absence of meson-meson and meson-baryon
interactions one expects eigenstates dominated by Nð0Þ,
Nð0Þπð0Þπð0Þ, Nð0Þσð0Þ and Nð1Þπð−1Þ, in our Nf ¼
2þ 1 dynamical simulation for mπ ≃ 156 MeV and
L≃ 2.9 fm. The momenta in units of 2π=L are given in
parentheses. N and π in Nπ need at least momentum
2π=L to form the p-wave. The PACS-CS configurations
[40] have favorable parameters since the noninteracting
energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ð2π=LÞ2
p ≃ 1.5 GeV

of Nð1Þπð−1Þ falls in the Roper region. The number of
observed eigenstates and their energies will lead to certain
implications concerning the Roper resonance.
In the approximation of elastic Nπ scattering, decoupled

from Nππ, the experimentally measured Nπ phase shift
predicts four eigenstates below 1.65 GeV, as argued in
Sec. IVA and Fig. 7. Further analytic guidance for this
channel was recently presented in [8], where the expected
discrete lattice spectrum (for our L and mπ) was calculated
using a Hamiltonian effective field theory (HEFT)
approach for three hypotheses concerning the Roper state
(Fig. 8). All scenarios involve channels Nπ=Nσ=Δπ
(assuming stable σ and Δ) and are apt to reproduce the
experimental Nπ phase shifts. The scenario which involves
also a bare Roper qqq core predicts four eigenstates in the
region E < 1.7 GeV of our interest, while the scenario
without Roper qqq core predicts three eigenstates [8].2

The Roper resonance in the second case is dynamically
generated purely from the Nπ=Nσ=Δπ channels, possibly
accompanied by the ground state nucleon qqq core.

1The χQCD collaboration [30] recently verified that SEB and
the variational approach with wide smeared sources (r≃ 0.8 fm)
lead to compatible E≃ 1.9 GeV for Wilson-clover fermions and
mπ ≃ 400 MeV.

2This numbering omits the Δð1Þπð−1Þ and Nð1Þσð−1Þ eigen-
states that are near 1.7 GeV; these are not expected to be found in
our study since the corresponding interpolators are not included.
Our notation implies projection of all operators to JP ¼ 1

2
þ.
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As already mentioned, our aim is to establish the expected
low-lying multiparticle states in the positive-parity nucleon
channel. This has been already accomplished in the negative-
parity channel, whereNπ scattering in s-wave was simulated
in [41]. An exploratory study [42] was done in a moving
frame, where both parities contribute to the same irreducible
representation. The only lattice simulation in the positive-
parity channel that included (local) qqqqq̄ interpolators in
addition to qqq was recently presented in [19]. No energy
levels were found between mN and ≃2 GeV for
mπ ≃ 411 MeV. The levels related to Nð1Þπð−1Þ and
Nð0Þσð0Þ were not observed, although they are expected
below 2GeVaccording to [8]. This is possibly due to the local
nature of the employedqqqqq̄ interpolators [19], which seem
to couple too weakly to multi-hadron states in practice.
This paper is organized as follows. Section II presents

the ensemble, methodology, interpolators and other tech-
nical details to determine the eigenenergies. The resulting
eigenenergies and overlaps are presented in Sec. III,
together with a discussion on the extraction of the Nπ
phase shift. The physics implications are drawn in Sec. IV
and an outlook is given in the conclusions.

II. LATTICE SETUP

A. Gauge configurations

We perform a dynamical calculation on 197 gauge
configurations generated by the PACS-CS collaboration
withNf ¼ 2þ 1, lattice spacing a ¼ 0.0907ð13Þ fm, lattice
extension V ¼ 323 × 64, physical volume L3 ≃ ð2.9Þ fm3

and κu=d ¼ 0.13781 [40]. The quark masses, mu ¼ md, are
nearly physical and correspond to mπ ¼ 156ð7Þð2Þ MeV as
estimated by PACS-CS [40]. Our own estimate leads to
somewhat larger mπ as detailed below (we still refer to it as
an ensemble with mπ ≃ 156 MeV). The quarks are non-
perturbatively improved Wilson-clover fermions, which do
not respect exact chiral symmetry (i.e., the Ginsparg-Wilson
relation [43]) at nonzero lattice spacing a. Most of the
previous simulations of the Roper channel also employed
Wilson-clover fermions, for example [23,24,26–28].
Closer inspection of this ensemble reveals that there are a

few configurations responsible for a strong fluctuation of
the pion mass, which is listed in Table I. Removing one or
four of the “bad” configurations changes the pion mass by
more than two standard deviations. The configuration-set
“all” indicates the full set of 197 gauge configurations,
while “all-1” (“all-4”) indicates a subset with 196 (193)
configurations where one (four) configuration(s) leading to
the strong fluctuations in mπ are removed.3

We tested these three configuration sets for a variety of
hadron energies, and we find that onlymπ varies outside the
statistical error, while variations of masses for other
hadrons (mesons with light and/or heavy quarks and
nucleon) are smaller than the statistical errors. This also
applies for the nucleon mass listed in Table I. The energies
of the pions and other hadrons with nonzero momentum
also do not vary significantly with this choice.
The Roper resonance is known to be challenging as far as

statistical errors are concerned, especially for nearly physi-
cal quark masses. The error on the masses and energies is
somewhat bigger for the full set than on the reduced sets in
some cases, for examplemπ andmN in Table I. Throughout
this paper, we will present results for the reduced configu-
ration set “all-4,” unless specified differently. The final
spectrum was studied for all three configuration sets, and
we arrive at the same conclusions for all of them.

B. Determining eigenenergies

We aim to determine the eigenenergies in the Roper
channel, and we will need also the energies of a single π or
N. Lattice computation of eigenenergies En proceeds by
calculating the correlation matrix CðtÞ for a set of inter-
polating fields OiðŌiÞ that annihilate (create) the physics
system of interest,

CijðtÞ ¼ hΩjOiðtþ tsrcÞŌjðtsrcÞjΩi
¼

X
n

hΩjOijnie−EnthnjŌjjΩi

¼
X
n

Zn
i Z

n�
j e−Ent; ð1Þ

with overlaps Zn
i ¼ hΩjOijni. All our results are averaged

over all the source time slices tsrc ¼ 1;…; 64.
The En and Zn

j are extracted from CðtÞ via the gener-
alized eigenvalue method [44–47]

CðtÞuðnÞðtÞ¼ λðnÞðtÞCðt0ÞuðnÞðtÞ; λðnÞðtÞ∝ e−Ent ð2Þ

and we apply t0 ¼ 2 for all cases except for the single pion
correlation where we choose t0 ¼ 3. The large-time behav-
ior of the eigenvalue λðnÞðtÞ provides En, where specific fit
forms will be mentioned case by case. The

TABLE I. The single hadron masses obtained for the full (“all”)
set of configurations and for the sets with one (“all-1”) or four
(“all-4”) configurations omitted. Interpolators, fit type and fit
range are like in Table II. As discussed in the text our final results
are based on set “all-4.”

Configuration set mπ [MeV] mN [MeV]

all 153.9� 4.1 951� 19
all-1 163.9� 2.4 965� 13
all-4 164.4� 2.1 969� 12

3In the set RC32x64_B1900Kud01378100Ks01364000
C1715 configuration jM000260 is removed in “all-1,” while
jM000260, hM001460, jM000840 and jM000860 are removed in
“all-4.”
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Zn
j ðtÞ ¼ eEnt=2CjkðtÞuðnÞk ðtÞ=jCðtÞ12uðnÞðtÞj ð3Þ

give the overlap factors in the plateau region.
For fitting En from λðnÞðtÞ we usually employ a sum of

two exponentials, where the second exponential helps
to parametrize the residual contamination from higher
energy states at small t values. For the single pion ground
state we have a large range of t-values to fit and there we
combine cosh½Enðt − NT=2Þ� also with such an exponen-
tial. Correlated fits are used throughout. Single-elimination
jackknife is used for statistical analysis.

C. Quark smearing width and distillation

The interpolating fields are built from the quark fields
and we employ these with two smearing widths illustrated
in Fig. 1. Linear combinations of operators with different
smearing widths provide more freedom to form the
eigenstates with nodes in the radial wave function. This
is favorable for the Roper resonance [22,28,32], which is a
radial excitation within a quark model.
Quark smearing is implemented using the so-called

distillation method [48]. The method is versatile and
enables us to compute all necessary Wick contractions,
including terms with quark annihilation. This is made
possible by precalculating the quark propagation from
specific quark sources. The sources are the lowest k ¼
1;…; Nv eigenvectors vkxc of the spatial lattice Laplacian
and c is the color index. Smeared quarks are provided by
qcðxÞ≡□x0c0;xcqc

0
pointðx0Þ [48] with the smearing operator

□x0c0;xc ¼
PNv

k¼1 v
k
x0c0v

k†
xc. Different Nv lead to different

effective smearing widths.
In previous work we used stochastic distillation [49] on

this ensemble, which is less costly but renders noisier
results. For the present project we implemented the
distillation4 with narrower (n) smearing Nv ¼ 48 and
wider (w) smearing Nv ¼ 24, illustrated in Fig. 1. Two
smearings are employed to enhance freedom in forming
the eigenstates with nodes. Most of the interpolators and
results below are based on narrower smearing which gives
better signals in practice, although both widths are not
very different. The details of our implementation of the
distillation method are collected in [50] for another
ensemble.

D. Interpolators and energies of π and N

Single particle energies are needed to determine refer-
ence energies of the noninteracting (i.e., disregarding
interaction between the mesons and baryons) system,
and also to examine phase shifts (see Sec. III B). The
following π and N annihilation interpolators are used to
extract energies of the single hadrons with momenta n2π=L

(these are also used as building blocks for interpolators in
the Roper channel):

πþðnÞ ¼
X
x

d̄ðx; tÞγ5uðx; tÞeix·n2π
L

π0ðnÞ ¼ 1ffiffiffi
2

p
X
x

½d̄ðx; tÞγ5dðx; tÞ − ūðx; tÞγ5uðx; tÞ�eix·n2π
L

ð4Þ
and

Ni
ms¼1=2ðnÞ ¼ N i

μ¼1ðnÞ; Ni
ms¼−1=2ðnÞ ¼ N i

μ¼2ðnÞ
N i

μðnÞ ¼
X
x

ϵabc½uaTðx; tÞΓi
2d

bðx; tÞ�

× ½Γi
1q

cðx; tÞ�μeix·n2π
L

i ¼ 1; 2; 3∶ ðΓi
1;Γi

2Þ ¼ ð1; Cγ5Þ; ðγ5; CÞ;
ði1; Cγtγ4Þ: ð5Þ

Three standard choices for Γ1;2 are used. The third quark is
q ¼ u for the proton and q ¼ d for the neutron.
Equation (5) is in Dirac basis and the upper two compo-
nents N μ¼1;2 of the Dirac four spinor N μ are the ones with
positive parity at zero momentum. The spin component ms
in Nms

is a good quantum number for p ¼ 0 or p ∝ ez,
which is employed to determine energies in Table II. It is
not a good quantum number for general p and it denotes the
spin component ms of the corresponding field at rest. The
“noncanonical” fields Nms

ðnÞ (5) built only from upper
components have the desired transformation properties
under rotation R and inversion I, which are necessary to
build two-hadron operators [51]:

RNms
ðnÞR† ¼

X
m0

s

D1=2
msm0

s
ðR†ÞNm0

s
ðRnÞ;

RπðnÞR† ¼ πðRnÞ INms
ðnÞI ¼ Nms

ð−nÞ;
IπðnÞI ¼ −πð−nÞ: ð6Þ

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
r [fm]

0

0.2

0.4

0.6

0.8

1

Ψ(r)____
Ψ(0)

"wider"
"narrower"

FIG. 1. The profile ΨðrÞ of the “narrower” (Nv ¼ 48)
and the “wider” (Nv ¼ 24) smeared quark, where
ΨðrÞ ¼ P

x;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trc½□x;xþrðtÞ□x;xþrðtÞ�

p
.

4This is sometimes referred to as the full distillation.
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Interpolators with narrower quark sources are used for
the determination of the masses and energies of π and N.
Those are collected in Table II, where they are compared to
energies Ec expected in the continuum limit a → 0.

E. Interpolating fields for the Roper channel

Our central task is to calculate the energies of the
eigenstates En with JP ¼ 1=2þ and total momentum zero,
including multiparticle states. We want to cover the energy
range up to approximately 1.65 GeV, which is relevant
for the Roper region. The operators with these quantum
numbers have to be carefully constructed. Although qqq
interpolators in principle couple also to multi-hadron
intermediate states in dynamical QCD, the multi-hadron
eigenstates are often not established in practice unless the
multi-hadron interpolators are also employed in the corre-
lation matrix.
We apply ten interpolators Oi¼1;…;10 with P ¼ þ,

S ¼ 1=2, ðI; I3Þ ¼ ð1=2; 1=2Þ and total momentum zero
[51] (P and ms are good continuum quantum numbers in
this case). For ms ¼ 1=2, we have

ONπ
1;2 ¼ −

ffiffiffi
1

3

r
½p1;2

−1
2

ð−exÞπ0ðexÞ − p1;2
−1
2

ðexÞπ0ð−exÞ

− ip1;2
−1
2

ð−eyÞπ0ðeyÞ þ ip1;2
−1
2

ðeyÞπ0ð−eyÞ
þ p1;2

1
2

ð−ezÞπ0ðezÞ − p1;2
1
2

ðezÞπ0ð−ezÞ�

þ
ffiffiffi
2

3

r
½fp → n; π0 → πþg� ½narrower�

ONw
3;4;5 ¼ p1;2;3

1
2

ð0Þ ½wider�
ONn

6;7;8 ¼ p1;2;3
1
2

ð0Þ ½narrower�
ONσ

9;10 ¼ p1;2
1
2

ð0Þσð0Þ ½narrower�; ð7Þ

where these are the annihilation fields and

σð0Þ ¼ 1ffiffiffi
2

p
X
x

½ūðx; tÞuðx; tÞ þ d̄ðx; tÞdðx; tÞ�: ð8Þ

The momenta of fields in units of 2π=L are given in
parentheses with ex, ey, and ez denoting the unit vectors in
x, y, and z directions, while the lower index on N ¼ p, n is

ms. All quarks have the same smearing width (narrower or
wider in Fig. 1) within one interpolator. The ONπ was
constructed in [51], while factors with square root are
Clebsch-Gordan coefficients related to isospin. For
ms ¼ −1=2, p1=2 and n1=2 gets replaced by p−1=2 and
n−1=2 in O3−10, while O1;2 becomes [51]

ONπ
1;2 ¼ −

ffiffiffi
1

3

r
½p1;2

1
2

ð−exÞπ0ðexÞ − p1;2
1
2

ðexÞπ0ð−exÞ

þ ip1;2
1
2

ð−eyÞπ0ðeyÞ − ip1;2
1
2

ðeyÞπ0ð−eyÞ
− p1;2

−1
2

ð−ezÞπ0ðezÞ þ p1;2
−1
2

ðezÞπ0ð−ezÞ�

þ
ffiffiffi
2

3

r
½fp → n; π0 → πþg� ½narrower�: ð9Þ

The basis (7) contains conventional qqq fields as well as
the most relevant multi-hadron components. The noninter-
acting levels below 1.65 GeV are Nð0Þ, Nð1Þπð−1Þ,
Nð0Þπð0Þπð0Þ and, assuming zero width approximation,
Nð0Þσð0Þ. The Nð2Þπð−2Þ, Nð1Þπð−1Þπð0Þ and others are
at higher energies. Here ONπ corresponds to Nð1Þπð−1Þ in
p-wave [51]. Our notation implies projection to JP ¼ 1

2
þ

for all operators [e.g., Nð1Þσð−1Þ actually refers toP
3
μ¼1 NðeμÞσð−eμÞ]. Interpolators NðnÞπð−nÞ with n ≥

2 are not incorporated, so we do not expect to find those in
the spectrum. We implement only one type of σ interpolator
(8) in ONσ and we expect that this represents a possible
superposition of Nππ and Nσ.5

On the discrete lattice the continuum rotation symmetry
group is reduced to the discrete lattice double-cover
group O2

h. The states with the continuum quantum number
JP ¼ 1=2þ transform according to the Gþ

1 irreducible
representation on the lattice. All operators (7) indeed
transform according to Gþ

1 ,

ROms
i ð0ÞR† ¼

X
m0

s

D1=2
msm0

s
ðR†ÞOm0

s
i ð0Þ;

IOms
i ð0ÞI ¼ Oms

i ð0Þ; ð10Þ

TABLE II. The energies of single hadrons π and N for two relevant momenta, based on configuration set “all-4.” Energies in GeVare
obtained by multiplying with 1=a≃ 2.17 GeV.

Hadron n ¼ pL
2π

Interpolator Fit range Fit type χ2=dof Ea (lat) Eca ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
π (0, 0, 0) π 8–18 coshþ exp, c 0.99 0.07558� 0.00098
π (0, 0, 1) π 6–20 2 exp, c 1.91 0.2049� 0.0023 0.2104
N (0, 0, 0) N1;3

n 4–12 2 exp, c 0.39 0.4455� 0.0056
N (0, 0, 1) N1;3

n 4–12 2 exp, c 0.54 0.4920� 0.0072 0.4864

5The σ channel itself was recently simulated with a number of
interpolators in [52].
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as can be checked by using the transformations of indi-
vidual fields N, π, σ [Eqs. (4), (5), and (8)]. The Nπ
operator with such transformation properties was con-
structed using the projection, partial-wave and helicity
methods [51], all leading to ONπ

1;2 in Eqs. (7) and (9).
The partial-wave method indicates that it describes Nπ in
p-wave.
We restrict our calculations to zero total momentum

since parity is a good quantum number in this case. The
positive parity states with J ¼ 1=2 as well as J ≥ 7=2
appear in the relevant irreducible representation Gþ

1 of
O2

h. The observed baryons with J ≥ 7=2 lie above
1.9 GeV, therefore this does not present a complication
for the energy region of our interest. We do not consider
the system with nonzero total momenta since 1=2þ as
well as 1=2− (and others) appear in the same irreducible
representation [53], which would be a significant com-
plication especially due to the negative parity states
Nð1535Þ and Nð1650Þ.

F. Wick contractions for the Roper channel

The 10 × 10 correlation function CijðtÞ (1) for the Roper
channel is obtained after evaluating the Wick contractions
for any pair of source Ōj and sink Oi. The number of Wick
contractions involved in computing the correlation func-
tions between our interpolators [Eqs. (7)] is tabulated in
Table III.
The ON ↔ ON contractions have been widely used in

the past. The 19 Wick contractions ONπ ↔ ONπ and four
Wick contractions ON ↔ ONπ are the same as in the
Appendix of [41], where the negative-parity channel was
studied. The inclusion of ONσ introduces additional 2 · 7þ
2 · 19þ 33 Wick contractions, while the inclusion of three
hadron interpolators like Nππ would require many more.
We evaluate all necessary contractions in Table III using the
distillation method [48] discussed in Sec. II C.
Appendix V illustrates how to handle the spin compo-

nents in evaluating CðtÞ, where one example of the Wick
contraction hΩjONπŌN jΩi is considered.

III. RESULTS

A. Energies and overlaps

Our main result is the energies of the eigenstates in the
JP ¼ 1=2þ channel, shown in Fig. 2(a). These are based

on the 5 × 5 correlation matrix (1) for the subset of
interpolators (7)

complete interpolator set∶ ONπ
1 ; ONn

3 ; ONw
6;8; ONσ

9 ;

ð11Þ

which we refer to as the “complete set” since it contains
all types of interpolators. Adding other interpolators to
this basis, notably O2;4;7;10, which include the Ni¼2

interpolator,6 makes the eigenenergies noisier. The eige-
nenergies En are obtained from the fits of the eigenvalues
λðnÞðtÞ (2), with fit details in Table IV. The horizontal
dashed lines represent the energies of the expected multi-
hadron states mN þ 2mπ and ENð1Þ þ Eπð−1Þ in the non-
interacting limit (the individual hadron energies measured
on our lattice and given in Table II are used for this
purpose throughout this work). The study of this channel
with almost physical pion mass is challenging as far as
statistical errors are concerned. This can be seen from the
effective energies in Fig. 3 which give eigenenergies in
the plateau region.
The ground state (n ¼ 1) in Fig. 2(a) represents the

nucleon. The first-excited eigenstate (n ¼ 2) lies near
mN þ 2mπ and appears to be close to Nð0Þπð0Þπð0Þ in
the noninteracting limit. The next eigenstate n ¼ 3 lies near
the noninteracting energy ENð1Þ þ Eπð−1Þ. It dominantly
couples to ONπ and we relate it to Nð1Þπð−1Þ in the
noninteracting limit. Further support in favor of this
identification for levels n ¼ 2, 3 will be given in the
discussion of Figs. 4 and 5. The most striking feature of
the spectrum is that there are only three eigenstates below
1.65 GeV, while the other eigenstates appear at higher
energy.
The overlaps of these eigenstates with various operators

are presented in Fig. 2(b). The nucleon ground state n ¼ 1

couples well with all interpolators that contain N1. The
operator ONπ couples well with eigenstate n ¼ 3, which

TABLE III. Number of Wick contractions involved in comput-
ing correlation functions between interpolators in Eq. (7).

OinOj ON ONπ ONσ

ON 2 4 7
ONπ 4 19 19
ONσ 7 19 33

TABLE IV. The final energies En of eigenstates in the Roper
channel, which correspond to Fig. 2(a) and effective masses in
Fig. 3. They are obtained from correlated fits based on the
complete interpolator set [Eq. (11)] and configuration set “all-4.”
Energies in GeV can be obtained by multiplying with
1=a≃ 2.17 GeV.

Eigenstate n Fit range Fit type χ2=dof Ea

1 4–12 2 exp, c 0.50 0.4427� 0.0055
2 4–12 2 exp, c 1.04 0.6196� 0.0266
3 4–10 2 exp, c 0.88 0.6873� 0.0195
4 4–7 1 exp, c 0.32 0.9527� 0.0338

6It has been observed already earlier, e.g. [54], that this
interpolator shows no plateau behavior in the effective energy.
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gives further support that this state is related to Nð1Þπð−1Þ.
The operator ONσ couples best with the nucleon ground
state, which is not surprising due to the presence of the
Wick contraction where the isosinglet σ (8) annihilates and
the remaining N1 couples to the nucleon. Interestingly, the
ONσ has similar couplings to the eigenstates n ¼ 2 and
n ¼ 3, which are related to Nð0Þπð0Þπð0Þ and Nð1Þπð−1Þ
in the noninteracting limit. One would expect jhΩjONσjn ¼
2ij ≫ jhΩjONσjn ¼ 3ij if the channel Nπ were decoupled
from Nσ=Nππ. Our overlaps Zn¼2;3

i¼9 suggest that the
channels are significantly coupled. The scenario where
the coupled-channel scattering might be crucial for the
Roper resonance will discussed in Sec. IV.
The features of the spectrum for various choices of the

interpolator basis are investigated in Fig. 4. The complete
set (11) with all types of interpolators is highlighted as
choice 1. If the operator ONπ is removed (choice 3) the
eigenstate with energy ≃ENð1Þ þ Eπð1Þ disappears, so the
Nπ Fock component is important for this eigenstate.
The eigenstate with energy ≃mN þ 2mπ disappears if
ONσ is removed (choice 4), which suggests that this
eigenstate is dominated by Nð0Þπð0Þπð0Þ, possibly mixed
with Nð0Þσð0Þ. Any interpolator individually renders the
nucleon as a ground state (choices 5, 6, and 7).
All previous lattice simulations, except for [19], used just

qqq interpolators. This is represented by choice 5, which
renders the nucleon, while the next state is above 1.65 GeV;
this result is in agreement with most of the previous
lattice results based on qqq operators, discussed in the

Introduction. No interpolator basis renders more than three
eigenstates below 1.65 GeV.
The most striking feature of the spectra in Figs. 2

and 4 is the absence of any additional eigenstate in the
energy region where the Roper resonance resides in
experiment. The eigenstates n ¼ 2, 3 lie in this energy
region, but two eigenstates related to Nð0Þπð0Þπð0Þ and
Nð1Þπð−1Þ are inevitably expected there in dynamical
QCD, even in the absence of the interactions between
hadrons.
A further indication that eigenstate n ¼ 2 is domi-

nated by Nð0Þπð0Þπð0Þ is presented in Fig. 5, where the
spectrum from all configurations is compared to the
spectrum based on configuration sets “all-4” (shown in
other figures) and “all-1.” The horizontal dashed lines
indicate noninteracting energies obtained from the
corresponding sets. Only the central values of E2 and
mN þ 2mπ visibly depend on the configuration set. The
variation of mN þ 2mπ is due to the variations of mπ

pointed out in Sec. II A. The eigenstate n ¼ 2 appears
to track the threshold mN þ 2mπ , which suggests that its
Fock component Nð0Þπð0Þπð0Þ is important. Note that
the full configuration set gives larger statistical errors,
as illustrated via effective masses in Fig. 9 of
Appendix B.

B. Scattering phase shift

In order to discuss the Nπ phase shift, we consider the
elastic approximation where Nπ scattering is decoupled
from theNππ channel. In this case, theNπ phase shift δ can

0

0.2

0.4

0.6

0.8

1

1.2

E
 a

N(1) ( 1)
N(0) (0) (0)

(a)
0

0.5

1

1.5

2

2.5

E
[G

eV
]

2 4 6 8 10
0.0001

0.001

0.01

0.1

1

10

O
1

Nπ

O
3

N
w

O
6

N
n

O
8

N
n

O
9

Nσ

Z
n

i
/max

m
|Z

m

i
|

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10
i

0.0001

0.001

0.01

0.1

1

10

2 4 6 8 10
i

n= 1 n= 2 n= 3

n= 4 n= 5

(b)

FIG. 2. The eigenenergies En (a) and normalized overlaps Zn
i ¼ hΩjOijni (b), which result from correlation matrix (1) based on the

complete interpolator set (11). (a) The energies En from lowest (n ¼ 1) to highest (n ¼ 4). The horizontal dashed lines represent the
energiesmN þ 2mπ and ENð1Þ þ Eπð−1Þ of the expected multi-hadron states in the noninteracting limit. (b) The ratios of overlaps Zn

i with

respect to the largest among jZm¼1;…;5
i j; these ratios are independent on the normalization ofOi. The full and empty symbols correspond

to the positive and negative Zn
i , respectively (Zn

i are almost real). Configuration set “all-4” is used.

PION-NUCLEON SCATTERING IN THE ROPER CHANNEL … PHYSICAL REVIEW D 95, 014510 (2017)

014510-7



be determined from the eigenenergy E of the interacting
state Nπ via Lüscher’s relation [20,21]

δðpÞ ¼ atan

� ffiffiffi
π

p
pL

2Z00ð1; ðpL2πÞ2Þ

�
;

E ¼ ENðpÞ þ EπðpÞ; ð12Þ

where EHðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ p2
p

applies in the continuum limit.
The eigenenergy E (E3 from basis ONπ;N;Nσ or E2 from
ONπ;N) has sizable error for this ensemble with close-to-
physical pion mass. It lies close to the noninteracting
energy ENð1Þ þ Eπð1Þ, as can be seen in Figs. 2, 3 and 9. We
find that the resulting energy shift ΔE ¼ E − ENð1Þ − Eπð1Þ
is consistent with zero (modulo π) within the errors. This
implies that the phase shift δ is zero within a large
statistical error.
We verified this using a number of choices to extract ΔE

and δ. The interpolator set ONπ;N (rightmost column of
Fig. 9) that imitates the elastic Nπ scattering served as a

main choice, while it was compared to other sets also.
Correlated and uncorrelated fits of E as well as ENð1Þ þ
Eπð1Þ were explored for various fit ranges. Further choices
of dispersion relations EπðpÞ and ENðpÞ that match lattice
energies at p ¼ 0, 1 in Table II (e.g., interpolation of E2

linear in p2) were investigated within the Lüscher analysis
to arrive at same conclusions.
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IV. DISCUSSION AND INTERPRETATION

Here we discuss the implications of our results, in
particular that only three eigenstates are found below
1.65 GeV. These appear to be associated with Nð0Þ;
Nð0Þπð0Þπð0Þ and Nð1Þπð−1Þ in the noninteracting limit.
The experimental Nπ scattering data for the amplitude

T ¼ ðηe2iδ − 1Þ=ð2iÞ for this (P11) channel are shown in
Fig. 6 [55].7 The channel is complicated by the fact that Nπ
scattering is not elastic above the Nππ threshold and the
inelasticity is sizable already in the energy region of the
Roper resonance.
The presence of the Nππ channel prevents rigorous

investigation on lattice at the moment. While the three-body
channels have been treated analytically, see for example
[39,57], the scattering parameters have not been determined
in any channel within lattice QCD up to now. For this reason
we consider implications for the lattice spectrum based on
various simplified scenarios. By comparing our lattice
spectra to the predictions of these scenarios, certain con-
clusions on the Roper resonance are drawn.

A. Nπ scattering in elastic approximation

Let us examine what would be the lattice spectrum
assuming experimentalNπ phase shift in the approximation
when Nπ is decoupled from the Nππ channel. In addition
we consider no interactions in the Nππ channel. The elastic

phase shift δ in Fig. 6 allows to obtain the discrete energies
E as a function of the spatial lattice size L via Lüscher’s
equation (12).
Figure 7(a) shows the noninteracting levels for Nð0Þ

(black), Nð0Þπð0Þπð0Þ (blue), and Nð1Þπð−1Þ (red). These
are shifted by the interaction. Also plotted are the eigen-
states (orange) in the interacting Nπ channel derived from
the experimental elastic phase shift with help of Eq. (12).
The elastic scenario should therefore render four eigen-
states below 1.65 GeV at our L≃ 2.9 fm, indicated by the
violet circles in Figs. 7(a) and 7(b). Three noninteracting
levels8 below 1.65 GeV turn into four interacting levels
(violet circles) at L≃ 2.9 fm. The Roper resonance phase
shift passing π=2 is responsible for the extra level.
Our actual lattice data features only three eigenstates

below 1.65 GeV, and no extra low-lying eigenstate is found.
Comparison in Fig. 7(b) indicates that the lattice data is
qualitatively different from the prediction of the resonating
Nπ phase shift for the low-lying Roper resonance, assum-
ing it is decoupled from Nππ.

B. Scenarios with coupled Nπ − Nσ − Δπ scattering

Our analysis does not show the resonance related level.
One reason could be that the Roper resonance is a truly
coupled channel phenomenon and one has to include
further interpolators like Δπ, Nρ and an explicit Nππ three
hadron interpolator. The scattering of Nπ − Nσ − Δπ in the
Roper channel was studied recently using Hamiltonian
effective field theory (HEFT) [8]. The σ and Δ were
assumed to be stable under the strong decay, which is a
(possibly serious) simplification. The free parameters were
always fit to the experimental Nπ phase shift and describe
the data well. Three models were discussed:

(I) The three channels are coupled with a low-lying bare
Roper operator of type qqq.

(II) No bare baryon; the Nπ phase shift is reproduced
solely via coupled channels.

(III) The three channels are coupled only to a bare
nucleon.

The resulting Hamiltonian was considered in a finite
volume leading to discrete eigenenergies for all three
cases, plotted in Fig. 8 for our parameters L ¼ 2.9 fm
and mπ ¼ 156 MeV [8].
In Fig. 8 we compare our lattice spectra with the

prediction for energies of JP ¼ 1=2þ states in three scenar-
ios. The stars mark the high-lying eigenstates Nð1Þσð−1Þ,
Δð1Þπð−1Þ and Nð2Þπð−2Þ [8], which are not expected to
be found in our study since we did not incorporate
corresponding interpolators in (7). The squares denote
predictions from the three scenarios that can be qualitatively
compared with our lattice spectra.
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Our lattice levels below 1.7 GeV disagree with model I
based on the bare Roper qqq core, but are consistent with II
and (preferred) III with no bare Roper qqq core. In those
scenarios the Roper resonance is dynamically generated
from the Nπ=Nσ=Δπ channels, coupled also to a bare
nucleon core in case III. A preference for interpretations II
and III was reached also in other phenomenological studies
[6–9] and on the lattice [19], for example.

C. Hybrid baryon scenario

Several authors, for example [12,13], have proposed that
the Roper resonance might be a hybrid baryon qqqG
with excited gluon field. This scenario predicts the longi-
tudinal helicity amplitude S1=2 to vanish [58], which is not
supported by the measurement [59]. Our lattice simulation
cannot provide any conclusion regarding this scenario since
we have not incorporated interpolating fields of the
hybrid type.

D. Other possibilities for absence
of the resonance related level

Let us discuss other possible reasons for the missing
resonance level in our results, beyond the coupled-channel
interpretation offered above.
We could be missing the eigenstate because we might

have missed important coupling operators. One such can-
didate might be a genuine pentaquark operator. A local five
quark interpolator (with baryon-meson color structure) has
been used by [19] who, however, also did not find a Roper
signal. The local pentaquark operator with color structure
ϵabcq̄a½qq�b½qq�c (½qq�c ¼ ϵcdeqcqdqe) can be rewritten as a
linear combination of local baryon-meson operators BM ¼
ðϵabcqaqbqcÞðq̄eqeÞ by using ϵabcϵade ¼ δbdδce − δbeδcd.
Furthermore, the local baryon-meson operators are linear
combinations of BðpÞMð−pÞ. Among various terms, the
Nð1Þπð−1Þ and Nð0Þσð0Þ are the essential ones for the
explored energy region and those were incorporated in our
basis (7). So, we expect that our simulation does incorporate
the most essential operators in the linear combination
representing the genuine localized pentaquark operator. It
remains to be seen if structures with significantly separated
diquark (such as proposed in [60] for Pc) could be also be
probed by baryon-meson operators like (7).
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It could also be that—contrary to our expectation—using
operators with different quark smearing widths is not
sufficient to scan the qqq radial excitations. One might
have to expand the interpolator set to include nonlocal
interpolators [26] so as to have good overlap with radial
excitations with nontrivial nodal structures. There has been
no study that involved use of such operators along with the
baryon-meson operators and within the single hadron
approach such operators do not produce low-lying levels
in the Roper energy range [26].
Finally, our results are obtained using fermions that do

not obey exact chiral symmetry at finite lattice spacing a,
like in most of the previous simulations. It would be
desirable to verify our results using fermions that respect
chiral symmetry at finite a.

V. CONCLUSION AND OUTLOOK

We have determined the spectrum of the JP ¼ 1=2þ and
I ¼ 1=2 channel below 1.65 GeV, where the Roper
resonance appears in experiment. This lattice simulation
has been performed on the PACS-CS ensemble with
Nf ¼ 2þ 1, mπ ≃ 156 MeV and L ¼ 2.9 fm. Several
interpolating fields of type qqq (N) and qqqqq̄ (Nσ in
s-wave and Nπ in p-wave) were incorporated, and three
eigenstates below 1.65 GeV are found. The energies, their
overlaps to the interpolating fields and additional argu-
ments presented in the paper indicate that these are related
to the states that correspond to Nð0Þ, Nð0Þπð0Þπð0Þ and
Nð1Þπð−1Þ in the noninteracting limit (momenta in units of
2π=L are given in parentheses). This is the first simulation
that finds the expected multi-hadron states in this channel.
However, the uncertainties on the extracted energies are
sizable and the extracted Nπ phase shift is consistent with
zero within a large error.
One of our main results is that only three eigenstates lie

below 1.65 GeV, while the fourth one lies already at about
1.8(1) GeV or higher. In contrast, the experimental Nπ
phase shift implies four lattice energy levels below
1.65 GeV in the elastic approximation when Nπ is
decoupled from Nππ and the later channel is noninteract-
ing. Our results indicate that the low-lying Roper resonance
does not arise on the lattice within the elastic approximation
of Nπ scattering. This points to a possibility of a dynami-
cally generated resonance, where the coupling of Nπ with
Nππ or other channels is essential for the existence of this
resonance. This is supported by comparable overlaps of the
operator ONσ to the second and third eigenstates.
We come to a similar conclusion if we compare our

lattice spectrum to the HEFT predictions for Nπ=Nσ=Δπ
scattering in three scenarios [8]. The case where these three
channels are coupled with the low-lying bare Roper qqq
core is disfavored. Our results favor the scenario where the
Roper resonance arises solely as a coupled channel
phenomenon, without the Roper qqq core.

Future steps towards a better understanding of this
channel include simulations at larger mπL, decreasing the
statistical error and employing qqq or qqqqq̄ operators with
greater variety of spatially extended structures. Simulating
the system at nonzero total momentum will give further
information but will introduce additional challenges: states
of positive as well as negative parity contribute to the
relevant irreducible representations in this case. It would
also be important to investigate the spectrum based on
fermions with exact chiral symmetry at finite lattice spacing.
Our results point towards the possibility that Roper

resonance is a coupled-channel phenomenon. If this is
the case, the rigorous treatment of this channel on the lattice
will be challenging. This is due to the three-hadron decay
channel Nππ and the fact that the three-hadron scattering
matrix has never been extracted from lattice QCD calcu-
lations yet. The simplified two-body approach to coupled
channels Nσ=Δπ (based on stable σ and Δ) cannot be
compared quantitatively to the lattice data at lightmπ where
σ and Δ are broad unstable resonances. This is manifested
also in our simulation, where the ONσ operator renders an
eigenstate with E≃mN þ 2mπ and not E≃mN þmσ.
Pion-nucleon scattering has been the prime source of our

present day knowledge on hadrons. After decades of lattice
QCD calculations we are now approaching the possibility
to study that scattering process from first principles. This
has turned out to be quite challenging and our contribution
is only one step of more to follow.
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APPENDIX A: AN EXAMPLE OF A
WICK CONTRACTION

Here an example of a Wick contraction is sketched in
order to illustrate how one deals with the spin components
at the source and sink. Let us consider the correlation
function for the first nπþ term in ONπ;ms¼1=2 at the sink and
ON;ms¼1=2 at the source (7):
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hn−1=2ð−exÞπþðexÞjp1=2ð0Þi ¼ hðuTΓ2dÞðΓ1dÞμ¼2ðd̄γ5uÞjðūΓ0
1Þμ0¼1ðd̄Γ0

2ūÞi
¼ huαðΓ2ÞαβdβðΓ1dÞμd̄γðγ5ÞγδuδjðūΓ0

1Þμ0 d̄α0 ðΓ0
2Þα0β0 ūβ0 i

¼ −ðΓ1dd̄ÞμγðΓ2ÞαβðΓ0
2Þα0β0 ðγ5Þγδðdd̄Þβα0 ðuūÞδβ0 ðuūΓ0

1Þαμ0 þ three contractions

¼ Mμμ0 þ three contractions ¼ M21 þ three contractions: ðA1Þ

Among four Wick contractions one is shown as an example: there d̄ from the pion at the sink contracts with ðΓ1dÞμ from the
neutron at the sink, while the remaining quark lines follow a standard proton contraction. All indices except for Dirac
indices are omitted for simplicity.
The open Dirac-spinor index is μ0 ¼ 1 at the source and μ ¼ 2 at the sink for this particular term, while all other Dirac

indices are summed over. The open indices μ and μ0 can be represented in the matrix form Mμμ0 where the element M21 is
relevant for the given contraction. Any Wick contraction in our correlation matrix can be represented by some matrixMμμ0 ,
where μ0 ¼ 1 (μ0 ¼ 2) is taken for nucleon with spin up (down) in the source, and μ ¼ 1 (μ ¼ 2) for nucleon with spin up
(down) in the sink.

APPENDIX B: MORE ON THE EFFECTIVE ENERGIES

The effective energies for various choices of interpolator and configuration sets are presented in Fig. 9.
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FIG. 9. Effective energies Eeff
n ðtÞ for various choices of interpolator sets and configuration sets, that are discussed in Sec. II A. The

dashed horizontal lines present noninteracting energies of Nð0Þπð0Þπð0Þ (blue dashed) and Nð1Þπð−1Þ (red dashed) for the
corresponding configuration sets. The fit estimates are shown as red solid curves. The highest energy levels lie near or above
2 GeV and we refrain from fitting those since no clear plateau is observed.
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