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We present a lattice study of a Nambu–Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion
interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy
description of a more fundamental theory. In models of dynamical electroweak symmetry breaking they are
used to endow the Standard Model fermions with masses. In infrared conformal models these interaction,
when sufficiently strong, can alter the dynamics of the fixed point, turning the theory into a (near)
conformal model with desirable features for model building. As a first step toward the nonperturbative
study of these models, we study the phase space of the ungauged NJL model.
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I. INTRODUCTION

It has been recently shown that gauge Yukawa theories,
similar to the Standard Model, even when manifestly
perturbative, can abide compositeness conditions [1].1 It
was shown that, in certain regions of the gauge Yukawa
parameter space, the Higgs-like state is not a propagating
degree of freedom at high energies but a low-energy
manifestation of an effective four-fermion interaction.
The theory becomes at some intermediate energies a gauged
version of the celebrated NJL model [5].
Four-fermion interactions emerge naturally in both tech-

nicolor (TC) [6,7] and composite Goldstone Higgs (CH)
theories [8,9] as an effective description at some intermediate
energies of a more complete theory of fermion mass gen-
eration. A detailed example in which a more fundamental
theory, made by only fermions, yields four-fermion inter-
actions that can generate the topmass has been put forward in
[10] for the minimal fundamental realization unifying both
TC and CH [11]. The four-fermion interactions connecting
the Higgs sector and the top quark are generally seen to be
produced by a high-energy gauge or scalar2 interactions.

An alternative popular way to generate masses for the
Standard Model fermions is known as partial composite-
ness [17] where each SM fermionΨSM couples linearly to a
composite fermionic operator B through an interaction of
the form ΨSMB. Large anomalous dimensions of the
operator B (if stemming from purely fermionic fields)
are then invoked such that the operator ΨSMB is either
super-renormalizable or marginal. Recent studies of the
anomalous dimensions of conformal baryon operators in
SUð3Þ gauge theories suggest that it is hard to achieve the
required anomalous dimensions in purely fermionic theo-
ries [18]. Besides the anomalously large anomalous dimen-
sions one needs yet another level of model building to
connect the composite baryons to the Standard Model
fermions. The authors of Ref. [19] bypassed these hurdles
by constructing a successful example of partial compos-
iteness that makes use of both TC fermions and TC scalars.
The dynamics of these theories is that large anomalous
dimensions are no longer needed, one can give masses to all
the fermions of the Standard Model, no new model building
is required, and therefore they greatly widen the spectrum
of theories to investigate on the lattice. If one insists on
more involved constructions with only fermions the TC
scalars can be viewed as intermediate composite states.
It is a fact that whichever is the microscopic extension of

the Standard Model it will yield, in certain limits, four-
fermion interactions that often reduce to the following three
types:

Leff ¼
a

Λ2
UV

ðΨ̄SMΨSMÞ2 þ
b

Λ2
UV

Ψ̄SMΨSMΨ̄TCΨTC

þ c
Λ2
UV

ðΨ̄TCΨTCÞ2:

The first term, involving only Standard Model fermions,
can be suppressed by the cutoff scale ΛUV, while the other
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1This work completes and extends previous results and
pioneering work [2–4].

2Four fermion operators emerge in several other constructions
such as bosonic technicolor [12–15] where a TC-singlet elemen-
tary Higgs is added to the composite TC-fermion dynamics. One
can also naturalize these theories by supersymmetrizing them [16].
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two terms may be enhanced by the dynamics of the
technicolor sector.
According to Holdom [20], a model of walking dynam-

ics with a large mass anomalous dimension can enhance the
SM fermion mass term dynamically. It was later suggested
[21] that walking dynamics could be achieved by having
the third, Nambu–Jona-Lasinio (NJL) type, term induce
chiral symmetry breaking in an otherwise infrared con-
formal technicolor model [21,22]. We aim therefore to
study the nonperturbative dynamics of gauged NJL models.
We will ultimately study the gauged NJL model with two

fermions in the adjoint representation of a SUð2Þ gauge
group. As a first step we investigate an ungauged NJL
model on the lattice with Wilson fermions. We only retain
the third four-fermion term, involving only TC fermions.
A similar model has been studied previously with the goal
of understanding the phase structure of Wilson fermions
[23–25]. Models with staggered fermions have been
studied in previous works [26–30] and chiral symmetry
breaking has been observed. In this study we map the phase
space of the model by studying the expectation values of
relevant fermion bilinears and the mass spectrum of the
lightest mesonic states. The results are qualitatively similar
to the mean-field model studied in [24].
This work is a necessary initial step towards a systematic

study of four-fermion interactions and their impact on
models of dynamical symmetry breaking.

II. THE MODEL

We study the NJL model with two flavors of fermions
and two colors. The usual action of the NJL model
preserves an SULðNFÞ × SURðNFÞ subgroup of the
SUð2NFÞ flavor symmetry. When representing the fermion
fields with pseudofermions, the action must be rendered
quadratic using auxiliary fields and the fermion determi-
nant becomes complex.3 We will therefore study a model
that preserves just a ULð1Þ ×URð1Þ subgroup of the flavor
symmetry.
The model with a nonzero quark mass is defined by the

Lagrangian

~LðxÞ ¼ Ψ̄ðxÞ½DW þm0 þ σðxÞ þ π3ðxÞiγ5τ3�ΨðxÞ

þ σðxÞ2 þ π3ðxÞ2
4γ2

; ð1Þ

where DW is the Wilson Dirac operator. After integrating
out the auxiliary fields we recover the Lagrangian

LðxÞ ¼ Ψ̄ðxÞðDW þm0ÞΨðxÞ
− γ2½ðΨ̄ðxÞΨðxÞÞ2 þ ðΨ̄ðxÞiγ5λ3ΨðxÞÞ2� ð2Þ

and the equations of motion for the auxiliary fields are

hσðxÞi ¼ −2γ2hΨ̄ðxÞΨðxÞi; ð3Þ

hπ3ðxÞi ¼ −2γ2hΨ̄ðxÞiγ5τ3ΨðxÞi: ð4Þ

It is useful to gain insight into the model via mean-field
computations [23–25]. A sketch of the phase diagram is
shown in the left panel of Fig. 1 with the lattice size
83 × 16. The right panel shows a comparison to the
numerical results in the next section. The solid lines in
the figure show second order transitions where the auxiliary
field π3 develops an expectation value. Inside the region
outlined by the critical lines, around m0 ¼ −4, the expect-
ation value hπ3i ≠ 0 and parity and flavor symmetries are
broken. The lines also correspond to a zero pseudoscalar
meson mass, and therefore to zero quark mass and the
restoration of chiral symmetry.
Line 1 corresponds to the restoration of chiral symmetry

in the unbroken phase. The parity broken phase below line
1 is narrow and disappears at the infinite volume limit.
There is only a small change in hσi when crossing this
phase. Line 2 corresponds to the critical line with sponta-
neously broken chiral symmetry. The parity broken phase is
wider and since the model is symmetric around m0 ¼ −4,
hσi changes sign across the broken phase. The critical
coupling is close to γ ¼ 0.55a.
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FIG. 1. The phase diagram of the lattice NJL model. There is a
flavor-parity broken phase aroundm0 ¼ −4, where the expectation
value of π3 is nonzero. This phase is surrounded by critical lines
where the pseudoscalar meson has zero mass. In the zoomed plot
on the right, we compare the mean-field estimate to the numerical
results described in Sec. III. The red dashed lines show the range of
masses studied at each γ. The open circles represent the observed
critical line in the chirally symmetric phase (line 1). The crosses
show an unphysical chirally broken critical line (line 3) and the
asterisks show a physical chirally broken critical line (line 2).
Finally, at the point marked with both a circle and a cross, the status
of spontaneous chiral symmetry breaking is unclear.

3It is possible to render the fermion determinant positive if
the number of colors is even and there is no gauge interaction
[23–25]. The remedy is not applicable here since we plan to
generalize the study to a gauged model.
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III. NUMERICAL RESULTS

In order to study the model from first principles, we
generate configurations of σðxÞ and π3ðxÞ using the hybrid
Monte Carlo (HMC) algorithm. We consider lattices of size
V ¼ a4L3T, with L ¼ 8 and T ¼ 16, except for a few
simulations studying volume scaling. We use a second
order integrator with trajectory length tHMC ¼ 1. The step
size is selected so that the acceptance rate is above 0.8.
First we study the phase diagram by measuring the

volume averaged expectation values of the π3 and σ fields.
The results shown have been obtained from 100 HMC
trajectories after thermalization. We choose six values of γ
from 0.4a to 0.65a. In Fig. 2 we show their behavior at two
representative values of the coupling, γ ¼ 0.4a, which lies
on the chirally symmetric side, and γ ¼ 0.6a, which is on
the broken side. The critical lines observed are also shown
in the right panel in Fig. 1.
The expectation value

hπi ¼ 1

V

�����
X
x

π3ðxÞ
����
�

ð5Þ

indeed becomes nonzero on lines 2 and 3. Line 1, however,
is not observed from the behavior of hπi. The expectation
value is likely to be too small, or the broken phase too
narrow, to be observed with the current precision. This
critical line can be identified by studying the expectation
value

hσi ¼ 1

V

�X
x

σðxÞ
�
: ð6Þ

This quantity is related to the chiral condensate and has a
discontinuity on line 1 if the boundary conditions for the
fermion fields are periodic. The discontinuity observed at
γ ¼ 0.4a is shown in Fig. 2 in the right panel. The
measurable hσi also changes behavior on the other critical

lines, decreasing as hπi increases and changing sign at
m0 ¼ −4.
The order of the transition on line 2 is of special interest. If

the transition is second order the correlation length of the
order parameter hπ3i ¼ 2γ2hψ̄γ5iτ3ψi diverges and thus the
mass of the corresponding pseudoscalar meson is zero. We
haveverified that the order parameter is zero on the symmetric
side by measuring it at a few lattice sizes and studying the
scaling. The values are shown in Fig. 3.We have then studied
the value of the order parameter in the critical region with
L ¼ 8 and L ¼ 12. Scaling fits to the function

hπi ¼ Cπjm0 −mcjβ ð7Þ
are shown in Fig. 4. We find β ¼ 0.65ð2Þ and 0.56(2) with
L ¼ 8 and 12 respectively. The susceptibility

χπ ¼ Vðhπ2i − hjπji2Þ ð8Þ
is strongly peaked at the transition and performing a similar
fit to

χπ ¼ Cχ jm0 −mcj−ν ð9Þ
we find ν ¼ 0.83ð5Þ and ν ¼ 0.90ð6Þ with L ¼ 8 and 12
respectively.
The lattice value for the chiral condensate is related to hσi

by Eq. (4). As usual, the chiral condensate suffers from
additive renormalization and the renormalized value cannot
be read directly from themeasured value of hσi. Nevertheless
the large change in thebehavior of hσiwhencrossing line 2, as
compared to the small discontinuity on line 1, points to a first
order transition between a chirally symmetric and a broken
phase. This can be verified in a straightforward way by
studying the mass of the Goldstone boson of the symmetry
breaking and comparing to other meson masses.
Since the spontaneous breaking of the chiral symmetry

breaks only one generator, there is only one Goldstone
boson. This is a pseudoscalar meson related to the diagonal
subgroup of the isospin triplet. There are four additional
pseudoscalar mesons, two of which are also components of
the isospin triplet. The difference between the diagonal
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FIG. 2. The expectation values of the auxiliary fields with
varying m0 and γ ¼ 0.4a (left) and γ ¼ 0.6a (middle). The plot
on the right shows the region marked by dashed lines in the
leftmost one. The parity broken phase is clearly marked by the
nonzero expectation value of the π3 field. The model is symmetric
around m0 ¼ −4 and we see the condensate hσi change sign
when crossing the parity broken phase. In the zoomed plot on the
right we see a small discontinuity in hσi, which is expected on a
finite lattice when chiral symmetry is not broken.
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FIG. 3. The order parameter hπi with γ ¼ 0.6a on the sym-
metric (positive mass) side of line 2 (left) and a second order
infinite volume extrapolation at m0 ¼ −2.5 (right).
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meson and the others is encoded in a disconnected
contribution in the channel, directly related to the field
π3ðxÞ. More details on the evaluation of the disconnected
contribution are given in the Appendix. To reduce the noise
in the disconnected channel of the pseudoscalar case we
measure the correlator using two interpolating operators
with the generalized eigenvalue method and use hopping
parameter expansion in the inversion of the fermion matrix.
In the case of the vector meson, the disconnected con-
tribution does not present a problem.
For each parameter set we generate between 2000 and

20000 configurations separated by 20 HMC trajectories.
Even with the large number of measurements we must note
that in many cases we do not reach a plateau in the effective
mass and that there may be systematic errors in the
pseudoscalar masses larger than the statistical errors. The
error is less than 10% and we consider our accuracy
sufficient for an exploratory study of the phase diagram.
The field π3ðx; tÞ can also serve as an interpolating

operator for the pseudoscalar meson. The evaluation of this
correlation function does not require inverting the fermion
matrix and is therefore efficient. We measure it using
between 20000 and 100000 configurations for each param-
eter set separated by 10HMC trajectories. The result is noisy
at large mass and at small γ. We report this measurement as
mπ2 when it can be performed with sufficient accuracy.
It is worth noting that the diagonal pseudoscalar meson

mass is not necessary for studying the phase diagram. The
disconnected contribution is small in the vector correlation
function and absent in the nondiagonal triplet channels.
The masses of these mesons can be estimated accurately

with substantially fewer data. The critical line on the
chirally symmetric side (line 1) can be identified easily
by finding the bare mass where all masses are zero. On the
broken side these masses should remain nonzero at the
critical line (line 2). Here the critical line can be identified
from the expectation value hπi and as long as the transition
is second order, the pseudoscalar mass is zero on the
critical line.
In Figs. 5, 6 and 7 we show the vector meson mass (mρ)

and diagonal pseudoscalar mass measured from the usual
fermionic correlator (mπ) and from the correlator of the
field π3 (mπ2). We also show the order parameter for the
parity broken phase hπ3i. We study finite size effects by
measuring the masses with lattice size 24 × 123 at a few
interesting values of m0 and γ. At small coupling,
0.4a ≤ γ ≤ 0.5a, we see the two expected critical lines.
At large m0 the pseudoscalar and the vector masses are
identical and approach zero linearly around the first critical
line, line 1 in Fig. 1. On the negative mass side, the vector
and pseudoscalar masses split and the pseudoscalar mass
becomes zero at a second critical line, line 3 in Fig. 1. At
the second critical line the model enters the wider broken
parity region and we see a nonzero value for hπi. The
difference between mρ and mπ at line 3 implies a nonzero
chiral condensate.
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FIG. 5. The pseudoscalar and vector meson masses with
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FIG. 6. The pseudoscalar and vector meson masses and hπi
with the coupling γ ¼ 0.5a (left) and 0.55a (right).
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At γ ¼ 0.55a the two critical lines have merged. At
current accuracy it is not possible to tell chiral symmetry is
broken in this case. The results from the larger lattice size,
however, show no splitting between the vector and pseu-
doscalar masses. At large coupling, γ ¼ 0.6a and 0.65a, we
observe only one critical line, corresponding to line 2 in
Fig. 1. At the critical line, the vector mass remains nonzero,
while the pseudoscalar mass becomes zero, implying that a
condensate has formed and the chiral symmetry is broken.

IV. CONCLUSIONS

We have studied the phase space of the Nambu–Jona-
Lasinio model with Wilson fermions. By measuring the
expectation values of the auxiliary fields hσi and hπi,
related respectively to the chiral condensate and a flavor-
parity breaking condensate, we were able to identify the
critical lines with zero quark mass.
We have measured the masses of the Goldstone boson

when chiral symmetry breaks as well as the vector meson as
functions of the bare mass and coupling. We find evidence
of the formation of a condensate and chiral symmetry
breaking above the critical coupling γ ≈ 0.55a. In the
chirally symmetric phase the vector meson mass is zero
at the critical line and provides a convenient way of
identifying it. In the chirally broken phase the vector
meson mass remains nonzero, but the critical line can be
identified by the formation of the parity breaking con-
densate hπi. The Goldstone boson mass is always zero on
the critical lines, but it is inconvenient to measure due to
disconnected contributions.
The phase structure of the model, as a function ofm0 and

γ, is shown in Fig. 1, along with the mean-field estimate
[23–25]. The critical lines are indicated by local minima in
the pseudoscalar meson mass as a function of m0. The
breaking of chiral symmetry is indicated by a nonzero value
of the vector meson mass at the critical line.
The result agrees qualitatively with the mean-field esti-

mate. The exact location of the critical line deviates notice-
ably from the estimate, with the difference increasing with
the coupling. In general the effect is that of increasing γ.

Since the phase structure of the model can be mapped
clearly and agrees well with expectation, we conclude that
any systematic effects are under control. We have observed
chiral symmetry breaking in the model and can distinguish
between the chirally symmetric and broken phases. The
next step is to include the gauge interaction and study the
phase diagram of the gauged NJL model with two fermions
in the adjoint representation of a SUð2Þ gauge group.
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APPENDIX: DISCONNECTED DIAGRAMS

The Goldstone boson of spontaneous chiral symmetry
breaking, the diagonal isotriplet pseudoscalar meson,
differs from other pseudoscalar mesons by a disconnected
term in the propagator. The term is directly related to the
auxiliary field π3 and disappears with zero four-fermion
coupling. Disconnected contributions arise also in other
diagonal isotriplet channels, but appear to be negligible in
the vector channel.
The isotriplet meson masses are measured from corre-

lators of the type

CΓðt0Þ

¼ 1

V3

�X
y

ðΨ̄ð0; 0ÞΓτaΨð0; 0ÞÞ†Ψ̄ðy; t0ÞΓτaΨðy; t0Þ
�

¼ −
1

V3

�X
y

Tr½ðSðy; t0; 0; 0ÞΓτaÞ†Sð0; 0; y; t0ÞΓτa�
�

þ 1

V3

�X
x;y;t

Tr½Sð0; 0; 0; 0ÞΓτa�†Tr½Sðy; t0; y; t0ÞΓτa�
�
;

ðA1Þ

where τa are Pauli matrices in flavor space. The second
term on the right-hand side in Eq. (A1) is called the
disconnected contribution. The propagator S is diagonal in
flavor space and the trace is clearly zero when a ¼ 1, 2.
With a ¼ 3 the trace becomes Tr½Sτ3� ¼ Tr½Su − Sd�. This
can be nonzero when the pseudoscalar auxiliary field π3 is
nonzero.
Writing the propagator as

Su;d ¼
1

Mu;d
¼ M†

u;d

M†
u;dMu;d

ðA2Þ

¼
P

μ∂μγμ þ ðσ � iπ3γ5Þ
M†M

ðA3Þ
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FIG. 7. The pseudoscalar and vector meson masses and hπi
with the coupling γ ¼ 0.6a (left) and 0.65a (right).
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the disconnected part is

TrðSu − SdÞΓ ¼ Tr
2iπ3γ5
M†M

Γ: ðA4Þ

At γ ¼ 0 the auxiliary field π3 is restricted to zero and the
disconnected contribution disappears.
We observe that the disconnected term is not significant

in the vector channel. This may be understood in pertur-
bation theory around γ ¼ 0: the disconnected term appears
only at fourth order in γ in the vector channel, but arises at
the second order in the pseudoscalar channel. In Fig. 8 we
compare the connected and disconnected contributions in
the pseudoscalar and vector channels at γ ¼ 0.65a,
L ¼ 83 × 16 and m0 ¼ 2.9.
While the disconnected term appears in all diagonal

isotriplet correlators, it has a different weight in different
channels. The Γ ¼ γ5 channel mixes maximally with the π3
field and has a large disconnected contribution. In the
Γ ¼ γ0γ5 channel the contribution is somewhat smaller. In
most cases we use the generalized eigenvalue method

within the space of these two channels to measure the
pseudoscalar meson mass. At small coupling γ ¼ 0.4a and
0.45a and am0 > −2.4, the field π3 has large variation and
the first channel becomes noisy. In this region we use only
the second channel.
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