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The pole structure of the Λð1405Þ is examined by fitting the couplings of an underlying Hamiltonian
effective field theory to cross sections of K−p scattering in the infinite-volume limit. Finite-volume
spectra are then obtained from the theory, and compared to lattice QCD results for the mass of the
Λð1405Þ. Momentum-dependent, nonseparable potentials motivated by the well-known Weinberg-
Tomozawa terms are used, with SU(3) flavor symmetry broken in the couplings and masses. In
addition, we examine the effect on the behavior of the spectra from the inclusion of a bare triquarklike
isospin-zero basis state. It is found that the cross sections are consistent with the experimental data with
two complex poles for the Λð1405Þ, regardless of whether a bare-baryon basis state is introduced or not.
However, it is apparent that the bare baryon is important for describing the results of lattice QCD at high
pion masses.
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I. INTRODUCTION

Strange quark phenomenology has always been of great
interest to both theoretical and experimental physicists. It
exhibits some properties of both light and heavy quarks.
However, unlike either the light quark limit or the heavy
quark limit, it is difficult to explain the phenomena of
strange quark physics comprehensively simply by applying
chiral symmetry for zero-mass quarks and heavy-quark
symmetry for infinite-mass quarks. Corrections to these
symmetries and the treatment of symmetry-breaking effects
provide important insight into the internal structure of
hadrons.

A. The Λð1405Þ
The Λð1405Þ is a resonant state with strangeness number

S ¼ −1, and IðJPÞ ¼ 0ð1
2
−Þ. It also has been shown to

interact strongly with nearby meson-baryon states, the
details of which are intimately dependent on its internal
structure. The Λð1405Þ is close to the threshold of K̄N and
mainly decays to the πΣ state. With the interactions of just
these two channels in a Hamiltonian model, the data of K̄N
scattering at low energy can be fit well, and the Λð1405Þ
resonance can be generated. Corrections from the inter-
action with ηΛ and KΞ are also usually considered in
studying this problem.
A two-pole structure of the Λð1405Þ has been proposed

in many works [1–4]. Many groups claim these two poles
lie on one Riemann sheet. Besides the traditional pole
around 1420 − 25i MeV, there is another pole with the
position varying widely in different models or in different
fits [5–7]. The second pole is not mentioned in every
work [8].

B. Three-quark core contributions

The basis of the quark model is that there is a three-
quark state which provides the dominant contribution to
the properties of all baryons. For example, the nucleon
is considered to be dominated by a bare nucleon state
dressed by smaller contributions from πN, πΔ, etc. [9,10].
However, the discussion regarding the Λð1405Þ remains
ongoing, and deserves careful analysis.
Lattice QCD calculations are able to excite the Λð1405Þ

with local three-quark operators [11–13] suggesting a
nontrivial role for a three-quark component. However,
lattice QCD calculations of the strange magnetic form
factor of the Λð1405Þ have revealed the Λð1405Þ to be
dominated by a molecular K̄N bound state at light quark
masses [13,14]. Attraction between the K̄ and N provides
clustering which avoids the common volume suppression
of weak-scattering states. A small bare-state component
also provides a mechanism for the excitation of this state
with local three-quark operators.
As one varies the light quark mass in lattice QCD, one

expects that the “bare,” triquark state will tend to be
more important as chiral loops are suppressed in that
region [13–15]. For example, one can fit the experimental
data very well in the absence of a bare-state contribution
with the aforementioned two-particle channels [16]. Such
an approach also gives good predictions for the lattice
results at small pion masses where the unitary chiral
extrapolation works.
However, in the high-pion-mass region the energies of

the lattice QCD eigenstates in the finite volume spectrum
are much smaller than the thresholds of the reaction
channels. It is not possible to form a bound state with a
binding energy of more than 100 MeV without a large
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increase in the coupling parameters as the pion mass
increases. While this cannot be ruled out by our analysis,
we consider the interpretation in terms of a bare (three-
quark) state to be more natural.
Identification of the Λð1405Þ in the finite volume of the

lattice was performed [13,14] using a simple Hamiltonian
effective field theory model focusing on the flavor singlet
couplings of the πΣ, K̄N, ηΛ, and KΞ channels to the bare
basis state required by the admission of a three-quark
configuration carrying the quantum numbers of the
Λð1405Þ. Having established that the Λð1405Þ is a molecu-
lar K̄N bound state [13,14] it is important to examine the
finite-volume spectrum in a calculation that does not
distinguish the flavor symmetry of the isospin-zero state.
One should not only examine the Λð1405Þ, but also
examine the low-lying excitations observed in Ref. [11],
associated with the octet-flavor interpolating fields used in
the lattice correlation matrix.

C. Models of the Λð1405Þ
Many models have been applied to the Λð1405Þ

[1–8,13,14,16–29]. Beginning with the study based on
SU(3) chiral symmetry within the cloudy bag model
[27,28], Weinberg-Tomozawa terms have been successful
in describing the most prominent interactions. Dimensional
regularization was used in solving the Bethe-Salpeter
equation with the full Weinberg-Tomozawa potential
in Refs. [7,21]. It is also common to use a K-matrix
approach in which the potentials are used with an on-shell
approximation to obtain the scattering amplitude [2,5,20].
In that case, the potential is often taken to be momentum
independent. Regularization with a cutoff was taken in
Refs. [8,25]. Separable potentials are favored since they are
easy to solve [8].
Rather than effective Weinberg-Tomozawa potential,

hadron-exchange potentials are used to study Λð1405Þ
[30,31]. This dynamical coupled-channel approach is also
discretized to study the spectrum on the lattice [32].
In this work, we use Hamiltonian effective field theory to

analyze both the available experimental data in infinite
volume and the results from lattice QCD at finite volume.
Hamiltonian effective field theory is a powerful tool for
analyzing the lattice results and examining the structure of
the states on the lattice [13,14,33–36]. Moreover, it can be
applied to calculate the scattering processes in infinite
volume. The Weinberg-Tomozawa potentials are included
in a Hamiltonian model of the Λð1405Þ, which matches
finite-volume effective field theory. The on-shell approxi-
mation is not used, and thus the potentials are momentum
dependent and nonseparable. The effect of the bare baryon
is carefully examined by comparing the results of two
scenarios, with and without a bare baryon basis state in the
formulation of the Hamiltonian matrix. The two-pole
structure of the Λð1405Þ is also examined.

D. Outline

The formalism for our Hamiltonian effective field theory
is presented in Sec. II. In constructing the Hamiltonian, we
consider two scenarios: one in which the Λð1405Þ is
dynamically generated purely from the πΣ, K̄N, ηΛ, and
KΞ interactions, and one also including a bare-baryon basis
state to accommodate a three-quark configuration carrying
the quantum numbers of the Λð1405Þ.
The forms of the interactions are described in Sec. II A.

We then proceed to solve the Bethe-Salpeter equation and
obtain the cross sections and pole positions at infinite
volume via the T-matrix in Sec. II B. To compare with
lattice QCD results, the Hamiltonian is discretized in
Sec. II C and solved to obtain results at finite volume.
In Sec. III, the numerical results are presented. The

experimental data for K̄N scattering is fit in Sec. III A and
the calculation is extended to varying quark masses in
Sec. III B. Then the finite-volume spectrum of the
Hamiltonian model in our two scenarios is compared to
lattice QCD results. Section III C presents results in the
absence of a bare-baryon basis state and Sec. III D
illustrates how the inclusion of a bare-baryon basis state
resolves discrepancies and provides an explanation of
which states are seen in contemporary lattice QCD calcu-
lations. A brief summary concludes in Sec. IV.

II. FRAMEWORK

A. Hamiltonian

To study the data relevant to the Λð1405Þ, we consider
the interactions among jπΣi, jK̄Ni, jηΛi, jKΞi, and the
isospin-1 channel jπΛi. We use the following Hamiltonian
to describe the interactions:

HI ¼ HI
0 þHI

int; ð1Þ

where the superscript I is the isospin.
In the center-of-mass frame, the kinetic-energy

Hamiltonian HI
0 is written as

HI
0 ¼

X
B0

jB0im0
BhB0j þ

X
α

Z
d3~k

× jαð~kÞi½ωαMðkÞ þ ωαBðkÞ�hαð~kÞj; ð2Þ

where jαi ¼ jπΣi; jK̄Ni;… and

ωXðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X þ k2
q

ð3Þ

is the noninteracting energy of particle X. The subscripts
αM and αB represent the meson and baryon separately in
channel α.
The interaction Hamiltonian of this system includes two

parts
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HI
int ¼ gI þ vI: ð4Þ

gI describes the vertex interaction between the bare-baryon
and two-particle channels α

gI ¼
X
α;B0

Z
d3~kfjαð~kÞiGI†

α;B0
ðkÞhB0j

þ jB0iGI
α;B0

ðkÞhαð~kÞjg; ð5Þ

where we use the form of the ordinary S-wave coupling
for GI

GI
α;B0

ðkÞ ¼
ffiffiffi
3

p
gIα;B0

2πf

ffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p
uðkÞ: ð6Þ

A dipole form factor, uðkÞ ¼ ð1þ k2=Λ2Þ−2, with regulator
parameter Λ ¼ 1 GeV is used to regulate the calculation. In
the scenario without a bare baryon, we set the couplings
gIα;B0

¼ 0 to turn off the effect of jB0i.
The use of a dipole regulator has received a great deal

of attention in the literature. It has been clearly estab-
lished that this approach, known as finite-range regulari-
zation (FRR), is equivalent to dimensionally regulated
chiral perturbation theory (χPT) in the power counting
regime [37,38], roughly below a 300-MeV pion mass,
corresponding to the few lowest lattice data points. At
higher pion masses the formal χPT expansion fails to
converge. FRR provides a model for the behavior of the
chiral loops at larger meson mass which has proven
successful over a very wide range of pion masses for
many observables. By fitting the theory to both the
experimental data and the lattice data, the other param-
eters in the model acquire an implicit dependence on the
regulator parameter, which removes the formal depend-
ence on that mass parameter. In our work, all parameters
and the bare-state mass are appropriate to the regulator
mass used, namely, 1 GeV.
We define the direct two-to-two particle interaction vI by

vI ¼
X
α;β

Z
d3~kd3~k0jαð~kÞiVI

α;βðk; k0Þhβð~k0Þj; ð7Þ

where we use the potential derived from the Weinberg-
Tomozawa term [39]

VI
α;βðk; k0Þ ¼ gIα;β

½ωαMðkÞ þ ωβMðk0Þ�uðkÞuðk0Þ
8π2f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωαMðkÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωβMðk0Þ

p : ð8Þ

We do not use the so-called on-shell approximation in this
work. We keep the form ωαMðkÞ þ ωβMðk0Þ rather than
replacing it with 2E −mαB þmβB in Eq. (8). Our potentials
are momentum dependent and not separable.

B. T-Matrix

We can evaluate the T-matrices for two-particle scatter-
ing by solving a three-dimensional reduction of the
coupled-channel Bethe-Salpeter equation in each partial
wave

TI
α;βðk; k0;EÞ

¼ ~VI
α;βðk; k0;EÞ þ

X
γ

Z
q2dq

× ~VI
α;γðk; q;EÞ

1

E − ωγðqÞ þ iϵ
TI
γ;βðq; k0;EÞ; ð9Þ

where ωαðkÞ is the total kinetic energy of channel α,

ωαðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α1 þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α2 þ k2
q

; ð10Þ

and the coupled-channel potential can be obtained from the
interaction Hamiltonian

~VI
α;βðk; k0;EÞ ¼

X
B0

GI†
α;B0

ðkÞ 1

E −m0
B
GI

β;B0
ðk0Þ

þ VI
α;βðk; k0Þ: ð11Þ

The cross section σᾱ;β̄ for the process β̄ → ᾱ is

σᾱ;β̄ ¼
4π3kαcmωcm

αMω
cm
αBω

cm
βM
ωcm
βM

E2
cmk

β
cm

jT ᾱ;β̄ðkαcm; kβcm;EcmÞj2;

ð12Þ
where T ᾱ;β̄ is the linear combination of T0

α;β and T1
α;β

multiplied by the corresponding Clebsch-Gordan coeffi-
cients, e.g., TK̄0n;K−p ¼ −1=2T0

K̄N;K̄N þ 1=2T1
K̄N;K̄N . The

superscript and subscript “cm” refer to the center-of-mass
frame.
To find the poles of T0

α;βðk; k0;EpoleÞ, we replace the
integration variable q with q × expð−iθÞ, for γ ¼ πΣ in
Eq. (9), and maintain 0 ≪ θ < π=2. That is, we search for
poles of the Λð1405Þ on the second Riemann sheet, which
is adjacent to the physical sheet separated by the cut
between the πΣ and K̄N thresholds.

C. Finite-volume matrix Hamiltonian model

We can discretize the Hamiltonian in a box with length L
for I ¼ 0. A particle can only carry momenta kn ¼ffiffiffi
n

p
2π=L in the box, where n ¼ 0; 1;…. The noninteracting

isospin-zero Hamiltonian can be written as

H0
0 ¼ diagfm0

B;ωπΣðk0Þ;ωK̄Nðk0Þ;…;ωπΣðk1Þ;…g;
ð13Þ

and the interacting Hamiltonian is
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H0
int ¼

0
BBBBBBBBBBBBB@

0 G0
πΣ;B0

ðk0Þ G0
K̄N;B0

ðk0Þ … G0
πΣ;B0

ðk1Þ …

G0
πΣ;B0

ðk0Þ V0
πΣ;πΣðk0; k0Þ V0

πΣ;K̄Nðk0; k0Þ … V0
πΣ;πΣðk0; k1Þ …

G0
K̄N;B0

ðk0Þ V0
K̄N;πΣðk0; k0Þ V0

K̄N;K̄Nðk0; k0Þ … V0
K̄N;πΣðk0; k1Þ …

..

. ..
. ..

. . .
. ..

. . .
.

G0
πΣ;B0

ðk1Þ V0
πΣ;πΣðk1; k0Þ V0

πΣ;K̄Nðk1; k0Þ … V0
πΣ;πΣðk1; k1Þ …

..

. ..
. ..

. . .
. ..

. . .
.

1
CCCCCCCCCCCCCA

; ð14Þ

where

G0
α;B0

ðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�
3=2

G0
α;B0

ðknÞ; ð15Þ

V0
α;βðkn; kmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞC3ðmÞp

4π

�
2π

L

�
3

V0
α;βðkn; kmÞ: ð16Þ

C3ðnÞ represents the number of ways of summing the
squares of three integers to equal n.
One obtains the energy levels and the composition of the

energy eigenstates in finite volume by solving the eigen-
equation of the total isospin-zero Hamiltonian H0 ¼
H0

0 þH0
int. The results can be confronted with results from

lattice QCD to evaluate the merit of the model.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the cross sections of K−p and the
eigenenergy spectrum for the Λð1405Þ are calculated in
our two scenarios: one in which the Λð1405Þ is dynami-
cally generated purely from the πΣ, K̄N, ηΛ, and KΞ
interactions, and one also including a bare-baryon basis
state to accommodate a three-quark configuration carrying
the quantum numbers of the Λð1405Þ. The poles for the
Λð1405Þ resonance are determined, and the associated
structure is examined.
First, we obtain the couplings of the Hamiltonian field

theory by fitting the cross sections of K−p → K−p,
K−p → K̄0n, K−p → π−Σþ, K−p → π0Σ0, K−p →
πþΣ−, and K−p → π0Λ at infinite volume. With these
couplings, the eigenenergy levels can be calculated at finite
volume. We compare them with the lattice QCD results and
discuss the structure of the Λð1405Þ.

A. Cross sections and poles

Interactions in both the I ¼ 0 and I ¼ 1 channels
contribute to the cross sections of K−p. Since the aim of
this work is to study the Λð1405Þ at I ¼ 0, we include πΣ,
K̄N, ηΛ, and KΞ channels for I ¼ 0, while we only include
πΣ, K̄N, and πΛ channels for I ¼ 1.

Since the threshold of ηΛ and KΞ are far away from the
energy region of experimental data, the cross sections are
not very sensitive to their couplings. Therefore, we set
g0K̄N;ηΛ, g

0
πΣ;KΞ, g

0
ηΛ;KΞ, and g0KΞ;KΞ at their SUfð3Þ-limit

couplings but with one global adjustable constant g0,

g0K̄N;ηΛ ¼ −3=
ffiffiffi
2

p
g0; g0πΣ;KΞ ¼ −

ffiffiffiffiffiffiffiffi
3=2

p
g0;

g0ηΛ;KΞ ¼ 3=
ffiffiffi
2

p
g0; g0KΞ;KΞ ¼ −3g0: ð17Þ

Comparing our two scenarios, the difference lies mainly
in the I ¼ 0 channel where a bare baryon can be included or
omitted. We first fit the cross sections in the scenario
without a bare baryon. After that, we leave the couplings in
the channel I ¼ 1 fixed, and adjust those in the I ¼ 0
channel when incorporating a bare-baryon contribution.
Just with limited experimental data for cross sections, we

obtained a bare mass which can generate a pole close to that
of Λð1670Þ. The mass is far away from the fit energy
region, and the properties of the bare state suffer from large
uncertainties. In addition to the data for cross sections, we
also fit the two masses from the CSSM group at the largest
two pion masses and make the pole in the infinite volume
close to ð1670� 10Þ − ð18� 7Þi MeV at the same time in
the second scenario.
The results of our fits to the cross sections with Eq. (12)

are illustrated in Fig. 1. The cross sections are described
well, regardless of whether a bare-baryon contribution is
introduced in the I ¼ 0 channel or not. The fit parameters
are provided in Table I.
Two poles are found for the Λð1405Þ in both scenarios.

The pole positions are consistent with results from other
groups, briefly reviewed in Table II. The real parts of the
poles are very close to the thresholds of K̄N and πΣ.
In our scenario without the bare state, we cannot find a

pole for Λð1670Þ. However, in the scenario with the bare
baryon, we can find a pole corresponding to Λð1670Þ at
1660 − 30i MeV. Our result provides a possible candidate
for Lambda(1670) which is mainly a bare state in
our model.
The small differences in the K−p cross sections and the

Λð1405Þ pole positions between the two scenarios indicate
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that the Λð1405Þ contains little of the bare baryon compo-
nent at infinite volume.
To explore the shape of the Λð1405Þ, we show the πΣ

invariant mass distribution in Fig. 2. Here, the y axis
represents ωcm

π
2jT0

πΣ;πΣj2kπΣcm and the x axis indicates the πΣ
center-of-mass energy in units of MeV. The leading factor
ωcm
π

2 is due to the convention of T. The solid (green) line is
calculated from our scenario with the bare-baryon basis
state. Results for the scenario without a bare baryon are
very similar. The dashed (blue) histogram illustrates the
experimental data from Ref. [49]. We note that the drop of
the distribution from the peak is faster on the right in our
case and is consistent with the experimental data.

B. Finite-volume results for varying quark masses

With the couplings determined and summarized in
Table I, we can proceed to determine the finite-volume
eigen-energy levels and associated components of the
eigenstates by solving the eigenequation of the
Hamiltonian H0 from Sec. II C. Of particular interest is
the impact of the bare-baryon basis state in the finite
volume of the lattice over a variety of pion masses.

To obtain results at larger pion masses, we need to know
how the masses of the baryons and mesons vary with the
quark mass (∝ m2

π). For the bare mass, m0
B, we use the

linear assumption

m0
Bðm2

πÞ ¼ m0
Bjphys þ α0Bðm2

π −m2
πjphysÞ; ð18Þ

At larger quark masses, α0B should be approximately
2
3
α0Nð1535Þ ¼ 0.51 GeV−1 [34]. For each of the masses

mNðm2
πÞ, mΣðm2

πÞ, m2
Kðm2

πÞ, etc., we use a linear interpo-
lation between the corresponding lattice QCD results.

C. Conventional analysis

The results of the model in the absence of a bare-baryon
basis state are illustrated in Fig. 3. Here we have used a
linear interpolation between the CSSM results for the octet
baryon masses. We observe that while the model can fit the
lattice results at low pion masses, it fails at large pion

TABLE I. Parameters constrained in our fits to cross sections of
K−p and the pole positions obtained with these fit parameters in
our two scenarios: one in which the Λð1405Þ is dynamically
generated purely from the πΣ, K̄N, ηΛ, and KΞ interactions (No
jB0i), and one also including a bare-baryon basis state to
accommodate a three-quark configuration carrying the quantum
numbers of the Λð1405Þ (with jB0i). The underlined entries
indicate they are fixed in performing the fit.

Coupling No jB0i With jB0i
g0πΣ;πΣ −1.77 −1.59
g0K̄N;K̄N −2.14 −1.78
g0K̄N;πΣ 0.78 0.89

g0K̄N;ηΛ −0.42 −0.97
g0πΣ;KΞ −0.24 −0.56
g0ηΛ;KΞ 0.42 0.97

g0KΞ;KΞ −0.60 −1.37

g0πΣ;B0
� � � 0.13

g0K̄N;B0
� � � 0.16

g0ηΛ � � � −0.18
g0KΞ � � � −0.09
m0

B=MeV � � � 1740

g1πΣ;πΣ −0.14 −0.14
g1K̄N;K̄N −0.06 −0.06
g1K̄N;πΣ 1.36 1.36

g1K̄N;πΛ 0.96 0.96

χ2 (120 data) 166 177

Pole 1 (MeV) 1428 − 23i 1429 − 22i

Pole 2 (MeV) 1333 − 85i 1338 − 89i

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Experimental data and our fits to the cross sections of
K−p. The solid lines are for our scenario with a bare-baryon
component included in the I ¼ 0 channel, and the dashed lines
represent the results without a bare-baryon component. The
experimental data are from Refs. [40–47].
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masses. The results are very similar to those of Ref. [16],
where the lattice results at large pion masses do not touch
the curves given by the model.
The components of the eigenstates from the model

without a bare-baryon basis state are presented in Fig. 4.
Figures 4(a) and 4(b) reveal an avoided level crossing in the
low-lying πΣ- and K̄N-dominated states. At the lightest
quark mass the first eigenstate is composed mainly of πΣ
while the second eigenstate is dominated by the K̄N
component. The third state is composed of a nontrivial
mix of the πΣ and K̄N channels.
Only the second and third eigenstates are observed on the

lattice. Consideration of the positions of the Hamiltonian
model eigenstates relative to the dominant noninteracting
basis states can provide some insight into the reasons for
this. Both the πΣ- and K̄N-dominated eigenstates sit below
the noninteracting energies in Fig. 3, indicating significant
attractive interactions. The small Compton wavelength of
the kaon combined with attractive interactions with the

nucleon could provide significant clustering in the K̄N
system. Such clustering increases the probability of finding
the K̄ next to the nucleon, thus increasing the overlap of the
K̄N-dominated state with the local three-quark operators
used to excite the state [11]. Without this strong attraction
the overlap is volume, V, suppressed with the probability of
finding the meson next to the baryon ∝ 1=V. In the case
of the πΣ-dominated state the large Compton wavelength of
the pion appears to reduce the level of clustering. We will
return to this issue in the next section including a bare-
baryon basis state.
Beyond the third quark mass considered, the lattice QCD

results depart from the eigenstates of the Hamiltonian
model. At these pion masses, the Λð1405Þ has become a
stable state lying lower than the conventional πΣ decay
channel. As for the nucleon, one expects a dominant role
for the simplest three-quark Fock-space component of
the Λð1405Þ and the incorporation of a bare-basis state
in the Hamiltonian model will be essential to describing

TABLE II. Pole positions for the Λð1405Þ in various
approaches.

Approach Pole 1 (MeV) Pole 2 (MeV)

Refs. [20,48] 1424þ7
−23 − i26þ3

−14 1381þ18
−6 − i81þ19

−8

Ref. [6] fit I 1417þ4
−4 − i24þ7

−4 1436þ14
−10 − i126þ24

−28

Ref. [6] fit II 1421þ3
−2 − i19þ8

−5 1388þ9
−9 − i114þ24

−25

Ref. [21] solution 2 1434þ2
−2 − i10þ2

−1 1330þ4
−5 − i56þ17

−11

Ref. [21] solution 4 1429þ8
−7 − i12þ2

−3 1325þ15
−15 − i90þ12

−18

This work 1430 − i22 1338 − i89

FIG. 2. The πΣ invariant mass distribution. The solid (green)
curve is calculated from the scenario with the bare-baryon basis
state and the dashed (blue) histogram illustrates the experimental
data from Ref. [49].

FIG. 3. The pion-mass dependence of the finite-volume energy
eigenstates for the scenario without a bare-baryon basis state. The
broken lines represent the noninteracting meson-baryon energies
and the solid lines represent the spectrum derived from the matrix
Hamiltonian model. The lattice QCD results are from the CSSM
group [11,13], as described in Table III.

TABLE III. The low-lying odd-parity Λmasses provided by the
CSSM group [11,13] with the strange-quark hopping parameter
κs ¼ 0.13665 tuned to reproduce the physical kaon mass [11].
Values for m1 are from eigenstate-projected correlators domi-
nated by the flavor-singlet interpolator [13] while values for m2

are from projected correlators dominated by flavor-octet inter-
polators [11]. Values, provided with reference to the pion mass,
are in units of GeV.

mπ 0.6233(7) 0.5148(7) 0.3890(10) 0.2834(6) 0.1742(26)

m1 1.446(46) 1.548(24) 1.608(47) 1.736(21) 1.863(29)
m2 � � � � � � � � � 1.686(33) 1.607(37)
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these results. Drawing on the results of Ref. [50] for the
ground-state nucleon, one can anticipate that the bare-
baryon basis state will compose 80%–90% of the eigen-
vector components. Therefore, we do not trust the
Hamiltonian model results of Fig. 4 at large quark masses.

D. Inclusion of a bare-baryon basis state

The inclusion of a bare-baryon basis state resolves the
aforementioned discrepancies. The pion mass dependence
of the odd-parity Λ spectrum incorporating the bare-baryon
basis state is presented in Fig. 5. Figure 6 indicates the
states receiving the largest contributions from the bare
basis state.
Because local three-quark interpolating operators were

used in exciting the states on the lattice, one would expect

that the states containing a significant bare-state component
are easier to observe in lattice QCD. As a result, we label
the low-lying states containing the largest bare-state com-
ponents by superposing thick (colored) lines on them in
Fig. 5. In a successful description, the lattice results would
correspond to these labeled states.
For example, the integers next to the solid red curve in

Fig. 6 indicate that the most probable state to be observed in
lattice QCD simulations with local three-quark operators is
the fourth eigenstate at the lightest quark mass considered,
becoming the third eigenstate for the second and third
quark masses with 0.06 ≤ m2

π ≤ 0.16 GeV2. As m2
π con-

tinues to increase, the most probable state falls to the
second eigenstate briefly, before settling on the lowest-
lying state at the largest quark masses considered.

(a) (b) (c) (d)

FIG. 4. The pion-mass evolution of the Hamiltonian eigenvector components for the first four states observed in the scenario without a
bare-baryon basis state. Here all momenta for a particular meson-baryon channel have been summed to report the relative importance of
the πΣ, K̄N, ηΛ, and KΞ channels. The (green) dots plotted horizontally at y ¼ 0.45 indicate the positions of the five quark masses
considered by the CSSM group on a lattice volume with L≃ 2.90 fm.

FIG. 5. The pion-mass dependence of the finite-volume energy
eigenstates for the scenario including a bare-baryon basis state.
The different line types and colors used in illustrating the energy
levels indicate the strength of the bare basis state in the
Hamiltonian-model eigenvector. The thick-solid (red), dashed
(blue) and short-dashed (green) lines correspond to the first,
second, and third strongest bare-state contributions, and therefore
the most likely states to be observed with three-quark interpolat-
ing fields.

FIG. 6. The fraction of the bare-baryon basis state, jm0i, in the
Hamiltonian energy eigenstates jEii for the three low-lying states
having the largest bare-state contribution. States are labeled by
the energy-eigenstate integers i indicated next to the curves. The
dark-green dots plotted at y ¼ 0.25 indicate the positions of the
five quark masses considered in the CSSM results. While the line
type and color scheme matches that of Fig. 5, the thick and thin
lines alternate to indicate a change in the energy eigenstate.
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Consideration of the three most probable states to be
seen in the lattice QCD calculations is sufficient to explain
the states observed in the lattice QCD calculations. At
each mass, the lowest-lying probable state(s) are observed.
The second excitations [11] observed on the lattice at the
lightest two quark masses considered also agree with the
energies of the most probable states to be seen.
In contrast, the lowest-lying πΣ-dominated state at light

quark masses has a negligible bare-state component and
therefore is not observed in the lattice QCD spectrum
obtained with local three-quark operators. Instead, the
lowest-lying lattice results correspond to the second eigen-
state which has both a bare-state contribution and the
benefit of clustering in the K̄N channel as discussed in
Sec. III C. Figure 7 illustrates the positions of the
Hamiltonian model eigenstate energies relative to the
noninteracting meson-baryon basis-state energies, indicat-
ing attractive interactions. Five-quark lattice operators with
the momentum of both the π and Σ hadrons projected to
zero are expected to reveal the lowest-lying πΣ-dominated
state predicted by the Hamiltonian model.
The basis state components of the eigenstates for this

scenario incorporating a bare-baryon basis state are illus-
trated in Fig. 8. Considering Fig. 8(a), one observes that the
first eigenstate is πΣ dominated at small pion masses. It
transitions briefly to a significant K̄N component and is
eventually dominated by the bare-baryon basis state at large
pion masses. Comparing Figs. 3 and 5, it is apparent that
the bare baryon is vital to describing the lattice QCD results
for the Λð1405Þ.
The uncertainty on the lattice QCD result at the middle

quark mass considered (m2
π ¼ 0.15 GeV2) is unusually

large due to difficulty in identifying a plateau in the

effective mass with an acceptable χ2dof at early Euclidean
times. Extensive Euclidean time evolution isolated the
lowest state in the spectrum at the expense of a larger
uncertainty. The origin of the difficulty is now clear. There
are two nearby states in the spectrum at this quark mass,
both having significant overlap with the three-quark inter-
polating fields used. Both the first and second Hamiltonian
eigenstates have large attractive K̄N components and both
states have nontrivial bare state components. While the
second state has a larger bare state component, Euclidean
time evolution will eventually favor the lower-lying state.
At moderate Euclidean times, a superposition of states is
encountered, accompanied by a large χ2dof in the single-state
ansatz. Further Euclidean time evolution favors the lower-
lying state and the single-state χ2dof becomes acceptable.
At lighter quark masses, the first Hamiltonian eigenstate

has a negligible bare-state component. The second
Hamiltonian eigenstate has both the attractive K̄N compo-
nent and a nontrivial bare-state component and is therefore
seen on the lattice. The fourth and third Hamiltonian model
eigenstates capture the largest bare-state components at the
lightest and second-lightest quark masses considered
respectively and are associated with the lattice QCD
eigenstates dominated by SUð3Þ-flavor-octet interpolating
fields.
It is interesting to compare the spectra and structure

observed herein at light quark masses with the analysis of
Ref. [16]. Comparing Fig. 7 here with Fig. 1 of Ref. [16] for
the spectrum, both spectra commence with a bound state
below the πΣ threshold at small pion masses. Consistently,
the lowest lattice QCD results correspond to the second
eigenstate for small mπ . The third eigenstate energies are
both above 1500 MeV. However, the third eigenstate
energy reported herein is 50 MeV larger at the physical
pion mass. At this energy, there is a desire to consider
experimental data at higher energies to better constrain the
models and improve the accuracy of the predictions. In both
works, four eigenstates are predicted below 1.6 MeV.
With regard to the composition of the states, we can

compare Table III of Ref. [16] with Fig. 8 in our work. At the
physical pionmass, both analyses indicate the first and fourth
eigenstates are dominated byπΣ basis stateswhile the second
and third eigenstates are dominated by K̄N basis states.
Turning our attention to the quark-mass dependence of

the spectrum, the isospin-zero bare-mass state is associated
with the lowest-lying state observed in lattice QCD
calculations at large quark masses. However, as one moves
away from the flavor-symmetric limit towards the light
quark-mass regime and flavor symmetry is broken, this
bare mass becomes associated with the low-lying flavor-
octet dominated states. As m2

π decreases, the first shift of
the bare mass from state 1 to state 2 occurs at the avoided
level crossing of the πΣ and Λð1405Þ at m2

π ¼ 0.21 GeV2,
easily identified in Fig. 5. Shortly thereafter, Hamiltonian-
model eigenstate 1 becomes πΣ dominated and the

FIG. 7. The pion-mass dependence of the finite-volume energy
eigenstates for the scenario including a bare-baryon basis state.
The broken lines represent the noninteracting meson-baryon
energies and the solid lines represent the spectrum derived from
the matrix Hamiltonian model.
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Λð1405Þ moves to the second eigenstate. Moving to
lighter quark masses, the bare mass shifts to the flavor-
octet dominated states while the flavor-singlet dominated
Λð1405Þ evolves to become predominantly K̄N, in accord
with the conclusions of Ref. [13]. Its energy is around
1.446(46) GeV near the physical pion mass. From
Fig. 8(b), it is composed of about 90% K̄N, a few percent
πΣ, and a small amount of the bare-baryon basis state.

IV. SUMMARY

We have studied the cross sections for K−p scattering at
low energies using effective field theory. We considered
two scenarios in constructing the basis states of our models:
one in which the Λð1405Þ is dynamically generated purely
from the πΣ, K̄N, ηΛ, and KΞ interactions, and one also
including a bare baryon to accommodate a three-quark
configuration carrying the quantum numbers of the
Λð1405Þ. Both scenarios produce two poles in the regime
of the Λð1405Þ resonance, with values in accord with other
studies.
With the parameters of the model constrained by the

experimental data, Hamiltonian effective field theory was
used to calculate the finite-volume spectrum of states in our
two scenarios and confront lattice QCD data for the low-
lying odd-parity Λ spectrum in a finite volume with
length L ∼ 2.9 fm.
At large quark masses, the bare state is vital to obtaining

an accurate description of the Λð1405Þ. Here the state is
stable with a structure dominated by an 80%–90% bare-
state component, similar to that for the ground-state
nucleon. At smaller quark masses, the presence of the
bare-baryon basis state in the Hamiltonian model eigen-
vector explains which states are seen in current lattice QCD

calculations and which states are missed with local three-
quark operators on the lattice.
It is apparent that the nature of the Λð1405Þ changes

dramatically as the light quark mass is varied. At large
quark masses, the bare-baryon state is associated with the
lowest-lying state observed in lattice QCD calculations.
This state is excited by an interpolating field dominated by
SUð3Þ-flavor-singlet operators. As one moves towards the
light quark-mass regime, the bare basis state becomes
affiliated with the lattice QCD eigenstates excited by
interpolating fields dominated by flavor-octet operators.
After an avoided level crossing with the πΣ-dominated
state, theΛð1405Þ becomes the second state in the spectrum
and evolves to become a state dominated by K̄N compo-
nents. These results are consistent with the earlier findings
of Ref. [13] based on the strange quark contribution to the
magnetic form factor of the Λð1405Þ.
Neither the cross sections forK−p scattering nor the pole

positions in the S-matrix are sensitive to the bare-baryon
basis state and this indicates that the physical resonance
also has only a small bare-state component in its compo-
sition. Together, these findings confirm that the Λð1405Þ is
predominantly a molecular K̄N bound state.
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FIG. 8. The pion-mass evolution of the Hamiltonian eigenvector components for the first four states observed in the scenario
incorporating a bare-baryon basis state contribution. Again, all momenta for a particular meson-baryon channel have been summed to
report the relative importance of the meson-baryon channels. The (green) dots plotted horizontally at y ¼ 0.45 indicate the positions of
the five quark masses considered by the CSSM group on a lattice volume with L≃ 2.90 fm.
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