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Following a recent proposal by Cooper and Zwanziger, we investigate via SUð2Þ lattice simulations
the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of
selecting the Gribov copy with the smallest nontrivial eigenvalue of the Faddeev-Popov operator, i.e.,
the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator
towards the prediction of continuum calculations, we find that it actually overshoots the goal. With
increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be
found. For such a method to work, one would therefore need further restrictions on the gauge condition
to isolate the physically relevant copies, since, for example, the Coulomb potential VC defined through
the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb
potential alternatively defined through temporal link correlators is only marginally affected by the
smallness of the eigenvalues.
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I. INTRODUCTION

Coulomb gauge plays a prominent role in the
Hamiltonian formulation of non-Abelian gauge theories
[1–6]; within this framework, variational Ansätze offer a
promising approach to determine the vacuum state [4,7–9].
In the last years, much effort has been invested in this
direction, achieving a large number of interesting analytical
results which combine to a rather concise picture of the
low-energy sector in gauge theories, see, e.g.,
Refs. [5,10,11]. The picture of the vacuum conveyed by
this approach is the Gribov-Zwanziger (GZ) confinement
scenario, which in turn is based on a restriction of the
functional integral to the first Gribov region. Applied to
Coulomb gauge, this scenario leads to a number of
general predictions which are not tied to the variational
approach and which can be accessed directly in lattice
simulations:
(1) The Coulomb potential should be bound from

below [5] by the physical Wilson potential [12],
i.e., the presence of Coulomb confinement should be
a necessary condition for the physical confinement
mechanism to take place.

(2) The gluon dispersion relation should be infrared (IR)
divergent, naturally providing a confining scale [1].

(3) The Coulomb gauge ghost form factor should be
IR-divergent.

The variational approach of Refs. [8–10,13] realizes this
scenario, provided that the third condition (often called
the horizon condition in this context) is implemented as a

boundary condition.1 Therefore, a lattice investigation of
the above listed Coulomb gauge correlators represents a
powerful tool to gain insight in the mechanism of quark
confinement while offering a direct bridge to continuum
setups; this program has been thoroughly carried out in
Refs. [15–21]. While the gluon sector has been found to
agree with the continuum predictions, confirming the
dynamical generation of a Gribov massM ≈ 0.9 GeV and
the validity of Gribov’s formula for the gluon propagator
[15,16], the ghost sector was shown to agree only
qualitatively with the continuum predictions. In particu-
lar, the IR divergence of the ghost form factor determined
in lattice simulations [19–21] is much weaker than the
one predicted by continuum calculations [8,10,13], and a
Coulomb string tension could be extracted from the IR
behavior of the Coulomb potential only under very
optimistic assumptions [19–21]. Furthermore, the lattice
results are in conflict with the sum rule for the infrared
exponents [10], which merely assumes that the ghost-
gluon vertex in Coulomb gauge is bare, or at least
nonsingular, in the deep infrared.
In a recent work, Cooper and Zwanziger [22] have

proposed to implement Coulomb gauge by picking the
Gribov copy with the lowest eigenvalue of the Faddeev–
Popov operator, instead of the “best copy” (bc) with the
maximal value of the Coulomb gauge functional. They
argue that a lattice simulation based on such a setup would
lead to a better agreement with continuum predictions. The
aim of this paper is to directly implement this proposal on
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1The horizon condition selects among several possible solutions
in the variational approach, while it comes out self-consistently in
the renormalization group approach [14]. Physically, this can be
interpreted as a vanishing dielectric constant of the vacuum, i.e., a
manifestation of the dual Meissner effect [11].

PHYSICAL REVIEW D 95, 014503 (2017)

2470-0010=2017=95(1)=014503(11) 014503-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.014503
http://dx.doi.org/10.1103/PhysRevD.95.014503
http://dx.doi.org/10.1103/PhysRevD.95.014503
http://dx.doi.org/10.1103/PhysRevD.95.014503


the lattice and analyze its consequences on the correlators
which should bear the signature of the Gribov-Zwanziger
confinement mechanism. As a by-product, we also reana-
lyze the bc strategy with very high statistics, as finding a
small eigenvalue of the Faddeev–Popov operator requires
the analysis of a very large number of gauge copies.

II. THE GRIBOV PROBLEM

As Gribov has shown long ago [1], the Coulomb gauge
condition ∂iAi ¼ 0, among others, is not sufficient to
select a single configuration from the gauge orbit uniquely.
On the lattice, gauge fixing amounts to selecting, for each
given configuration fUμðxÞg of links, a gauge rotation
gðxÞ ∈ SUðNcÞ such that some (unique) condition is met.
In particular, Coulomb gauge fixing is achieved by maxi-
mizing, for each time slice t, the functional

FU
t ½g� ¼

1

NcNdV

X
x;i

Retr½Ug
i ðt;xÞ�; ð1Þ

where V is the spatial volume of the lattice and the sum
extends over all spatial links only. A local maximum of (1)
picks out—more or less randomly—one copy in the first
Gribov region (where the Faddeev–Popov operator is
positive definite), out of many others that all satisfy the
same condition. A unique prescription, which would solve
the Gribov problem completely, would amount to finding
the global maximum, i.e., the representative of the gauge
orbit in the so-called fundamental modular region (FMR).
Finding such a global maximum of a function with many
degrees of freedom is, however, analogous to finding the
ground state of an SUðNÞ spin glass [23], a problem which
is known to be NP-hard even for the much simpler case of
the Z2 gauge theory [24].
In the past, two approaches have been widely used to

tackle the problem of Gribov copies in lattice gauge theory.
The first one is to simply neglect that there is a problem at
all, essentially stating that Gribov copies have no physical
significance. In this case, the first (local) maximum found
by the algorithm is selected and one proceeds in calculating
all relevant (gauge dependent) quantities. In the literature,
this process goes under the name of “minimal gauge” [25].2

The second approach is to choose the copy with the
highest value of the gauge functional as the “best repre-
sentative” of the global maximum, based on the conjecture
that results for gauge-dependent quantities will be strongly
correlated with the value of the gauge functional. In order to
clarify this statement, let fUFMRg be the ensemble of gauge
configurations which are in the FMR, i.e., F½UFMR� ¼ max,

and let fUbcg be the ensemble with gauge configurations
close to such a maximum

F½UFMR� ≳ F½Ubc�; ð2Þ

i.e., the set of configurations which correspond to the best
maximum one could find numerically. The assumption is
that the Ubc are, in some sense, “close” to the UFMR, and
this carries over to the expectation value of any gauge
variant quantity Ω, i.e.,

hΩðUbcÞi ≈ hΩðUFMRÞi≡ hΩiphys: ð3Þ

No mathematical proof of this assumption exists, and a
direct numerical test is only feasible for toy models on very
small lattices. One such test, a U(1) lattice theory on a
2-dimensional sphere, actually provides numerical evi-
dence against the hypothesis in Eq. (3) [28]. For historical
reasons, we call the ensemble fUbcg the best copy (bc)
ensemble.
A third approach for resolving the Gribov problem has

been discussed for Landau gauge in Refs. [29,30]: instead
of choosing the copy with the best value of the gauge
functional, one picks the copy for which the first nontrivial
eigenvalue of the Faddeev–Popov operator is smallest, the
so-called lowest copy (lc). We borrow this notation from
the aforementioned papers. The idea behind the lc approach
is that this should choose configurations that are close
to the Gribov horizon where the Faddeev–Popov operator
becomes singular. According to Gribov’s and Zwanziger’s
entropic reasoning, such configurations should be the
relevant ones in the thermodynamic limit. The authors of
Refs. [29,30] found that both the ghost dressing function
and—to a much smaller extent—the gluon propagator are
enhanced in the IR for the lowest-eigenvalue copy when
compared to the bc approach, while they become flatter if
one chooses a copy with a large eigenvalue of the Faddeev–
Popov operator instead. Similar attempts to tweak the
Landau gauge fixing procedure in order to make the IR
behavior of the ghost propagator match the decoupling
solutions found in the continuum (e.g., by Dyson–
Schwinger or Functional Renormalization Group tech-
niques) had previously been put forward with mixed
results [31,32].
As discussed in the Introduction, a quantitative discrep-

ancy exists in the Coulomb gauge between the IR exponent
of the ghost dressing function in the Hamiltonian varia-
tional approach [8–10,13] and the corresponding lattice
results [19–21]. On the other hand, the behavior of the
gluon propagator agrees very well between the two
approaches [15,16]. Since the IR exponents of the ghost
form factor and the gluon propagator should be related by a
sum rule which is based on the sole assumption that the
ghost-gluon vertex should be bare, or at least nonsingular,
in the deep infrared [10] (a fact that is known to hold in

2In the literature the term minimal gauge had originally been
applied in Landau gauge to the representative of the fundamental
modular region along the gauge orbit [26,27]. Later, the term
absolute gauge stuck for this case, while minimal gauge was
“downgraded” to its present use [25].
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Landau gauge and expected to carry over to Coulomb
gauge3), this poses an unresolved puzzle.
One possible explanation for such disagreement is that

the variational approach would have to be improved in
order to better reproduce the lattice results. This goes
beyond a mere improvement of the variational ansatz, since
the sum rule must hold for any ansatz (assuming a
nonsingular ghost-gluon vertex in the IR). One possible
idea is that the proper implementation of the GZ idea would
go beyond the standard Coulomb Hamiltonian combined
with the horizon condition, and additional terms in the
action or Hamiltonian would be required, which could
eventually reconcile the sum rule with lattice propagators.
There are some indications that such a refinement is
necessary in Landau gauge, where additional condensates
can be introduced in the GZ action in order to make the GZ
scenario agree with lattice data [36]. In the Hamiltonian
approach, however, we see no compelling evidence for
such a modification, in particular, since the present inves-
tigation will show that there is no such thing as “the lattice
propagators” in Coulomb gauge, at least with current
computational power. It would then be very hard to identify
the proper extension of the Coulomb gauge GZ scenario
required to match the inconsistent lattice data.
This leaves us with the second logical explanation for the

sum-rule puzzle, namely, that the current lattice simulations
in Coulomb gauge do not describe continuum physics and
hence need refinement. More precisely, the bc strategy on
the lattice could be biased by artifacts related to the Gribov
problem, being unable to come close enough to the Gribov
horizon, and the lc strategy might provide a better descrip-
tion of continuum physics [22]. To check this conjecture we
adapt in the following the lc strategy to Coulomb gauge.

III. LATTICE SETUP

For our study, we use the colour group G ¼ SUð2Þ for
simplicity and employ the isotropic and the anisotropic
Wilson gauge action [37]

S ¼
X
x

�
βs

X3
j>i¼1

�
1 −

1

2
RetrUijðxÞ

�

þ βt
X3
i¼1

�
1 −

1

2
RetrUi4ðxÞ

��
; ð4Þ

where we parametrize βs ¼ βγ and βt ¼ β=γ, with γ the
bare anisotropy, while ξ ¼ as=at denotes the renormalized
anisotropy in the following. We have used isotropic lattices

of three different sizes and discretizations in our analysis.
Since the ghost propagator is known to suffer from strong
scaling violations on isotropic lattices, we include two
anisotropic lattices of fixed size. Our setup is summarized
in Table I. To fix the lattice spacing, we used the SUð2Þ
results known from the literature as summarized in the
tables given in Ref. [15]. We have also fixed

ffiffiffi
σ

p ¼
0.44 GeV to set the physical scale.

IV. GAUGE FIXING AND GRIBOV COPIES

Both for the lc and the bc strategy, we use the over-
relaxation technique [38] in the CUDA implementation
cuLGT [39]. In Ref. [39], simulated annealing [40,41] is
also discussed as a technique to increase the probability
to find the absolute maximum of the gauge fixing (g.f.)
functional, i.e., to find a better best-functional copy. By
now, the de facto standard technique to find the (best
approximation of the) global maximum is a combination of
repeated gauge fixing and a preconditioning with simulated
annealing [42,43]. In this context, repeated gauge fixing
means to start the gauge fixing multiple times from a
random gauge transformation and select the copy which
best satisfies the bc (or lc) condition. In Fig. 1, we show
an illustrative plot of the evolution of the gauge fixing
precision

θ≡ 1

Nc
max
x

tr½ΔðxÞΔ†ðxÞ� ð5Þ

with

ΔðxÞ≡ ½∂iAi�lat ¼
X
i

½Alat
i ðxÞ − Alat

i ðx − {̂Þ�

over the number of gauge fixing steps. In the figure on the
left-hand side, four runs with the over-relaxation parameter
ω ¼ 1.7 and one run with ω ¼ 1 (pure relaxation) are
shown. The gauge fixing has two characteristic stages: In
the first stage the precision is fluctuating strongly at a rather
high value until a maximum is located with a precision of

TABLE I. Lattice setup.

Label Size ξ β as [GeV−1] L [fm]

A1 164 1 2.2 1.07 3.4
A2 164 1 2.3 0.84 2.6
A3 164 1 2.4 0.61 1.9
B1 244 1 2.2 1.07 5.0
B2 244 1 2.3 0.84 4.0
B3 244 1 2.4 0.61 2.9
C1 324 1 2.2 1.07 6.7
C2 324 1 2.3 0.84 5.3
C3 324 1 2.4 0.61 3.8
D1 128 × 323 4 2.25 1.11 7.0

3In Landau gauge, the vertex is expected to be unrenormalized
based on Slavnov-Taylor identities [33]; this is confirmed by
lattice simulations which find only mild deviations from a bare
vertex over the entire momentum range [34]. A similar con-
clusion can also be made in Coulomb gauge within the variational
approach (using the continuum propagators as input) [35].
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about θ ≈ 10−4. Then, in the second stage, the precision
monotonically approaches zero. As shown on the right-
hand side, if simulated annealing preconditioning is used,
the first stage is already overcome in the simulated
annealing phase (which is not shown in the plot).
As we focus on the lc approach in this study, our goal is

not to bias our algorithm towards copies with a high value
of the g.f. functional, and we thus have to waive the
simulated annealing preconditioning. Since the bc results
in this chapter are mostly obtained as a by-product of the
main search for the lowest-eigenvalue copy, they are also
not preconditioned with simulated annealing, unless
explicitly stated otherwise. Unfortunately, no algorithm
is known that would precondition the gauge fixing to a
low eigenvalue of the Faddeev–Popov operator, and we
have to rely on pure over-relaxation with a high number
of gauge copies Nr.
In a first run, we calculated the lowest eigenvalue λ1 on

Nr ¼ Oð103Þ copies of the small lattices. In Ref. [44], it
was noticed that the size of the smallest eigenvalue is
correlated with the number of gauge fixing iterations Nit
that are necessary to achieve a given accuracy θ, as
indicated in Fig. 1. The reason for this behavior is that a
low eigenvalue means an almost flat direction in the g.f.
functional and an ill-conditioned Faddeev–Popov operator,
leading to a slow convergence of the iteration process. In
Fig. 2, we investigated this behavior in more detail. We find
a perfect correlation of λ1 and Nit, independently of the
coupling β, with the slope only depending very weakly on
the over-relaxation parameter ω. In fact, we find that all
data can be perfectly described by the simple power law

λ1ðNitÞ ¼
c
Nγ

it
; ð6Þ

with γ ≈ 1.1 and the proportionality factor c strongly
depending on ω. To rule out that the over-relaxation
parameter ω conditions the algorithm to find a gauge
copy with specific value of λ1, we verified that ω has no
influence, on average, on how often a configuration with
small eigenvalue is found. This is also indicated in Fig. 2,
though in the plot it is obfuscated by the bulk around the
minimal number of iterations.
The correlation of the number of iterations and the

smallness of the Faddeev–Popov eigenvalue allow us to
tweak our algorithm: Since the calculation of eigenvalues is
computationally the most demanding part in our gauge
fixing program, we implemented a (self-adjusting) thresh-
old, where the eigenvalues are calculated only for
“promising” gauge copies for which the number of iter-
ations exceeds a certain value. Since the smallest eigen-
value (which we are able to find) differs from configuration
to configuration, we usually re-start with a small threshold
for each configuration. If we do find a small eigenvalue, the
threshold is updated to a factor α of the number of iterations
that were needed to find this particular (small) eigenvalue.
We find that α ¼ 0.8 provides a suitable update strategy:
With this setting eigenvalues are calculated in a typical
run for many gauge copies up to a point where a small
eigenvalue is found and the threshold is changed. Since
usually the Gribov copies with the smallest eigenvalue are
well separated from the one with the next-to-smallest
eigenvalue, this procedure constrains the program to only
evaluate the eigenvalues for promising configurations with
the smallest λ1.
Since the first Gribov region and the FMR have

a common boundary, one may wonder if the bc
approach, which can be seen as an approximated search
for configurations in the FMR, and the lc approach, as an
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FIG. 1. Gauge precision θ over the number of over-relaxation
steps. Left panel: Five gauge copies of the same configuration.
The light blue (top) curve is with simple relaxation; the other lines
correspond to over-relaxation (ω ¼ 1.7). The pink line with the
smallest slope corresponds to a significantly smaller value
(compared to the other copies) of the first nontrivial eigenvalue
λ1 of the FP operator. Right panel: Red (top) and green (bottom)
line correspond to over-relaxation (ω ¼ 1.7) without (red) and
with (green) simulated annealing preconditioning. As can be
seen, the preconditioning removes the first phase where the
algorithm tries to locate a maximum, while the slope of the
second phase (the eventual convergence speed) is unchanged.
The blue curve in the middle employs preconditioning with
simple relaxation (ω ¼ 1) and shows no fluctuating first phase
but a much smaller convergence speed. All three lines converge
towards the same Gribov copy, as was confirmed by identical
functional values and an identical first nontrivial FP eigenvalue.
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FIG. 2. Smallest eigenvalue λ1 of the Faddeev–Popov operator
as a function of the number of gauge-fixing iterations. From each
set A1, A2, and A3, we used 10 configurations and calculated
1000 gauge copies. The data points which correspond to fewer
iterations (left) are from runs with ω ¼ 1.9; for the points with
more iterations (right), we used ω ¼ 1.
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approximated search for configurations close to the Gribov
horizon, eventually converge to the same configuration.
However, from the Landau gauge data [29], there is no such
indication. Also for our Coulomb gauge data, there is no
evidence that the bc and lc procedures may coincide. In
Fig. 3, we show scatter plots for four arbitrarily selected
configurations of each of the small (164) lattices A1, A2,
and A3 from top to bottom. The data points are from 1000
different gauge copies, but there are many fewer points as
the same Gribov copy is often found multiple times. In fact,
the number of distinct Gribov copies varies strongly
between configurations, compare, for instance, the third
and fourth configuration of the A1 lattice (top right). As
expected, the number of distinct Gribov copies decreases
with finer lattice spacing.
Another indication that bc and lc are different gauges is

the result of Fig. 4. There, we compare the best approxi-
mation of the FMR and the Gribov horizon for all 100
configurations of the 244 sets B1 and B3 after 1000 and
10,000 gauge copies, respectively. Neither on the coarse
lattice (B1) nor on the fine lattice (B3) could we find any

configuration where the best functional and the lowest-
eigenvalue copy coincide. For the coarse lattice with 10,000
copies, the smallest eigenvalues are well separated, by at
least an order of magnitude, in a first region with all the bc
copies and a second region with the lc copies. While only
very few (B1) or no configurations (B3) see a decrease of
the lowest eigenvalue λ1, in the bc case, as we go from 1000
to 10,000 copies, the lc data still sees a considerable
reduction of λ1. A similar comparison was made for
Landau gauge in Ref. [32]. There, the authors used the
value of the ghost propagator at the smallest nonzero
momentum as an estimate of the smallness of the lowest
FP eigenvalue. While they used a much larger ensemble of
≈Oð103Þ configurations, they used much less gauge fixing
repetitions ≈Oð10Þ. With this setup, they found configu-
rations that are close to both the FMR and the Gribov
horizon. However, it is clear that their setup (many
configurations, small Nr) is specifically biased towards
finding such configurations, while our setup is biased in the
opposite direction (fewer configurations, large Nr). For a
detailed study of this effect, which is not our focus, we
would have to significantly increase the statistics.
Finally, we try to estimate the number of Gribov copies

in Fig. 5 by counting how many distinct Gribov copies
we are able to find for a given number of g.f. attempts. For
this study, we use only the functional value to identify the
Gribov copy, since we do not have the smallest eigenvalue
available for all copies (due to the threshold strategy
described above). In general, an unambiguous identifica-
tion of a Gribov copy would require identical values for
all gauge-dependent quantities; the use of only a single
quantity (the g.f. functional) may therefore erroneously
take distinct copies as identical, i.e., the procedure is biased
towards finding too many identical and too few distinct
copies.4 An unambiguous estimate would furthermore
require that each Gribov copy is found with equal prob-
ability; however, very likely there are local maxima which
are easier to locate by the algorithm. This effect will lead to
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4Additionally, the authors of Ref. [32] found that there are
gauge copies with the same functional value but a different value
for the ghost propagator at smallest nonzero momentum.
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an underestimation of the number of distinct Gribov copies.
Thus, the result in Fig. 5 has to be treated very carefully.
More comprehensive studies of the number of Gribov
copies in lattice gauge theory can be found, for example, in
Refs. [45,46].
Since the number of Gribov copies varies considerably

between different configurations, the error bars are rather
large. Only on the smallest and finest lattice a saturation of
the number of Gribov copies is observed within 10,000 g.f.
attempts. The main conclusion we can draw from Fig. 5 is
that we are far from having explored the whole Gribov
region, which would be essential if the absolute lowest-
eigenvalue copy still differs substantially from the lowest-
eigenvalue copy in our limited search space.

V. RESULTS

While there is no compelling reason for the lc approach
to have a large effect on the gluon propagator, we expect a
clear impact on the ghost propagator, given its spectral
representation

GðpÞ ¼
X
n

ϕnðpÞϕnð−pÞ
λn

; ð7Þ

where λn are the eigenvalues and ϕnðpÞ the momentum
space eigenfunctions of the Faddeev–Popov operator. As
for the Coulomb potential, one also expects a large effect
from the lc strategy. Let us discuss them case by case.

A. Gluon propagator

In Landau gauge, a small Gribov copy dependence was
observed for the gluon propagator on a large 544 lattice in
the deep IR [29]. With our lattice setup, we are not able to
reach that far in the IR and do not see a significant effect on
the Coulomb gauge gluon propagator DðpÞ as defined in
Refs. [15,16]; see Fig. 6, where we plot DðpÞ=jpj to
underline its IR behavior.5 Since the accurate calculation of
DðpÞ requires the technique illustrated in Refs. [15,16], the
Coulomb gauge needs to be fixed for all time slices. This
limits the number of g.f. repetitions as compared to the
study of the Faddeev–Popov-operator-dependent quantities
in the following sections, which can all be evaluated on a
single time slice.

B. Ghost propagator

As expected from Eq. (7), the Gribov copy effect (i.e.,
the different g.f. prescriptions of picking Gribov copies)
has a huge impact on the ghost propagator as defined in

Refs. [19]. In Fig. 7, we see that for the 244 lattice the ghost
form factor is drastically enhanced in the IR as the number
of repetitions of the lc strategy increases.
For both the coarse and the fine lattice, the effect first

becomes visible upon reaching about 100 repetitions. From
this point on, the form factor is clearly increased when
going from 100 to 1000 copies, while the further increase
between 1000 and 10,000 copies is less pronounced. This
may be taken as a hint towards an eventual convergence,
although no saturation of the effect can be really observed
within our available data. The huge difference in the IR
is mainly due to a sharper bending in the region between
1 and 3 GeV.
It should be noted that the data for different β have been

presented in different plots on purpose: The ghost form
factor is known to suffer from scaling violations on
isotropic lattices [19], so that data points for different β
do not fall on top of each other over the whole momentum
range (after multiplicative renormalization). Moreover,
since the curves in the lc approach curves have not yet
converged, the data from different β cannot be compared, as
the quality of the lc gauge fixing for given Nr most likely
depends on the coupling β.
In Fig. 8, we compare the ghost form factor within the bc

approach for the same lattices. First of all, the effect of
taking more g.f. repetitions is much less pronounced as
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FIG. 6. The gluon propagator for the B1 lattice with the bc and
lc approaches from 1000 trials. The solid line is a fit to the Gribov
formula [15,16]. The choice of Gribov copy apparently makes no
visible difference.
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FIG. 7. The ghost form factor after gauge fixing to the lowest-
eigenvalue copy with increasing number of trials from 10 to 10,000
on 244 lattices at β ¼ 2.2 (B1, l.h.s.) and β ¼ 2.4 (B3, r.h.s.).

5The expert reader will notice a strong similarity between the
IR behavior of the gluon (and to a lesser extent ghost) propagators
in the Coulomb and Landau gauge. This has been extensively
discussed in Ref. [16,19] and can be simply ascribed to the
presence of common IR (Gribov) mass scale in both cases.
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compared to the lc approach results in Fig. 7. Secondly, the
effect goes in the opposite direction: While the ghost form
factor for the lc approach was enhanced in the IR, the IR
form factor in the bc approach becomes slightly suppressed
as the number of g.f. attempts is increased. The (small)
effect is negligible between 10 and 100 repetitions, but
becomes somewhat more pronounced in the region
between 100 and 1000 repetitions. In Fig. 9, we compare
the results for the lc and bc approaches with 10,000 copies,
our best values at this lattice size, where we have renor-
malized the form factor to

dðp ¼ 3 GeVÞ ¼ 1: ð8Þ

The bc approach data at different β fit quite well on top of
each other, especially when considering the scaling viola-
tions [19]. Compared to the lc strategy, the error bars for the
bc strategy are much smaller.
To extract the IR exponent of dðpÞ, we have fitted the

data at different Nr for the D1 ensembles in Table I. Since
their UV tail is not extended enough to extract reliably any
UV logarithmic exponent, we used the simplest function
interpolating between a power law in the IR and a constant
in the UV:

dðpÞ ¼ p−κ Pn−1ðpÞ þ apnþκ

Rn−1ðpÞ þ pn ; ð9Þ

where Pn−1 and Rn−1 are polynomials of degree n − 1 and
the denominator is constrained not to have any real poles
(see, e.g., Ref [19]). Here, n ¼ 2 gives already a good
enough fit, and the results are given in Fig. 10 (continuous
lines). While in the bc strategy we consistently found
κ ≃ 0.5 (see Refs. [19–21]), for the lc strategy the exponent
reaches κ ≃ 0.9 already for Nr ¼ 50 and keeps on growing
as Nr increases, reaching κ ≃ 1.6 for Nr ¼ 5000, with no
apparent saturation; the values of χ2/DOF range between
0.9 and 1.4. The fits seem however to miss the underlying
behavior in the lowest IR region. Indeed, the good χ2=DOF
values come from the p > 1 GeV data, while below these
the curves clearly overestimate the IR behavior; changing n
does not improve the situation. We have also tried to
directly fit the last points to a power law, neglecting any
subleading behavior: dðpÞ ¼ Ap−κ. The results are also
shown in Fig. 10. Although for Nr ¼ 5000 we obtain for κ
a value close to the continuum predictions, the evident
lack of saturation still means that by increasing Nr we
would probably overshoot κ ¼ 1 again. Moreover, the low
momentum data are known to be effected by large IR cutoff
effects: Only simulations at higher volumes could even-
tually deliver reliable results.
All in all, the lack of saturation in the data will pose a

challenge to any fitting strategy, even if a theoretically
sound Ansatz for dðpÞ over the whole momentum range,
going beyond a simple power law, could be found. We will
see in the next section that such lack of saturation is an
even bigger problem for the calculation of the Coulomb
potential.

C. Coulomb potential

The most important quantity for Coulomb gauge con-
finement is the Coulomb potential, since it provides direct
access to the Coulomb string tension; this quantity can be
computed from the momentum space Coulomb kernel [19]:
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VCðpÞ ¼ g2trhð−D̂ · ∇Þ−1ð−∇2Þð−D̂ ·∇Þ−1i: ð10Þ

A linearly rising potential for large distances corresponds to
a momentum space potential diverging like 1=p4 in the IR.
Thus, it is convenient to plot the potential such that its
intercept with the y-axis yields the Coulomb string tension
σC in units of the physical (Wilson) string tension σ,

p4VCðpÞ
8πσ

⟶
p→0 σC

σ
: ð11Þ

In Fig. 11, the ratio Eq. (11) is shown, within the bc
approach, for the same configurations used in Fig. 8 for the
ghost propagator.6 In earlier studies of the Coulomb
potential, a bump in p4VCðpÞ was observed at around
0.5 to 1 GeV, affecting direct estimates of the intercept on
the vertical axis with large uncertainties [19–21,47–49]. As
Fig. 11 shows, this bump does indeed vanish as the number
of gauge copies is increased; at the same time, the statistical
precision on the MC data strongly improve. One might be
tempted to assume that one is actually approaching the
absolute maximum of the gauge-fixing functional as the
number of gauge copies is increased and the ensemble
eventually samples a FMR free of Gribov copies.7 If this
was the case, however, one should expect that the Coulomb
potential from the alternative lc approach should yield the
same (or a similar) result, as the Gribov-Zwanziger entropic
argument in the thermodynamic limit states that the
partition function is dominated by configurations lying
on the common boundary of the FMR and the first Gribov
region. For such configurations, the bc and lc approaches—
once they converged—would give identical results.
Unfortunately, the lc result for the Coulomb potential

does not corroborate such a conjecture. In Fig. 12, the
data for the bc and the lc approaches are compared for
the B1 and B3 lattices. While for the ghost propagator, the
different gauge fixing strategies provided a nice overlap in

the UV regime (see Fig. 9), the Coulomb potential, over the
whole momentum range, is increased by several orders of
magnitude. The same happens for all lattices that we
investigated. Since this result is quite surprising, we have
repeated the calculation with a different solver. We have
usually adopted a conjugate gradient algorithm with
Laplace preconditioning. To ensure the validity of our
solver for exceptional configurations8 we compared the
results of our conjugate gradient to a publicly available
C++ implementation [51] of the MINRES algorithm [52].
Both algorithms yield the same solution up to numerical
precision.
Interestingly, while the Coulomb potential in the lc

approach computed from the kernel Eq. (10) apparently
yields physically nonsensible results, the alternative defi-
nition proposed in Refs. [53,54], which is based on short
Polyakov lines Pt of length t and the correlator of temporal
links U0,

aVCðjx − yjÞ ¼ −lim
t→0

d
dt

log htrPtðxÞP†
t ðyÞi

¼ − log htrU0ðxÞU†
0ðyÞi; ð12Þ

seems to work in all cases, cf. Fig. 13. As in the case of
the gluon propagator, the effect of choosing different g.f.
strategies and selection of Gribov copies is quite modest.
To extract the Coulomb string tension, we fitted VC from
Eq. (12) to

VCðrÞ ¼
α

r
þ σCrþ const; ð13Þ

where the Lüscher term α ¼ − π
12
is kept fixed. In the range

½6=a; 14=a�, we find a Coulomb string tension varying
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6In the β ¼ 2.2 plot on the left-hand side, the data for Nr ¼ 10
is omitted, since it contained a configuration with a small
eigenvalue leading to very big error bars. We discuss the issue
in more detail below.

7We had put forward such hypothesis in Ref. [50], although in
a slightly different context.

8The lc strategy generally attempts to make the Faddeev–
Popovoperator ill conditioned. But for some configurations with
a very small eigenvalue λ1, it becomes nearly singular, and its
precise inversion in the Coulomb potential is numerically
challenging.
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between ð0.66 GeVÞ2 (bc 5) and ð0.77 GeVÞ2 (lc 500),
with χ2=DOF between 0.58 (lc 500) and 0.95 (bc 5).

VI. CONCLUSIONS

In this paper, we have studied the effect of fixing, on the
lattice, the Coulomb gauge to the copy closest to the Gibov
horizon, i.e., the copy with the smallest nonvanishing
eigenvalue of the Faddeev–Popov operator (lc approach).
This prescription de facto implements the proposal of
Ref. [22]. The main observation we made is that the size
of the smallest eigenvalue saturates very slowly, if at all,
with the number of gauge-fixing attempts, see, e.g., Fig. 4.
Of course, we are still far from exploring the whole Gribov
region, as Fig. 5 suggests; still, our result is somehow
surprising. In light of the entropic argument usually made
within the Gribov-Zwanzier scenario, one would have
intuitively expected that the small eigenvalue of the
Faddeev–Popov operator should be bounded from below
by some effective IR cutoff induced by the finite lattice
volume; we however see no such saturation even after
Nr ¼ 10; 000 gauge-fixing repetitions.
The small eigenvalues heavily affect the IR behavior of

the ghost propagator and, more importantly, the Coulomb
potential extracted from the kernel in Eq. (10). The first
effect can be regarded as positive to some extent, as it
moves the infrared behavior of the ghost propagator
towards the continuum prediction and thus reduces the
violation of the sum rule. As with the size of the smallest
eigenvalue, we do not see a saturation with the number of
gauge copies, and the ghost exponent eventually tends to
overshoot the continuum prediction. However, given the
arbitrariness in the fits used to extract the exponent, it is at
least conceivable that the lc approach could indeed be
made to agree with the continuum.
Much more severe is the second effect, on the Coulomb

potential, which yields results that are at odds with physical
expectations. The dramatic increase of the potential extends
the entire momentum range and also affects the Coulomb
string tension, to the point that the results are physically

nonsensible. As the effect on the eigenvalues has not yet
saturated with Nr ¼ 10; 000 gauge-fixing repetitions,
exploring the Gribov region further by increasing Nr
should make things even worse.
We can think of several possible interpretations of our

result. First, it could be that merely constraining the lowest
eigenvalue is insufficient to detect the physical relevant
configurations. From the entropic argument, one expects
the partition function to be peaked on the common
boundaries of the first Gribov region and the fundamental
modular region, i.e., on configurations where the absolute
maxima of Eq. (1) become degenerate. The multiple flat
directions allow for further refinements of the lc prescrip-
tion; for instance, a restriction to configurations where at
least the two lowest eigenvalues are small and (nearly)
degenerate could lead to the correct physics. Such an
investigation is, although numerically demanding, in prin-
ciple, feasible, and its implementation is currently under
scrutiny.
A second possibility is that the Coulomb potential as

calculated from Eq. (10) involves the inverse of the ill-
conditioned lattice Faddeev–Popov operator whose kernel
may be sensitive to the exact lattice definition and (yet to be
determined) discretization artifacts. The lc procedure would
then bring this defect to the fore and amplify it, ultimately
making the lattice definition impractical. The fact that the
alternative definition given in Eq. (12), which requires no
such operator inversion, always works well might indeed
point in this direction. Also, the fact that no saturation for
the smallest eigenvalue could be found hints towards
spurious artifacts in the low-lying spectrum of the lattice
Faddeev–Popov operator. If this issue could be resolved
and a saturation could be found, it is also conceivable that a
theoretically motivated Ansatz for the fit to the data in
Fig. 10 might still bring the results in agreement with the
continuum predictions, e.g., the ghost exponent κ ¼ 1.
Alternatively one could argue that, since the fundamental

discretization of Yang-Mills theory is known to possess
lattice artifacts which affect gauge invariant, topological
observables [55–58], it is conceivable for them to also
influence gauge-dependent quantities. In this case, it is the
discretization of the model itself which would introduce
spurious quasi-zero modes in the FP operator which
subsequently affect all quantities that require its inversion
(such as the ghost propagator or the Coulomb potential). By
contrast, ordinary correlators that require no FP inversion
are benign, cf. Eq. (12). To test such a hypothesis one
would, however, need to explore the Coulomb gauge in
algorithmically demanding alternative discretizations of the
Yang-Mills action [56,57,59,60].
Finally, it is also conceivable that the GZ scenario

realized in the Hamiltonian approach does not describe
the lattice results at all, and a refinement of the Coulomb
Hamiltonian would be necessary, similarly to what was
conjectured in Landau gauge [36]. If such a refinement is to
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remain renormalizable, however, the additional terms
would dominantly affect the infrared regime and, hence
the sum rule, but they could not explain the dramatic
increase of the Coulomb potential observed in the lc
approach over the entiremomentum range. More generally,
the numerical investigations in this paper show that there is
not one single consistent version of Coulomb gauge on the
lattice, at least not within current computational limits, and
it is hence unclear in which way to extend the continuum
GZ scenario. At the moment, we have no strong evidence
for an extension of the present continuum formulation,
i.e., the standard Hamiltonian approach realizing the GZ
horizon condition remains our best continuum description
so far.
A by-product of our investigation was the systematic

improvement of the search for the best gauge functional

value (bc approach) with a high number of g.f. repetitions.
While in this case gluon and ghost propagators (Figs. 6
and 8) do not change as compared to previous investiga-
tions [15,16,18–21], the Coulomb potential loses the
“bump" in the low momentum region found in previous
works, which allows for a much more reliable estimate of
the Coulomb string tension in this setup. For a true high-
precision determination of σC, however, larger volumes and
a systematical finite size analysis would be required.
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