
Helicity evolution at small x: Flavor singlet and nonsinglet observables

Yuri V. Kovchegov*

Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

Daniel Pitonyak†

Division of Science, Penn State University-Berks, Reading, Pennsylvania 19610, USA
and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

Matthew D. Sievert‡

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
and Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 1 November 2016; published 30 January 2017)

We extend our earlier results for the quark helicity evolution at small x [J. High Energy Phys. 01 (2016)
072] to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and
PDFs and of the g1 structure function. In the flavor singlet case we rederive the evolution equations
obtained in our previous paper on the subject [J. High Energy Phys. 01 (2016) 072], performing additional
cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by
employing the large-Nc limit. All evolution equations resum double-logarithmic powers of αs ln2ð1=xÞ in
the polarization-dependent evolution along with the single-logarithmic powers of αs lnð1=xÞ in the
unpolarized evolution which includes saturation effects. We solve the linearized flavor nonsinglet equation
analytically, obtaining an intercept which agrees with the one calculated earlier by Bartels, Ermolaev and
Ryskin [Z. Phys. C 70, 273 (1996)] using the infrared evolution equations. Our numerical solution of the
linearized large-Nc evolution equations for the flavor singlet case is presented in the accompanying Letter
[Phys. Rev. Lett. 118, 052001 (2017)] and is further discussed here.
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I. INTRODUCTION

Measurements of hadronic structure functions in deep
inelastic scattering are kinematically limited to a minimum
valueofBjorken-x due to a finite center-of-mass energy s ∝ 1

x.
Therefore, all structure functions, and all parton distribution
functions (PDF’s) fðx;Q2Þ extracted from them, must
necessarily be extrapolated toward smaller x in order to
generate predictions for higher energy scattering experiments
and to apply quantum chromodynamics (QCD) sum rules
which constrain moments

R
1
0 dxxnfðx;Q2Þ of the PDF’s.

Structure functions in the x → 0 limit are often singular, with
the best-known examples being the unpolarized structure
functionsF1 andF2. At leading twist and leading order in the
coupling αs, F1 is a weighted measure of the total density of
partons in a hadron, with its x → 0 singularity reflecting, in
part, the enhancement of soft gluon radiation in QCD.
The dynamics of this soft gluon radiation are encapsulated
in the Balitsky–Fadin–Kuraev–Lipatov (BFKL) [1,2],
Balitsky–Kovchegov (BK) [3–6], and Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK)
evolution equations [7–10], which describe the development
of a cascade of small-x gluons at high energies by resumming

(at leading order) the large logarithms αs ln
s
Λ2 ∼ αs ln

1
x ∼ 1

(Λ is an infrared cutoff). This parton cascade, as described by
the linear BFKL equation, leads to a steep growth in the gluon
number density dN

dy ∝ xfðx;Q2Þ of partons per unit rapidity
resulting in a violation of the black disk limit for the
corresponding scattering cross sections. This growth is
regulated by the onset of the high-density regime of QCD,
where nonlinear multiple rescatterings of the parton cascade
in the target (as described by theBK and JIMWLKequations)
saturate the number density of partons such that dN=dy
remains finite as x → 0. This results in corresponding cross
sections satisfying the black disk limit (see [11–17] for
reviews).
The BFKL, BK, and JIMWLK equations, however,

cannot describe the small-x limit of the polarized structure
function g1, which at leading twist and leading order in
αs is a weighted measure of the quark helicity PDF’s
Δqfðx;Q2Þ. The high-energy/small-x asymptotics cap-
tured by these evolution equations are insensitive to
polarization because, as is well-known, polarization
dependence is suppressed at high energies. The subeikonal
interactions which do not transfer spin in high-energy
scattering enter as power-suppressed corrections to unpo-
larized cross sections and to F1 and F2. The subeikonal
interactions which do transfer longitudinal spin provide
the leading high-energy/small-x asymptotics of the
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longitudinal double-spin asymmetry ALL and the polarized
structure function g1. The development of a cascade of
polarized partons at small x is thus an interesting and
important aspect of high-energy dynamics in QCD which is
outside the scope of the canonical small-x treatment.
The small-x asymptotics of the polarized g1 structure

function were studied previously by Bartels, Ermolaev, and
Ryskin (BER) in the flavor singlet [18] and nonsinglet [19]
cases. Unlike with unpolarized small-x evolution, in helicity
evolution, t-channel quarks play an important role already at
the leading order. In the massless limit, quarks automatically
transfer spin through the t-channel due to helicity conserva-
tion for massless fermions. The effective particle exchanged
by such dressed quarks is known as theReggeon in the small-
x literature [20–24], and it has been studied previously in the
context of baryon stopping in heavy-ion collisions [25]. In
addition to quarks, a power-suppressed component of gluon
exchange can also carry spin through the t-channel. While
the unpolarized BFKL/BK/JIMWLK evolution occurs
through the exchange of dressed, longitudinally polarized
gluons (the “hard QCD Pomeron”), helicity evolution
receives contributions from exchanging a pair of dressed
gluons with one polarized longitudinally and the other
transversely [18,19]. The exchange of quarks and of polar-
ized gluons both enter at the same parametric order and can
therefore mix with each other, akin to the mixing which
occurs in polarized and unpolarized Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution inQ2 [26–28].
Helicity evolution (like Reggeon evolution) is double-

logarithmic, resumming two logarithms of the energy for
each power of the coupling: αsln2 s

Λ2 ∼ αsln2 1
x ∼ 1. In this

sense, helicity evolution can be said to be stronger than the
single-logarithmic BFKL/BK/JIMWLK evolution, leading
to the possibility that the helicity PDF’s could become
(almost) competitive with the unpolarized ones at small x,
despite their suppression in the initial conditions. Indeed, this
is what BER found [18]: for the flavor singlet case with
Nf ¼ 0 (pure glue) and αsðQ2Þ ¼ 0.343 at Q2 ¼ 3 GeV2,
their results required helicity PDF’s to grow at small x as
ð1xÞ1.481. In comparison, leading-order fixed-coupling BFKL
evolutionwith the sameparameters yields unpolarizedPDF’s
which grow at small x as ð1xÞ1.908. The presence of a
nonintegrable singularity in the helicity PDF’s would
imply that their contribution to the proton spin Sq ¼
1
2

P
f

R
1
0 dxΔqfðx;Q2Þ is not finite, requiring either

higher-order corrections or nonlinear saturation effects at
small x to regulate the divergence. The latter scenario would
potentially provide a novel path to discovering parton
saturation using measurements of the polarized structure
functions instead of the unpolarized ones.
Motivated by this possibility, and by the need to assess the

amount of proton spin at small x, we derived in a previous
work [29] evolution equations for the quark helicity PDF’s at
small x, including the nonlinear multiple rescattering which

drives parton saturation. Our approach used the modern
saturation formalism, relating the helicity PDF’s to a polar-
ized dipole amplitude which we calculated in light-front
perturbation theory (LFPT) [30]. The resulting evolution
equations involve quark and gluon Wilson line operators,
along with an object we refer to as the “polarized Wilson
line”: an eikonal quark or gluon propagatorwith the insertion
of one or two subeikonal vertices carrying polarization
information. These equations do not close in general because
they involve higher-order operators in the evolution kernel;
this should result in a helicity analogue of the Balitsky
hierarchy [3,4]. However, also by analogy to the unpolarized
case, our helicity evolution equations do close in the large-Nc
and large-Nc & Nf limits, withNc the number of colors and
Nf the number of flavors. The equations are quite complex
and difficult to solve, even in the linearized strictly double-
logarithmic regime. In an accompanying Letter [31] we
present the numerical solution of our equations at large Nc,

obtaining the helicity intercept of αh ≈ 2.31
ffiffiffiffiffiffiffiffi
αsNc
2π

q
. This

leads to helicity PDF’s with integrable singularities at small
x, scaling as Δq ∼ ð1xÞαh ∼ ð1xÞ0.936 for Nf ¼ 0 and
Q2 ¼ 3 GeV2, and hence a finite value of the quark spin
contribution Sq. Such a scenario would not, in fact, require
saturation effects to regulate the small-x limit after all.
Somewhat surprisingly, the value of our helicity intercept

in the flavor singlet channel is smaller than that obtained by
BER by about 35% [18]. To understand the source of our
significant discrepancy with BER, we have performed a
variety of consistency checks of our equations, which we
present here in detail. This analysis also sheds further light
on the intricate structure of helicity evolution at small x,
which is substantially more complex than the unpolarized
evolution which is well-known in the literature.
While our previous paper [29] dealt with flavor-singlet

helicity observables, here we have also generalized the
treatment to include flavor nonsinglet helicity PDF’s and
transverse momentum-dependent PDF’s (TMD’s), along
with the g1 structure function. Constructing a large-Nc
helicity evolution equation for the flavor nonsinglet case,
we have reproduced the flavor nonsinglet intercept
obtained previously by BER [19].
This paper is organized as follows. In Sec. II we rederive,

cross-check and present a solution for the helicity evolution
equations in the flavor singlet case derived previously in [29].
We relate the polarized flavor-singlet observables to a
“polarized dipole amplitude” which contains the dynamics
of spin exchange at small x in Sec. II A, and we state our
initial conditions for this amplitude. The large-Nc flavor-
singlet helicity evolution equations are presented in Sec. II B;
they are solved numerically in the accompanying Letter [31].
We discuss the solution in Sec. II C and outline our disagree-
ment with BER. In Sec. II Dwe perform a number of explicit
calculations which elucidate the role of virtual corrections in
our evolution equations and which verify the real-virtual

KOVCHEGOV, PITONYAK, and SIEVERT PHYSICAL REVIEW D 95, 014033 (2017)

014033-2



cancellations used in deriving them. In Sec. II E we use our
evolution equations to compute the glue/glue next-to-leading
order (NLO) anomalous dimension in polarized DGLAP
evolution, again obtaining agreement with the literature [32]
and with BER on this point. The flavor nonsinglet evolution
is constructed in Sec. III, following the same pattern. The
flavor nonsinglet observables are defined in Sec. III A in
terms of the flavor nonsinglet “polarized dipole amplitude”.
The helicity evolution equations in the flavor nonsinglet case
and in the large-Nc limit are derived in Sec. III B, and are
solved analytically in Sec. III C, leading to an intercept in
perfect agreement with [19]. In Sec. IV we conclude by

summarizing the importance of our calculation for assessing
the small-x contribution to the spin puzzle.

II. FLAVOR SINGLET HELICITY
EVOLUTION

A. Definitions and initial conditions

As was derived in [29,33], at small x, the polarized
structure function g1ðx;Q2Þ, the quark helicity PDF
Δqðx;Q2Þ, and the quark helicity TMD g1Lðx; k2TÞ can
all be expressed in the following way:

g1ðx;Q2Þ ¼ Nc

ð2πÞ2αEM

Z
1

zi

dz
z2ð1 − zÞ

Z
dx201d

2b

�
1

2

X
λσσ0

jψT
λσσ0 j2ðx2

01
;zÞ þ

X
σσ0

jψL
σσ0 j2ðx2

01
;zÞ

�

×
1

2Nc

n
⟪tr½V0V

pol†
1 �⟫ðzÞ þ ⟪tr½V0V

pol†
1 �⟫�ðzÞ

o
; ð1aÞ

Δqðx;Q2Þ ¼ Nc

4π3

Z
1

zi

dz
z

Z 1

zQ2

1
zs

dx201
x201

Z
d2b

1

2Nc
f⟪tr½V0V

pol†
1 �⟫ðzÞ þ ⟪tr½V0V

pol†
1 �⟫�ðzÞg; ð1bÞ

g1Lðx; k2TÞ ¼
4Nc

ð2πÞ6
Z

1

zi

dz
z

Z
d2x01d2x001e−ik·ðx01−x001Þ

x01 · x001
x201x

2
001

×
Z

d2b
1

2Nc
f⟪tr½V0V

pol†
1 �⟫ðzÞ þ ⟪tr½V0V

pol†
1 �⟫�ðzÞg: ð1cÞ

These results come from the computation of the diagrams
shown in Fig. 1 in LFPT in the conventions of [17], where
we take the virtual photon with virtualityQ2 to have a large
momentum along the light-front “þ” axis and work in the
Aþ ¼ 0 gauge. The diagrams in Fig. 1 represent contribu-
tions to the polarization-dependent part of the quark
production cross section in semi-inclusive deep inelastic
scattering (SIDIS) on a polarized target proton or nucleus;
the quark helicity TMD and PDF and the g1 structure
function can be extracted from this quantity [29]. The
notation is defined as in Fig. 1: σ; σ0; λ are the polarizations
of the quark, antiquark, and (transverse) photon, respec-
tively (we take the target to have positive helicity, without
loss of generality); x1 is the transverse coordinate of the

antiquark which scatters in a polarization-dependent way;
x0 and x00 are the transverse coordinates of the produced
quark in the amplitude and complex-conjugate amplitude,
respectively; and z is the fraction of the photon’s “þ”
momentum which is carried by the antiquark. Transverse
vectors are denoted v≡ ðv1⊥; v2⊥Þ, with v⊥ ¼ vT ≡ jvj,
and the separation vector between coordinates is
xij ≡ xi − xj. The dipole impact parameter is defined by
b ¼ ðx1 þ x0Þ=2. The z integral has a lower cutoff zi ¼
Λ2=s with Λ the infrared (IR) cutoff and s the center-of-
mass energy squared for the SIDIS process pictured in
Fig. 1. Nc is the number of colors and αEM is the fine
structure constant. The light cone wave functions for the
γ� → qq splitting are denoted ψT

λσσ0 and ψL
σσ0 for the

FIG. 1. Diagrams contributing to the quark helicity at small-x. The shaded region is the shock wave of the (polarized) target. The spin-
dependent interaction is illustrated by t-channel quark exchanges, but in general should include gluon exchanges as well (see text).
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transverse and longitudinal polarizations of the virtual
photon respectively. These functions are well-known in
the literature [34,35], and are explicitly given e.g. in [29].
In obtaining the simplified expressions (1) we have taken

the produced quarks to be massless and utilized parity
symmetry of the virtual photon wave functions. In arriving
at Eq. (1c)we have used the k → −k symmetry of the helicity
TMDdue to the absence of any preferred transverse direction
in the problem [29]. The parton distribution functions in
Eqs. (1) are given to leading-twist accuracy, and the structure
function g1 is given in the double-logarithmic approxima-
tion. Note that so far we assume that only one (massless)
quark flavor enters the loop in the diagrams of Fig. 1.
The fundamental-representationWilson lineV0 in Eqs. (1)

is the usual path-ordered exponential which describes the
gauge rotation of an eikonal quark passing through a back-
ground gluon field of the target proton or nucleus:

Vx ≡ P exp

�
ig
Z

∞

−∞
dxþA−ðxþ; 0−; xÞ

�
: ð2Þ

Note the abbreviated notation V0 ≡ Vx0
.

The “polarized Wilson lines” Vpol
x are more difficult to

define operatorially. Consider an eikonal quark propagator
with the insertion of either one (for gluon exchange) or two
(for quark exchange) subeikonal polarization-dependent
vertices. The resulting propagator of an eikonal quark with
polarization σ in the background quark or gluon field of the
target is written as

VxðσÞ≡ Vx þ σVpol
x ð3Þ

with the polarization-dependent part of that background-
field propagator being more than a pure gauge rotation. The
polarized Wilson line may couple once to a transverse
component Ai⊥ of the gluon field, or it may exchange two
t-channel quarks with the target. Since the leading
high-energy behavior of the quark propagator is spin-
independent, Vpol

x is suppressed relative to Vx by a factor
of the quark energy. Each additional spin-dependent inter-
action is further suppressed by a power of the quark energy,
so Vpol

x contains exactly one spin-dependent interaction (a
gluon exchange or a two-quark exchange), along with any
number of eikonal, spin-independent gluon-exchange inter-
actions. The double angle brackets in (9b) are defined to
remove this suppression of 1=zs from the dipole trace [29],

⟪O⟫ðzÞ≡ zshOiðzÞ; ð4Þ
while the single angle brackets h…i denote the averaging in
the (polarized) target proton or nucleus. Note that z used in
the rescaling is the momentum fraction of the polarized line
in the dipole, while z in the argument is the smallest
momentum fraction between the polarized and unpolarized
lines [29]: these two z values could be different.
To further simplify Eqs. (1) it would be tempting to

replace

⟪tr½V0V
pol†
1 �⟫�ðzÞ → ⟪tr½Vpol

1 V†
0�⟫ðzÞ ð5Þ

as is often done for the unpolarized small-x evolution (the
asterisk denotes complex conjugation). However, here one
has to be more careful: for a general target state jTiwe have

hTjtr½V0V
pol†
1 �jTi� ¼ hTjtr½Vpol

1 V†
0�jTi; ð6Þ

where jTi denotes the charge-conjugate target state. While
unpolarized BFKL, BK and JIMWLK evolution is insen-
sitive to whether the target is, say, a quark or an antiquark,
this is not the case for helicity evolution. For instance, the
t-channel quark exchange shown in Fig. 1 is possible for
the quark target but is impossible for the antiquark one.
Keeping this in mind, let us consider the flavor singlet case,

ΔqSðx;Q2Þ≡X
f

½Δqfðx;Q2Þ þ Δqfðx;Q2Þ�: ð7Þ

Adding to diagrams in Fig. 1 the graphs which have the quark
loop particle number flow in the opposite direction (such that
the tagged particle is an antiquark) and summing over all
flavors simplifies Eqs. (1) to

gS1ðx;Q2Þ ¼ Nc

2π2αEM

X
f

Z
1

zi

dz
z2ð1 − zÞ

×
Z

dx201

�
1

2

X
λσσ0

jψT
λσσ0 j2ðx2

01
;zÞ

þ
X
σσ0

jψL
σσ0 j2ðx2

01
;zÞ

�
Gðx201; zÞ; ð8aÞ

ΔqSðx;Q2Þ ¼ Nc

2π3
X
f

Z
1

zi

dz
z

Z 1

zQ2

1
zs

dx201
x201

Gðx201; zÞ; ð8bÞ

gS1Lðx; k2TÞ ¼
8Nc

ð2πÞ6
X
f

Z
1

zi

dz
z

Z
d2x01d2x001

× e−ik·ðx01−x001Þ
x01 · x001
x201x

2
001

Gðx201; zÞ: ð8cÞ

We see from Eqs. (8) that the small-x polarized scattering
dynamics are containedwithin thepolarizeddipole amplitude,
which is defined by

G10ðzÞ≡ 1

2Nc
⟪tr½V0V

pol†
1 � þ tr½Vpol

1 V†
0�⟫ðzÞ

¼ Gðx1; x0; zÞ ¼ Gðx10; b; zÞ; ð9aÞ

Gðx201; zÞ≡
Z

d2bG10ðzÞ; ð9bÞ

where, again, b ¼ 1
2
ðx1 þ x0Þ is the impact parameter of the

dipole which is held fixed in G10ðzÞ and integrated in
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Gðx201; zÞ. In arriving at Eqs. (9) we have assumed thatG10ðzÞ
and, hence,Gðx201; zÞ are both real,G10ðzÞ ¼ G�

10ðzÞ, which is
true for the leading contributions to G10ðzÞ without evolution
(the initial conditions) and is still the case after evolving the
polarized dipole amplitude using helicity evolution [29]. The
helicity evolution equations constructed in [29] concentrated
on the flavor singlet case of Eqs. (8) and (9).
Although the polarized Wilson line defining G10ðzÞ is

difficult to define operatorially, it corresponds to the spin-
dependent part of the S-matrix of a quark propagating
through the background field of the target. Therefore, we
can defineG10ðzÞ indirectly by relating it to the dipole cross
section via the optical theorem,

1

Nc
htr½V0ðσ0ÞV†

1ðσ1Þ�iðzÞ≡ S½q0ðσ0Þ; q1ðσ1Þ; zs�

≈ 1 − ImT½q0ðσ0Þ; q1ðσ1Þ; zs�

¼ 1 −
1

2

dσ
d2b

½q0ðσ0Þ; q1ðσ1Þ; zs�;
ð10Þ

where we have neglected the real part of the (expectation
value of the) T-matrix at high energies as being higher-
order in the strong coupling αs.

1 Here qxðσÞ (qxðσÞ)
denotes a quark (antiquark) at transverse position x and
spin σ. Using (3) to expand the Wilson lines on the left-
hand side, we obtain

1

Nc
htr½V0V

pol†
1 �iðzÞ ¼ −

1

4

X
σ0σ1

σ1
dσ
d2b

½q0ðσ0Þ; q1ðσ1Þ; zs�

≡ −
dσ
d2b

½qunp0 ;Δq1; zs�; ð11Þ

and similarly for 1
Nc
htr½Vpol

1 V†
0�iðzÞ. This gives an expres-

sion for the polarized dipole amplitude in terms of the spin-
dependent part of the dipole cross section,

G10ðzÞ ¼ −
zs
2

�
dσ
d2b

½qunp0 ;Δq1; zs� þ
dσ
d2b

½qunp0 ;Δq1; zs�
�
:

ð12Þ

With the help of (12), we can calculate the polarized
dipole amplitude at lowest order for a quark target as shown
in Fig. 2. For simplicity the target quark is assumed to be at
the origin in the transverse plane. These explicit expres-
sions for Gð0Þ

10 can serve as initial conditions for the
subsequent small-x evolution,

Gð0Þ
10 ¼ α2sCF

Nc

�
CF

x21
− 2πδ2ðx1Þ lnðzsx210Þ

�
ð13aÞ

Gð0Þðx210; zÞ ¼
α2sCF

Nc
π

�
CF ln

zs
Λ2

− 2 lnðzsx210Þ
�
; ð13bÞ

where the impact parameter integral
R
d2b ¼ R

d2x0 ¼R
d2x1 is cut off in the UV by the energy b2 > 1

zs and in
the IR by a cutoff b2 < 1

Λ2, while CF ¼ ðN2
c − 1Þ=2Nc. One

can also dress these linearized expressions with quasiclass-
ical multiple Glauber-Mueller (GM) rescatterings [38] in
the spirit of the McLerran-Venugopalan (MV) model
[39–44], obtaining

FIG. 2. Diagrams contributing to the lowest-order initial conditions Gð0Þ
01 ðzÞ for a quark target. The top line of diagrams contributes to

tr½V0V
pol†
1 �, and the bottom line contributes to tr½Vpol

1 V†
0�. The black circles denote noneikonal quark-gluon vertices which transfer spin,

and complex-conjugates must be added to the asymmetric diagrams. Note that in the second line, the quark and antiquark lines have
been interchanged, consistent with the definition (9a).

1There is a subtlety here: the real part of the unpolarized T-
matrix for eikonal Wilson lines, the odderon [36,37], is αs-
suppressed compared to the leading unpolarized imaginary part
retained in Eq. (10). In our power counting, this makes the
unpolarized real part much larger than the leading polarization-
dependent imaginary part we are interested in, since the latter is
energy-suppressed. Hence, the approximation in Eq. (10) should
be understood as correctly retaining only the leading polarized
and unpolarized contributions.
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Gð0Þ
10 ¼ α2sCF

Nc

�
CF

x21
− 2πδ2ðx1Þ lnðzsx210Þ

�

× exp

�
−
1

4
x210Q

2
sðbÞ ln

1

x01Λ

�
ð14Þ

where Qs is the saturation scale before evolution.
Equation (14) includes saturation effects by resumming
multiple rescatterings and can also serve as the initial
condition for small-x helicity evolution, if the latter
includes saturation effects as well.

B. Flavor singlet helicity evolution at small x

As derived in [29], the small-x evolution of the
polarized dipole amplitude resums double logarithms of

the energy: αsln2
s
Λ2 ∼ αsln2

1
x. The polarized evolution

proceeds by the radiation of longitudinally soft polarized
partons with momentum fractions z0 ≪ z (top line of
Fig. 3); there are also nonvanishing double-logarithmic
contributions from the radiation of longitudinally soft
unpolarized gluons akin to the unpolarized BFKL/BK/
JIMWLK equations (bottom line of Fig. 3). The contri-
bution of other polarized and unpolarized gluon emission
diagrams amounts to introducing an IR cutoff x21 < x10
on the x21-integral in the gluon-emission diagrams in
Fig. 3 [29]: for brevity we do not show those remaining
graphs. The result of one step of double-logarithmic
(DLA) evolution in the polarized dipole amplitude is
given by [29]

G10ðzÞ ¼ Gð0Þ
10 ðzÞ þ

αs
2π2

Z
z

Λ2=s

dz0

z0

Z
d2x2
x221

θ

�
x221 −

1

z0s

�

×

�
θðx10 − x21Þ

1

Nc
⟪tr½tbV0taV

†
1�ðUpol

2 Þba þ tr½tbV1taV
†
0�ðUpol†

2 Þab⟫ðz0Þ

þ θðx210z − x221z
0Þ 1

4Nc
½⟪tr½V0V

†
1�tr½V1V

pol†
2 � þ tr½V1V

†
0�tr½Vpol

2 V†
1�⟫ðz0Þ

−
1

2Nc
⟪tr½V0V

pol†
2 � þ tr½Vpol

2 V†
0�⟫ðz0Þ�

þ θðx10 − x21Þ
1

Nc
½⟪tr½V0V

†
2�tr½V2V

pol†
1 � þ tr½V2V

†
0�tr½Vpol

1 V†
2�⟫ðz0Þ

− Nc⟪tr½V0V
pol†
1 � þ tr½Vpol

1 V†
0�⟫ðz0Þ�

�
ð15Þ

as drawn diagrammatically in Fig. 3. The polarized adjoint
Wilson line Upol

2 is defined analogously to (3). Like
equations in the Balitsky hierarchy [3,4] for unpolarized
small-x evolution, the evolution of the polarized dipole G10

is not closed, coupling to increasingly complex operators at
each step of evolution. The first term in braces in (15)
corresponds to the radiation of a soft polarized gluon, as
shown in the first two diagrams of Fig. 3. The second term

corresponds to the radiation of a soft polarized (anti)quark,
as shown in the third diagram of Fig. 3. The last term in
braces in (15) corresponds to the radiation of soft unpo-
larized gluons, as shown in the second row of diagrams in
Fig. 3. As we have already mentioned, the diagrams in the
first and third classes are DLA in the x21 < x10 portion of
the full phase space x210z ≫ x221z

0 due to partial cancella-
tions from other diagrams which we do not show explicitly.

FIG. 3. One step of small-x evolution in the polarized dipole amplitude G10. The thick vertical rectangle represents the shock wave
interaction with the target, the large black circle vertices represent the subeikonal emission of a polarized gluon, and the small gray box

denotes the polarized Wilson line. For simplicity, the initial condition Gð0Þ
10 is not shown.
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Equation (15) does not close, and represents the lowest-
order equation in the infinite tower of equations involving
higher and higher order operators (in the number of Wilson
lines), the helicity evolution analogue of the unpolarized
Balitsky hierarchy [3]. This helicity hierarchy, represented
here by the evolution equation (15), is difficult to solve; at
the moment it is too early to tell whether it would be
suitable for stochastic methods used in solving the unpo-
larized JIMWLK evolution [45]. It can, however, be solved
in limits in which the operator hierarchy closes: namely the
large-Nc limit and the large-Nc & Nf limit [29]. In the
large-Nc limit the evolution is gluon-driven (cf. [46–48]).
Assuming that the parent dipole 10 in Fig. 3 comes from the
quark and antiquark lines of different gluons at largeNc, we
can neglect the radiation of soft quarks [second term
in braces in (15)] and simplify the remaining terms,
obtaining [29]

G10ðzÞ ¼ Gð0Þ
10 ðzÞ þ

αsNc

2π2

Z
z

Λ2=s

dz0

z0

×
Z

d2x2
x221

θðx10 − x21Þθ
�
x221 −

1

z0s

�
× ½2Γ20;21ðz0ÞS21ðz0Þ þ 2G21ðz0ÞS02ðz0Þ
þG12ðz0ÞS02ðz0Þ − Γ10;21ðz0Þ� ð16aÞ

Γ20;21ðz0Þ¼Gð0Þ
20 ðz0Þþ

αsNc

2π2

Z
z0

Λ2=s

dz00

z00

×
Z

d2x3
x232

θ

�
min

�
x202;x

2
21

z0

z00

�
−x232

�
θ

�
x232−

1

z00s

�
× ½2Γ30;32ðz00ÞS23ðz00Þþ2G32ðz00ÞS03ðz00Þ
þG23ðz00ÞS03ðz00Þ−Γ20;32ðz00Þ�; ð16bÞ

where the unpolarized dipole scattering amplitude

S21ðzÞ≡ 1

Nc
htr½V2V

†
1�i ≈ S12ðzÞ ð17Þ

is obtained from the BK/JIMWLK evolution equations
[3–10] with the initial condition given by the GM/MV
result [38,49]

Sð0Þ10 ðzÞ ¼ exp

�
−
1

4
x210Q

2
sðbÞ ln

1

x10Λ

�
ð18Þ

which is independent of z. Since BK and JIMWLK
evolution is leading-logarithmic (LLA) at the leading order,
it does not contribute in the strict DLA limit, in which we
simply put S ¼ 1 in Eqs. (16). However, when the precision
of helicity evolution is increased beyond DLA to LLA

level, saturation effects would come in through S21ðzÞ as
shown in Eqs. (16).
Even in the large-Nc limit, the operator evolution (15)

remains a system of equations because the dipoles are not
all independent of each other. The general phase space
which yields DLA contributions

z1x21T ≫ z2x22T ≫ z3x23T � � � 1≫ z1≫ z2 ≫ z3 � � � ð19Þ

competes with the θðx10 − x21Þ functions of (15) which
arise from partial cancellations with other diagrams. In
some cases, the ordering (19) is more restrictive than the θ
functions, which introduces an extra dependence of one
dipole amplitude on the dipole size of another. This leads to
the “neighbor dipole” function Γ20;21ðz0Þ [29]. [Note: the
labeling here is different than in [29]. Here the first index of
Γ denotes the polarized line, bringing it into consistency
with G10 defined in (9a).] In this term, further evolution
continues in the large dipole x220, but residual dependence
on the size of the neighbor dipole x221 remains through the
limits of integration in (16b). Thus even in the large-Nc
limit, helicity evolution is, in this respect, more complex
than unpolarized evolution. We note that the virtual
corrections (last term in brackets) can be shown to enter
as neighbor dipole functions (see Sec. II D).
There is another interesting feature in the Eqs. (16). Let us

first note that the small-x polarized leading-order DGLAP
splitting functions for gluon emission are ΔPGqðz → 0Þ ¼
2CFðαs=2πÞ and ΔPGGðz → 0Þ ¼ 4Ncðαs=2πÞ [28].
Hence, in the large-Nc limit we have ΔPGGðz → 0Þ ¼
4ΔPGqðz → 0Þ. The difference between the two splitting
functions is not simply due to the difference of their color
factors,CF ≈ Nc=2 andNc respectively, as is the case for the
unpolarized small-x splitting functions [for which
PGGðz → 0Þ ¼ 2PGqðz → 0Þ]: this would only account
for a factor of 2 difference. The other factor of 2 comes
from the helicity dynamics of the G → GG splitting as
compared to the q → Gq splitting. Thus, for the large-Nc
limit, which is dominated by gluon dynamics, it is insuffi-
cient to simply take Eq. (15) and send Nc → ∞. There is an
essential difference between the evolution of the polarized
quark dipole and the polarized dipole made out of “quark
lines” in the large-Nc gluon dipole: the splitting in the latter
comewith an extra factor of 2. This is the reason for the extra
factor of 2 in front of the first two terms in the integrands of
both Eqs. (16). In the large-Nc limit one should understand
the polarized dipole definition (9a) as involving eikonal
quark and antiquark lines coming from gluon lines. To derive
this factor of 2 more formally one needs to start with the
analogue of Eq. (15) for the polarized gluon dipole and take
the large-Nc limit: this is presented in Appendix A.

C. Solution of flavor singlet helicity evolution
equations at large Nc

To facilitate solving the large-Nc equations (16), let us
first linearize them by dropping the unpolarized multiple
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rescattering terms like S21 and then integrate over the
impact parameter b. This is justified outside of the
saturation region, where S ≈ 1. Note also that the S-terms
are LLA and should be put to one in the strict DLA limit.
Doing so, we obtain

Gðx210; zÞ ¼ Gð0Þðx210; zÞ

þ αsNc

2π

Z
z

1
x2
10
s

dz0

z0

Z
x2
10

1
z0s

dx221
x221

½Γðx210; x221; z0Þ

þ 3Gðx221; z0Þ�; ð20aÞ

Γðx210;x221;z0Þ ¼Gð0Þðx210;z0Þ

þαsNc

2π

Z
z0

1
x2
10
s

dz00

z00

Z
min ½x2

10
;x2

21
z0
z00�

1
z00s

dx232
x232

× ½Γðx210;x232;z00Þþ3Gðx232;z00Þ�; ð20bÞ
where we have neglected the small differences between the
large dipole sizes x201 ≈ x202 ≈ x203.
The usual Laplace-Mellin transform technique fails to

simplify the system (20) due to the presence of the neighbor
dipole function Γðx210; x221; z0Þ. Instead we resort to solving
(20) numerically by discretizing the independent variables
on a lattice. Since the z, z0 dependence enters through the
upper limits of the z0; z00 integrations, respectively, these
equations are well-suited to solution by iteration: starting
with just the initial conditions at z ¼ 1

x2
10
s, we can system-

atically compute the polarized dipole amplitude at z using
the already-tabulated results for lower values of z. By
evolving to sufficiently large zs, we look for the emergence
of power-law behavior Gðx2T; zsÞ ∝ ðzsÞαh and extract the
helicity intercept αh by performing a linear fit to lnG. For
further details of the numerics and for the implications
regarding the quark contribution Sq to the proton spin, we
refer the interested reader to the accompanying Letter [31].
The high-energy asymptotics of the polarized dipole

amplitude found in [31] can be summarized by

Gðx210; zÞ ∝ ðzsÞαh with αh ≈ 2.31

ffiffiffiffiffiffiffiffiffiffi
αsNc

2π

r
: ð21Þ

Using Eqs. (8) we conclude that the small-x asymptotics of
flavor-singlet helicity observables is

gS1ðx;Q2Þ ∼ ΔqSðx;Q2Þ ∼ gS1Lðx; k2TÞ ∼
�
1

x

�
αh

≈
�
1

x

�
2.31

ffiffiffiffiffiffi
αsNc
2π

p
: ð22Þ

This is one of the main results of this project so far.
Our evolution equations (15) only close in the large-Nc

or large-Nc & Nf limits. In [31] we have only solved them

numerically in the large-Nc (pure glue) limit obtaining the
result given in Eq. (21). Solution of the evolution equations
derived in [29] for the large-Nc & Nf limit is left for
future work.
The intercept in Eq. (21) is smaller by about 35% than

the pure glue intercept obtained by BER in [18],

αBERh ¼ 3.66
ffiffiffiffiffiffiffiffi
αsNc
2π

q
. Despite this disagreement on the full

result,2 we agree with BER on important subsets of the
calculation such as the “ladder graphs” which include
DGLAP-like quark/gluon mixing [29] and the flavor non-
singlet helicity evolution intercept which we obtain below
in Eq. (66).
Given this discrepancy, it is important to validate the

internal consistency of our calculation and to compare with
the results of BER wherever possible. Direct comparison is
difficult on a term-by-term or diagram-by-diagram basis,
since we work in different gauges (the light cone gauge
versus Feynman gauge) and use very different formalisms
(s-channel light-front wave functions versus infrared evo-
lution equations). There are, however, some consistency
checks we can do to increase the confidence in our result
and to better understand the nature of our evolution
equations. We will pursue these cross-checks next in the
following subsections, where we will justify the neighbor
dipole amplitude following virtual correction in the evo-
lution of Fig. 3 and successfully rederive the small-x
polarized DGLAP anomalous dimension ΔPGGðz → 0Þ
at NLO. Further comparison with the calculation by
BER can be found in Appendix B.

D. Cross-check: Virtual diagrams and real-virtual
cancellations

1. Evolution subsequent to a virtual correction

First we would like to cross-check and clarify the origin
of the neighbor dipole amplitude Γ in the last term of the
integrand in both Eqs. (16). These terms arise from the
evolution subsequent to the virtual corrections in the last

2There is a caveat here: our result (21) for the intercept was
calculated in the large-Nc pure-glue limit; the part of the

calculation in [18] leading to the intercept αBERh ¼ 3.66
ffiffiffiffiffiffiffiffi
αsNc
2π

q
was for the pure glue case, but was not in the large-Nc limit.
Therefore one could attribute the difference between the two
numbers to the difference between the large-Nc limit (us) and
Nc ¼ 3 (BER). To explore this possibility we have reproduced
BER’s solution for pure glue obtaining

αBERh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ ffiffiffiffiffi

97
p

2

s ffiffiffiffiffiffiffiffiffiffi
αsNc

2π

r
≈ 3.66

ffiffiffiffiffiffiffiffiffiffi
αsNc

2π

r
: ð23Þ

Hence 3.66 is a pure number and this result holds for any Nc in
the BER framework. Therefore, disagreement between the BER
intercept and ours in Eq. (21) is not due to the large-Nc limit
employed in our case.
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two diagrams of the bottom line in Fig. 3. The real correction
(leftmost diagram in the bottom line of Fig. 3) imposes a
lifetime ordering constraint (19) on further DLA evolution of
the dipole 21, while naively it seems that the virtual
corrections (two rightmost diagrams in the bottom line of
Fig. 3) impose no such constraint. As we shall see, the
virtual diagrams actually do impose the same lifetime
ordering condition in order for the subsequent evolution
to remain DLA: to see this we need to perform a
calculation.
Consider one particular step of subsequent DLA evolu-

tion following the virtual corrections, as shown in Fig. 4:
the emission of a soft polarized gluon. One may have a
ladder-type correction, as shown in the first two diagrams
of the second line of Fig. 4. Or one may have a non-ladder-
type correction with the polarized gluon attaching to the
virtual gluon, as shown in the last two diagrams. Let us
choose z2 ≫ z3 for specificity (one step of evolution) and
compute these diagrams explicitly in LFPT to see exactly
what the DLA regime of the second evolution step is. We

will work in the large-Nc limit, which is the context in
which our evolution equations (16) and (20) are derived.
The polarized dipole amplitude A10 generated by the

three diagrams shown in Fig. 5 is given by

A10 ¼
Z

dqþ

4πqþ
d2x3

X
colors

X
λσ0

hU3ðλÞV†
1ðσ0Þi

�
qþ

pþ

�

×
�
V × ~ψpol

LO

�
x31;

qþ

pþ

�
×
�
− ~ψunp

LO

�
x31;

qþ

pþ

���

þ ~ψpol
LO

�
x31;

qþ

pþ

�
×

�
− ~ψunp

LO

�
x31;

qþ

pþ

���
V�

þ ~ψpol
LO

�
x31;

qþ

pþ

�
×

�
− ~ψunp

NLO

�
x31;

qþ

pþ

����
;

ð24Þ

where z3 ¼ qþ
pþ is the momentum fraction of the polarized

gluon, and the notation is otherwise indicated in Fig. 5. The

FIG. 4. Two steps of helicity evolution. In the first step, we consider BFKL-like virtual corrections (last 2 diagrams in Fig. 3). In the
second step, we consider one particular type of correction, the emission of a soft polarized gluon (first diagram in Fig. 3), connected in
all possible ways. The last two diagrams differ only in the time-ordering of the vertices.

FIG. 5. Calculation of the light-front wave functions which go into the diagrams containing a virtual correction and a subsequent
evolution step.
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coordinate-space wave functions are related to the momen-
tum-space wave functions by

~ψðx31; z3Þ ¼
Z

d2q
ð2πÞ2 e

iq·x31ψðq; z3Þ; ð25Þ

which are calculated in the conventions of [17]. Here and
below LO stands for leading order, NLO stands for next-to-
leading order, etc. The virtual correction V is obtained by
unitarity, requiring that the sum of OðαsÞ corrections to the
(anti)quark wave function not modify the normalization,

V ¼ V� ¼ −
1

2

X
colors

X
σ00η

Z
dz2
4πz2

d2k2
ð2πÞ2 jψ

unp
LO ðk2; z2Þj2: ð26Þ

Using this to simplify (24), we obtain

A10 ¼ −
Z

dz3
4πz3

d2x3
X
colors

X
λσ0

λ ~ψpol
LOðx31; z3Þ

×
1

z3s
⟪Upol

3 V†
1⟫ðz3Þ

× ½2V ~ψunp
LO ðx31; z3Þ þ ~ψunp

NLOðx31; z3Þ��; ð27Þ

and the real-virtual cancellations are contained within the
sum in brackets.
The first term is straightforward to calculate using (26),

2V ~ψunp
LO ðx31; z3Þ ¼

ig3Nc

ð2πÞ3 t
bδσσ0

ϵ�λ · x32
x232

Z z1

z3

dz2
z2

×
Z x210

z1
z2

1=z2s

dx221
x221

; ð28Þ

where the DLA part comes from the regime z1 ≫ z2 ≫ z3
and x210z1 ≫ x221z2, with no apparent further constraint on
x32. Note that the sign of (28) is important, and one must
correctly incorporate the sign for antiquark vertices [see,
e.g., rule 3 following Eq. (3.28) of [50]]. We have also
written the color factor CF ≈ Nc=2 in the large-Nc limit.
Meanwhile, for the second term, we have in momentum
space

ψunp
NLOðq; z3Þ ¼ −g3Nctb

ϵ�λ · q
q2T

Z
z1

z3

dz2
ðz2Þ2

×
Z

d2k
ð2πÞ3

k · ðk − qÞ
k2T

�
q2T
2z3

þ ðk − qÞ2T
2z2

�
−1

ð29Þ

which is only DLA if ðk − qÞ2T ≫ z2
z3
q2T ≫ q2T . In coordinate

space, this corresponds to x221 ≪
z3
z2
x232 ≪ x232 ≈ x231, giving

the DLA part as

~ψunp
NLOðx31; z3Þ ¼ −

ig3Nc

ð2πÞ3 t
b ϵ

�
λ · x31
x231

Z z1

z3

dz2
z2

×
Z x210

z1
z2

1=z2s

dx221
x221

θðz3x231 − z2x221Þ: ð30Þ

We see that in the regime z3x231 ≫ z2x221 (and for
z2 ≫ z3), all three diagrams of A10 are DLA and cancel
so that A10 ≈ 0 with DLA accuracy. This means that the
second step of evolution which produces the gluon x3 is
actually not DLA in the whole phase space; the only
DLA phase space which survives these cancellations is
z3x231 ≪ z2x221 (again, for z2 ≫ z3). Therefore, when we
write the BFKL-type virtual corrections as in the first line
of Fig. 4 (or in the right two diagrams of the second line of
Fig. 3), we see that the subsequent DLA evolution of the
dipole 10 implicitly has the condition z3x231 ≪ z2x221
imposed on it, so that the dipole amplitude is not
G10ðz2Þ, but rather the neighbor dipole amplitude
Γ10;21ðz2Þ. This is the reason why the virtual corrections
[last terms of (16a) and (16b)] enter with the neighbor
dipole constraint on their evolution.

2. Virtual corrections and unitarity

For completeness, let us study the case of opposite
ordering, z3 ≫ z2. Consider the two steps of DLA evolu-
tion in the opposite order: first the emission of a soft
polarized gluon 3, followed by a BFKL-type correction
(gluon 2) in the 01=03 dipoles included in all possible
ways. In this case there are many possible virtual correc-
tions to consider (Fig. 6, diagrams A—F) and two real
corrections (Fig. 7, diagrams G—H). For ease of com-
parison with Fig. 5, we keep the polarized soft gluon to be
at position x3 with momentum q and the BFKL-like
unpolarized gluon to be at position x2 with momentum
k. This ordering of the two evolution steps then corresponds
to qþ

kþ ¼ z3
z2
≫ 1.

There are two separate DLA regimes for the graphs in
Figs. 6 and 7, which are easily understood in the language
of LFPT. The light-front energy (minus momentum)
E2ðE3Þ of gluon 2(3) is directly related to the lifetimes
of the gluon fluctuation; in coordinate space, these energies
are: E2 ¼ 1

z2x221
for diagrams A, B, E, F, and H; E2 ¼ 1

z2x223
for diagrams C, C0, D, D0, and G; and E3 ¼ 1

z3x231
for all

diagrams. (For brevity, in light-front energies we dropped
the overall factor of 1=pþ with pþ the probe’s momentum.)
As a rule of thumb, the two steps of evolution shown here
are DLA when there is a well-separated hierarchy of
lifetimes, such that the light-front energy of each gluon
2 and 3 dominates exactly two of the intermediate states,
E2 ≫ E3 or E3 ≫ E2. (The application of this rule gets
more nuanced for diagrams with virtual corrections.)
For E2 ≫ E3, all the diagrams in Figs. 6 and 7 can be

DLA except for the real diagram H. We would like to
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compute the sum of the virtual diagrams A—F in order to
assess the cancellations which may occur between them. To
do this, we will calculate the relevant parts of diagrams B,
C, and C0; the analogous calculation of diagramsD,D0 and
E is almost equivalent, the small difference being due to the
position of the polarized vertex to the right of the shock
wave. It is convenient to do these calculations in Feynman
perturbation theory, rather than in LFPT directly, treating
the quark propagators as Wilson lines. To impose the

corresponding time ordering, we need to Fourier transform
each gluon propagator from k− momentum space to xþ

coordinate space, and then integrate over all light cone
“times” of the vertices xþi with the ordering prescribed by
the diagram.
We can apply this scheme to just the parts of diagrams B,

C, C0 which involve the radiation of gluons to the left of the
shock wave; everything else is common to the three
diagrams. Doing this, we obtain

B ¼
Z

0

−∞
dxþ1

Z
0

xþ
1

dxþ3

Z
0

xþ
3

dxþ2 e
ϵðxþ

1
þxþ

2
þxþ

3
Þ
Z

∞

−∞

dk−

2π

dq−

2π

dðq − kÞ−
2π

× e−ik
−ðxþ

2
−xþ

1
Þ−iðq−kÞ−ðxþ

2
−xþ

3
Þþiq−xþ

2 × B̂; ð31aÞ

A

E F

B C

C DD

FIG. 6. DLA diagrams in which a BFKL-like virtual correction follows the real emission of a soft polarized gluon. We only consider
diagrams which contribute to the further evolution of the (01) and (03) dipoles.

HG

FIG. 7. DLA diagrams in which a BFKL-like real correction follows the real emission of a soft polarized gluon. We only consider
diagrams which contribute to the further evolution of the (01) and (03) dipoles.
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C ¼
Z

0

−∞
dxþ3

Z
0

xþ
3

dxþ1

Z
0

xþ
1

dxþ2 e
ϵðxþ

1
þxþ

2
þxþ

3
Þ
Z

∞

−∞

dk−

2π

dq−

2π

dðq − kÞ−
2π

dq0−

2π
× e−ik

−ðxþ
2
−xþ

1
Þ−iðq−kÞ−ðxþ

2
−xþ

1
Þþiq0−xþ

2
−iq−ðxþ

1
−xþ

3
Þ × Ĉ;

ð31bÞ

C0 ¼
Z

0

−∞
dxþ3

Z
0

xþ
3

dxþ1 e
ϵðxþ

1
þxþ

3
Þ
Z

∞

−∞

dk−

2π

dq−

2π

dq0−

2π
eiq

0−xþ
1
−iq−ðxþ

1
−xþ

3
Þ × Ĉ0: ð31cÞ

In (31), we use the regulator eϵx
þ
for positive infinitesimal ϵ to ensure convergence at xþ → −∞ (see e.g. [51]). The shock

wave (interaction with the target) is taken to occur at xþ ¼ 0þ. The momentum-space expressions, calculated in Feynman
perturbation theory, are

B̂ ¼ ð−igÞ2gfabctbtc
�

−i
k2 þ iδ

��
−i

ðq − kÞ2 þ iδ

��
iϵ�βλ ðqÞ
q2 þ iδ

��
g−α −

kα þ gþαk−

kþ

��
g−μ −

ðq − kÞμ þ gþμðq − kÞ−
qþ − kþ

�
× ½ð2k − qÞβgμα − ðqþ kÞμgαβ þ ð2q − kÞαgμβ�; ð32aÞ

Ĉ ¼ −ig3

2
fabcfcbdtd

�
−i

k2 þ iδ

��
−i

q2 þ iδ

��
−i

ðq − kÞ2 þ iδ

��
iϵ�βλ ðq0Þ
q02 þ iδ

�

×

�
g−α −

qα þ gþαq−

qþ

��
gμν −

kμgþν þ kνgþμ

kþ

��
gρσ −

ðq − kÞρgþσ þ ðq − kÞσgþρ

qþ − kþ

�
× ½ð2k − qÞαgμρ − ðqþ kÞρgμα þ ð2q − kÞμgαρ�½ð2k − qÞβgσν − ðq0 þ kÞσgνβ þ ðqþ q0 − kÞνgσβ�; ð32bÞ

Ĉ0 ¼ ð−g3ÞNc

2
ta
�

−i
q2 þ iδ

��
−i

k2 þ iδ

��
iϵ�βλ ðq0Þ
q02 þ iδ

��
g−α −

qα þ gþαq−

qþ

��
gμν −

gþνkμ þ gþμkν

kþ

�
× ½2gμνgαβ − gμβgνα − gμαgνβ�: ð32cÞ

In (32), we use iδ for the regulator of the Feynman
propagator, and we have split (the numerator of) the
propagator of gluon 3 through the shock wave into a
polarization sum, keeping only the gluon polarization ϵ�λ .
Note that diagrams C and C0 come with an explicit minus
sign due to the antiquark/gluon vertex [see (28) and the
discussion thereafter] and that only half of their color factor
“belongs” to the evolution of dipole 03 under consider-
ation, the other half being the evolution in the dipole 31
which we do not consider here.
Keeping only the leading-energy, DLA part of the

expressions, we obtain3

B ¼ g3
Nc

2
ta

1

2kþqþk2⊥q2⊥
½ϵ�λ · ð−4qþ 2kÞ�; ð33aÞ

C ¼ g3
Nc

2
ta

1

2kþqþk2⊥q2⊥
½ϵ�λ · ð4q − 2kÞ�; ð33bÞ

C0 ¼ 0: ð33cÞ

Thus we see that, with DLA accuracy, Bþ Cþ C0 ¼ 0. By
an analogous calculation, one also finds that
DþD0 þ E ¼ 0. The result is that, for E2 ≫ E3, only
the virtual diagrams A, F from Fig. 6 and the real diagram
G from Fig. 7 contribute to the DLA evolution of dipole 01
followed by the LLA-type evolution of dipole 03. Note that
the latter LLA-type step comes with the E2 ≫ E3 con-
dition, normally not associated with the LLA evolution.
On the other hand, in the E3 ≫ E2 regime, only the

virtual diagrams A, F from Fig. 6 and the real diagram H
from Fig. 7 are DLA. In this kinematic regime, we have
x221 ≫

z3
z2
x231 ≫ x231 so that the dipole 31 is very small:

gluon 3 is very close to the parent antiquark 1. Diagram H
becomes indistinguishable from diagram G, since gluon 2
is essentially emitted from coordinate x3 in both cases.
Diagrams A, F and H then contribute to LLA-type
evolution in the dipole 01 ≈ 03, now with the E3 ≫ E2

condition. Combining this with the contributions of dia-
grams A, F and G in the E2 ≫ E3 regime we obtain LLA
evolution in the dipole 03 without any ordering of the light
cone energies, as is normal for the LLA evolution. Such
contribution is included in Eqs. (16).
The result of this analysis is that, in either DLA limit

E2 ≫ E3 or E3 ≫ E2, one is left only with the virtual
corrections A, F and the (equivalent) real correction G=H.

3Indeed diagram C0 contains a UV divergence, which has to be
canceled by a counterterm. This contribution is not DLA and is
not shown in Eqs. (33).
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These BFKL-like real and virtual corrections are exactly
the ones included in our evolution equation (15) and Fig. 3.
And, moreover, in the absence of any interactions with the
shock wave, V; Vpol ¼ 1, these real and virtual corrections
cancel exactly [see (26)], as demanded by unitarity.
Therefore we conclude that our treatment of BFKL-like
virtual corrections exhausts the unitarity sum (with DLA
accuracy), completing the cross-check of the way we have
implemented these unpolarized radiative corrections to the
polarized dipole amplitude.

E. Cross-check: DGLAP anomalous dimensions

Another important cross-check of our evolution equa-
tions is to verify that they reproduce the correct DGLAP
anomalous dimensions at NLO accuracy. This is especially
important in reconciling our disagreement with BER, since
in Eq. (4.25) of their work [18], BER show that they
reproduce the complete LO and NLO DGLAP polarized
anomalous dimensions. (In addition, it was recently shown
that the result of BER’s formalism, expanded to higher
orders in [52], correctly reproduces the NNLO polarized
anomalous dimensions [53].) For BER, obtaining anoma-
lous dimensions is a straightforward application of their
infrared evolution equations which resum the mixed
logarithms αisðln 1

xÞ2i−jðln Q2

μ2
Þj for 0 ≤ j ≤ i, such that their

final answer contains all-order small-x anomalous dimen-
sions for DGLAP evolution. One simply needs to expand
this anomalous dimension to order α2s to obtain the small-x
contribution to the NLO anomalous dimension.
In our case, the correspondence is less clear, chiefly

because, unlike BER, we do not have an exact analytic
solution for our evolution equations and our evolution only
resums powers of αs ln2

1
x. In addition, our equations do not

close in general [see (15)], and, hence, cannot be used to
easily extract the anomalous dimension of any of the
involved operators. However, our large-Nc equations (in
the flavor singlet case) close. Moreover, they can be written
as a single closed equation for the expectation value of only
one operator. Noting that the integrands are the same in
(20), we formulate the evolution equations in terms of the
linear combination

Hðx2T; y2T; zÞ≡ Γðx2T; y2T; zÞ þ 3Gðy2T; zÞ; ð34Þ

giving

Hðx210; x221; zÞ
¼ Gð0Þðx210; zÞ þ 3Gð0Þðx221; zÞ

þ αsNc

2π

Z z
1

x2
10
s

dz0

z0

Z min ½x210; x221 z
z0�

1
z0s

dx232
x232

Hðx210; x232; z0Þ

þ 3
αsNc

2π

Z z
1

x2
21
s

dz0

z0

Z x221
1
z0s

dx232
x232

Hðx221; x232; z0Þ: ð35Þ

The resulting Eq. (35) contains only gluon bremsstrahlung,
so we only have access to the glue-glue sector of the
splitting kernel in the large-Nc approximation. (Our flavor-
singlet helicity evolution equations also close in the large-
Nc & Nf limit [29]; however, the resulting closed equations
depend on the expectation values of several operators. We
leave it for the future work to elucidate the possibility of
extracting small-x polarized NLO DGLAP anomalous
dimensions in the quark-quark, quark-gluon and gluon-
quark sectors from those equations.)
DGLAP evolution expresses a PDF fiðx;Q2Þ at one

(UV) scale Q2 and momentum fraction x in terms of a
convolution of PDF’s at lower (IR) scales μ2 < k2T < Q2

and higher momentum fractions x0 ≥ x,

fiðx;Q2Þ ¼ fiðx; μ2Þ

þ
Z

1

x

dx0

x0

Z
Q2

μ2

dk2T
k2T

Pi=j

�
x
x0

�
fjðx0; k2TÞ: ð36Þ

The splitting functions are expanded in a perturbation series
in αs,

Pi=jðzÞ ¼ PLO
i=jðzÞ þ PNLO

i=j ðzÞ þ � � � ; ð37Þ

where the LO term is OðαsÞ, the NLO term is Oðα2sÞ, etc.
Our integral evolution equations, however, express the

evolution “in the opposite direction” to standard DGLAP
evolution. They express a polarized dipole distribution at
one (IR) scale μ2 and momentum fraction x in terms of a
convolution of dipole distributions at higher (UV) scales
μ2 < 1

x2
21

< Q2 and lower momentum fractions x0 ≤ x. For

example,

G

�
1

μ2
; x

�
¼ Gð0Þ

�
1

μ2
; x

�
þ αsNc

2π

Z x
μ2

s

dx0

x0

Z 1
μ2

ðxx0Þ 1

Q2

dx221
x221

×

�
Γ
�
1

μ2
; x221; x

0
�
þ 3Gðx221; x0Þ

�
; ð38Þ

where we take x ¼ Q2

s as in deep inelastic scattering at
small x.
Clearly it would be difficult to recast our evolution

equations into a form which can be easily compared to
DGLAP. However, the kernels or splitting functions of the
two equations should be comparablewith one another, since
they are built at the fundamental level from the same
ingredients: the light-front splitting wave functions of
quarks and gluons. Our strategy, then, will be to iterate
our Eq. (35) to the desired order, since it is a closed equation
for a single function H, translate the result into DGLAP
kinematics, and then extract the splitting function from it.
Our DLA evolution equations generate two logarithms

of energy after each step of evolution is completely
integrated; when these double logarithms of energy are
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translated from helicity evolution in Regge kinematics to
DGLAP evolution in Bjorken kinematics, some of them
will correspond to αs ln

Q2

μ2
ln 1

x and others will correspond

to αs ln2
1
x. The former category of terms is leading-

logarithmic in Q2 and thus contributes to the LO
DGLAP anomalous dimension. The latter category of
terms is subleading in Q2 and thus suppressed in the
DGLAP hierarchy ln Q2

μ2
≫ ln 1

x. The NLO anomalous

dimension, therefore, comes from terms of order
α2s ln

Q2

μ2
ln3 1

x and requires two iterations of our evolution

equation to compute. Terms which contain no logarithms of
Q2, that is ðαsln2 1

xÞn, contribute to our evolution equation
but not DGLAP evolution. Note that one logarithm of 1x and
one logarithm of Q2 are contained in the explicit integral in
(36), so that the NLO terms of interest in the splitting
function P are of order α2s ln2

1
x.

There is one further complication which is specific to our
evolution equations: due to the “neighbor dipole” func-
tions, the amplitude H which evolves in (35) depends on
two scales (x201 and x221) rather than one like the PDF’s and
the DGLAP kernel. The reason behind this is that the
neighbor dipole “remembers” one of the previous evolution
steps. This makes it impossible to identify two steps of our
evolution simply with two gluon emissions: the neighbor
dipole takes into account at least one previous gluon
emission. The problem here is in separating the NLO
contribution coming from the two-gluon emission gener-
ated by two steps of helicity evolution (the result we want)
from the admixture of the NLO contribution coming from
the earlier gluon emission.

The neighbor dipole is not directly observable; it only
influences the evolution of the observable quantity
Gð 1

μ2
; z0Þ. We could eliminate the above mentioned ambi-

guity by directly performing the first step of evolution in
which the neighbor dipoles are generated,

G

�
1

μ2
; z0

�
¼ αsNc

2π

Z z0
μ2

s

dz1
z1

Z 1
μ2

1
z1s

dx201
x201

H

�
1

μ2
; x201; z1

�
;

ð39Þ

where we have neglected the initial conditions, since they
do not generate double logarithms. Then, performing two
steps of H evolution by iterating (35), with all of the
resulting emissions shown in Fig. 8, we obtain

G

�
1

μ2
;z0

�
¼
�
αsNc

2π

�
3
Z z0
μ2

s

dz1
z1

Z z1
μ2

s

dz2
z2

Z z2
μ2

s

dz3
z3

Z 1
μ2

1
z1s

dx201
x201

×

�Z min
h
1
μ2
;x

2
01
z1

z2

i
1
z2s

dx221
x221

�Z min
h
1
μ2
;x

2
21
z2

z3

i
1
z3s

dx232
x232

H

�
1

μ2
;x232;z3

�
þ3θ

�
x221−

1

z3s

�Z x221
1
z3s

dx232
x232

Hðx221;x232;z3Þ
�

þ3θ

�
x201−

1

z2s

�Z x201
1
z2s

dx221
x221

�Z min
h
x201;

x2
21
z2

z3

i
1
z3s

dx232
x232

Hðx201;x232;z3Þþ3θ

�
x221−

1

z3s

�Z x221
1
z3s

dx232
x232

Hðx221;x232;z3Þ
��

:

ð40Þ

Since we are interested only in two steps of DLA H
evolution, we can replace H → 1 to neglect further evo-
lution in Eq. (40) and recast it into the form

G

�
1

μ2
; z0

�
¼

Z
z0

μ2

s

dz3
z3

K½DLA3�

�
z3
z0

;
z3s
μ2

�
: ð41Þ

We see that our evolution equation, like DGLAP evolution,
can be expressed in the form of a convolution over a
splitting kernel Kðz3z0 ; s

μ2
Þ. Although our equations them-

selves are not comparable to DGLAP, this splitting kernel
is. To make the comparison more explicit, we can analyze
the kernel for fixed z3 ¼ x ¼ Q2

s , as appropriate for deep
inelastic scattering at small x. We then have

FIG. 8. Three gluon emissions, representing one step of the LO
DGLAP-type evolution, followed by two steps of our DLA
evolution, as suggested in Eq. (43).
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K½DLA3�

�
x
z0
;
Q2

μ2

�
¼

�
αsNc

2π

�
3
Z

z0

x

dz1
z1

Z
z1

x

dz2
z2

Z 1
μ2

x
z1Q2

dx201
x201

×
�Z min

h
1
μ2
; x

2
01
z1

z2

i
x

z2Q2

dx221
x221

�Z min
h
1
μ2
; x

2
21
z2
x

i
1
Q2

dx232
x232

þ 3θ

�
x221 −

1

Q2

�Z x221
1
Q2

dx232
x232

�

þ 3θ

�
x201 −

x
z2Q2

�Z x201
x

z2Q2

dx221
x221

�Z min
h
x201;

x2
21
z2
x

i
1
Q2

dx232
x232

þ 3θ

�
x221 −

1

Q2

�Z x221
1
Q2

dx232
x232

��
: ð42Þ

There are, unfortunately, a couple of problems with
directly extracting the NLO anomalous dimensions from
this kernel. Foremost, the first step (39) is not a “diagonal”
evolution like DGLAP: it connects two different functions
G and H. Moreover, as we have suggested by labeling the
kernel DLA3, the integrals in this first step could potentially
generate contributions to the NLO anomalous dimension,
which would contaminate the “true” NLO kernel generated
during the two steps of DLA evolution of H. We can
resolve this problem by restricting this first step of
evolution to the LO DGLAP phase space; that is, we
can impose the strict transverse ordering 1

Q2 < x201 <
1
μ2

in

Eq. (39). Thus, we can compute the modified kernel
K½LO×DLA2� for three steps of evolution,

G⇒
LO

H ⇒
DLA

H ⇒
DLA

H: ð43Þ
This eliminates the scale ambiguity coming from the
neighbor dipoles, and it guarantees that the NLO anoma-
lous dimension we compute arises purely from the
“diagonal” evolution of H and can be connected to the
NLO DGLAP anomalous dimension. The three steps of
evolution (43) are illustrated diagrammatically in Fig. 8.
For completeness,we rewrite themodified kernel explicitly,

K½LO×DLA2�

�
x
z0
;
Q2

μ2

�
¼

�
αsNc

2π

�
3
Z z0

x

dz1
z1

Z z1

x

dz2
z2

Z 1
μ2

1
Q2

dx201
x201

×

(Z min
h
1
μ2
; x

2
01
z1

z2

i
x

z2Q2

dx221
x221

"Z min
h
1
μ2
; x

2
21
z2
x

i
1
Q2

dx232
x232

þ 3θ

�
x221 −

1

Q2

�Z x221
1
Q2

dx232
x232

#

þ 3

Z x201
x

z2Q2

dx221
x221

"Z min
h
x201;

x2
21
z2
x

i
1
Q2

dx232
x232

þ 3θ

�
x221 −

1

Q2

�Z x221
1
Q2

dx232
x232

#)
; ð44Þ

and we carry out the integrations employing DGLAP kinematics ln Q2

μ2
≫ ln 1

x to neglect the theta-function terms like

θðμ2Q2 − x
z1
Þ, θðμ2Q2 − z2

z1
Þ, etc. Such terms do not contribute to DGLAP evolution. After z-integrations they give terms

proportional θðμ2Q2 − xÞ which may be identified as a higher-twist effect (see Sec. IV below for a further discussion of these
terms). We arrive at

K½LO×DLA2�

�
x
z0
;
Q2

μ2

�
¼

�
αsNc

2π

�
3
�
4

3
ln3

Q2

μ2
ln2

z0
x
þ 2

3
ln2

Q2

μ2
ln3

z0
x
þ � � �

�
; ð45Þ

where the ellipsis denote the terms with one or no logarithms of Q2, which are not important for DGLAP evolution at the
order of interest.
To claim that our kernel (45) is comparable with the DGLAP kernel, we need to explicitly make the connection with

the LO and NLO DGLAP splitting functions. Only the diagonal evolution H ⇒
DLA

H⇒
DLA

H is compatible with DGLAP,
containing both LO2 and NLO contributions depending on the logarithms. That is, we claim that our kernel is related to
DGLAP by
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K½LO×DLA2�

�
x
z0
;
Q2

μ2

�
¼ αsNc

2π

Z z0

x

dz1
z1

Z 1
μ2

1
Q2

dx201
x201

�
KDGLAP

½LO2�

�
x
z1
; x201Q

2

�
þKDGLAP

½NLO�

�
x
z1
; x201Q

2

�
þ � � �

�

¼ αsNc

2π

Z z0

x

dz1
z1

Z 1
μ2

1
Q2

dx201
x201

�Z z1

x

dz2
z2

Z x201
1
Q2

dx232
x232

ΔPLO
S;GG

�
x
z2

≪ 1

�Z x201

x232

dx221
x221

ΔPLO
S;GG

�
z2
z1

≪ 1

�

þ
Z x201

1
Q2

dx231
x231

ΔPNLO
S;GG

�
x
z1

≪ 1

��
ð46Þ

where ΔPLO
S;GG and ΔPNLO

S;GG are the LO and NLO polarized
glue/glue splitting functions, respectively.
To check this assertion, we can directly compute the LO2

part of the splitting kernel, remembering that the LO glue-
glue splitting function for polarized DGLAP evolution is
ΔPLO

S;GGðz → 0Þ ¼ 4Ncðαs=2πÞ [28] [which can also be
derived from our Eq. (35)]. We obtain

αsNc

2π

Z
z0

x

dz1
z1

Z 1
μ2

1
Q2

dx201
x201

KDGLAP
½LO2�

�
x
z1

; x201Q
2

�

¼
�
αsNc

2π

�
3
�
4

3
ln3

Q2

μ2
ln2

z0
x

�
: ð47Þ

We see that, indeed, this reproduces the Oðln3Q2Þ term of
(45). This is an important cross-check of our calculation.
Subtracting off this LO3 piece,

K½LO×DLA2−LO3�

�
x
z0
;
Q2

μ2

�

≡K½LO×DLA2�

�
x
z0
;
Q2

μ2

�

−
αsNc

2π

Z z0

x

dz1
z1

Z 1
μ2

1
Q2

dx201
x201

KDGLAP
½LO2�

�
x
z1
; x201Q

2

�

¼ αsNc

2π

Z z0

x

dz1
z1

Z 1
μ2

1
Q2

dx201
x201

Z x201
1
Q2

dx231
x231

ΔPNLO
S;GG

�
x
z1

≪ 1

�
;

ð48Þ

we can extract the NLO splitting function from (45) by
differentiating,

ΔPNLO
S;GG

�
x
z0

≪ 1

�

¼ 2π

αsNc

∂
∂ ln z0

x

� ∂
∂ ln Q2

μ2

�
2

K½LO×DLA2−LO3�

�
x
z0
;
Q2

μ2

�
:

ð49Þ

Doing so, we obtain

ΔPNLO
S;GGðz → 0Þjpure glue ¼

�
αs
2π

�
2

4N2
cln2z ð50Þ

in complete agreement with the literature [32].
The corresponding anomalous dimension can be found

using

γðωÞ ¼
Z

1

0

dzzω−1ΔPðzÞ: ð51Þ

We obtain the pure-glue flavor-singlet anomalous
dimension

γNLOS;GGðωÞjpure glue; ω→0 ¼
�
αs
2π

�
2 8N2

c

ω3
; ð52Þ

also in agreement with [32].
We conclude that our helicity evolution generates the

small-x flavor-singlet polarized DGLAP glue-glue splitting
function and anomalous dimension, which are in complete
agreement with the existing LO [28] and NLO calcula-
tions [32].

III. FLAVOR NONSINGLET
HELICITY EVOLUTION

A. Flavor nonsinglet initial conditions

Let us now derive the evolution equations governing
the small-x behavior of the flavor nonsinglet helicity
distribution

ΔqNSðx;Q2Þ≡ Δqfðx;Q2Þ − Δqfðx;Q2Þ ð53Þ

along with other flavor nonsinglet helicity observables.
First of all, by analogy to the flavor singlet case, we need to
define the observables. Again we consider the diagrams in
Fig. 1. However, in the flavor nonsinglet case we need to
subtract from them the same diagrams with the quark
particle number flowing in the opposite direction in the
quark loop. We obtain the following expressions for flavor
nonsinglet helicity observables [cf. Eqs. (8)]:
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gNS
1 ðx;Q2Þ ¼ Nc

2π2αEM

Z
1

zi

dz
z2ð1− zÞ

×
Z

dx201

�
1

2

X
λσσ0

jψT
λσσ0 j2ðx2

01
;zÞ þ

X
σσ0

jψL
σσ0 j2ðx2

01
;zÞ

�

×GNSðx201; zÞ; ð54aÞ

ΔqNSðx;Q2Þ ¼ Nc

2π3

Z
1

zi

dz
z

Z 1
zQ2

1
zs

dx201
x201

GNSðx201; zÞ; ð54bÞ

gNS
1L ðx; k2TÞ ¼

8Nc

ð2πÞ6
Z

1

zi

dz
z

Z
d2x01d2x001e−ik·ðx01−x001Þ

×
x01 · x001
x201x

2
001

GNSðx201; zÞ: ð54cÞ

Here we do not sum over flavors. Hence our expressions
(54) should be understood as containing the contribution of
one particular quark flavor. Since quark masses can be
neglected in our DLA approximation, the small-x asymp-
totics of all helicity observables in (8) and (54) (flavor
singlet and nonsinglet) is flavor-independent. Flavor
dependence may reside in the initial conditions, but the
asymptotic x dependence [the intercept αh with Δq ∼ ð1xÞαh ]
should be independent of flavor.
Equations (54) contain the flavor nonsinglet polarized

dipole amplitude defined by [cf. Eqs. (9)]

GNS
10 ðzÞ≡ 1

2Nc
⟪tr½V0V

pol†
1 � − tr½Vpol

1 V†
0�⟫ðzÞ

¼ GNSðx1; x0; zÞ ¼ GNSðx10; b; zÞ; ð55aÞ

GNSðx201; zÞ≡
Z

d2bGNS
10 ðzÞ: ð55bÞ

In Eqs. (54) we assume that the leading high-energy
contribution toGNS

10 ðzÞ is real, such thatGNS
10 ðzÞ ¼ GNS�

10 ðzÞ.
To determine the initial conditions GNSð0Þ

10 ðzÞ for the
flavor nonsinglet helicity evolution we use Eqs. (55a) and
(11) to write

GNS
10 ðzÞ ¼ −

zs
2

�
dσ
d2b

½qunp0 ;Δq1; zs�−
dσ
d2b

½qunp0 ;Δq1; zs�
�
:

ð56Þ

Employing Eq. (56) we obtain for a single-quark target

GNSð0Þ
10 ¼ α2sðCFÞ2

Nc

1

x21
; ð57aÞ

GNSð0Þðx210; zÞ ¼
α2sðCFÞ2

Nc
π ln

zs
Λ2

: ð57bÞ

In arriving at Eqs. (57) we had to subtract the contribution
of the diagrams in the bottom row of Fig. 2 out of the
contribution of the diagrams in the top row of the same
figure. The last two diagrams in each row canceled, and the
final answer in Eqs. (57) is given solely by the upper left
graph in Fig. 2 with the t-channel quarks exchange. This
makes clear physical sense: only quarks can transfer flavor
information from the target to projectile. Therefore, quark
exchange in the t-channel is necessary for the flavor
nonsinglet observables.
Once again, the Born-level results (57) can be “dressed”

by GM/MV multiple rescatterings

GNSð0Þ
10 ¼ α2sðCFÞ2

Nc

1

x21
exp

�
−
1

4
x210Q

2
sðbÞ ln

1

x01Λ

�
: ð58Þ

Either Eqs. (57) or (58) can be used as the initial conditions
for flavor nonsinglet helicity evolution: if one wants to keep
saturation effects in the initial conditions one should use
(58), otherwise one should use (57).

B. Flavor nonsinglet helicity evolution at small x

To construct flavor nonsinglet helicity evolution equa-
tions, let us consider one step of small-x evolution. Looking
at the diagrams in Fig. 3, we see immediately that the
radiation of soft polarized gluons carries polarization
information but not flavor and therefore does not contribute
to the flavor nonsinglet distribution. Hence the first two
diagrams on the right of the equation illustrated in Fig. 3 do
not contribute.
Next we consider the unpolarized-gluon emission dia-

grams in the bottom row of Fig. 3. As we saw in deriving
Eqs. (57), in the flavor nonsinglet case the unpolarized
quark in the dipole amplitude does not interact in the initial
conditions. Hence, if the shock wave in Fig. 3 represented
the initial conditions only, the diagrams in the bottom row
of that figure should cancel, as illustrated in Fig. 9. The

FIG. 9. Real-virtual cancellations of soft unpolarized gluon emissions in the flavor nonsinglet case (see [54]). In the strict DLA limit,
only the polarized (anti)quark line interacts [as indicated by the absence of a shock-wave (blue rectangle)], and the sum of the real and
virtual BFKL-like diagrams is zero.
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same is true for the strict DLA evolution case: the
cancellation of Fig. 9 is true at each step of the evolution,
since it is true in the initial conditions.
If one wants to go beyond the strict DLA limit and use

the saturation-enhanced initial conditions (58), then soft
gluon in the rightmost diagram of Fig. 9 would interact with
the target, and the cancellation would no longer be valid.
However, since the dipole size x10 dependence in Eq. (58)
is modified as compared to the Born-level Eqs. (57) (for the
terms containing multiple rescatterings), the corresponding
evolution is not going to be DLA and would be simply LLA
BK/JIMWLK evolution in the dipole 01. In the large-Nc
limit such LLA evolution in dipole 01 is included in the
rightmost diagram in the top row of Fig. 3. One also has to
include this LLA evolution into the initial conditions for the
DLA evolution [25]. Let us stress one more time that such
corrections are beyond the strict DLA limit.
We are left only with the rightmost diagram in the top

row of Fig. 3 as contributing to the small-x evolution of the
polarized dipole operator at small-x. Iteration of this
diagram would give us a simple ladder with quarks in
the t-channel and with gluon rungs (cf. [25]).
However, one should be careful here. We have never

shown that the diagrams in Fig. 3 present all the possibil-
ities for one step of the flavor nonsinglet helicity evolution.
(Actually, diagrams in Fig. 3 illustrate the evolution in the
flavor singlet case, as derived in [29].) In fact, for a step of
the flavor nonsinglet evolution, the diagrams in Fig. 3 do
not exhaust all the possibilities. Some of the flavor-singlet
evolution diagrams not obtainable by evolution equations
employing multiple applications of the diagrams in Fig. 3
(or, more precisely, in Figs. 11 and 12 of [29]) are shown in
Fig. 10. These are nonladder diagrams which do not
contribute to the flavor singlet case, and which are not
included in Eq. (15). The diagrams in Fig. 10 are DLA and
should appear after two steps of flavor nonsinglet helicity
evolution.

It appears that in order to include the diagrams from
Fig. 10 into the operatorial helicity evolution equations
akin to (15) one may need to define a polarized “Wilson
line” that starts as a gluon/quark on one side of the shock
wave, and becomes a quark/gluon on the other side;
examples of how such evolution could play out are shown
in Fig. 10. These features will likely complicate the
formalism; indeed, since such “identity-changing”
Wilson lines occur in pairs, the evolution equations may
be nonlinear. Luckily the diagrams in question are sub-
leading in Nc and do not need to be considered in the large-
Nc limit.
We proceed by imposing the large-Nc limit on the flavor

nonsinglet helicity evolution. The resulting evolution
equation receives contributions only from the quark ladder
(third diagram on the right-hand side of Fig. 3); it is
mathematically almost identical to the familiar Reggeon
evolution equation known in the small-x literature [25]

GNS
10 ðzÞ¼GNSð0Þ

10 ðzÞ

þαsNc

4π

Z z
Λ2

s

dz0

z0

Z x210
z
z0

1
z0s

dx221
x221

S10ðz0ÞGNS
21 ðz0Þ: ð59Þ

This equation is illustrated diagrammatically in Fig. 11.
In Eq. (59) we again include the nonlinear LLA

evolution effects by keeping S10ðz0Þ, to be found from
the BK/JIMWLK evolution, in the integrand. Note that the
initial conditions can also include BK/JIMWLK-evolved
S-matrix in place of the exponential in Eq. (58).

C. Solution of flavor nonsinglet helicity evolution
equations at large Nc

In the strict DLA limit we put S ¼ 1 everywhere, and
Eq. (59) becomes

FIG. 10. Some of the nonladder diagrams contributing to the small-x flavor nonsinglet helicity evolution.

FIG. 11. Large-Nc evolution equation for the flavor nonsinglet polarized dipole amplitude. For simplicity, the initial conditions GNSð0Þ
10

are not shown.
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GNS
10 ðzÞ ¼ GNSð0Þ

10 ðzÞ

þ αsNc

4π

Z z
Λ2

s

dz0

z0

Z x210
z
z0

1
z0s

dx221
x221

GNS
21 ðz0Þ: ð60Þ

Integrating over the impact parameters yields

GNSðx210; zÞ ¼ GNSð0Þðx210; zÞ

þ αsNc

4π

Z z

Λ2=s

dz0

z0

Z x210
z
z0

1=z0s

dx221
x221

GNSðx221; z0Þ:

ð61Þ

The Reggeon evolution equation (61) can be solved by the
usual method of the Laplace-Mellin transform

GNSðx210; zÞ ¼
Z

dω
2πi

eωη
Z

dλ
2πi

eλs10GNS
ωλ ;

GNS
ωλ ¼

Z
∞

0

dðη − s10Þe−λðη−s10Þ

×
Z

∞

0

dηe−ωηGNSðx210; zÞ; ð62Þ

where the natural variables for the transform are

η≡ ln
zs
Λ2

> 0 η0 ≡ ln
z0s
Λ2

> 0

s10 ≡ ln

�
1

x210Λ
2

�
< η s21 ≡ ln

�
1

x221Λ
2

�
< η0: ð63Þ

In terms of these variables, the flavor nonsinglet evolution
equation is

GNSðs10; ηÞ ¼ GNSð0Þðs10; ηÞ

þ αsNc

4π

Z
η

0

dη0
Z

η0

s10−ηþη0
ds21GNSðs21; η0Þ:

ð64Þ

In Mellin space, the evolution equation is solved
algebraically,

GNS
ωλ ¼ 1

1 − ðαsNc
4π Þ 1

ωλ

GNSð0Þ
ωλ

¼ α2sðCFÞ2π
Ncω

�
1

ωλ − αsNc
4π

�
; ð65Þ

where the flavor nonsinglet initial condition comes from
Eq. (57a). The large-ðzsÞ asymptotics, evaluated in the
saddle point approximation, are given by

GNSðx210; zÞ ∝ ðzsÞαNS
h with αNS

h ¼
ffiffiffiffiffiffiffiffiffiffi
αsNc

π

r
; ð66Þ

such that

gNS
1 ðx;Q2Þ ∼ ΔqNSðx;Q2Þ ∼ gNS

1L ðx; k2TÞ ∼
�
1

x

�
αNS
h

≈
�
1

x

� ffiffiffiffiffiffi
αsNc
π

p
: ð67Þ

Note again that the intercept is flavor-independent at this
leading order obtained by the DLA resummation.
This flavor nonsinglet intercept αNS

h , calculated from
solving our large-Nc nonsinglet helicity evolution equa-
tion (60), agrees exactly with the (large-Nc limit of the)
result of BER’s calculation [19] using the method of
infrared evolution equations. Progress in incorporating
nonlinear multiple scattering corrections to the Reggeon-
like evolution equations like (59) has been made in the
context of baryon number transport at small x [25].

IV. CONCLUSIONS

In this paper we have considered small-x asymptotics of
the flavor singlet and nonsinglet helicity observables. We
have defined the relations between the helicity TMD’s,
PDF’s and g1 structure functions to the polarized dipole
operators in both flavor singlet and nonsinglet cases. The
resulting difference in the polarized dipole operators can be
seen in Eqs. (9a) and (55a). We have evaluated the
polarized dipole amplitude in the MV model/GM approxi-
mation obtaining the initial conditions for the small-x
evolution. We have then reconstructed evolution equations
for the polarized dipole amplitude in the flavor singlet case
originally derived in [29], filling in the important inter-
mediate steps not presented in [29].
The solution of the large-Nc flavor singlet evolution

equations, presented in [31], leads to the intercept in
Eq. (21), which is about 2=3 of the flavor singlet intercept
obtained by BER in [18]. Our calculation satisfies all of the
same cross-checks as BER (with the exception of the
NNLO anomalous dimension for polarized DGLAP which
we did not verify due to complexity of the calculation in our
approach). Our effort to reproduce the calculation of BER
working in Feynman gauge used in [18] is presented in
Appendix B. At the moment it appears that BER might be
missing parts of the DLA contributions of diagrams B, C,
D, E and I from Fig. 12 in their calculation.
It is possible that, by omitting the DLA contributions

discussed in our Appendix B, BER effectively restricted
their analysis to the leading-twist evolution only [see
Eq. (4.1) in [18]], or, at least discarded a subset of
higher-twist terms. This assumption is consistent with
the BER formalism generating correct anomalous dimen-
sions for polarized DGLAP evolution, presently verified up
to (and including) NNLO [53]. The disagreement between
BER and our intercept may then be attributed to the fact
that our evolution is all-twist, due to the terms like
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θðμ2Q2 − xÞwhich we include in our helicity evolution [see the
discussion below Eq. (44) where such terms were men-
tioned, and neglected, but only in the DGLAP anomalous
dimension calculation]. (The discontinuous nature of the
theta-function terms is probably a property of DLA and is
likely to be smoothed-out by higher-order corrections.) In
the case of unpolarized BFKL evolution, which is all-twist,
it is known that the exact all-twist intercept αP − 1 ¼
4αsNc

π ln 2 is about 30% smaller than the leading-twist

contribution to the intercept which yields ðαP − 1ÞLT ¼
4αsNc

π (see the discussion on p. 246 of [17]). It is possible that
something similar takes place in the helicity evolution case
at hand, accounting for the difference between the leading-
twist BER calculation [18] and our all-twist intercept (21).
For the flavor nonsinglet helicity evolution we have

derived the large-Nc evolution equation (59). The resulting
intercept (66) is in compete agreement with BER [19].
To summarize the status of the leading-order calculations

of various intercepts mainly resulting from the DLA
evolution, in Table I we list the intercepts for flavor singlet
and nonsinglet evolution for the unpolarized and helicity-
dependent observables. The intercepts for helicity evolution
were obtained by us and by BER in various approximations.
It is important to get a better understanding of the

numerical importance of these results for the small-x
contribution to the quark spin of the proton,

SqðQ2Þ ¼ 1

2

Z
1

0

dxΔΣðx;Q2Þ; ð68Þ

with

ΔΣðx;Q2Þ ¼ ½Δuþ Δuþ Δdþ Δdþ � � ��ðx;Q2Þ: ð69Þ

A detailed analysis of the impact of our flavor singlet
intercept on ΔΣðx;Q2Þ at small x is carried out in [31].

Clearly, large intercepts may potentially lead to a divergent
integral in Eq. (68) and would require higher-order cor-
rections or saturation effects at small x to make the integral
finite.
To see which of the small-x helicity intercepts give a

finite integral in Eq. (68), we compute their numerical
values in Table I for Nc ¼ 3 and αs set by the one-loop
running coupling expression

αsðQ2Þ ¼ 4π

ð11 − 2
3
NfÞ ln Q2

Λ2

ð70Þ

with Λ ¼ 0.192 GeV andNf ¼ 3 for purposes of the scale-
setting. (Since this is a rough estimate, and includes a pure-
glue and fixed-Nf numerical estimates of the intercept, we
do not change our Nf with Q2 for simplicity.) For
comparison, we have included the leading-order (LO)
BFKL intercept [1,2] along with the intercept for the
perturbative QCD Reggeon [20–25]. We see that, for a
wide range of Q2, the BER results generate small-x
intercepts which are greater than 1 and hence nonintegr-
able. Our result, on the other hand, generally yields an
integrable singularity at x → 0. Indeed this only means that
our result would not require higher-order or saturation
corrections to give a finite integral in Eq. (68).
Note that a strong ’t Hooft coupling calculation [55] in

the framework of the anti-de Sitter/conformal field theory
(AdS=CFT) correspondence appears to indicate that in
N ¼ 4 super–Yang–Mills theory the flavor nonsinglet
intercept is smaller than one for all couplings, with the
flavor singlet contribution being suppressed at large cou-
pling. If this conclusion applies to QCD, this may indicate
that higher-order correction would not allow any of the
perturbative intercepts found in this work (αh or αNS

h ) to
exceed unity.

TABLE I. Comparison of the intercepts α leading to helicity PDF’s which scale as Δqfðx;Q2Þ ∝ ð1xÞα in the high-energy/small-x
asymptotics. The LO BFKL Pomeron which sets the small-x asymptotics of unpolarized PDF’s is shown for comparison, along with the
LO intercept of the perturbative QCD Reggeon. Unless otherwise specified, the quoted intercepts are taken at finite Nc.

Q2 ¼ 3 GeV2 Q2 ¼ 10 GeV2 Q2 ¼ 87 GeV2

Observable Evolution Intercept αs ¼ 0.343 αs ¼ 0.249 αs ¼ 0.18

Unpolarized flavor singlet
structure function F2

LO BFKL Pomeron 1þ αsNc
π 4 ln 2 1.908 1.659 1.477

Unpolarized flavor nonsinglet
structure function F2

Reggeon
ffiffiffiffiffiffiffiffiffi
2αsCF

π

q
0.540 0.460 0.391

Flavor singlet structure
function gS1

us (Pure Glue, Large-Nc) 2.31
ffiffiffiffiffiffiffiffi
αsNc
2π

q
0.936 0.797 0.678

BER (Pure Glue)
3.66

ffiffiffiffiffiffiffiffi
αsNc
2π

q
1.481 1.262 1.073

BER ðNf ¼ 4Þ
3.45

ffiffiffiffiffiffiffiffi
αsNc
2π

q
1.400 1.190 1.011

Flavor nonsinglet structure
function gNS

1

BER and us (Large-Nc)
ffiffiffiffiffiffiffiffi
αsNc
π

q
0.572 0.488 0.415
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In addition, higher order corrections are needed to
obtain a more reliable comparison with the experimental
data. Future work on the subject would include solving the
flavor singlet evolution equations derived in [29] for the
large-Nc & Nf limit, which includes quarks. Another
important set of higher-order corrections which should
be taken into account in future work is the set of single-
logarithmic (LLA) corrections which resum αs ln

1
x. It

appears that the light-front formalism used here can be
systematically extended to LLA accuracy. Our nonlinear
evolution equations already account for one source of LLA
corrections: the small-x evolution of the unpolarized
dipole S21ðzÞ. It is also straightforward to include the
LLA corrections analogous to the unpolarized case in
which the longitudinal integral generates the logarithm of
energy, but the transverse integral does not; these correc-
tions are difficult to include using the method of infrared
evolution equations [56]. We are also cautiously optimistic
that we can include the LLA corrections with the loga-
rithm of energy arising only from the transverse integral.
Including running coupling corrections using the
Brodsky–Lepage–Mackenzie (BLM) [57] scheme along
the lines of [58–61] for unpolarized evolution (see also
[62–64] for other methods used for helicity evolution)
would be a natural next step ultimately leading to a
detailed comparison to the experimental longitudinal spin
data at small x, complementing the existing approaches
[56,65–71].
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APPENDIX A: TAKING THE LARGE-Nc LIMIT
OF HELICITY EVOLUTION

The large-Nc limit means that different dipoles do not
“talk” to each other in the process of evolution and
interaction with the target. However, when we write a
gluon line as a double (quark-antiquark) line, it is a
statement only about color factors: this does not mean that
all the other dynamical factors associated with the gluon
dynamics also split into those for quark and antiquark.
Namely, the G → GG splitting wave function is not, in
general, equal to the sum of q → qG and q → qG wave
functions. Confusion may arise because in the eikonal limit
the G → GG splitting is, in fact, a sum of q → qG and
q → qG wave functions.
To demonstrate this in our case let us start with the

evolution equation for the adjoint dipole [Eq. (62) from
[29]] keeping flavor-singlet evolution in mind

1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫ðzÞ ¼ 1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫

0
ðzÞ þ αs

2π2

Z
z

Λ2=s

dz0

z0

Z
d2x2
x221

θ

�
x221 −

1

z0s

�

×

�
θðx10 − x21Þ

4

N2
c − 1

⟪Tr½TbU0TaU†
1�ðUpol

2 Þba⟫ðz0Þ

− θðx210z − x221z
0Þ Nf

N2
c − 1

⟪tr½tbV1taV
pol†
2 �Uba

0 þ tr½tbVpol
2 taV†

1�Uba
0 ⟫ðz0Þ

þθðx10 − x21Þ
2

N2
c − 1

½⟪Tr½TbU0TaUpol†
1 �Uba

2 ⟫ðz0Þ − Nc⟪Tr½U0U
pol†
1 �⟫ðz0Þ�

�
: ðA1Þ

Here the U’s are adjoint Wilson lines. Concentrating on the term responsible for the emission of the polarization-carrying
soft gluon we write Eq. (A1) as

1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫ðzÞ ¼ 1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫

0
ðzÞ þ αs

2π

Z z
1

x2
10
s

dz0

z0

Z x201
1
z0s

dx221
x221

×

�
4

N2
c − 1

⟪Tr½TbU0TaU†
1�ðUpol

2 Þba⟫ðz0Þ þ � � �
�
: ðA2Þ
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Our goal here is to properly take the large-Nc limit of (A2),
writing the answer in terms of the fundamental dipole
operators. To do so we remember that

Uab ¼ 2tr½tbV†taV�; ðA3Þ

as expected for Wilson lines.
To write a similar expression for the “polarized adjoint

Wilson line” operator, in the large-Nc limit one can think of
it as a Wilson line with one insertion of a noneikonal vertex
(due to a spin-dependent gluon exchange). Let us model
this noneikonal vertex as a (possibly transverse) derivative
acting on the true (unpolarized) Wilson line (see e.g. [72]),
that is, we write

ðUpolÞab ∝ ∂Uab

¼ ∂f2tr½tbV†taV�g
¼ 2tr½tbð∂V†ÞtaV� þ 2tr½tbV†tað∂VÞ�
∝ 2tr½tbVpol†taV� þ 2tr½tbV†taVpol�: ðA4Þ

In the last step we identified ∂V → Vpol. Using the
resulting relation

ðUpolÞab ¼ 2tr½tbVpol†taV� þ 2tr½tbV†taVpol� ðA5Þ

along with Eq. (A3) to simplify the adjoint polarized dipole
operator on the left-hand side of Eq. (A2) we obtain

Tr½U0U
pol†
1 �

¼Uba
0 ðUpol†

1 Þab ¼Uba
0 ðUpol

1 Þba

¼ 4tr½taV†
0t

bV0�ðtr½taVpol†
1 tbV1� þ tr½taV†

1t
bVpol

1 �Þ
¼ 2tr½V†

0t
bV0V

pol†
1 tbV1� þ 2tr½V†

0t
bV0V

†
1t

bVpol
1 �

¼ tr½V0V
pol†
1 �tr½V1V

†
0� þ tr½V0V

†
1�tr½Vpol

1 V†
0� þ � � � ; ðA6Þ

where the ellipsis denote the subleading-Nc terms. In
arriving at the end result in Eq. (A6) we have applied
the Fierz identity twice.
We conclude that

1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫ðzÞ ¼ 2G10ðzÞS01ðzÞ ðA7Þ

in the large-Nc limit. Note that the polarized dipole
amplitude G10ðzÞ is made out of the quark lines coming
from the gluons in the large-Nc limit.
Now let us perform a similar analysis to the operator on

the right-hand side of Eq. (A2),

Tr½TbU0TaU†
1�ðUpol

2 Þba

¼ −fbcdUde
0 faegðU†

1Þgc2ftr½taVpol†
2 tbV2� þ tr½taV†

2t
bVpol

2 �g
¼ −8fbcdfaegtr½teV†

0t
dV0�tr½tgV†

1t
cV1�ftr½taVpol†

2 tbV2�
þ tr½taV†

2t
bVpol

2 �g
¼ 8tr½teV†

0½tb; tc�V0�tr½½ta; te�V†
1t

cV1�ftr½taVpol†
2 tbV2�

þ tr½taV†
2t

bVpol
2 �g: ðA8Þ

Let us concentrate on the first two traces: using Fierz
identity multiple times we write

tr½teV†
0½tb; tc�V0�tr½½ta; te�V†

1t
cV1�

¼ tr½teV†
0ðtbtc − tctbÞV0�tr½ðtate − tetaÞV†

1t
cV1�

¼ 1

2
tr½V†

0ðtbtc − tctbÞV0V
†
1t

cV1ta�

−
1

2
tr½V†

0ðtbtc − tctbÞV0taV
†
1t

cV1�

¼ 1

4
tr½V0V

†
1�tr½V1taV

†
0t

b� − 1

4
tr½tbV0V

†
1�tr½V1taV

†
0�

−
1

4
tr½V0taV

†
1�tr½V1V

†
0t

b� þ 1

4
tr½tbV0taV

†
1�tr½V1V

†
0�:
ðA9Þ

Substituting Eq. (A9) into Eq. (A8) and using Fierz identity
two more times we arrive at

Tr½TbU0TaU†
1�ðUpol

2 Þba

¼ 2ftr½taVpol†
2 tbV2� þ tr½taV†

2t
bVpol

2 �g
× ftr½V0V

†
1�tr½V1taV

†
0t

b� − tr½tbV0V
†
1�tr½V1taV

†
0�

− tr½V0taV
†
1�tr½V1V

†
0t

b� þ tr½tbV0taV
†
1�tr½V1V

†
0�g

¼ 1

2
tr½V0V

†
1�tr½Vpol

2 V†
0�tr½V1V

†
2�

þ 1

2
tr½V0V

†
1�tr½V2V

†
0�tr½V1V

pol†
2 �

þ 1

2
tr½V0V

†
1�tr½Vpol

2 V†
1�tr½V0V

†
2�

þ 1

2
tr½V0V

†
1�tr½V2V

†
1�tr½V0V

pol†
2 � þ � � � ; ðA10Þ

where the ellipsis denote the Nc-suppressed term, which
include operators which are Nc-suppressed due to consist-
ing of fewer than three traces but not suppressed by explicit
factors of 1=Nc.
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We thus conclude that in the large-Nc limit

1

N2
c − 1

⟪Tr½TbU0TaU†
1�ðUpol

2 Þba⟫ðzÞ

¼ NcS01ðzÞ½S02ðzÞG21ðzÞ þ S21ðzÞΓ02;21ðzÞ�: ðA11Þ
Substituting Eqs. (A7) and (A11) into Eq. (A2) we arrive at

G10ðzÞ

¼ Gð0Þ
10 ðzÞ þ

αsNc

2π

Z z
1

x2
10
s

dz0

z0

Z x201
1
z0s

dx221
x221

× ½2S02ðz0ÞG21ðz0Þ þ 2S21ðz0ÞΓ02;21ðz0Þ þ � � ��; ðA12Þ
in agreement with the first two terms in the integral on the
right of Eqs. (16).
Note that in arriving at Eq. (A12) we have implicitly

assumed that

1

N2
c − 1

⟪Tr½U0U
pol†
1 �⟫

0
ðzÞ ¼ 2Gð0Þ

10 ðzÞS01ðzÞ ðA13Þ

with a fully (LLA) evolved S01ðzÞ. Hence Eq. (A12) can be
thought of as helicity evolution in the background of the
unpolarized LLA evolution.

APPENDIX B: REPRODUCING BER

In order to establish a connection between our work and
the paper by BER [18] we tried calculating the first small-x
evolution correction to the Born-level cross section medi-
ated by the gluon exchanges. We performed our calculation
in the Feynman gauge, just like the authors of [18] did.
(Note that our evolution calculations here and in [29] were
done in the light cone gauge.) The diagrams we analyzed
are shown in Fig. 12, where we concentrate on real gluon
emissions only. As usual in high-energy scattering we work
in the eikonal limit where

pþ
1 ; p

−
2 ≫ kþ1 ; k

−
2 ; k1⊥; k2⊥ ≫ k−1 ; k

þ
2 : ðB1Þ

For simplicity we put p−
1 ¼ 0 ¼ pþ

2 and p
1
¼ 0 ¼ p

2
.

We are interested in the parts of the diagrams contrib-
uting to the double-spin asymmetry. Keeping the σ1σ2
terms only and performing a direct calculation we obtain
the following leading in energy contributions to the
amplitude squared:

hjMj2ijA ¼ 16g6CFσ1σ2
s

k21⊥k22⊥
; ðB2aÞ

hjMj2ijB ¼ 4g6CFσ1σ2s
k2 · ðk1 − 2k2Þ

k21⊥k42⊥
≈ −8g6CFσ1σ2

s
k21⊥k22⊥

; ðB2bÞ

hjMj2ijC ¼ 4g6CFσ1σ2s
k2 · ðk1 − 2k2Þ

k21⊥k42⊥
≈ −8g6CFσ1σ2

s
k21⊥k22⊥

; ðB2cÞ

hjMj2ijD ¼ 4g6
CF

N2
c
σ1σ2s

k21⊥ þ k22⊥ þ ðk1 − k2Þ2
k21⊥k22⊥ðk1 − k2Þ2

; ðB2dÞ

hjMj2ijE ¼ 4g6
CFðN2

c − 2Þ
N2

c
σ1σ2s

k21⊥ þ k22⊥ þ ðk1 − k2Þ2
k21⊥k22⊥ðk1 − k2Þ2

;

ðB2eÞ

hjMj2ijF ¼ 0; ðB2fÞ

hjMj2ijG ¼ 0; ðB2gÞ

hjMj2ijH ¼ 0; ðB2hÞ

hjMj2ijI ¼ 4g6
CF

N2
c
σ1σ2s

k21⊥ þ k22⊥ þ ðk1 − k2Þ2
k21⊥k22⊥ðk1 − k2Þ2

: ðB2iÞ

Note that in arriving at Eqs. (B2) we have added the top-
down and left-right mirror images of diagrams B, C, E, H,
and the up-down mirror images of D, F, G, I, as these
transformations generate new diagrams. The approximate
expressions for diagrams B and C are obtained by keeping
their DLA contributions only: in such contributions, the
integration over the angles of k1 and/or k2 eliminates the
first term in the initial expressions for B and C. Note that,
after the extraction of these DLA contribution, diagrams B
and C cancel the diagram A,

hjMj2ijA þ hjMj2ijB þ hjMj2ijC ¼ 0: ðB3Þ

This is in complete analogy with the unpolarized (BFKL)
case. Namely, if we keep the leading-energy polarization-
independent contributions of the diagrams in Fig. 12, then
Eq. (B3) would still hold.
The sum of all the diagrams in Fig. 12 is then given by

the contributions of the bremsstrahlung diagrams D—I.
We get

hjMj2ijA þ hjMj2ijB þ � � � þ hjMj2ijI
¼ 4g6CFσ1σ2s

k21⊥ þ k22⊥ þ ðk1 − k2Þ2
k21⊥k22⊥ðk1 − k2Þ2

: ðB4Þ

At this point it is appropriate to compare these results
with the discussion of Fig. 7 in [18]. Our diagrams B and C
from Fig. 12 can be identified with the diagrams (d) and
(c) in Fig. 7 of [18], respectively, if one discards the virtual
photon lines and the upper quark propagator in the latter.
The discussion following Eq. (2.32) and continuing until
the end of Sec. II in [18] also notes that Eq. (B3) holds for
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the BFKL case, but appears to suggest that for helicity
evolution Eq. (B3) does not hold, and, instead, one has

hjMj2ijB þ hjMj2ijC ¼BER 0: ðB5Þ

The conclusion (B5) was reached in [18] for the
contribution of graphs B and C coming from the k0 ¼
jk1 − k2j ≫ k1 regime, which seems to be identical to
k2 ≫ k1 region of phase space, in which diagrams B and
C are DLA. Guided by Eq. (B5), the authors of [18]
conclude that diagrams B and C cancel in the k2 ≫ k1
regime, and need to be considered in the k0 ¼ jk1 − k2j ≪
k1; k2 region only, where Gribov’s theorem [73] applies.
The conclusion (B5) reached in [18] seems to contradict

the results of a direct calculation presented above in

Eqs. (B2) and resulting in Eq. (B3). Note that our diagrams
B and C come in with the same overall sign: this is due to
their color factors being different by a minus sign along
with another minus sign coming from the difference
between the quark propagators to the right of the cut. If
Eq. (B5) is incorrect, it appears the infrared evolution
equations (IREE) derived in [18] would need to be
modified, though we do not quite see how they could be
changed to easily accommodate the contributions of non-
ladder graphs B and C in the k2 ≫ k1 regime, where
Gribov’s theorem does not apply. Note also that diagrams
D, E and I give DLA contributions in the same k2 ≫ k1
regime, which do not cancel the contributions of B and C
from the same region of the phase space: it appears that
such contributions ofD, E and I were not discussed in [18],

A B C

D E F

HG I

FIG. 12. Diagrams representing one-loop DLA helicity evolution corrections to the Born-level graphs in Feynman gauge. Dashed
lines denote the final state cuts. Only corrections with the extra gluon going through the final state cut are considered.
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and they seem not to be taken into account by the
resulting IREE.
It is also possible that we misunderstood the discussion

in [18] and the conclusion there was not given by Eq. (B5),
but, rather, the conclusion was that each diagram B and C
separately is not DLA in the k2 ≫ k1 regime. Unfortunately

this also seems to contradict the results of our calculations
above in Eqs. (B2), which show that the contributions of
diagrams B andC have the same momentum dependence as
that of diagram A, and hence B and C are DLA in the
k2 ≫ k1 regime in question, since A is also DLA in this
region.
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