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We derive the pseudoscalar condensate induced by anomaly and vorticity from the Wigner function for
massive fermions in homogeneous electromagnetic fields. It has an anomaly term and a force-vorticity
coupling term. As a mass effect, the pseudoscalar condensate is linearly proportional to the fermion mass in
small mass expansion. By a generalization to two-flavor and three-flavor cases, the neutral pion and eta
meson condensates are calculated from the Wigner function and have anomaly parts as well as force-vorticity
parts, in which the anomaly part of the neutral pion condensate is consistent with the previous result. We also
discuss the possible observables of the condensates in heavy-ion collisions such as collective flows of neutral
pions and eta mesons which may be influenced by the electromagnetic field and vorticity profiles.
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I. INTRODUCTION

The chiral or axial vector anomaly is the anomalous
nonconservation of a chiral or axial vector current of
fermions arising from quantum effects. The chiral anomaly
is also called the Adler-Bell-Jackiw (ABJ) anomaly after
the names of the three founders [1,2]. In quantum electro-
dynamics the anomalous nonconservation of the chiral or
axial vector current can be written as
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N (1)
where m and Q are the fermion mass and charge respec-
tively, F,, is the strength tensor of the electromagnetic field
with F* = 1eP F, being its dual, the chiral or axial
vector current is defined by j5 = @y*ysy, the pseudoscalar
is defined by P = —iyysy, where y and y are fermionic
fields, y* (u =0, 1, 2, 3) are Dirac matrices and y°> =
iy’y'y?y3 is the chiral matrix. The most successful test of
chiral anomaly is in the decay of a neutral pion into two
photons, which had been a puzzle for some time in the
1960s whose solution led to the discovery of the ABIJ
anomaly. For neutral pions, one can define the chiral
current as j§ . = yy*ys(o3/2)y and pseudoscalar as P, =
—ipys(03/2)y, where w = (u,d)” and = (i1, d) are quark
fields of two flavors and o3 = diag(1, —1) is the third Pauli
matrix. The anomaly equation (1) now becomes
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where Q, is the absolute value of the electron’s charge.
Here we have used the PCAC (partially conserved axial
current) hypothesis [3] to relate the pseudoscalar P, to the
neutral pion field ¢, 2m,P, = —f,m2¢,, where f, is the
pion decay constant and m, and m, are the quark and pion
mass respectively. In the chiral limit with zero quark mass
we have m, = 0 indicating pions as Goldstone bosons.

The chiral magnetic effect (CME) is an effect closely
related to the chiral anomaly [4-7]. It is about the
generation of an electric current along the magnetic field
resulting from an imbalance of the population of chiral
fermions. Another accompanying effect is the vortical
effect in which an electric current is induced by the vorticity
in a system of charged particles [8—10]. For chiral fermions
it is called the chiral vortical effect (CVE) [11-13]. It has
been demonstrated that the electric current from CME and
CVE must coexist in order to guarantee the second law of
thermodynamics in a chiral fluid [11,14,15]. The CVE can
be regarded as a quantum effect in hydrodynamics related
to the chiral anomaly.

The CME, CVE and other related effects such as
the chiral magnetic wave [16,17] have been extensively
studied in the quark-gluon plasma produced in high-energy
heavy-ion collisions in which very strong magnetic fields
[5,18-26] and huge global angular momenta [27-30] are
produced in noncentral collisions. The charge separation
effect observed in the STAR [31,32] and ALICE [33]
experiments is consistent with the CME prediction. But
there were debates that the charge separation might arise
from other effects such as cluster particle correlations [34]
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or local charge conservation [35], so it is not conclusive that
the charge separation effect would be the evidence of the
CME. The charge asymmetry dependence of pion elliptic
flow was observed in heavy-ion collisions by STAR and is
considered as the possible consequences of the chiral
magnetic wave [36]. The CME has recently been confirmed
to exist in materials such as Dirac and Weyl semimetals
[37-39]. Recently the STAR Collaboration has measured
nonvanishing hyperon polarization in the beam energy scan
program [40]. This is a piece of evidence for the local
polarization effect from vorticity in collisions at lower
energy and was first predicted in Ref. [41].

Quantum kinetic theory in terms of the Wigner function
[42-45] is a useful tool to study the CME, CVE and other
related effects [13,46—48]. The axial vector component of
the Wigner function for massless fermions can be gener-
alized to massive fermions and gives their phase-space
density of the spin vector. The spin vector arises from
nonzero fermion mass [49]. Therefore one can calculate the
polarization of massive fermions from the axial vector
component [48]. The polarization density is found to be
proportional to the local vorticity @ as well as the magnetic
field. The polarization per particle for fermions is always
smaller than that for antifermions as the result of more
Pauli blocking effect for fermions than antifermions. This is
consistent with STAR’s preliminary result on the A
polarization [40].

In this paper we give another important feature
of massive fermions from the axial vector component of
the Wigner function, namely, the thermal average of
pseudoscalar quantity P in Eq. (1). In low-energy QCD,
it is proportional to the pion field from the PCAC
hypothesis, so we call it the pseudoscalar condensate.
We will show that such a pseudoscalar condensate is
induced by anomaly and force-vorticity coupling and
depends on the fermion mass, fermion chemical potential
and temperature. It is a mass effect in a plasma of fermions:
for massless fermions the pseudoscalar is vanishing. There
were many previous studies on pseudoscalar condensates
and related topics in nuclear and quark matter in hot and
dense environments. These include, e.g., the condensate of
negatively charged pions in cold and dense nuclear matter
[50,51], metastable states in the limit of a large number of
colors for hot QCD in which parity is spontaneously broken
in hadronic phase leading to global parity asymmetries of
charged pions [52], and pion condensate in isospin asym-
metric matter [53,54].

The paper is organized as follows. In Sec. II, we
summarize the properties of the Wigner function for
massless fermions in electromagnetic fields. In Sec. III
we present the equation for the pseudoscalar and axial
vector component of the Wigner function for massive
fermions, the Wigner function counterpart of Eq. (1). In
Sec. IV, we analyze the axial vector component at leading
order from which the polarization vector can be obtained.
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We also derive the polarization vector of a fermion in the
lab frame with its 3-momentum p in the fluid cell’s
comoving frame and the polarization vector n in the
particle’s rest frame. This is useful to connect the exper-
imental observable to the theoretical prediction. In Sec. V
we derive nonconservation of the chiral current with
anomaly and fermion mass by taking space-time diver-
gence of the chiral current derived from the axial vector
component. We also calculate the condensates of neutral
pions and eta mesons. Then we derive the pseudoscalar
condensate induced by anomaly and vorticity for massive
fermions. The summary is made in the last section.

We adopt the same sign conventions for fermion
charge Q as in Refs. [13,44,46,47], and the same sign
convention for the axial vector component A* ~ (ry y yr)
as in Refs. [13,46,47] but different sign convention
from Ref. [44].

II. WIGNER FUNCTION FOR MASSLESS
FERMIONS IN ELECTROMAGNETIC FIELDS

The gauge invariant Wigner function is the quantum
mechanical analogue of a classical phase-space distribu-
tion. In a background electromagnetic field, the Wigner
function W4(x, p) is defined by

Wop(x, p) = / (324 e_i”‘y<ll7ﬂ <x + %y>

1 1 1
P Z i —Z
X U(G,x+2y,x 2y>lpa<x 2y>>,
(3)

where y, and y; are fermionic quantum fields with Dirac
indices a and S, (O) denotes the grand canonical ensemble
average of the normal ordered operator, x = (x;, x) and
p = (pg,p) are time-space and energy-momentum
4-vectors respectively, and the gauge link PU(G, x|, x,)
is to ensure the gauge invariance of the Wigner function
where G* is the gauge potential of the classical electro-
magnetic field and P denotes the path-ordered product. The
4 x 4 matrix W,4(x, p) can be decomposed by 16 inde-
pendent generators of Clifford algebra, namely, 1, 7, 7,

¢, ot = 5 [r*.7*], into the scalar, pseudoscalar, vector,
axial vector and tensor components, respectively. From the
Dirac equation for the fermionic field, one can derive the
equation for W,4(x, p) which leads to a set of coupled
equations for all components. Finding a general solution to
the Wigner function is very difficult. However it is much
simplified for massless fermions for which the set of
equations for the vector and axial vector components are
decoupled from the rest of the components. Assuming that
the electromagnetic field is homogeneous and weak and is
in the same order as the space-time derivative, one can
solve the vector and axial vector components perturba-
tively. To the linear order in the field strength and vorticity,
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one can obtain the vector and axial vector components [13],
which give the charge current j# and chiral charge current
J5 by integration over 4-momenta: j* = nu/ + Ea* + EpB*
and j§ = nsut + &sat + ZjSBB” Here w* = e””f"’ubal,u
is the vorticity 4-vector, B¥ = zeﬂ”P“u F, is the magnetic
field 4-vector with the fluid 4-velocity u,, and n and ns are
charge and chiral charge density respectively. In the charge
current j* one obtains the CME and CVE coefficients & =
ups/m* and &g = Qus/(27°) respectively, where u and ys
are chemical potentials for the charge and chiral charge
respectively. One can also derive the coefficients of vorticty
and magnetic field in j§: & =T?/6 + (u*> + p2)/(27%)
and &g = Qu/(27°). The conservation and anomalous
nonconservation laws for the charge and chiral charge
current respectively can be verified, 0,/ =0 and

0,/5 = —|0?/(8x*)|F,, F". The covariant chiral kinetic
equation which is related to the Berry phase in four
dimensions can also be derived from the first order solution
to the vector and axial vector components of the Wigner
function [46].

III. EQUATION FOR THE PSEUDOSCALAR
AND AXTAL VECTOR COMPONENT OF
THE WIGNER FUNCTION

In this section we look at the equation for the pseudo-
scalar and axial vector component of the Wigner function.
From the Dirac equation for the fermionic field, one can
derive the equation for the Wigner function in (3) in a
constant electromagnetic field,

{yﬂ (p” + ih%w) - m} W(.p) =0,  (4)

where the phase-space derivative is defined by V¥ =
o — QF"9,, and we suppressed Dirac indices of the
Wigner function. The Wigner function as a 4 x 4 matrix in
Dirac space can be decomposed into the scalar, pseudo-
scalar, vector, axial vector and tensor components as

1 , 1
=717 ir’P+rV, +r A, + 50" Sw|- ()

The components in the decomposition (5) can be obtained
by the projection of corresponding Dirac matrices on the
Wigner function and taking traces. Equation (4) for the
Wigner function can be converted to a set of coupled
equations for all components. There is an equation that
relates the pseudoscalar to the axial vector component
which is of special interest,

AVFA, = —2mP. (6)

An interesting observation of the above equation is that the
pseudoscalar component P is of quantum origin since it is
proportional to the Planck constant /2. We note that Eq. (6)
is nothing but the Wigner function counterpart of Eq. (1).
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We will show that the integration of Eq. (6) over the
4-momentum gives Eq. (1).

IV. AXTAL VECTOR COMPONENT AT LEADING
ORDER AND POLARIZATION VECTOR

At leading (zeroth) order of electromagnetic interaction,
the gauge link in the Wigner function in Eq. (3) can be set
to 1, and we denote the Wigner function at this order as
W o). We can expand the fermionic fields in momentum
space with creation and destruction operators, which we
insert into Eq. (3). After taking the ensemble average of
normal ordered operators, we obtain

1
(2n)?

< {00")_ fen(E, = u,)u(p.
=p) > finlE, + ) o(=p.)7(=p.s) |,
™)

where u(p, s) and v(—p, s) are Dirac spinors of positive and
negative energy respectively, s = + denotes the spin state
parallel or antiparallel to the spin quantization direction n in
the rest frame of the particle. We have also used
(a'(p.s)a(p.s))=frp(E,—p;) and (b'(-p.s)b(-p.s))=
fro(E, —l—/ts) with the Fermi-Dirac distribution defined by
fen(x ) =1/(e’* +1) (= 1/T, T is the temperature) and
U, s the chemical potential for fermions in the spin state s.

The axial vector component at the leading order is
given by

W) (x, p) = 8(p* —m?)

s)u(p.,s)

AI‘

0= Tr[y* r W(O)]

=m[0(po)n*(p,n) m?)A,

(8)

—0(=po)n*(—p.—n)]5(p* -

where A is defined by

A= 271'3ZS

0(—p°) frp(—po + u)]. )

and we have used u(p, s)y*y u(p,s) = 2msn#*(p,n) and
o(—p, s)y*r’v(-p, s) = 2msn*(—p,—n) with n*(p,n)
given by

n(p.n) = Al(=v,)n*(0,n) = <“n'1p,n +

fFD Po—H )

(n-p)p )
m(m+E,))

(10)
Here Aj(—v,) is the Lorentz transformation for v, = p/E,

and n*(0,n) = (0,n) is the 4-vector of the spin quantiza-
tion direction in the rest frame of the fermion. One can
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check that n*(p,n) satisfies n> = —1 and n- p = 0, so it
behaves like a spin 4-vector up to a factor of 1/2. For Pauli
spinors y, and yy in u(p, s) and v(—p, s’) respectively, we
have )(IG)(S =sn and )(I,G)(S/ = —s'n. We can take the
massless limit by setting n = p, then we have mn* (p,n) —
(Ip|,p) and mn*(—p,—n) — (|p|, —p). This way we can
recover the previous result of the axial vector component
for massless fermions [13,46] where s = & denotes the
right-handed and left-handed fermions.

We implied that »#(p,n) in (10) is the form in the
comoving or local rest frame of a fluid cell. We can boost
all quantities in Eq. (8) to the lab frame in which the fluid
cell is moving with a 4-velocity u* = y(1,v) where y =
1/V1 —v? is the Lorentz factor. We boost n#(p,n) and
n*(—p, —n) to the lab frame as

nig(p.m) = Ag(=v)n”(p.m),

i3, (p.m) =y[%+v-n+%],
oo =n PR
+1= v{n v+ <:1(n€>4(-pEp‘;)} + 7 v(n-p)

(11)

Note that n is the spin quantization direction in the
fermion’s rest frame and p is the fermion’s momentum
in the local rest frame of the fluid cell. The fermion
momentum in the lab frame is p"* = Ag(-v)p/ with p/ =
(E,.p) or explicitly

PP =7E, +(p-V),
y—1
’1]2

p=p+ v(p-v) +yvE,. (12)
One can check p’-u = p® = E, and n’ - p' = 0 in the lab
frame. So Egs. (8) and (9) can be written in the lab frame by
making the replacement n*(p,n) — n% (p,n); also we
have py = p' - u and p'> = p? in the two formulas.

We note that Eq. (11) is the polarization vector in the lab
frame (the fluid cell moves with a velocity v) of a fermion
with the 3-momentum p in the fluid cell’s comoving frame
and the polarization vector n in the particle’s rest frame.
After taking integration of n|% (p,n) over p which follows
the Fermi-Dirac distribution, one can obtain the thermal
average of the polarization vector in the lab frame. The A
polarization can be measured in experiments by its decay to
a proton and pion in its rest frame. It is observed that A is
polarized along the global angular momentum in the beam
energy scan program at the RHIC [40]. From Eq. (11) one
can calculate the A polarization along a fixed direction in
the lab frame, e.g. the direction of the global angular
momentum, and compare with data.
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In this paper, we assume that the chemical potential does
not depend on the spin state y;, =y for s =+,s0 A =0
and then A?lo) is vanishing. The nonvanishing contribution
comes from the axial vector component at the next-to-
leading or first order even with spin-independent chemical
potentials.

V. CHIRAL CURRENT NONCONSERVATION
LAW AND PSEUDOSCALAR CONDENSATION

In this section we will derive the nonconservation law of
the chiral current of massive fermions by taking space-time
divergence of the chiral current derived from the axial
vector component. Then we can derive the pseudoscalar
condensate induced by anomaly and vorticity.

As we have discussed in the last section that the
contribution should come from the axial vector component
at the next-to-leading or first order. We use the following
form for the axial vector component for massive fermions by
generalizing the solution for massless fermions [13,46—48],

1 dv
a , ——__h Qa(r 5 2 _ 2
Ay x.p) = =5 hp P 4Bp) (p* —m?)
~ S5(p? — m?
—QhF‘”pivi(pz 2), (13)
p —m

where po=u- p, Q° =1e"d,u,, and V is associated

with the vector component and given by

4

V= 2n)?

[Q(PO)fFD(Po —u) + 9(—P0)fFD(—Po +u)].
(14)

where we have taken p, = u for s = +. Also we have
assumed in Eq. (13) that § = 1/T is a constant. The chiral
current can be obtained by integrating over the 4-momentum
of the axial vector component, j& = [ d* p.A’(‘l)(x, p), whose
space-time divergence is given by

s :/d4paﬂ“4l(41)

1. -~ dv
=—pQ | d*pp,0, | |5(p> — m?
e R e
. 5(p* —m?
—hQF’”/d“pm(aﬂV)%’ (15)

where we have assumed that F** does not depend on space-
time, and used u,0,° =0 due to static equilibrium
conditions [13]. When taking space-time divergence, we
neglect the space-time derivative of 6(p,) and 8(—p;) in V
which would be vanishing when contacting the mass-shell
condition. The two terms in the last equality of Eq. (15) are
evaluated in Appendix A and can be grouped into an E - B
and E - w term,
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(C1(Bm. L) -1)/(6m)
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Am Co(6m, Gu)

FIG. 1.

[Ci(Bm, pu) — 1]/ (pm) and (fm)C,(fm, fu) as functions of fm and fu. They are all proportional to m in the chiral limit.

a1 1 2p? 2p?
Oufs =51 QB (E-B) / &PV pp,8(p* =m?) +5hO(E - @) / d*p {ﬁpov;;po,ﬂ,, B3 Viman T3 7 Vi |00 =),
(16)
where p* = p* — (p - u)u®. The integrals in Eq. (16) can be finally simplified into the following forms
. 1 m?
Opulis = _FhQZ(E'B)Cl (pm, pu) — ﬁleﬂ(E‘w)Cz(ﬁmﬁﬂ), (17)
where the dimensionless functions C;(fm, fu) and C,(fim, fu) are defined by
= eV A+ (pm)’~pu e VA (Bm)*+pp
Cy(pm, = X + ,
l(ﬂ ﬁ,bl) A (e\/szr(/}m)z—/}y + 1)2 (e\/x2+(/im)2+/)’ﬂ + 1)2
( ) - 1 oV X+ (Bm)*—py eV (pm)* 4 pu (18)
C,(pm, = / X - .
2\fm, B 0 VT (Bm)? | (eVEHBmP B )2 (VB B 4 1)2
We plot the f}lnctilons [Ci(Pm, pu) —.1]/(ﬁm) aqd P— %fleZ(E - B) i [C1(Bm, pu) — 1]
(pm)Cy(Ppm, pu) in Fig. 1. One can verify asymptotic dr m
values C,(Bm, —1~0[(pm)?] and C,(fm, ~ 1

O(1) for pfm — 0; see Eq. (B19) in Appendix B.
On the other hand, taking an integration over the
4-momentum of Eq. (6) leads to

) 1
~2mP = hd, s + 5 5 " QXE - B). (19)
where we have used P(x) = [ d*pP(x, p) and the integral
1
OF,, [ &0 dt(x.p) = =5 ShQE-B).  (20)
m

whose derivation is given in Appendix C. Inserting Eq. (17)
into Eq. (19) we obtain the pseudoscalar condensate

47?
From the small mass behavior C;(fm,fu) — 1~ (fm)?
and C,(pm, pu) ~ O(1), the pseudoscalar is proportional to
the fermion mass. This feature is similar to the PCAC
hypothesis where the pseudoscalar is proportional to
m3/m,. We see in C,(fim, ) that there is a sign difference
between the fermion and antifermion terms, so the
QFE - term can also be regarded as the force-vorticity
coupling term. Furthermore the E - @ term is vanishing
for pu = 0.
The above discussions are about single fermion species.
Let us consider a quark plasma with two quark flavors u
and d. For u or d quarks, Egs. (17) and (19) become
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N
Oufs 0 = —2—ChQ3(E - B)C,(pmy. Bua)
N
ZC;Tm hQuﬂ(E a))CZ(ﬁma»ﬂﬂa)
—2m,P, = hd,ji , + 4+ Ne n?Q%(E - B), (22)

271 2
where N-=3 is the number of colors, a=u, d, and P,=
—iaysa, j’s"a = ay*ysa. We know from the Introduction that
the pseudoscalar and chiral current for neutral pions are
given by

P, = —iyys(o3/2)w = = (P, — Py).

=N =

J5. = 0r'ys(os3/2)y = 2 (5.0 = J5.0)- (23)

In the first case we assume that the masses and chemical
potentials of the u and d quarks are the same, m, = m; =
my and p, = py = p,. Then the pion condensate is

[Cl (ﬂmq’ ﬁ/"q) - 1]

_& 2 2 N2 . L
PJZ78 2h(Qu Qd)(E B)mq

N,
+ 512 (Q, = Q) (E - )pm,Co(fmy. fu,)

87:
1
= a2 h2Q2(E B) q[ 1(Bmy, pu,) — 1]
4SS RO(E - @) Cy (. Py, 4

In the second case we assume that the masses of the # and d
quarks are the same, m, = m,; = m,, but the chemical
potentials are different; the pion condensate is
N
P,=—Sh(E-B)—

8 mq [Q2C1 (ﬁmq’ﬂﬂu)
- Qdcl (ﬂmq’ﬁﬂd) - (Qﬁ - Qi)]

N
+ =S HE - @)pm,[Q,Co(Bm,, Pu,)

87
- QdCZ(ﬂmq’ﬂﬂd)]' (25)
|
Py = ES (G} + 03— 203)(E - B) - [C\ (. ) ~
n 8\/_71' d N q q’ q
N 2 2
RN h*Q;(E - B) q[ 1(Bmy, ug) = 1] + fz
N 1
P, = Tgﬂzfﬁ( 2402+ Q)(E- B>m—q [C1(Bmy. Buy) —
_ Ne g L _
_6\/§”2h2Q3(E B)mq (C(Bmy. pu,) —1].

The main difference between P,g and P,; in the above is
that P, does not have the E - @ term due to the cancellation
of electric charges of quarks with different flavors. Of
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In vacuum at zero temperature and chemical potentials,
both functions C; and C, are vanishing and we obtain from
Egs. (24) and (25)

2

vac __
P == 872m

Q:(E- B), (26)

which is consistent with the result derived in the Nambu-
Jona-Lasinio model and chiral perturbation theory [55]. We
see that the pion condensate in vacuum comes out quite
natural as a mass effect of charged fermions and is not
subject to any additional constraint such as a critical value
for |E - B| in [55]. Recently the chiral current and pseu-
doscalar condensate for massive fermions have also been
calculated in a holographic model in finite density and
magnetic field [56].

We can also generalize to quark matter with three quark
flavors u, d and s. So Eq. (22) applies to a = u, d, s. Now
we look at the pseudoscalar and chiral current for the flavor
octet n7g and singlet #; which can be defined by

A 1
P’]S = _“//75?81// - 2\/§(P +Pd_2Ps)7
1 1
Py :_“//75%11// 7§(Pu+Pd+Ps)?

. I . : :
Jiaw =015 o v = 5 Ut Ssa = 2):

. _ 1 |
Js.1 = 0r'Ys %11// =7 (50t isat+ sy (27)

As an example for the 7 meson condensate, we consider the
simplest case for quark masses and chemical potentials,
m, =mg=mg=mg, and p, = pg = p; = py, Which can
be considered as the case approaching the chiral limit. In
this case, we have

] hz(Qu + Qd 2Q&)(E a))ﬁm C2(ﬁmqvﬁ/’£q)

Ne¢
8312

the (E w)ﬂm C2 (ﬁmqv ﬁ”q)

1]+

4\/§ zhz(Qu + Q4+ Q)(E - 0)pmy,Cy(Bmy, Pug)

(28)

[

course more realistic cases in heavy-ion collisions should
be like m, = my = m, # my and p, = pg = py # u,, for
which the calculation is straightforward. There are possible
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observables of # meson condensates in heavy-ion collisions
[52], but it is beyond the scope of the current paper and will
be addressed in a future study.

The pseudoscalar condensate for charged fermions in
Eq. (21) is our main result. It is a quite general formula.
Such a pseudoscalar condensate is charge neutral and
induced by anomaly and vorticity in a thermal and dense
environment, which is a natural consequence of the non-
conservation law of the chiral current in electromagnetic
fields and is not subject to any additional constraints. For
example, the neutral pion condensate is always in the form
of Eqgs. (24) and (25) without further condition about the
value of |[E - Bl if anomaly and vorticity are there. It is also
worth mentioning a new electric-field-vorticity coupling
term in the condensate which has not been derived in the
literature to our knowledge. Such pion and eta meson
condensates may have observables related to the electro-
magnetic field and vorticity in heavy-ion collisions. For
example they may have effects on the collective flows of
neutral pions and eta mesons. In this sense there may be
some connection of this work to the disoriented chiral
condensates [57—61]. This is a topic that we plan to address
in the future.

VI. SUMMARY

We derive the pseudoscalar condensate induced by
anomaly and vorticity from the Wigner function for
massive fermions in homogeneous electromagnetic fields.
The pseudoscalar component of the Wigner function is
determined from the axial vector component by Eq. (6).
Taking an integration over the 4-momentum for Eq. (6) we
obtain the anomalous nonconservation of the chiral current
by the anomalous term and a product of mass and
pseudoscalar. By directly calculating the space-time diver-
gence of the chiral current, we can determine the pseudo-
scalar condensate which has an anomalous E - B term and
an E - term. The E - @ term can also be regarded as a
force-vorticity coupling since there is a sign difference in its
prefactor between the fermion and antifermion sector. The
force-vorticity part of the pseudoscalar condensate is the
new term. As a mass effect, the pseudoscalar condensate is
linearly proportional to the fermion mass when the mass is
small. Such a pseudoscalar condensate is a general feature
for a fluid of massive and charged fermions in a thermal and
dense plasma with anomaly and vorticity. The neutral pion
and eta meson condensates can also be derived from
generalization of the single flavor to multiflavor case,
which depend on quark masses, quark chemical potentials
and temperature. We can reproduce the previous result of
the neutral pion condensate in vacuum induced by the
anomaly, but our result also has a force-vorticity part which
has not been derived in previous literature to our knowl-
edge. There are possible observables of pseudoscalar
condensates related to the electromagnetic field and

PHYSICAL REVIEW D 95, 014032 (2017)

vorticity in heavy-ion collisions such as collective flows
of neutral pions and eta mesons.
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APPENDIX A: DERIVATION OF EQ. (15)
Let us treat the vorticity term in Eq. (15) as

1 VIO
Ly = =3 W00, (p0) [ D2V, 807 = )
1 AVUO
5 "9, (pu,) / d* ppsp’Vi s, 0(P7 = m?)
—_ m2)’

1
3 POE ) [ dppoVy,, 007 (A1)

where the second term in the first equality is vanishing.
This can be seen by

Q0,(pu,) / d*ppop’Vi,, 5p, 007 —m?)
= fl’w@ﬂ(ﬁup)u/’u(,/d“pp% Zp(,./ipoé(pz —m?)
I~ _
3970, (P [ A1V 0007 =)
=0, (A2)

where we have assumed that f is constant and used
AL = go — u,u’, u’d,u, =0 and
0, (Bu,) Ay = Y0, u, = 2p0,0" =0.  (A3)

Then we look at the second term in Eq. (15) which is
related to the electromagnetic field,
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1y = WDOF™ [ & pl-p0ut) + (0y1,)p071V,, 8 (12 = )
1 -
= flﬂQz(E'B)/d“ppo 5,0 (P? = m?) +§ftﬁQF”l(<9,4uz)/d“pﬁzV/ﬂPU(S’(pz—mz)
WO (E-B) [ dppoVy, (07 = m?) 4 SHBQE @) [ & pi?y, 3 (7 =)
1 1
=2i*tQ2ﬂ2(E-B)/d4 V'éuﬂpﬁ(pz—mz)+hQﬂ(w-E)/d4 32 Vi O0" =)

1
- nQp*(w - E) / d4p§p2V’ﬂ’po s 0(P* —m?), (A4)

where we have used &' (x) = =5(x)/x, &' (p* — m?) = ds(p* — m*)/dp§, d,u = —QE,, and
a V= ﬁ[( y/’t)v/)’y (ayuﬂ)ppv;}po]’

(OV) = 2o 0,(B) Vi + 0,(P,) 7V,

:ﬂa (ﬁ/‘)v;,{ﬂ/jpo +0 (ﬁ” )”pv;;'p +ﬁ8/4(ﬁup) V,gpo Bpo
= BPLOu)Y by, T Outt) PV, o)

~ 1
(aﬂui)FM = Eeﬂmﬂ(aﬂul)Faﬂ

d
dl’o

1
= Ee”’“’/’)(aﬂu,{)(Eauﬂ — Eguty + €4p,,u"B7)

1
=2w-E+ Eeﬂﬁ“ﬁeaﬁpo(aﬂu,{)upB"
=2w-E—(0,u, — O,u,)u’B°
=2w-E. (A5)

We can add 7, and I from Egs. (A1) and (A4) to obtain the right-hand side of Eq. (16), which we denote as I =
l,+1p =Igp+ Ig, where [g g and I, denote the E - B and E - @ terms respectively. We now work on I3 and I.,,. We
now evaluate I5.p as

1
Ipp = —EhQ2ﬂ2<E *B) / d4PVﬂpo ﬁp05(p2 —m?)

= hQ*f*(E - B) / (dz) EL(TEF){JCFD( =)l = feo(E, = w)] + feo(E, + )1 = fen(E, + p)]}
3
= hQ(E-B) [ B oo By =l Fen(Ey 1] + FenlEy )1~ FrolEy + )
= =S QY E - BIC (b, ). (A6)

where we have used d*p = dE,E /Ef, —m? and C,(fm, Bu) is given in Eq. (18). Then the result of I, is
1 . [2p? 2p° 2_ 2
IE.q ZihﬂQ(E‘w)/d p|:3—p(z)v;3[’o 4 Po+3p0 VZPOﬂPO (p —m’)
3

= 3180(E-0) [ b (1= ) Ui (E, =)0 = feo(E, =)= FE, + 1 = foo(p )

#5mP0(E-0) [ 55 (1425 oty =]l = fro(E, w2l =) =1

— e (E, + [l = fen(E, + p)][2fr (E, +p) — 1]} (A7)
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The last term in Eq. (A7) can be further simplified by using the formula and the integral by part for E,,,

d
M{fFD(x)[l

Then Eq. (A7) can be further simplified as

d3 2
= _hﬁQ(E ’ Cl)) / (271_)pr : E%ni m2 {fFD(Ep

2

=~ 2 hOP(E - w)Ca(fm. f).
JT

where C,(fim, pu) is given by Eq. (18). The right-hand side
of Eq. (15) is just Igg+1g,, where Ipp and I, are in
Eqgs. (A6) and (A9) respectively, which finally gives Eq. (17).

APPENDIX B: SMALL MASS EXPANSION
OF Cy(fm, ) AND C,(fm, pu)

In this appendix, we expand C, (fim, fu) and C,(Bm, fu)
in small fm. For simplicity of notations, we use new
variables 1 = fu, m = fm and define two dimensionless
functions

0 1
h(m, ji 2/ dx ———,
B =y B e
1 1
m, i) = dx . Bl
) Erm ol o)
We can express C, (m, i) and C,(m, ji) in terms of h(m, 1)
and g(/, i),
(1) = 5 [h(m, =) = (. )
m, e m, — - n, )
1 H i H
o d . _ o
Cy(m. ji) = i lg(m, =) + g(m. j)] (B2)

- [l - fFD(Ep —u)]

with the Euler constant y = 0.577....

— fro ()]} = fep(0)[1 = frp ()] [2frp (x) = 1],

d { 2m 1 E 2m? m?
E,\/E% —m? <1+—>}:E\/E2—m2[<—+ L )(1+—>—4—.
dE, E> pvr E, E>-m? E? E}

(A8)
p P
— fro(Ep, +p)[1 = fen(E, + p)]}
(A9)
|
The Fermi-Dirac distribution can be expanded as
> n+1 e " (V/x +m2+/,t) B3
eVx X2+ +1 ; ( )
and then we have
ﬁ’l /_4 _ Z( 1 n+1 —nﬂ/ dxe="V x>+’
=my (=1)"e™ K, (nin),
n=1
- - © 1 2, -2
g(m,p) = —1)ntle—ni dx ——e"VXtm
3 e
= (=1)"le™ Ky (nin), (B4)

1

3
Il

where Ky(x) and K;(x) are modified Bessel functions of
the second kind whose expansion forms are

(B5)

Then one can verify that i(7m, iz) can be cast into the following form
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(B7)

Then we obtain
(. =) = b )

— 9(-7) ~ () + mll( i)+ ()
—=[h(m. —p1) = h(m. )]

14 mn( ) @)+ () (B9)

with the modified Bessel function 7;(x) of the first kind
given by

(B10)

§°°: <>2k+1
£ ka+ )

We can also treat g(/m

1S (B

,f) in the same way

k=0
=1 1 1\ (md\* 1
D) (55) e
(B11)

and we obtain

PHYSICAL REVIEW D 95, 014032 (2017)

et +1 2

2k+1
) <2 du) el 41

1 m d 2k+3 1
5*"'+m>(if> Fr1

i)”‘“ e

(B6)

with the modified Bessel function 7y(x) of the first kind

given by
© q 2%
S (> ‘

k:O

(B13)

Finally we obtain the expressions for C,(m,j) and
Cy(m, t),

d\ d
Co(im. i) = —Io( i~ | — (&) + x(— Bl4
) = =to(m ) Sl ol (B
The series y () can also be written in the form,
_ = o 0 A (—eH)n
x() = Z(—l)nﬂe "inn = [8—2( 5 ) }
n=1 yn:l n y=0
{8 Li( ‘ﬁ)} (B15)
= |5 y,—¢ )
dy y=0
where Li(y, z) is the polylogarithm function,
[eS) Zn
z):Z;, lz] < 1. (B16)

n=1

The analytic continuation of the polylogarithm beyond the
circle of convergence |z| <1 can be furnished by the
following integral representation,

1 o -l
S,
L(y)Jo z7'e' =1

Re(y) >0, z€C/[l, ),

Li(y,z)

(B17)
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M . . _ 2 f d ) )
with the Gamma function I'(y) is defined by C(mp)~ 1+ %dﬁZd_y Li(y,—e ) + Li(y, )],
d d _ .
" Cy(m, ) m —=———=[Li(y, —=e7") + Li(y, =), . (B19
I'(y) = / e, Re(y) > 0. (BI18) : ) dii dy[ )y=o )
0

The asymptotic behaviors of Iy(x) and I, (x) at x — 0 are
Io(x)~ 1 and I;(x) =~ x/2. So at m — 0, we obtain the
asymptotic values of C;(m, ) and C,(m, i),

APPENDIX C: DERIVATION OF EQ. (20)

In this appendix, we give a detailed derivation of
Eq. (20). From the definition of the Wigner function (3)
and that of the axial vector component, we obtain

dty . 1 1 1 1
4 voAH — 4 v —ipy/ 7 - oS _ — S
QF,,D/d po,A QF,W/d pap/—(2”)4e <l//<x+2y)7 4 PU(G,x+2y,x 2y>w(x 2y>>
4o (s s(4) _ 1 5 1 1 1
= QF, [ dy(=iy" )8 () w( x+3y |/ rPU(Gox 2y x =5y Jy{x =y
3 : v/ X a5 _X
=-ier (i (r(r3)rrv(:3)))

0* -
=gt
Q2
where we have used 4B - E = FWF’”’, limy_,OPU(G, x+ %y,x - %y) =1 and [62]
- y yy_ i .Y
i (3w (-3) = oo ratmt
. yl/y[) 1
| = —g". C2
Jim =2 ia (C2)
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