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We study three different chiral Lagrangians that describe the two- and three-body decays of an excited
pseudoscalar glueball, JPC ¼ 0�−þ, into light mesons and charmonium states as well as into a scalar and
pseudoscalar glueball. We compute the decay channels for an excited pseudoscalar glueball with a mass of
3.7 GeV and consider a ground-state pseudoscalar glueball of mass 2.6 GeV, following predictions from
lattice QCD simulations. These states and channels are in reach of the ongoing BESIII experiment and the
PANDA experiments at the upcoming FAIR facility experiment. We present the resulting decay branching
ratios with a parameter-free prediction.
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I. INTRODUCTION

Glueballs, the bound states of gluons, form colorless, or
“white,” states, predicted by quantum chromodynamics
(QCD) [1], the theory of strong interactions. The funda-
mental symmetry of QCD is the exact local SUð3Þc color
symmetry and, due to the non-Abelian nature [2] of this
symmetry, the gauge fields interact with each other
strongly. This interaction gives rise to a color-singlet state,
which consists of gluons, the so-called glueball.
Considering the quarks as well, the glueball will be a
mixed state of gluons and (q̄q)-meson states with the same
spin and parity.
The investigation of the properties of glueballs is an

important field in hadronic physics and has been exten-
sively studied, starting with the computation of the glue-
ball mass using the bag model [1] as well as the flux-tube
model. The glueball spectrum was also computed via
lattice simulations of Yang-Mills theory [3–5]. Note that
in full QCD (i.e., gluons plus quarks), the mixing of
glueball and quark-antiquark configurations with the same
quantum number occurs, complicating the identification
of the corresponding resonances as listed in the Particle
Data Group (PDG) [6]. The experimental and theoretical
efforts (see Refs. [7–10] and references therein) in
searching for (predominantly) glueball states represent
important steps towards a better understanding of the
nonperturbative behavior of QCD. However, this search
entails the complex task of identifying glueballs unam-
biguously. Generally, there are two key properties assist-
ing with determining a glueball state through its decays:
These should be narrow and exhibit “flavor blindness.”
However, one has found an exception in the decays of the
scalar glueball f0ð1710Þ, which preferentially decays into
kaons and η mesons and less into pions, in contrast to the
flavor blindness condition. This peculiar result for the
f0ð1710Þ decays has been attributed to a “chiral suppres-
sion” mechanism [11–13] according to which the decay

amplitudes of the glueball is proportional to the current
quark mass in the final state.
The numerical approach of lattice QCD has been

employed extensively to compute the glueball spectrum
[3–5,14], where the lightest glueball state has been found to
be a scalar-isoscalar state, JPC ¼ 0þþ, with a mass of about
1.7 GeV. This energy region has been studied in a variety of
effective approaches [15–18]. As a result, the measured
resonance f0ð1710Þ appears to be a glueball candidate for
several reasons: First, its mass is very close to that of the
lattice QCD value, and second, its properties fit the
phenomenology of the scalar glueball as calculated in
the extended linear sigma model (eLSM) in Ref. [8], the
phenomenological solutions as seen in Ref. [18], the lattice
study in Refs. [17,19], and the combination of lattice QCD
calculations and experimental data for disentangling the
glue and q̄q components of the scalar glueball in Ref. [20].
Lastly, it is profusely produced in the gluon-rich decay of
the J=ψ meson. The second lightest glueball state has been
predicted with a tensor quantum number (JPC ¼ 2þþ) and
a mass of about 2.2 GeV. The resonance fJð2200Þ could be
a very good candidate [21,22], if its total spin is exper-
imentally confirmed to be J ¼ 2.
The third lightest glueball predicted by lattice QCD

simulations is a pseudoscalar glueball (JPC ¼ 0−þ) with a
mass of about 2.6 GeV [4,5]. The range of the mass of the
pseudoscalar glueball has been predicted to vary from
ηð1405Þ [or ιð1440Þ] to 2.6 GeV. Moreover, the state
Xð1835Þ has been investigated as a pseudoscalar glueball
by using an effective Lagrangian approach [23]. In addi-
tion, the two states Xð2120Þ and Xð2370Þ have been
interpreted as a glueball in Ref. [24]. In Ref. [9] we studied
the decay properties of the lightest pseudoscalar glueball
within the eLSM in the case of three flavors in two
scenarios: the first assuming the mass of the pseudoscalar
glueball to be in agreement with lattice QCD, and the
second scenario where the pseudoscalar glueball has a mass
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slightly lower than the lattice QCD prediction. This is
motivated by the BESIII experiment, where pseudoscalar
states have been investigated in J=ψ decays [25] with a
measured resonance Xð2370Þ with a mass of 2.37 GeVas a
promising potential glueball candidate. Furthermore, in our
study of pseudoscalar glueballs, we include the first two
states (JPC ¼ 0−þ) as determined in lattice QCD. Here, in
the quenched approximation [5], the first excited 0�−þ state
has a mass of 3.7 GeV, which will be included in our
investigation.
In this work we study the decay properties of the first

excited pseudoscalar glueball state whose mass lies, in
agreement with lattice QCD, between 3 and 4 GeV. We
constructed three effective Lagrangians: (i) The first
involves the interaction of the excited pseudoscalar glueball
~G with the lowest pseudoscalar glueball ~G0 and (pseudo)
scalar mesons in the three-flavor case. We can thus evaluate
the widths for the decays Γ ~G→ ~G0PP, where P refers to
pseudoscalar quark-antiquark states which are the well-
known light pseudoscalars fπ; K; η; η0g fixing the mass of
the pseudoscalar glueball from lattice QCD at 2.6 GeV.
(ii) The second effective Lagrangian couples the excited
pseudoscalar glueball ~G with a scalar glueball G and
(pseudo)scalar mesons in the Nf ¼ 3 case. Accordingly,
we can compute the two- and three-body decay widths of
the pseudoscalar glueball into (pseudo)scalar mesons,
where the quark-antiquark nonet of scalars is above
1 GeV: fa0ð1450Þ; KS; f0ð1370Þ; f0ð1500Þ; f0ð1710Þg,
and a scalar glueball, which corresponds to the resonance
f0ð1710Þ as discussed in Ref. [8] and/or admixtures of the
resonances f0ð1500Þ and f0ð1710Þ.
(iii) The third Lagrangian term couples the excited

pseudoscalar glueball with the scalar and pseudoscalar
mesons in the case of four flavors (that is, including
charmed mesons) [26]. This allows us to calculate the
decay of the first excited pseudoscalar glueball into the
charmonium state ηC, as Γ ~G→ηCππ

, and the two- and three-
body decay widths including (pseudo)scalar mesons with
the same channels produced by the second effective
Lagrangian. Note that the charmonium state ηC could
decay into the pseudoscalar glueball ~G0, as ΓηC→ ~G0ππ , as
seen in Refs. [10,27].
The three chiral Lagrangians that we consider involve

three unknown coupling constants, which cannot be fixed
without experimental data. Therefore, we compute the
branching ratios and present a useful guideline for exper-
imental investigations into the excited pseudoscalar

glueball state. This is of particular relevance for the
upcoming PANDA experiment at the FAIR facility [28],
for the BESIII experiment [25], and for NICA [29], which
has the ability to measure the proposed channels. PANDA
will use a 1.5 GeV antiproton beam on a proton target at
rest, yielding sufficient energy to directly produce the
excited pseudoscalar glueball as an intermediate state.
NICA will study charmonium systems, which also allows
for reconstructing potential glueball states.
This paper is organized as follows. In Sec. II we present

the effective Lagrangian interaction between the excited
pseudoscalar glueball and the pseudoscalar glueball, as
well as scalar and pseudoscalar quark-antiquark degrees of
freedom, allowing for the computation of the branching
ratios for the decays into ~G0PP. In Sec. III we present a
chiral Lagrangian term that couples the pseudoscalar
glueball with the scalar glueball, scalar, and pseudoscalar
mesons in the three-flavor case, as well as an extended
chiral Lagrangian connecting the excited pseudoscalar
glueball to the (pseudo)scalar mesons in the case of
Nf ¼ 4. With this approach, we evaluate the branching
ratios for the decays into two- and three-body cases.
Finally, in Sec. IV we present our conclusions.

II. DECAY OF AN EXCITED PSEUDOSCALAR
GLUEBALL INTO THE LOWEST
PSEUDOSCALAR GLUEBALL

We introduce a chiral Lagrangian which couples the
excited pseudoscalar glueball ~G≡ jggi with quantum
numbers JPC ¼ 0−þ to a pseudoscalar glueball ~G0 ≡ jggi
with the same quantum number and to the ordinary scalar
and pseudoscalar mesons,

Lint
~G ~G0 ¼ c ~G ~G0 ~G ~G0TrðΦ†ΦÞ; ð1Þ

where c ~G ~G0 is a coupling constant, and

Φ ¼ ðSa þ iPaÞta ð2Þ

is a multiplet containing the usual scalar and pseudoscalar
quark-antiquark states. The ta are the generators of the
group UðNfÞ. In the Lagrangian (1), we consider the case
Nf ¼ 3; thus, c ~G ~G0 is dimensionless, and the explicit
representation of the scalar and pseudoscalar mesons
reads [30]

Φ ¼ 1ffiffiffi
2

p

0
BBB@

ðσNþa0
0
ÞþiðηNþπ0Þffiffi

2
p aþ0 þ iπþ Kþ

S þ iKþ

a−0 þ iπ−
ðσN−a00ÞþiðηN−π0Þffiffi

2
p K0

S þ iK0

K−
S þ iK− K̄0

S þ iK̄0 σS þ iηS

1
CCCA; ð3Þ
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which transforms as Φ → ULΦU
†
R under ULð3Þ ×URð3Þ

chiral transformation, where ULðRÞ ¼ e−iΘ
a
LðRÞt

a

are
Uð3ÞLðRÞ matrices. Performing these transformations on
the determinant of the multiplet Φ, we see that this object is
invariant under SULð3Þ × SURð3Þ but not under the axial
Uð1ÞA transformation,

detΦ → detUAΦUA ¼ e−iΘ
0
A

ffiffiffiffiffiffi
2Nf

p
detΦ ≠ detΦ; ð4Þ

which is in agreement with the chiral anomaly. Moreover,
the pseudoscalar glueball field ~G and the excited pseudo-
scalar field ~G0 are invariant under Uð3ÞL × Uð3ÞR trans-
formations. In addition, the pseudoscalar glueball, the
excited pseudoscalar glueball, and the quark-antiquark
multiplet transform under the charge conjugation C and
the parity P as

~G0ðt; ~xÞ → − ~G0ðt; ~xÞ; ~Gðt; ~xÞ → − ~Gðt; ~xÞ;
Φðt; ~xÞ → Φ†ðt; ~xÞ;

and under charge conjugation as

~G0 → ~G0; ~G → ~G; Φ → ΦT:

Consequently, the effective chiral Lagrangian (1) possesses
the symmetries of the QCD Lagrangian, which is invariant
under SUð3ÞR × SUð3ÞL symmetry, parity, and charge
conjugate but is not invariant with respect to the axial
Uð1ÞA following the axial anomaly in the isoscalar-
pseudoscalar sector.
The states in Eq. (2) are assigned as physical resonances

to light quark-antiquark states with mass ≲2 GeV [30] as
follows: (i) In the pseudoscalar sector P, the fields ~π and K
represent the pion isotriplet and the kaon isodoublet,
respectively [6]. The bare quark-antiquark fields ηN ≡
jūuþ d̄di= ffiffiffi

2
p

and ηS ≡ js̄si are the nonstrange and
strangeness mixing components of the physical states η
and η0, which can be obtained by [6]

η ¼ ηN cosφþ ηS sinφ; η0 ¼ −ηN sinφþ ηS cosφ;

ð5Þ

where the mixing angle is φ≃ −44.6° [30]. There are two
different values for the mixing angle, e.g. φ ¼ −36 or
φ ¼ −41.4, determined by the KLOE Collaboration [31],
but this uncertainty has only a minor effect on the present
investigation. (ii) In the scalar sector S, the field ~a0
corresponds to the physical isotriplet state a0ð1450Þ, and
the scalar kaon field KS is identified with the physical
isodoublet state K⋆

0ð1430Þ. In the scalar-isoscalar sector,
the nonstrange bare field σN ≡ jūuþ d̄di= ffiffiffi

2
p

corresponds
to the resonance f0ð1370Þ and the bare strange field σS
corresponds to f0ð1500Þ [8], which mixes with the scalar
glueball G with a mixing matrix as constructed in Ref. [8]:

0
B@

f0ð1370Þ
f0ð1500Þ
f0ð1710Þ

1
CA ¼

0
B@

−0.91 0.24 −0.33
0.30 0.94 −0.17
−0.27 0.26 0.94

1
CA
0
B@

σN

σS

G

1
CA;

ð6Þ

which gives

σN ¼ 0.94f0ð1370Þ þ 0.21f0ð1500Þ − 0.26f0ð1710Þ;
ð7Þ

σS ¼ −0.17f0ð1370Þ þ 0.97f0ð1500Þ þ 0.18f0ð1710Þ;
ð8Þ

G ¼ −0.33f0ð1370Þ − 0.172f0ð1500Þ þ 0.93f0ð1710Þ:
ð9Þ

To evaluate the decays of the excited pseudoscalar
glueball ~G, we have to implement the effect of spontaneous
symmetry breaking by shifting the scalar-isoscalar fields by
their vacuum expectation values as follows [30]:

σN → σN þ ϕN and σS → σS þ ϕS; ð10Þ

where ϕN and ϕS are the corresponding chiral condensates,
which read

ϕN ¼ Zπfπ ¼ 0.158 GeV;

ϕS ¼
2ZKfK − ϕNffiffiffi

2
p ¼ 0.138 GeV; ð11Þ

where the value of the decay constant of the pion is
fπ ¼ 0.0922 GeV, while the kaon decay constant is given
as fK ¼ 0.110 [6]. In order for the (axial-)vector mesons to
appear in the Lagrangian (1), one also has to consider the
shifting of the axial-vector fields and thus redefine the wave
function of the pseudoscalar fields,

~π → Zπ~π; Ki → ZKKi; ηj → Zηjηj; ð12Þ

whereas i ¼ 1, 2, 3 refers to the four kaonic fields. The
numerical values of the renormalization constants of the
corresponding wave functions are Zπ ¼ 1.709,
ZK ¼ 1.604, ZKS

¼ 1.001, ZηN ¼ Zπ , ZηS ¼ 1.539 [30].
By using Eqs. (14) and (12), the Lagrangian in Eq. (1)
includes the relevant tree-level vertices for the decay
processes of ~G (see Appendix A 2).
Now we can determine the branching ratios of the

excited pseudoscalar glueball ~G for the three-body decay
into a pseudoscalar glueball ~G0 and two pseudoscalar
mesons (Γ ~G→ ~G0PP), see Table I. We present the branching
ratios relative to the total decay width of the pseudoscalar
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glueball Γtot
G . (The details of the calculation of the three-

body decay are given in Appendix A 5.)
Note that the results in Table I are presented as branching

ratios because of the undetermined coupling constant c ~G ~G0 .
The three-body decay mode Γ ~G→ ~G0ππ almost saturates the
decay channels due to the small mass of the pions.

III. DECAY OF AN EXCITED PSEUDOSCALAR
GLUEBALL INTO SCALAR-ISOSCALAR,

(PSEUDO)SCALAR, AND CHARMONIUM STATES

We consider a chiral Lagrangian that couples the excited
pseudoscalar glueball and a scalar glueball G≡ jggi with
quantum number JPC ¼ 0−þ to scalar and pseudoscalar
mesons,

Lint
~GG

¼ ic ~GGΦ
~GGðdetΦ − detΦ†Þ; ð13Þ

where c ~GGΦ is an unknown coupling constant and Φ is a
multiplet of a scalar and a pseudoscalar glueball in the case
of Nf ¼ 3 as shown in Eq. (3). The effective Lagrangian of
Eq. (13) is invariant under SULð3Þ × SURð3Þ and parity.
Applying the mixing matrix (6), the scalar glueball G
corresponds to the resonance f0ð1710Þ [8] as seen
in Eq. (9).

One has to perform the field transformations in Eqs. (12)
and (14) as well as shift the scalar-isoscalar

G → Gþ G0; ð14Þ

where G0 is the gluon condensate G0 ¼ Λ. One can
compute the branching ratios of the two- and three-body
decays for the excited pseudoscalar glueball into scalar-
pseudoscalar mesons and a scalar glueball relative to the
total decay width of the pseudoscalar glueball Γtot

~G2

.

As another step, we consider the effective chiral
Lagrangian that couples the excited pseudoscalar glueball
field ~G to scalar and pseudoscalar mesons by the same
means as the coupling of the pseudoscalar glueball to scalar
and pseudoscalar quark-antiquark states as discussed in
Ref. [9],

Lint
~GΦ

¼ ic ~GΦ
~GðdetΦ − detΦ†Þ; ð15Þ

where c ~Gϕ is a dimensionless coupling constant. In this work
we consider the case Nf ¼ 4, and the explicit representation
of the scalar and pseudoscalar mesons reads [26]

Φ ¼ ðSa þ iPaÞta ¼ 1ffiffiffi
2

p

0
BBBBBB@

ðσNþa0
0
ÞþiðηNþπ0Þffiffi

2
p aþ0 þ iπþ K�þ

0 þ iKþ D�0
0 þ iD0

a−0 þ iπ−
ðσN−a00ÞþiðηN−π0Þffiffi

2
p K�0

0 þ iK0 D�−
0 þ iD−

K�−
0 þ iK− K̄�0

0 þ iK̄0 σS þ iηS D�−
S0 þ iD−

S

D̄�0
0 þ iD̄0 D�þ

0 þ iDþ D�þ
S0 þ iDþ

S χC0 þ iηC

1
CCCCCCA
: ð16Þ

The multiplet Φ transforms as Φ → ULΦU
†
R under

ULð4Þ ×URð4Þ chiral transformations, whereas ULðRÞ ¼
e−iθ

a
LðRÞt

a

is an element of Uð4ÞRðLÞ, under parity Φðt; ~xÞ →
Φ†ðt;−~xÞ and under charge conjugation Φ → Φ†. The
determinant of Φ is invariant under SUð4ÞL × SUð4ÞR,
but not under Uð1ÞA because detΦ → detUAΦUA ¼
e−iθ

0
A

ffiffiffiffiffiffi
2Nf

p
detΦ ≠ detΦ. The pseudoscalar glueball ~G is

invariant under Uð4ÞL ×Uð4ÞR transformations, under
parity ~Gðt; ~xÞ → − ~Gðt;−~xÞ and charge conjugation
~G → ~G. All this leads to the interaction Lagrangian Lint

~G
of Eq. (1) being invariant under SUð4ÞL × SUð4ÞR, parity,
and charge conjugation. As before, Eq. (1) is not invariant
under UAð1Þ.
The additional (pseudo)scalar charmed mesons appear in

the fourth line and fourth column. In the scalar sector,
open charmed meson D�0;�

0 and strange charmed meson
D��

S0 are assigned to D�
0ð2400Þ0;� and D�

S0ð2317Þ� [26],
respectively. In the pseudoscalar sector there is an open

charmed stateD0;�, open strange-charmed statesD�
S , and a

hidden charmed ground state ηCð1SÞ.
In addition to shifting the light scalar-isoscalar fields as

seen in Eq. (14), one has to shift the charm-anticharm scalar
field χC0 by its vacuum expectation value ϕC to implement
the spontaneous symmetry breaking as

χC0 → χC0 þ ϕC; ð17Þ

TABLE I. Branching ratios for the decay of the excited
pseudoscalar glueball ~G into the pseudoscalar glueball ~G0.

Quantity Theoretical result

Γ ~G→ ~G0KK=Γ
tot
~G

0.0277
Γ ~G→ ~G0ππ=Γ

tot
~G

0.9697
Γ ~G→ ~G0ηη0=Γ

tot
~G

0.0026
Γ ~G→ ~G0ηη=Γ

tot
~G

0.000012
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where ϕC is the charm quark-antiquark condensate, which
is fixed in Ref. [26] as ϕC ¼ 176 MeV.
To extend to the Nf ¼ 4 case, one adds to the shifting of

the axial-vector fields in Eq. (12) the following axial-vector
charmonium state:

ηC → ZηCηC; ð18Þ

where the renormalization wave function is ZηC ¼ 1.1189
[10]. By including Eqs. (14), (12), (17), (18) in the
Lagrangian (15), one obtains the relevant tree-level vertices

TABLE II. Branching ratios for the decays of the excited pseudoscalar glueball ~G into PS and into η and η0 and one
of the scalar-isoscalar states: f0ð1370Þ, f0ð1500Þ and f0ð1710Þ, which correspond to the scalar glueball [8].

Case (i): Lint
~GG

Theoretical result Case (ii): Lint
~GΦ

Theoretical result

Γ ~G→a0π
=Γtot

~G2

0.0325 Γ ~G→a0π
=Γtot

~G3

0.0313

Γ ~G→KKS
=Γtot

~G2

0.032 Γ ~G→KKS
=Γtot

~G3

0.001

Γ ~G→ηf0ð1370Þ=Γ
tot
~G2

0.00004 Γ ~G→ηf0ð1370Þ=Γ
tot
~G3

0.0014

Γ ~G→η0f0ð1370Þ=Γ
tot
~G2

0.048 Γ ~G→η0f0ð1370Þ=Γ
tot
~G3

0.031

Γ ~G→ηf0ð1500Þ=Γ
tot
~G2

0.0068 Γ ~G→ηf0ð1500Þ=Γ
tot
~G3

0.0067

Γ ~G→η0f0ð1500Þ=Γ
tot
~G2

0.0219 Γ ~G→η0f0ð1500Þ=Γ
tot
~G3

0.0214

Γ ~G→ηf0ð1710Þ=Γ
tot
~G2

0.0008 Γ ~G→ηf0ð1710Þ=Γ
tot
~G3

0.0007

Γ ~G→η0f0ð1710Þ=Γ
tot
~G2

0.001 Γ ~G→η0f0ð1710Þ=Γ
tot
~G3

0.001

TABLE III. Branching ratios for the decays of the excited pseudoscalar glueball ~G into the scalar-isoscalar states
and (pseudo)scalar mesons.

Case (i): Lint
~GG

Theoretical result Case (ii): Lint
~GΦ

Theoretical result

Γ ~G→ηππ=Γ
tot
~G2

0.095 Γ ~G→ηππ=Γ
tot
~G3

0.1376

Γ ~G→η0ππ=Γ
tot
~G2

0.111 Γ ~G→η0ππ=Γ
tot
~G3

0.1069

Γ ~G→a0KKS
=Γtot

~G2

0.0026 Γ ~G→a0KKS
=Γtot

~G3

0.0025

Γ ~G→ηa0a0
=Γtot

~G2

0.0001 Γ ~G→ηa0a0
=Γtot

~G3

0.0001

Γ ~G→a0πf0ð1370Þ=Γ
tot
~G2

0.0003 Γ ~G→a0πf0ð1370Þ=Γ
tot
~G3

0.0003

Γ ~G→a0πf0ð1500Þ=Γ
tot
~G2

0.0034 Γ ~G→a0πf0ð1500Þ=Γ
tot
~G3

0.0032

Γ ~G→a0πf0ð1710Þ=Γ
tot
~G2

0.0001 Γ ~G→a0πf0ð1710Þ=Γ
tot
~G3

0.0001

Γ ~G→ηf2
0
ð1370Þ=Γ

tot
~G2

0.0003 Γ ~G→ηf2
0
ð1370Þ=Γ

tot
~G3

0.001

Γ ~G→η0f2
0
ð1370Þ=Γ

tot
~G2

0.03 × 10−6 Γ ~G→η0f2
0
ð1370Þ=Γ

tot
~G3

0.006 × 10−6

Γ ~G→ηf2
0
ð1500Þ=Γ

tot
~G2

0.00004 Γ ~G→ηf2
0
ð1500Þ=Γ

tot
~G3

0.00001

Γ ~G→ηf0ð1370Þf0ð1500Þ=Γ
tot
~G2

0.00003 Γ ~G→ηf0ð1370Þf0ð1500Þ=Γ
tot
~G3

0.0001

Γ ~G→ηf0ð1370Þf0ð1710Þ=Γ
tot
~G2

3.798 × 10−6 Γ ~G→ηf0ð1370Þf0ð1710Þ=Γ
tot
~G3

7.25 × 10−6

Γ ~G→KKSf0ð1370Þ=Γ
tot
~G2

0.0025 Γ ~G→KKSf0ð1370Þ=Γ
tot
~G3

0.0025

Γ ~G→KKSf0ð1500Þ=Γ
tot
~G2

0.00013 Γ ~G→KKSf0ð1500Þ=Γ
tot
~G3

0.00013

Γ ~G→KKSf0ð1710Þ=Γ
tot
~G2

6.2 × 10−6 Γ ~G→KKSf0ð1710Þ=Γ
tot
~G3

4.75 × 10−6

Γ ~G→KKη=Γ
tot
~G2

0.0668 Γ ~G→KKη=Γ
tot
~G3

0.0643

Γ ~G→KKη0=Γ
tot
~G2

0.045 Γ ~G→KKη0=Γ
tot
~G3

0.044

Γ ~G→KSKSη
=Γtot

~G2

0.0002 Γ ~G→KSKSη
=Γtot

~G3

0.0002

Γ ~G→η3=Γ
tot
~G2

0.024 Γ ~G→η3=Γ
tot
~G3

0.0233

Γ ~G→η03=Γ
tot
~G2

0.0048 Γ ~G→η03=Γ
tot
~G3

0.0046

Γ ~G→η0η2=Γ
tot
~G2

0.005 Γ ~G→η0η2=Γ
tot
~G3

0.0048

Γ ~G→η02η=Γ
tot
~G2

0.0035 Γ ~G→η02η=Γ
tot
~G3

0.0034

Γ ~G→KKπ=Γ
tot
~G2

0.489 Γ ~G→KKπ=Γ
tot
~G3

0.471

Γ ~G→KSKSπ
=Γtot

~G2

0.002 Γ ~G→KSKSπ
=Γtot

~G3

0.0057
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for the decay processes of the excited pseudoscalar glueball
~G, as supplied in Appendix A 4. The branching ratio for the
decay of ~G into two pions and one charmonium state ηC is
given as

Γ ~G→ηCππ
=Γtot

~G3

¼ 0.001: ð19Þ

This is of special interest, as it opens up the possibility for
the decay of the excited pseudoscalar glueball into a
charmonium state. The results of the branching ratios of
~G for two- and three-body decays into states including
scalar glueball and scalar-isoscalar, f0ð1370Þ, f0ð1500Þ
and f0ð1710Þ, and (pseud)scalar states are reported in
Tables II and III, respectively, from the Lagrangians (13)
and (15).
Tables II and III show the excited pseudoscalar glueball

decays into scalar-isoscalar states, f0ð1370Þ, f0ð1500Þ and
f0ð1710Þ, by including the full mixing pattern above 1 GeV
and ~G decay into the scalar glueball which corresponds to
the resonance f0ð1710Þ [8]. Furthermore, the results for
Lint

~GG
and Lint

~GΦ
are very close in the two- and three-body

decays, which could provide valuable insight for
experiment.

IV. CONCLUSION

In this work we have presented three chirally invariant
effective Lagrangians. The first one describes the inter-
action of the excited pseudoscalar glueball with the lowest
pseudoscalar glueball and (pseudo)scalar mesons, for the
three-flavor case Nf ¼ 3. We have studied the three-body
decays of the excited pseudoscalar glueball with a mass of
3.7 GeV, including decays into one pseudoscalar glueball
with a mass of 2.6 GeV and two pseudoscalar mesons
Γ ~G→ ~G0PP. The second Lagrangian describes the interaction
of the excited pseudoscalar glueball with a scalar glueball
and (pseudo)scalar mesons in the case ofNf ¼ 3. From this

effective Lagrangian, we have computed the decays of the
excited pseudoscalar glueball, also with a reference mass of
3.7 GeV, into two and three (pseudo)scalar mesons and
scalar-isoscalar states f0ð1370Þ, f0ð1500Þ and f0ð1710Þ,
where the resonance f0 ¼ ð1710Þ is identified with the
scalar glueball. The third chiral Lagrangian extends the
treatment to the four-flavor case (Nf ¼ 4) including char-
monium states. This study yields an interesting result for
the decay of the excited pseudoscalar glueball into the
charmonium state ηC as seen in Γ ~G→ηCππ

. Furthermore,
from the third effective Lagrangian, we have computed the
two- and three-body decays for the excited pseudoscalar
glueball into (pseudo)scalar mesons and the scalar-isoscalar
states.
We have presented the results as branching ratios to

eliminate the unknown overall normalization. We conclude
that the excited pseudoscalar glueball with a mass of about
3.7 GeV may decay into the pseudoscalar glueball with a
mass of 2.6 GeV, the charmonium state ηC, the scalar
glueball and the (pseudo)scalar mesons with clearly defined
branching ratios. The resulting numbers can serve as a
guide for the BESIII and for the corresponding upcoming
experiments with the PANDA detector at FAIR.
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APPENDIX: DETAILS OF THE CALCULATION

1. Full mesonic Lagrangian

The chirally invariantUðNfÞL ×UðNfÞR Lagrangian for
the low-lying mesonic states with (pseudo)scalar and
(axial-)vector quantum numbers has the form

Lmes ¼ Tr½ðDμΦÞ†ðDμΦÞ� −m2
0TrðΦ†ΦÞ − λ1½TrðΦ†ΦÞ�2 − λ2TrðΦ†ΦÞ2

−
1

4
Tr½ðLμνÞ2 þ ðRμνÞ2� þ Tr

��
m2

1

2
þ Δ

�
ðL2

μ þ R2
μÞ
�
þ Tr½HðΦþ Φ†Þ�

þ c1ðdetΦ − detΦ†Þ2 þ i
g2
2
fTrðLμν½Lμ; Lν�Þ þ TrðRμν½Rμ; Rν�Þg

þ h1
2
TrðΦ†ΦÞTrðL2

μ þ R2
μÞ þ h2Tr½jLμΦj2 þ jΦRμj2�

þ 2h3TrðLμΦRμΦ†Þ; ðA1Þ

where
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Lμ ¼ ðVa þ iAaÞμta ¼ 1ffiffiffi
2

p

0
BBBBBB@

ωNþρ0ffiffi
2

p þ f1Nþa0
1ffiffi

2
p ρþ þ aþ1 K�þ þ Kþ

1 D�0 þD0
1

ρ− þ a−1
ωN−ρ0ffiffi

2
p þ f1N−a01ffiffi

2
p K�0 þ K0

1 D�− þD−
1

K�− þ K−
1 K̄�0 þ K̄0

1 ωS þ f1S D�−
S þD−

S1

D̄�0 þ D̄0
1 D�þ þDþ

1 D�þ
S þDþ

S1 J=ψ þ χC1

1
CCCCCCA

μ

ðA2Þ

and

Rμ ¼ ðVa − iAaÞμta ¼ 1ffiffiffi
2

p

0
BBBBBB@

ωNþρ0ffiffi
2

p − f1Nþa0
1ffiffi

2
p ρþ − aþ1 K�þ − Kþ

1 D�0 −D0
1

ρ− − a−1
ωN−ρ0ffiffi

2
p − f1N−a01ffiffi

2
p K�0 − K0

1 D�− −D−
1

K�− − K−
1 K̄�0 − K̄0

1 ωS − f1S D�−
S −D−

S1

D̄�0 − D̄0
1 D�þ −Dþ

1 D�þ
S −Dþ

S1 J=ψ − χC1

1
CCCCCCA

μ

: ðA3Þ

The fields ωN , ωS, ~ρ, f1N , f1S, ~a1, K�, Kþ
0 and K1 are

assigned to the light physical resonances ωð782Þ, ϕð1020Þ,
ρð770Þ, f1ð1420Þ, a1ð1260Þ, K�ð892Þ, K�

0ð1430Þ, and
K1ð1270Þ [orK1ð1400Þ; see the discussion in Refs. [30,32]]
mesons, respectively. The charmed fields D�0, D�, χC1,
J=ψ , and DS1 are assigned to heavy physical resonances
D�ð2007Þ0, Dþð2010Þ�, χC1ð1PÞ, J=ψð1SÞ, and
DS1ð2536Þ, respectively [10,26].
In the present context we are interested in the wave-

function renormalization constants Zi introduced in
Eq. (12). Their explicit expressions read [10]

Zπ ¼ ZηN ¼ ma1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 − g21ϕ
2
N

q ; ðA4Þ

ZK ¼ 2mK1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K1
− g21ðϕN þ ffiffiffi

2
p

ϕSÞ2
q ; ðA5Þ

ZKS
¼ 2mK⋆ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
K⋆ − g21ðϕN −

ffiffiffi
2

p
ϕSÞ2

q ; ðA6Þ

ZηS ¼
mf1Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f1S

− 2g21ϕ
2
S

q ; ðA7Þ

ZηC ¼ mχC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χC1 − 2g21ϕ
2
C

q : ðA8Þ

2. Explicit form of the Lagrangian in Eq. (1)

After performing the field transformations in Eqs. (12)
and (14), the effective Lagrangian (1) takes the form

Lint
~G ~G0 ¼ 1

2
c ~G ~G0 ~G ~G0ða00a00 þ 2a−0 a

þ
0 þ 2Z2

KK
0K̄0 þ 2Z2

KK
−Kþ þ 2Z2

KS
K0

SK̄
0
S þ 2ZKS

K−
SK

þ
S Z

2
ηNη

2
N

þ Z2
ηSη

2
S þ Z2

ππ
2
0 þ 2Z2

ππ
−πþ þ 2σ2S þ σ2N þ 2

ffiffiffi
2

p
ϕNσN þ 2σSϕS þ ϕ2

N þ ϕ2
SÞ: ðA9Þ

Note that some decay channels of the excited pseudo-
scalar glueball ~G are not kinematically allowed because the
mass of the decaying particle is larger than the summation
mass of the decay products M <

P
3
i mi, which is sum-

marized as follows:

Γ ~G→ ~G0a0a0
¼ 0; Γ ~G→ ~G0KSKS

¼ 0; ðA10Þ
Γ ~G→ ~G0σN

¼ 0; Γ ~G→ ~G0σS
¼ 0; ðA11Þ

Γ ~G→ ~G0σ2N
¼ 0; Γ ~G→ ~G0σ2S

¼ 0: ðA12Þ

There is a mixing between the excited pseudoscalar
glueball ~G and the pseudoscalar glueball ~G0 that appears in
the Lagrangian (A9) in the term 1

2
c ~G ~G0 ~G ~G0ðϕN þ ϕSÞ. The

full ~G − ~G0 interaction Lagrangian has the form

L ~G;ηC
¼ 1

2
ð∂μ

~GÞ2 þ 1

2
ð∂μ

~G0Þ2 − 1

2
m2

~G
~G2 −

1

2
m2

~G0 ~G
02

þ Z ~G ~G0 ~G ~G0; ðA13Þ

where
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Z ~G ~G0 ¼ 1

2
c ~G ~G0 ~G ~G0ðϕN þ ϕSÞ: ðA14Þ

The physical fields ~G and ~G0 can be obtained through an
SO(2) rotation

� ~G1

~G0
1

�
¼

�
cosϕ sinϕ

− sinϕ cosϕ

�
¼

�
~G
~G0

�
; ðA15Þ

with

m2
~G1

¼ m2
~G0sin2ϕþm2

~G
cos2ϕ − Z ~G ~G0 sinð2ϕÞ; ðA16Þ

m2
~G0
1

¼ m2
~G
sin2ϕþm2

~G0cos2ϕþ Z ~G ~G0 sinð2ϕÞ; ðA17Þ

where the mixing angle ϕ reads

ϕ ¼ 1

2
arctan

�
c ~G ~G0 ðϕ2

N þ ϕ2
SÞ

ðm2
~G
−m2

~G0 Þ
�

ðA18Þ

where c ~G ~G0 is a dimensionless coupling constant
in ~G ~G0.

3. Explicit form of the Lagrangian in Eq. (13)

After executing the field transformations in Eqs. (12)
and (14), the chiral effective Lagrangian (13) takes the
form

L ~GΦ ¼ 1

4
ϕC0c ~GΦ

~G½−2ZKZKS
a−0 K̄

0
SK

þ − 2ZKZKS
a−0 K̄

0Kþ
S −

ffiffiffi
2

p
Z2
KZηN K̄

0K0ηN −
ffiffiffi
2

p
Z2
KZηNK

−KþηN

þ
ffiffiffi
2

p
Z2
KS
ZηN K̄

0
SK

0
SηN þ

ffiffiffi
2

p
Z2
KS
ZηNK

−
SK

þ
S ηN þ ZηSa

0
0ηS þ Z2

ηNZηSη
2
NηS −

ffiffiffi
2

p
ZπZ2

Kπ
0K̄0K0

þ
ffiffiffi
2

p
ZπZ2

Kπ
0K−Kþ þ

ffiffiffi
2

p
ZπZ2

KS
π0K̄0

SK
0
S −

ffiffiffi
2

p
ZπZ2

KS
π0K−

SK
þ
S − Z2

πZηSπ
0π0ηS þ 2ZπZ2

Kπ
−K̄0Kþ

− 2ZπZ2
KS
π−K̄0

SK
þ
S þ 2ZπZ2

Kπ
þK0K− − 2ZπZ2

KS
πþK0

SK
−
S − 2Z2

πZηSπ
−πþηS þ 2ZKZKS

K̄0K0
SσN

þ 2ZKZKS
K̄0

SK
0σN þ 2ZKZKS

K̄−
SK

þσN þ 2ZKZKS
K−Kþ

S σN − 2ZηSηSσ
2
N þ 2Zππ

þa−0 σS

− 2
ffiffiffi
2

p
ZηNηNσNσS þ

ffiffiffi
2

p
ZKZKS

ΦNK̄0K0
S þ

ffiffiffi
2

p
ZKZKS

ΦNK̄0
SK

0 þ
ffiffiffi
2

p
ZKZKS

ΦNK−
SK

þ

þ
ffiffiffi
2

p
ZKZKS

ΦNK−Kþ
S − 2

ffiffiffi
2

p
ZηSΦNηSσN − 2ZηNΦNηNσS − ZηSΦ

2
NηS þ 2ZπΦSπ

þa−0 − 2
ffiffiffi
2

p
ZηNΦSηNσN

− 2ZetaNΦNΦSηN þ a00ð
ffiffiffi
2

p
ZKZKS

K̄0K0
S þ

ffiffiffi
2

p
ZKZKS

K̄0
SK

0 −
ffiffiffi
2

p
ZKZKS

þ 2Zππ
0σS þ 2ZπΦSπ

0Þ
þ 2aþ0 ðZKZKS

K0
SK

− − ZKZKS
K−

SK
0 þ ZηSa

−
0 ηS þ Zππ

−σS þ ZπΦSπ
−Þ�: ðA19Þ

4. Explicit form of the Lagrangian in Eq. (15)

The corresponding interaction Lagrangian from Eq. (15) (only the particles produced in Tables II and III) is obtained by
executing the field transformations in Eqs. (12), (14), (17), and (18) as

L ~GΦ ¼ 1

4
ϕC0c ~GΦ

~Gf−Z2
πZηSηSðπ0π0 þ 2π−πþÞ þ ZηSða00a00 þ 2a−0 a

þ
0 ÞηS

− ZKZKS
½2aþ0 ðK0

SK
− þ K0K−

S Þ þ 2a−0 ðK̄0
SK

þ þ K̄0Kþ
S Þ −

ffiffiffi
2

p
a00ðK0

SK̄
0 þ K0K̄0

S − K−
SK

þ þ K−Kþ
S Þ�

þ Zπ½ðπ0a00 þ πþa−0 þ π−aþ0 ÞðσS þ ϕSÞ� −
ffiffiffi
2

p
Z2
KZηNηNðK0K̄0 þ K−KþÞ þ

ffiffiffi
2

p
Z2
KS
ZηNηNðK0

SK̄
0
S þ K−

SK
þ
S Þ

þ Z2
ηNZηSη

2
NηS þ ZπZ2

K½
ffiffiffi
2

p
ð−K0K̄0 þ K−KþÞπ0 þ 2ðK̄0Kþπ− þ K0Kþπ0Þ�

þ ZπZ2
KS
½

ffiffiffi
2

p
ðK0

SK̄
0
S − K−

SK
þ
S Þπ0 − 2ðK̄0

SK
þ
S π

− þ K0
SK

−
Sπ

þÞ�
þ 2ZKZKS

ðK̄0
SK

0 þ K0
SK̄

0 þ K−
SK

þ þ Kþ
S K

−ÞσN þ
ffiffiffi
2

p
ZKZKS

ϕNðK̄0
SK

0 þ K0
SK̄

0 þ K−
SK

þ þ Kþ
S K

−Þ
− 2ZηSηSσ

2
N − 2

ffiffiffi
2

p
ZηNηNσNσS − 2

ffiffiffi
2

p
ZηSϕNηSσN − 2ZηNϕNηNσS − 2

ffiffiffi
2

p
ZηNϕSηNσNg: ðA20Þ

5. Two-body decay

The general formula of the two-body decay width [10] is

ΓA→BC ¼ SA→BCkðmA;mB;mCÞ
8πm2

A
jMA→BCj2; ðA21Þ
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where A is the decaying particle, B and C are the decay products, kðmA;mB;mCÞ is the center-of-mass momentum of the
two particles produced in the decay, described as

kðmA;mB;mCÞ ¼
1

2mA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

A þ ðm2
B −m2

CÞ2 − 2m2
Aðm2

B þm2
CÞ

q
θðmA −mB −mCÞ; ðA22Þ

MA→BC is the corresponding tree-level decay amplitude,
and SA→BC refers to a symmetrization factor (it equals 1 if B
and C are different, and it equals 1=2 for two identical
particles in the final state).

6. Three-body decay

For completeness we report the explicit expression
for the three-body decay width for the process ~G →
P1P2P3 [6]:

Γ ~G→P1P2P3
¼ s ~G→P1P2P3

32ð2πÞ3M3
~G

Z ðM ~G−m3Þ2

ðm1þm2Þ2
dm2

12

Z ðm23Þmax

ðm23Þmin

j

− iM ~G→P1P2P3
j2dm2

23

where

ðm23Þmin ¼ ðE�
2 þ E�

3Þ2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�2
2 −m2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
3 −m2

3

q �2
;

ðA23Þ

ðm23Þmax ¼ ðE�
2 þ E�

3Þ2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�2
2 −m2

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
3 −m2

3

q �2
;

ðA24Þ

and

E�
2 ¼

m2
12 −m2

1 þm2
2

2m12

; E�
3 ¼

M2
~G
−m2

12 −m2
3

2m12

:

ðA25Þ

The quantities m1, m2, m3 refer to the masses of the three
pseudoscalar states P1, P2, and P3; M ~G→P1P2P3

is the
corresponding tree-level decay amplitude; and s ~G→P1P2P3

is
a symmetrization factor (it equals 1 if P1, P2, and P3 are all
different, it equals 2 for two identical particles in the final
state, and it equals 6 for three identical particles in the
final state).
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