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The decay mode B → K�lþl− results in the measurement of a large number of related observables by
studying the angular distribution of the decay products and is regarded as a sensitive probe of physics beyond
the standard model (SM). Recently, LHCb has measured several of these observables using 3 fb−1 data, as a
binned function of q2, the dilepton invariant mass squared. We show how data can be used without any
approximations to extract theoretical parameters describing the decay and to obtain a relation amongst
observables within the SM.We find three kinds of significant disagreement between theoretical expectations
and values obtained by fits. The values of the form factors obtained from experimental data show significant
discrepancies when compared with theoretical expectations in several q2 bins. We emphasize that this
discrepancy cannot arise completely due to resonances and non-factorizable contributions from charm loops.
Further, a relation between form factors expected to hold at large q2 is very significantly violated. Finally, the
relation between observables also indicates some deviations in the forward-backward asymmetry in the same
q2 regions. These discrepancies are possible evidence of physics beyond the SM.
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I. INTRODUCTION

The rare decay B → K�lþl− involves a b → s flavor
changing loop induced transition at the quark level making
it an attractive mode to search for physics beyond the
standard model (SM). Indirect searches for new physics
(NP) involving loop processes require a comparison of
theoretical estimates with experimental observations. The
theoretical estimates thus need to be extremely reliable in
order to make a conclusive claim on the existence or
nonexistence of new physics (NP). Fortunately, significant
progress has been made in understanding the hadronic
effects involved in the decay B → K�lþl−. The mode
B → K�lþl− is also of special interest as it allows for the
measurement of several observables using the angular
distribution [1]. The large number of observables depend
on theoretical parameters that describe this decay. In this
paper we show how some of the parameters can be
extracted directly from LHCb measurements allowing us
to verify our theoretical understanding. Any discrepancy
observed must be attributed either to a failure of our
understanding of hadronic effects or to the existence of
NP. We also test the relation between observables that
provides another clean test for NP.
The differential decay distribution [1–3] of B →

K�lþl− results in the measurement of at least nine
observables using the angular distribution, as a function
of q2 the dilepton invariant mass squared. These observ-
ables are commonly chosen to be the differential decay rate

with respect to q2, two independent helicity fractions
that describe the decay, the three asymmetries that describe
the real part of the interference between different helicity
amplitudes and three asymmetries that describe the imagi-
nary part of the interference.
Recently LHCb [4] has reported measurements of all

these observables that have been averaged in eight q2 bins.
A lot of studies on this decay mode are widely discussed in
the literature [5,6]. We use the LHCb data to obtain
estimates of hadronic form factors that describe the decay.
Previously some of the form factors have been determined
[7] using 1 fb−1 of LHCb data. We emphasize that our
approach does not involve evaluating the decay amplitude
in terms of theoretically estimated parameters. Instead we
start with the most general parametric form of the ampli-
tude without any hadronic approximations within the SM
[see Eq. (5) below]. Experimental data alone is used to fit
the theoretical parameters introduced in the parametric
amplitude. These experimentally fitted theoretical param-
eters are simply compared to the estimates by other authors
[8,9] which are widely regarded as state of the art. The
values of form factors obtained from experimental data
show significant discrepancy when compared with theo-
retical expectations in several q2 bins.
In addition to extracting form factors from data, this

mode also allows a relation among observables that can
provide a clean signal [2,3] of NP. We find that the
measurements do not satisfy the expected relation between
the observables in the same q2 domains where the fitted
form factors also show a large discrepancy with the
theoretical estimates. The simultaneous observation of
these discrepancies points to possible evidence of NP.
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The paper is organized as follows. In Sec. II we describe
the theoretical framework developed to write the most
general parametric form of the amplitude and cast the
observables in a form where hadronic parameters can be
obtainable from data. The relations among observables are
also derived here. A numerical analysis is presented in
Sec. III which contains two subsections. The subsection III
A gives elaborate description of extraction of form factors
using LHCb measurements, whereas, the validity of the
relations derived assuming SM are examined in
subsection III B with experimental data. In Sec. IV we
summarize the important results obtained in this paper.
Appendices A and B estimate the complex part the
amplitude and the systematic uncertainty arising mainly
due to bin average effect of the observables, respectively.

II. OBSERVABLES AND THEORETICAL
FRAMEWORK

In this section we briefly discuss the theoretical frame-
work derived to take into account all possible contributions
within SM for the decay B → K�lþl−. We start with the
observables as defined in Ref. [2] to be the FL, F⊥, A4, A5,
AFB, A7, A8, A9 and dΓ=dq2 ≡ Γf. The observables F⊥, A4,
A5, AFB, A7, A8 and A9 are related to the CP averaged
observables S3, S4, S5, ALHCb

FB , S7, S8 and S9 measured by
LHCb [4,10] as follows:

F⊥ ¼ 1 − FL þ 2S3
2

; A4 ¼ −
2

π
S4; A5 ¼

3

4
S5;

AFB ¼ −ALHCb
FB ; A7 ¼

3

4
S7;

A8 ¼ −
2

π
S8; A9 ¼

3

2π
S9: ð1Þ

It may be remarked that LHCb collaboration observes a
local tension with some observables based on the hadronic
estimates of Refs. [8,11].
We begin by assuming the massless lepton limit but

generalize to include the lepton mass. The corrections due
to the mass of the leptons are easily taken into account [2].
In the massless lepton limit the decay is described in terms
of six transversity amplitudes which can be written in the
most general form as,

AL;R
λ ¼ Cλ

L;RF λ − ~Gλ ¼ ð ~Cλ
9 ∓ C10ÞF λ − ~Gλ: ð2Þ

This form of the amplitude [2] is the most general para-
metric form of SM amplitude for B → K�lþl− decay that
comprehensively takes into account all contributions up to
OðGFÞ within it. The form includes all short-distance and
long-distance effects, factorizable and nonfactorizable con-
tributions and resonance contributions. In Eq. (2) C9 and
C10 are Wilson coefficients with ~Cλ

9 being the redefined
“effective” Wilson coefficient defined [2,12] such that

~Cλ
9 ¼ C9 þ ΔCðfacÞ

9 ðq2Þ þ ΔCλ;ðnonfacÞ
9 ðq2Þ ð3Þ

where ΔCðfacÞ
9 ðq2Þ, ΔCλ;ðnonfacÞ

9 ðq2Þ correspond to factoriz-
able and soft gluon nonfactorizable contributions. Strong
interaction effects coming from electromagnetic correc-
tions to hadronic operators do not affect C10.
The form factors F λ and ~Gλ introduced in Eq. (2) can be

related to the conventional form factors describing the
decay as shown in the Appendix of Ref. [2]. The form-
factors F λ are of particular interest here as we show that
they can be extracted directly from data. The F λ can be
related to the well known form-factors V, A1 and A12 by
comparing with [8]:

F⊥ ¼ N
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
K; q

2Þ
q Vðq2Þ

mB þmK�
; ð4aÞ

F ∥ ¼ −N
ffiffiffi
2

p
ðmB þmK� ÞA1ðq2Þ; ð4bÞ

F 0 ¼
−Nffiffiffiffiffi
q2

p 8mBmK�A12ðq2Þ: ð4cÞ

It should be noted that F λ’s and C10 are completely real in
the SM, with all imaginary contributions to the amplitude
arising only from the imaginary part of complex ~Cλ

9 and ~Gλ

terms. Thus with the introduction of two variables rλ and ελ
the amplitude AL;R

λ in Eq. (2) can be rewritten as,

AL;R
λ ¼ ð∓ C10 − rλÞF λ þ iελ; ð5Þ

where,

rλ ¼
Reð ~GλÞ
F λ

− Reð ~Cλ
9Þ; ð6Þ

ελ ¼ Imð ~Cλ
9ÞF λ − Imð ~GλÞ: ð7Þ

The imaginary contributions arise mostly from resonant
long-distance contributions, which can be removed by
studying only those q2 regions where no resonances can
contribute. In practice this means the removal of charmo-
nium resonance regions from the whole q2 range. LHCb
3 fb−1 measurements [4] conservatively exclude the reso-
nance region. Moreover, the contributions from imaginary
parts are bounded directly from the LHCb measurements
and the bin average values of the ελ’s are found to be very
small as shown in Appendix A. Hence for now we are
neglecting the ελ’s and will address its contribution in the
numerical analysis.
It is convenient to define P1 and P2 as,

P1 ¼
F⊥
F ∥

; P2 ¼
F⊥
F 0

: ð8Þ
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The observables F⊥, FL, AFB, A5 and A4 can be
written [2] as

F⊥ ¼ u2⊥ þ 2ζ ð9Þ

FLP2
2 ¼ u20 þ 2ζ ð10Þ

A2
FB ¼ 9ζ

2P2
1

ðu∥ � u⊥Þ2 ð11Þ

A2
5 ¼

9ζ

4P2
2

ðu0 � u⊥Þ2 ð12Þ

A4 ¼
ffiffiffi
2

p

πP1P2

ð2ζ � u0u∥Þ ð13Þ

where,

ζ ¼ F 2⊥C2
10

Γf
; ð14Þ

u2λ ¼
2F 2⊥r2λ
Γf

¼ 2

Γf

F 2⊥
F 2

λ

ðReð ~GλÞ − Reð ~Cλ
9ÞF λÞ2: ð15Þ

uλ is always taken to be positive and the sign ambiguities
introduced in Eqs. (11)–(13) ensure that we can make this
assumption. The five observables F⊥, FL, AFB, A5 and A4

have been expressed above in terms of five parameters P1,
P2, ζ, u0 and u⊥. The other three observables A7, A8 and A9

have already been used to solve for the three ελ values
which are presented in Ref. [2]. It may be noted that since
F∥ ¼ 1 − FL − F⊥, u∥ is not independent and is related
to the other parameters by, u2∥ ¼ P2

1ð1 − P−2
2 ðu20 þ 2ζÞ−

ðu2⊥ þ 2ζÞÞ − 2ζ.
In Refs. [2,3] a relation depending on observables

including all possible effects within SM which was derived
as,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðFL þ F∥ þ

ffiffiffi
2

p
πA4ÞF⊥ −

16

9
ðAFB þ

ffiffiffi
2

p
A5Þ2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F∥F⊥ −

16

9
A2
FB

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FLF⊥ −

32

9
A2
5

r
: ð16Þ

This equation can be used to express any of the
observables in terms of the others. A solution for A4 [3] is

A4 ¼
8A5AFB

9πF⊥
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F∥F⊥ − 16

9
A2
FB

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FLF⊥ − 32

9
A2
5

q
2

ffiffiffi
2

p
πF⊥

:

ð17Þ

Whereas, the solution for A5 and AFB are given by,

A5 ¼
πA4AFB

2F∥
�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F∥F⊥ − 16

9
A2
FB

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F∥FL − π2A2

4

q
8F∥

;

ð18Þ

AFB ¼ πA4A5

FL
�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FLF⊥ − 32

9
A2
5

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F∥FL − π2A2

4

q
4

ffiffiffi
2

p
FL

:

ð19Þ

It may be noted that Eqs. (17), (18) and (19) depend only on
observables and not on any theoretical parameters and thus
provides an exact test of the gauge structure of SM with
experimental measurements.

III. NEW PHYSICS ANALYSIS

In this section we discuss the detailed numerical analysis
using 3 fb−1 of LHCb data [4]. It contains two different
parts, at first we show how the experimental data can be
used to extract out the form factors which are involved in
this decay mode. Second, we present the consistency of
data to test the relation among observables derived relying
only on the gauge structure of SM.

A. Form factor extraction

We demonstrate the technique to extract out the hadronic
parameters by including complex contributions of the
amplitudes and considering systematic uncertainty arising
mainly due to bin average effect.
It is shown in Ref. [2] that ελ’s contribute to the helicity

fractions Fλ and asymmetry A4. We refer to Appendix A for
thorough details of evaluation of the complex part of the
amplitudes. Using the bin average central values of
ελ=

ffiffiffiffiffi
Γf

p
, with �1σ errors from Table III we can numeri-

cally separate out the complex contributions from exper-
imental measured values of the observables. We calculate
the central value with �1σ error of the modified observ-
ables Fex

λ
0 and Aex

4
0 given by,

Fex
λ

0 ¼ Fex
λ −

2ε2λ
Γf

; ð20Þ

Aex
4

0 ¼ Aex
4 −

2
ffiffiffi
2

p
ε0ε∥

πΓf
; ð21Þ

which enter in the χ2 definition Eq. (23) below. It enables us
to take into account the complex corrections in our analysis
and extract out the variables P1, P2, ζ, u0 and u⊥ (which
only deal with the real part of amplitude) from experimental
measurements of the observables accurately.
It should be noted that Eqs. (9)–(13) are valid for each q2

point. However, experiments can provide bin integrated
values of observables over a certain q2 intervals. Thus a χ2
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fit with bin average values of the observables may lead to a
biased conclusion. To avoid this issue we have added
systematic uncertainties for each observable due to bin
average effect with the introduction of new parameter β,
where the change in each observable O is given by,

O → Oþ βOs: ð22Þ

Os is the maximum shift for each observable with a best
fitted q2 function to 14 bin LHCb data [4] within the
concerned bin interval. The precise determination of Os is
described in Appendix B. Therefore the χ2 definition is

χ2 ¼
��

Fex⊥ 0 − F⊥ − βFs⊥
ΔFex⊥ 0

�
2

þ
�
Fex
L

0 − FL − βFs
L

ΔFex
L

0

�
2

þ
�
Aex
4

0 − A4 − βAs
4

ΔAex
4

0

�
2

þ
�
A2
FB

ex − A2
FB − βA2

FB
s

2Aex
FBΔAex

FB

�
2

þ
�
A2
5
ex − A2

5 − βA2
5
s

2Aex
5 ΔAex

5

�
2

þ β2
�
; ð23Þ

where Aex
FB and Aex

5 indicate experimental central values of
the observables AFB and A5 with �1σ errors as ΔAex

FB and
ΔAex

5 , respectively. Similarly Fex⊥ 0, Fex
L

0 and Aex
4

0 are the
central values of the modified observables defined in
Eqs. (20) and (21) and ΔFex⊥ 0, ΔFex

L
0, ΔAex

4
0 are �1σ

uncertainties in it. The systematic uncertainties added for

each observable are denoted as Fs⊥, Fs
L, A

s
4, A

2
FB

s, A2
5
s and

these values are quoted in Table IV of Appendix B. The
observables F⊥, FL, A4, A2

FB and A2
5 are evaluated in terms

of the five parameters P1, P2, ζ, u0 and u⊥ using Eqs. (9)–
(13). Considering the inverse of the covariance matrix
the error ellipsoids are constructed for all the eight
bins corresponding to the q2 values in the range
ð0.1 − 0.98Þ GeV2, ð1.1 − 2.5Þ GeV2, ð2.5 − 4.0Þ GeV2,
ð4 − 6Þ GeV2, ð6 − 8Þ GeV2, ð11.0 − 12.5Þ GeV2,
ð15 − 17Þ GeV2 and ð17 − 19Þ GeV2. It can be seen that
β is treated as a nuisance parameter with values 0� 1. The
χ2 function is minimized with respect to six parameters P1,
P2, ζ, u0, u⊥ and β and the contours shown in Fig. 1 and
Fig. 2 are the allowed regions in the corresponding planes.
The minimum values of the χ2 function for first to eighth
bins are 6.9 × 10−9, 3.4 × 10−10, 0.055, 8.6 × 10−30, 1.094,
0.538, 0.218 and 0.044, respectively. The best fitted values
with �1σ errors of the parameter β for all eight bins are
7.4 × 10−5 � 0.015, 1.6 × 10−5 � 0.020, 0.153� 0.011,
1.0 × 10−17 � 0.005, 0.736� 0.020, 0.251� 0.003,
0.261� 0.001 and 0.161� 0.012, respectively.
The contours corresponding to 1σ, 3σ and 5σ permitted

regions for P1 versus P2 plane are presented in Fig. 1.
These contours are compared with the estimated values of
P1 and P2 using Ref. [8] for q2 ≤ 8 GeV2 and Ref. [9] for
q2 ≥ 11 GeV2. The center black point denotes the best fit
point by minimizing the chi-square function defined in

FIG. 1. The allowed region for P1 versus P2 plane. The innermost yellow (lightest), the middle one orange (light) and outer most red
(dark) contours represent 1σ, 3σ and 5σ regions, respectively. The theoretically estimated values using Ref. [8] for q2 ≤ 8 GeV2 and
Ref. [9] for q2 ≥ 11 GeV2 are shown as points with error bars. The light blue bands denote exact solutions for the SM observables
including charmonium resonances from Ref. [13] parametrization and are shown only for the relevant q2 bins. In most cases, there is
reasonable agreement between the theoretical values and those obtained from data. However, for the ranges 0.1 ≤ q2 ≤ 0.98 GeV2,
6 ≤ q2 ≤ 8 GeV2, 11.0 ≤ q2 ≤ 12.5 GeV2 and 15 ≤ q2 ≤ 17 GeV2 there are significant disagreements.
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Eq. (23). In most cases reasonable agreement is found
between theoretical values of P1 and P2 and their values
obtained from data. However, there are some significant
disagreements. The values of form factor ratio P2 differ by
9σ in the 0.1 ≤ q2 ≤ 0.98 GeV2 bin. It may be noted that
this region in q2 is highly affected by finite lepton mass and
hence the large discrepancy may not accurately reflect the
significance due to the unaccounted lepton mass correction
systematics. Significant deviations are also found for the
three bins 6 ≤ q2 ≤ 8 GeV2, 11.0 ≤ q2 ≤ 12.5 GeV2 and
15 ≤ q2 ≤ 17 GeV2 where P1 (P2) differ by 4.2σ (0.8σ),
5.2σ (4.8σ) and 5.5σ (5.3σ), respectively. The light blue
bands denote exact solutions for the SM observables
including charmonium resonances from Ref. [13] para-
metrization and are shown only for the relevant q2 bins. The
detailed analysis of resonance effect will be discussed later
in this section.
In Fig. 2 contours similar to Fig. 1, but corresponding to

P1 versus ζ permitted regions are presented for 1σ, 3σ and
5σ confidence level regions. These contours are similarly
compared with the estimated values of P1 and ζ using
Refs. [8,9] and assuming the theoretical estimate of C10

[14]. Data shows consistency with theoretical values of P1

and ζ in most cases except for the two bins 11.0 ≤ q2 ≤
12.5 GeV2 and 15 ≤ q2 ≤ 17 GeV2 where ζ disagrees by
2.8σ and 1.7σ respectively. The best fit value of ζ with�1σ
error obtained from the fit can be used to calculate the form
factor F⊥ using Eq. (14).
Finally the form factor V can be evaluated using Eq. (4a)

and the value of F⊥ obtained. Since the recent 3 fb−1 of
LHCb result [4] does not provide branching fraction

measurement for the entire q2 region we assume the
theoretical values of Γf [8,9] in addition to C10 [14].
The form factors F ∥ and F 0 can then be determined from
the fits to P1 and P2 respectively, using Eq. (8). Thus the
conventional form factors A1 and A12 can easily be
estimated with the relation given in Eqs. (4b) and (4c).
In Table I we list the best fit values with the 1σ uncertainties
for the three form factors Vðq2Þ, A1ðq2Þ and A12ðq2Þ for all
the eight q2 intervals. We also present the standard
deviation of the fit compared to the theoretical estimate
from Refs. [8,9]. While sizable discrepancy is seen for all
the form factors especially in the regions q2 < 2.5 GeV2

and q2 > 6 GeV2. It is interesting to note the very
significant discrepancy is observed in the values of
form factors V and A1 in bins 0.1 ≤ q2 ≤ 0.98 GeV2,
1.1 ≤ q2 ≤ 2.5 GeV2, 6 ≤ q2 ≤ 8 GeV2, 11.0 ≤ q2 ≤
12.5 GeV2 and 15 ≤ q2 ≤ 17 GeV2. The lattice estimate
of the form factors currently does not include finite K�
width. This implies, that the significance of the deviations
can be lower if one includes the unaccounted systematics
due to the finite K� width. We point out that previous
attempts to incorporate resonance contributions in theory
has been done by parametrically taking its effect in the
Wilson coefficient C9 [13,15]. However the accuracy of the
form of resonance parametrization does not alter our
determination of form factors since, our analysis is inde-
pendent of ~Cλ

9 estimates. ~Cλ
9 contributes only to uλ’s and the

ratios of form factors P1 and P2 do not get affected by
resonances. This is easily seen if we consider a situation
where NP is absent and all the parameters for resonances
(strength, phase etc.) are known, the observables calculated

FIG. 2. The allowed region for P1 versus ζ plane. The color code is same as Fig. 1. The theoretically estimated values from Refs. [8,9]
are shown as points with error bars. The P1 and ζ values significantly disagree for ranges 6 ≤ q2 ≤ 8 GeV2, 11.0 ≤ q2 ≤ 12.5 GeV2

and 15 ≤ q2 ≤ 17 GeV2, similar to the values of P1 and P2 shown in Fig. 1.
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using Eqs. (9)–(13) should agree with the experimental
measured observables. Thus the consistent set of
Eqs. (9)–(13) must provide the same set of parameters
that we would have started with, as best fit solutions. In the
absence of NP the measured observables should result in
the solutions for parameters matching with SM values.
Since P1 and P2 are unaffected by resonances their best fit
solutions also remain unaffected by it. Our best fit values of
P1 and P2 differ from the SM estimates and this discrep-
ancy cannot be accounted for by resonances.

To establish the above arguments we further undertake
an extensive study illustrated in Fig. 3. We choose the
region q2 > 11 GeV2 as resonance effects can be dominant
here and assume SM form factor values of the observables
from lattice calculations [9]. The solutions for P1 and P2

are obtained using Eqs. (9)–(13) for seven different q2

points; 11 GeV2, 12 GeV2, 15 GeV2, 16 GeV2, 17 GeV2,
18 GeV2 and 19 GeV2. The observables F⊥, FL, A4, A2

FB
and A2

5 are SM estimates calculated using lattice form
factors. These seven solutions of P1 and P2 are denoted by
star symbols in the corresponding plots. The black central
line with gray band is the form factor estimate (mean with
�1σ error) of P1 and P2. It can be seen that the set of
Eqs. (9)–(13) are completely consistent with SM structure
and produces expected solutions. In case the solutions were
completely analytically obtained, the stars should sit on the
black curves. However the solutions for hadronic param-
eters are very complicated and has been evaluated numeri-
cally, resulting in small shifts that are visible. The blue error
bars are the solutions for P1 and P2 using the bin average
values of SM observables. It can be seen that as the
Eqs. (9)–(13) are valid at each q2 point, bin averaging
has induced some shifts in the solutions. However the
results are in agreement within �1σ confidence level
region. To illustrate the effect of resonances we have
considered the parametrization from Ref. [13]. The char-
monium bound states J=ψð1SÞ, ψð2SÞ, ψð3770Þ, ψð4040Þ,
ψð4160Þ and ψð4415Þ are included in the mentioned five
observables. Interestingly, the change in the value of
observables including the resonances affected the solutions
for ζ, u⊥ and u∥, however, solutions to P1 and P2 remained
unaltered (up to second decimal place), hence, the solu-
tions completely superimpose with the stars obtained
without resonance contributions. We have also investigated
the effect of resonances in the bin average where the

FIG. 3. Illustrative plots for bin average and resonance effects in the solutions for P1 (left panel) and P2 (right panel). The SM
observables are assumed from lattice form factors [9]. The black “stars” denote the solutions obtained at seven different points in q2 for
the corresponding parameters in each plot. The black central curve with gray band is the form factor estimate (mean with �1σ error) of
P1 and P2. The blue error bars are the solutions for P1 and P2 using the bin average values of SM observables whereas the light blue
bands denote the solutions considering resonances in observables from Ref. [13] parametrization. The red error bars denote the solutions
obtained using data (as highlighted in contours is Fig. 1). Including the resonances with the parametrization used in Ref. [13], the
solutions for P1 and P2 are unaltered and superimpose with the stars completely. (see text for details).

TABLE I. The form factor values obtained from fit to 3 fb−1 of
LHCb data [4]. Round brackets indicate the standard deviation
between fitted values and theoretical estimates [8,9]. Significant
discrepancies are found for V and A1 in several q2 regions.

q2 range
in GeV2 Vðq2Þ A1ðq2Þ A12ðq2Þ
0.1 ≤ q2 ≤ 0.98 0.677� 0.092 0.570� 0.077 0.246� 0.034

(3.05σ) (3.40σ) (0.88σ)

1.1 ≤ q2 ≤ 2.5 0.625� 0.071 0.409� 0.046 0.326� 0.047
(2.78σ) (2.00σ) (0.69σ)

2.5 ≤ q2 ≤ 4.0 0.230� 0.150 0.180� 0.118 0.214� 0.149
(1.36σ) (1.09σ) (0.81σ)

4.0 ≤ q2 ≤ 6.0 0.552� 0.043 0.400� 0.032 0.359� 0.041
(1.07σ) (1.69σ) (1.09σ)

6.0 ≤ q2 ≤ 8.0 0.485� 0.045 0.598� 0.073 0.252� 0.025
(1.27σ) (3.18σ) (1.78σ)

11.0 ≤ q2 ≤ 12.5 0.166� 0.018 0.560� 0.065 0.450� 0.054
(5.64σ) (1.76σ) (1.81σ)

15.0 ≤ q2 ≤ 17.0 0.828� 0.120 0.649� 0.098 0.496� 0.074
(2.79σ) (1.38σ) (1.51σ)

17.0 ≤ q2 ≤ 19.0 1.813� 0.436 0.698� 0.171 0.461� 0.112
(0.78σ) (0.80σ) (0.91σ)
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observables are evaluated with lattice form factors includ-
ing the above mentioned resonances and the solutions to P1

and P2 are shown in light blue bands for the three
q2 bins 11.0 ≤ q2 ≤ 12.5 GeV2, 15 ≤ q2 ≤ 17 GeV2 and
17 ≤ q2 ≤ 19 GeV2. In this case the results with and
without resonances do not completely superimpose how-
ever are quite consistent within �1σ error bars. These
solutions are also shown in Fig. 1 and 2, in same light blue
bands, for the relevant bins where resonance effect may in
principle be significant. The red error bars are the solutions
for P1 and P2 obtained from data (as discussed and
highlighted in contours is Fig. 1) that have been shown
here again for convenience. We reiterate that the effect of
resonances in P1, P2 solutions is independent of the
parametrization choice as the solutions do not depend on
Wilson coefficient ~Cλ

9 and our conclusions derived for P1

and P2 parameters are unaffected by resonance effect. It is
justified that bin average can induce some errors in the
solutions. However, we have allowed a shift in the
observable values [in Eq. (23) and Table IV] of more than
the 1σ error for each observable which hopefully is
sufficient to compensate such effects.
It is important to note that in our analysis no hadronic

estimates are used to solve for the five parameters from
exactly five measurements. Whereas, in other approaches,
when considering the same B → K�ll mode all six form
factors, Wilson coefficients and nonfactorizable corrections
based on conservative estimations are needed. We compare
P1 and P2 obtained from experimental data alone, with the
three form factors V, A1 and A12 to which they are related as
theoretical inputs. The form factors T1, T2 and T23 are not
used in this comparison. Thus, our comparisons are differ-
ent in nature and have reduced uncertainties, in terms of
number of theoretical estimates. This may result in higher
significance level of deviation observed here.
The large q2 region where the K� has low-recoil energy

has also been studied [16,17] in a modified heavy quark
effective theory framework which is a model independent
approach. In this limit the number of independent hadronic
form factors reduces to only three and one finds [3] that
r0 ¼ r∥ ¼ r⊥ or equivalently u0 ¼ u∥ ¼ u⊥ must hold as
long as nonfactorizable charm loop contributions are
negligible. We find that this relation does not hold for
either of the bins 15 ≤ q2 ≤ 17 GeV2 or 17 ≤ q2 ≤
19 GeV2. The values of u0, u∥ and u⊥ obtained from
the fit with �1σ errors are listed in Table II. We note that
uλ’s receive problematic resonance contribution coming
from ~Cλ

9. To address this issue we have introduced more
systematics in measured observable than the one arising
only from bin average effect. We have checked our analysis
by doubling the systematics of the observables given in
Table IV of Appendix B for the q2 range 11 ≤ q2 ≤
12.5 GeV2 and 15 ≤ q2 ≤ 17 GeV2 and our results are
stable with it. The actual significance of the deviations

observed here can be obtained with the detailed study
of resonance systematics which is a subject of an
independent paper. However the significance level is
evaluated by conservatively adding systematics varying
between 10%–100% in the observables. The large discrep-
ancies observed are equally hard to explain solely due to
nonfactorizable charm loop corrections and may be addi-
tional evidence of physics beyond the SM.

B. Testing relation between observables

The relation between the observables for asymmetries
A4, A5 and AFB given in Eqs. (17)–(19) can also be tested
using LHCb data [4]. In Fig. 4, top left panel, we compare
theoretically calculated AFB mean values and�1σ errors (in
yellow bands) with experimental measurements (red error
bars) for the respective q2 bins. All observables in the right-
hand side (r.h.s.) of Eq. (19) (“relation”) are assumed to be
Gaussian distributions in data and the predictions for AFB in
yellow bands are obtained using the expression of the
relation. A very good agreement is evident for most q2

regions, however, for the ranges 11.0 ≤ q2 ≤ 12.5 GeV2

and 15 ≤ q2 ≤ 17 GeV2 a deviation of 2.1σ and 1.8σ is
observed. Similarly relation for A4 in Eq. (17) results in a
very good agreement except for showing a discrepancy of
2.3σ only in the 0.1 ≤ q2 ≤ 0.98 GeV2 bin, in right top
panel of Fig. 4. The disagreement in the value of AFB and
A4 in some q2 bins indicates that there is no set of form
factors and Wilson coefficients which can explain AFB and
A4 completely. Observables A5 or equivalently P0

5 [18] are
found to be in complete agreement i.e. within about �1σ
deviation for all q2 bins as shown in the two lower panels of
Fig. 4. The solutions for A5 and AFB have ambiguities. We
chose the ambiguity for which the chi-squared deviations
are the least. Our conclusions have no bearing on and do
not rule out the observation made by LHCb in observable
P0
5 in Refs. [4,19]. The predictions of observable P

0
5 derived

from the relation is a signal of consistency of LHCb results.
We note that the relation remains valid except in the
presence of NP operators that result in modified new

TABLE II. The values of u0, u∥ and u⊥ obtained from fit to
3 fb−1 of LHCb data [4]. In large q2 region [16,17] the equality
u0 ¼ u∥ ¼ u⊥ is expected to hold if nonfactorizable charm loop
contributions are negligible. The errors in the value of u∥ for the
larger q2 bin is unexpectedly large to draw any conclusions.
Significant discrepancies which are too large to be solely due to
nonfactorizable charm loop corrections are observed between the
values of u⊥ and u0 in both bins.

q2 range
in GeV2 u0 u∥ u⊥
15 ≤ q2 ≤ 17 0.000� 0.016 0.013� 0.153 0.367� 0.025
17 ≤ q2 ≤ 19 0.166� 0.014 0.000� 4.579 0.260� 0.048
15 ≤ q2 ≤ 19 0.120� 0.007 0.004� 0.441 0.244� 0.026
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angular distribution. Hence we do not expect to see the
discrepancy observed by LHCb [19] if right-handed cur-
rents or extra vector current such as Z0 contributes to the
decay. The discrepancy observed by LHCb depends on the
comparison with model based calculation of form factors.
Whereas, the predictions of these asymmetries made in this
paper, are independent of any form factor values and
depend purely on the gauge structure of SM. If the model
dependent calculations of form factors are correct, signal of
new physics may well be indicated in the bins suggested by
Ref. [19]. We find that LHCb data indicates yet another
independent discrepancy.

IV. CONCLUSION

In conclusion, we have used the 3 fb−1 of LHCb data to
determine some hadronic parameters governing the decay
B → K�lþl− assuming contributions from SM alone. We
obtain the values of the form factors Vðq2Þ, A1ðq2Þ and
A12ðq2Þ that are used to describe the matrix element

hK�js̄γμPLbjBi directly from data. Very significant devia-
tions are seen for the form factors V and A1 especially in the
regions q2 < 2.5 GeV2 and q2 > 6 GeV2. We point out
that the presence of resonances in data can induce more
systematic uncertainties in the fits. However in view of the
absence of such a existence of resonances in B → K�lþl−

data, we emphasize that the significant deviations observed
in the form factor values can not be completely explained
by resonances and nonfactorizable contributions. Wewould
like to point out that there exist major differences between
the global fit approaches [6] to study the anomalies in
b → s transitions and the approach adopted in our work.
Our work relies only on B → K�ll decay mode, whereas,
global fit techniques incorporate various decay modes
and hence either use LCSR, Lattice based estimates
of form factors or treat form factors as parameters in the
fit procedure. The number of inputs and fitted para-
meters differ making a number by number compari-
son of the different approaches difficult. Furthermore
due to the absence of accurate estimates of nonfactorizable

FIG. 4. The mean values and�1σ uncertainty bands for asymmetries AFB, A4, A5 and P0
5 calculated using Eqs. (17)–(19) are shown in

yellow, gray, green and brown bands, respectively. The error bars in red (dark) correspond to the LHCb measured [4] central values and
errors for each observable for the respective q2 bins. The predictions for the asymmetries are obtained using the relations among
observables which are independent of any hadronic parameters and depend on experimental measurements of the other observables
remaining in the corresponding relations. Sizable discrepancies are shown for AFB in 11.0 ≤ q2 ≤ 12.5 GeV2 and 15 ≤ q2 ≤ 17 GeV2

bins and for A4 in the range 0.1 ≤ q2 ≤ 0.98 GeV2. We note that the relations [Eqs. (17)–(19)] remain valid except in the presence of NP
operators that result in modified angular distribution. Hence the presence of right-handed currents and any extra vector current such as Z0
the relations will remain valid.
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corrections, the global fit techniques rely on some
conservative estimations of these corrections. However,
the formalism we have developed parametrizes such
corrections and the conclusions drawn here are independent
of nonfactorizable estimates. These are perhaps the reasons
why we find larger significance. However, qualitatively we
do not see a significant disagreement with the other
approaches as we do observe ∼3σ discrepancy in P1 −
P2 plane in q2 region ½6 − 8� GeV2 where observable P0

5

also deviates by 2.7σ from its SM prediction.
Further, a relation between form factors expected to hold

in the large q2 region as long as nonfactorizable charm loop
contributions are negligible, seems to fail. Finally, the
relation between observables also indicates some devia-
tions in the same regions where the form factors were found
to disagree. The forward-backward asymmetry AFB devi-
ates in the q2 > 11 GeV2 region, whereas A4 differs in the
region q2 ≤ 0.98 GeV2. As the systematic error arises from
the experimental measurements of observables in terms of
binned dilepton invariant mass are accounted, the magni-
tude of discrepancies observed would be hard to accom-
modate either as systematics from long distance resonance
contributions or possible corrections to theoretical esti-
mates. All these features can be understood if there are
other unaccounted for operators contributing to the decay
mode. In view of this, we speculate that these deviations are
likely to be a signature of physics beyond SM.

ACKNOWLEDGMENTS

We are indebted to Tom Browder and thank him for
several suggestions and discussions. We also thank J.
Martin Camalich, Hai-Yang Cheng, N. G Deshpande,
Jim Libby and Arjun Menon for discussions. R. S. thanks
Hai-Yang Cheng and Institute of Physics, Academia Sinica,
Taipei, Taiwan for hospitality during final stages of manu-
script preparation.

APPENDIX A: COMPLEX CONTRIBUTION
ελ ESTIMATES FROM DATA

In Ref. [2] it was shown that the complex contributions
ελ to the amplitude of the decay mode B → K�lþl−, can
be taken into consideration. ελ can be solved in terms of
iterative solutions proportional to the observables A7, A8,
A9 and a form factor ratio P1. The expressions for all the
three ελ’s are shown in Eqs. (76)–(78) of Ref. [2]. They are
reproduced here for convenience.

ε⊥ ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9P1

3
ffiffiffi
2

p þ A8P2

4
−
A7P1P2r⊥
3πC10

�
; ðA1Þ

ε∥ ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9r0
3

ffiffiffi
2

p
r⊥

þ A8P2r∥
4P1r⊥

−
A7P2r∥
3πC10

�
; ðA2Þ

ε0 ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9P1r0
3

ffiffiffi
2

p
P2r⊥

þ A8r∥
4r⊥

−
A7P1r0
3πC10

�
: ðA3Þ

A point to be noted as explained in detail in Ref. [2], is that
the ðελ=Γ1=2

f Þ’s are completely expressed in terms of
observables and the form factor ratio P1. However, these
solutions are essentially iterative, since the rλ’s and C10 are
derived in terms of the primed observables that depend on
ελ. If ðελ=Γ1=2

f Þ are small as should be expected, accurate
solutions for them can be found with a few iterations. In
Ref. [2] the variation of ελ with P1 was studied for 1 fb−1

FIG. 5. The solutions for ε⊥=
ffiffiffiffiffi
Γf

p
, ε∥=

ffiffiffiffiffi
Γf

p
and ε0=

ffiffiffiffiffi
Γf

p
using

distributions for first through eighth q2 bins are depicted in red
(dark), light brown (lightest) and green respectively. All the
ελ=

ffiffiffiffiffi
Γf

p
’s are consistent with zero.
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LHC data and it was found that the solutions are not
sensitive to the value of P1.
We generate a set of events for every bin, with each event

consisting of randomly chosen values drawn from Gaussian
distributions generated for each of the observables FL, F⊥,
A4, A5, AFB, A7, A8 and A9. The distributions are generated
using experimental results from Ref. [4], with the exper-
imentally measured value as mean and the uncertainty as
standard deviation.
ελ are solved iteratively for every set of observables. We

find converged iterative solutions for ελ=
ffiffiffiffiffi
Γf

p
for each set of

observables with the histograms shown in Fig. 5. The red
(dark), light brown (lightest) and green histograms denote
the solutions for ε⊥=

ffiffiffiffiffi
Γf

p
, ε∥=

ffiffiffiffiffi
Γf

p
and ε0=

ffiffiffiffiffi
Γf

p
respec-

tively for all the eight bins with q2 range ð0.1 − 0.98Þ GeV2,
ð1.1 − 2.5Þ GeV2, ð2.5 − 4.0Þ GeV2, ð4 − 6Þ GeV2,
ð6 − 8Þ GeV2, ð11.0 − 12.5Þ GeV2, ð15 − 17Þ GeV2

and ð17 − 19Þ GeV2.

We have also quoted the mean and �1σ errors for each
ελ=

ffiffiffiffiffi
Γf

p
in Table III calculated from the distributions shown

in Fig. 5. It can be easily seen that all the mean values of
ελ=

ffiffiffiffiffi
Γf

p
are consistent with zero. From Eqs. (37)–(40) of

Ref. [2], the contributions from imaginary part of the
amplitude to the observablesFL,F∥,F⊥ andA4 are quadratic
in the corresponding ελ=

ffiffiffiffiffi
Γf

p
and thus are negligible.

APPENDIX B: SYSTEMATIC UNCERTAINTY
EVALUATION

We discuss the evaluation of systematic uncertainties
arising mainly due to bin average effect of observables. As
written in Eq. (22), the shift Os in each observable is
calculated for each q2 bin, by considering the maximum
deviation of the bin average value of the observableO from
a fitted q2 polynomial of entire range. It is highlighted in
Fig. 6 where red error bars are LHCb measurements and
gray curves represent best fitted polynomial in q2 for 14 bin
LHCb data. We use 14 bin measurement (based on the
method of moments [20]) from LHCb to fit the polynomial
in q2, rather than the 8 bin data set as it provides more
information to determine the shape of the polynomial for
entire q2 region. The black dashed line denotes the
maximum deviation of bin average central value of the
observable with the q2 function for the region 6 ≤ q2 ≤
8 GeV2 and Os is the length of the line for observable O.
Similar technique is applied for other q2 bins also and the
values of systematic errors are given in Table IV for all
observables.

TABLE III. The ελ=
ffiffiffiffiffi
Γf

p
mean values with �1σ errors from

Fig. 5.

q2 in GeV2 ε⊥=
ffiffiffiffiffi
Γf

p
ε∥=

ffiffiffiffiffi
Γf

p
ε0=

ffiffiffiffiffi
Γf

p
0.1 ≤ q2 ≤ 0.98 −0.048� 0.116 −0.047� 0.103 0.020� 0.111
1.1 ≤ q2 ≤ 2.5 −0.010� 0.078 −0.010� 0.078 0.078� 0.172
2.5 ≤ q2 ≤ 4.0 −0.009� 0.079 −0.008� 0.080 −0.025� 0.212
4.0 ≤ q2 ≤ 6.0 −0.026� 0.097 0.014� 0.093 0.032� 0.234
6.0 ≤ q2 ≤ 8.0 −0.011� 0.088 −0.046� 0.078 −0.132� 0.129
11.0 ≤ q2 ≤ 12.5 −0.011� 0.050 0.038� 0.074 −0.078� 0.114
15.0 ≤ q2 ≤ 17.0 −0.000� 0.067 −0.027� 0.071 0.020� 0.072
17.0 ≤ q2 ≤ 19.0 0.006� 0.076 −0.090� 0.090 −0.040� 0.088

FIG. 6. The procedure to calculate systematic errors are shown for observables F⊥, FL, A4, A2
FB and A2

5, respectively. The red error bars
are LHCb measurements and gray curves represent best fitted polynomial in q2 for 14 bin LHCb data [4]. The black dashed lines denote
the maximum deviation of bin average central value of the observables with the q2 function for bin 6 ≤ q2 ≤ 8 GeV2. The length of
these black lines are denoted by Fs⊥, Fs

L, A
s
4, A

2
FB

s and A2
5
s, respectively. Similar lines can be drawn for other q2 bins also and the values

of systematic errors are given in Table IV for all observables.
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It should be noted that as discussed in Sec. III finite
lepton mass can affect the analysis in the first two q2 region

namely q2 ≤ 2.5 GeV2 and in the absence of a measure-
ment of asymmetries A10 and A11 [2] we have to rely on
some hadronic estimates. This in principle may cause more
uncertainties and we took a conservative approach by
considering two times the Os values for all observables
given in Table IV for the two bins 0.1 ≤ q2 ≤ 0.98 GeV2

and 1.1 ≤ q2 ≤ 2.5 GeV2.
We emphasize that resonances in our analysis will only

affect the fitted function in q2, which in turn will induce
more systematic uncertainties to the observables. We have
checked the χ2 fit (in Sec. III A) by increasing the
systematic uncertainties two times of the values given in
Table IV for the regions 11 ≤ q2 ≤ 12.5 GeV2 and 15 ≤
q2 ≤ 17 GeV2 and our results are stable with it. However a
detailed study of resonance systematics on this decay mode
is currently going on and will be a subject of an indepen-
dent paper itself.

[1] F. Kruger, L. M. Sehgal, N. Sinha, and R. Sinha,
Angular distribution and CP asymmetries in the decays
B̄ → K−πþe−eþ and B̄ → π−πþe−eþ, Phys. Rev. D 61,
114028 (2000).

[2] R. Mandal, R. Sinha, and D. Das, Testing new physics
effects in B → K�lþl−, Phys. Rev. D 90, 096006
(2014).

[3] D. Das and R. Sinha, New physics effects and hadronic form
factor uncertainties in B → K�lþl−, Phys. Rev. D 86,
056006 (2012).

[4] R. Aaij et al. (LHCb Collaboration), Angular analysis of the
B0 → K�0μþμ− decay using 3 fb−1 of integrated luminosity,
J. High Energy Phys. 02 (2016) 104.

[5] F. Kruger and J. Matias, Probing new physics via the
transverse amplitudes of B0 → K�0 ð→ K−πþÞ lþl− at large
recoil, Phys. Rev. D 71, 094009 (2005); T. Hurth and
F. Mahmoudi, On the LHCb anomaly in B → K�lþl−,
J. High Energy Phys. 04 (2014) 097; S. Descotes-Genon, J.
Matias, and J. Virto, Understanding the B → K�μþμ−
anomaly, Phys. Rev. D 88, 074002 (2013); W.
Altmannshofer and D. M. Straub, New physics in
B → K�μμ?, Eur. Phys. J. C 73, 2646 (2013); S. Jäger
and J. Martin Camalich, On B → Vll at small dilepton
invariant mass, power corrections, and new physics, J. High
Energy Phys. 05 (2013) 043; J. Lyon and R. Zwicky,
Resonances gone topsy turvy—the charm of QCD or
new physics in b → slþl−?, arXiv:1406.0566, and refer-
ences therein.

[6] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global
analysis of b → sll anomalies, J. High Energy Phys. 06
(2016) 092; M. Ciuchini, M. Fedele, E. Franco, S. Mishima,
A. Paul, L. Silvestrini, and M. Valli, B → K�lþl− decays at
large recoil in the Standard Model: a theoretical reappraisal,
J. High Energy Phys. 06 (2016) 116.

[7] C. Hambrock and G. Hiller, Extracting B → K� Form
Factors from Data, Phys. Rev. Lett. 109, 091802 (2012).

[8] A. Bharucha, D. M. Straub, and R. Zwicky, B → Vlþl− in
the Standard Model from light-cone sum rules, J. High
Energy Phys. 08 (2016) 098.

[9] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Calcu-
lation of B0 → K�0μþμ− and B0

s → ϕμþμ− Observables
Using Form Factors from Lattice QCD, Phys. Rev. Lett.
112, 212003 (2014); R. R. Horgan, Z. Liu, S. Meinel, and
M. Wingate, Rare B decays using lattice QCD form factors,
Proc. Sci., LATTICE2014 (2015) 372, [arXiv:1501.00367].

[10] R. Aaij et al. (LHCb Collaboration), Differential
Branching Fraction and Angular Analysis of the Decay
B0 → K�0μþμ−, Phys. Rev. Lett. 108, 181806 (2012); R.
Aaij et al. (LHCb Collaboration), Differential branching
fraction and angular analysis of the decay B0 → K�0μþμ−, J.
High Energy Phys. 08 (2013) 131.

[11] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto,
On the impact of power corrections in the prediction of
B → K�μþμ− observables, J. High Energy Phys. 12
(2014) 125.

[12] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y.-M.
Wang, Charm-loop effect in B → Kð�Þlþl− and B → K�γ,
J. High Energy Phys. 09 (2010) 089; M. Beneke, T.
Feldmann, D. Seidel, M. Beneke, and T. Feldmann,
Symmetry-breaking corrections to heavy-to-light B meson
form-factors at large recoil, Nucl. Phys. B592, 3 (2001).

[13] F. Kruger and L. M. Sehgal, Lepton polarization in the
decays B → Xs μ

þμ− andB → Xs τ
þτ−, Phys. Lett. B 380,

199 (1996).
[14] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M.

Straub, and M. Wick, Symmetries and asymmetries of B →
K�μþμ− decays in the standard model and beyond, J. High
Energy Phys. 01 (2009) 019.

TABLE IV. The systematic uncertainties for each observables
F⊥, FL, A4, A2

FB and A2
5 are shown. The values denote magnitude

of maximum deviation of the bin average central value with the
fitted q2 polynomial within every q2 bin.

q2 range in GeV2 Fs⊥ Fs
L As

4 A2
FB

s A2
5
s

0.1 ≤ q2 ≤ 0.98 0.014 0.230 0.088 0.002 0.016
1.1 ≤ q2 ≤ 2.5 0.223 0.151 0.036 0.034 0.010
2.5 ≤ q2 ≤ 4.0 0.164 0.223 0.064 0.013 0.004
4.0 ≤ q2 ≤ 6.0 0.069 0.138 0.021 0.002 0.008
6.0 ≤ q2 ≤ 8.0 0.132 0.165 0.028 0.020 0.019
11.0 ≤ q2 ≤ 12.5 0.029 0.063 0.006 0.051 0.023
15.0 ≤ q2 ≤ 17.0 0.019 0.048 0.027 0.036 0.023
17.0 ≤ q2 ≤ 19.0 0.109 0.020 0.039 0.077 0.053

IMPLICATIONS FROM B → K�lþl− … PHYSICAL REVIEW D 95, 014026 (2017)

014026-11

http://dx.doi.org/10.1103/PhysRevD.61.114028
http://dx.doi.org/10.1103/PhysRevD.61.114028
http://dx.doi.org/10.1103/PhysRevD.90.096006
http://dx.doi.org/10.1103/PhysRevD.90.096006
http://dx.doi.org/10.1103/PhysRevD.86.056006
http://dx.doi.org/10.1103/PhysRevD.86.056006
http://dx.doi.org/10.1007/JHEP02(2016)104
http://dx.doi.org/10.1103/PhysRevD.71.094009
http://dx.doi.org/10.1007/JHEP04(2014)097
http://dx.doi.org/10.1103/PhysRevD.88.074002
http://dx.doi.org/10.1140/epjc/s10052-013-2646-9
http://dx.doi.org/10.1007/JHEP05(2013)043
http://dx.doi.org/10.1007/JHEP05(2013)043
http://arXiv.org/abs/1406.0566
http://arXiv.org/abs/1406.0566
http://dx.doi.org/10.1007/JHEP06(2016)092
http://dx.doi.org/10.1007/JHEP06(2016)092
http://dx.doi.org/10.1007/JHEP06(2016)116
http://dx.doi.org/10.1103/PhysRevLett.109.091802
http://dx.doi.org/10.1007/JHEP08(2016)098
http://dx.doi.org/10.1007/JHEP08(2016)098
http://dx.doi.org/10.1103/PhysRevLett.112.212003
http://dx.doi.org/10.1103/PhysRevLett.112.212003
http://arXiv.org/abs/1501.00367
http://dx.doi.org/10.1103/PhysRevLett.108.181806
http://dx.doi.org/10.1007/JHEP08(2013)131
http://dx.doi.org/10.1007/JHEP08(2013)131
http://dx.doi.org/10.1007/JHEP12(2014)125
http://dx.doi.org/10.1007/JHEP12(2014)125
http://dx.doi.org/10.1007/JHEP09(2010)089
http://dx.doi.org/10.1016/S0550-3213(00)00585-X
http://dx.doi.org/10.1016/0370-2693(96)00413-3
http://dx.doi.org/10.1016/0370-2693(96)00413-3
http://dx.doi.org/10.1088/1126-6708/2009/01/019
http://dx.doi.org/10.1088/1126-6708/2009/01/019


[15] N. G. Deshpande, J. Trampetic, and K. Panose, Resonance
background to the decays b → s lþl−; B → K�lþl−, and
B → Klþl−, Phys. Rev. D 39, 1461 (1989).

[16] B. Grinstein and D. Prijol, Exclusive rare B → K�eþe−
decays at low recoil: Controlling the long-distance effects,
Phys. Rev. D 70, 114005 (2004).

[17] C. Bobeth, G. Hiller, and D. van Dyk, The benefits of
B̄ → K̄�lþl− decays at low recoil, J. High Energy Phys. 07
(2010) 098.

[18] S. Descotes-Genon, J. Matias, M. Ramon, and J. Virto,
Implications from clean observables for the binned analysis

of B → K�μþμ− at large recoil, J. High Energy Phys. 01
(2013) 048.

[19] R. Aaij et al. (LHCb Collaboration), Measurement
of Form-Factor-Independent Observables in the
Decay B0 → K�0μþμ−, Phys. Rev. Lett. 111, 191801
(2013).

[20] F. Beaujean, M. Chrzaszcz, N. Serra, and D. van Dyk,
Extracting angular observables without a likelihood
and applications to rare decays, Phys. Rev. D 91, 114012
(2015).

RUSA MANDAL and RAHUL SINHA PHYSICAL REVIEW D 95, 014026 (2017)

014026-12

http://dx.doi.org/10.1103/PhysRevD.39.1461
http://dx.doi.org/10.1103/PhysRevD.70.114005
http://dx.doi.org/10.1007/JHEP07(2010)098
http://dx.doi.org/10.1007/JHEP07(2010)098
http://dx.doi.org/10.1007/JHEP01(2013)048
http://dx.doi.org/10.1007/JHEP01(2013)048
http://dx.doi.org/10.1103/PhysRevLett.111.191801
http://dx.doi.org/10.1103/PhysRevLett.111.191801
http://dx.doi.org/10.1103/PhysRevD.91.114012
http://dx.doi.org/10.1103/PhysRevD.91.114012

