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The more carefully defined and more appropriate 2þþ tensor glueball current is a SUcð3Þ gauge-
invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the
invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical
expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking
the perturbative contribution into account, we calculate the contribution arising from the interaction (or the
interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual
zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for
the spectral function of the finite-width three resonances is adopted. The properties of the 2þþ tensor
glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The
values of the mass, decay width, and coupling constants for the 2þþ resonance in which the glueball
fraction is dominant are obtained.
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I. INTRODUCTION

Within the framework of quantum chromodynamics
(QCD), the hadron spectrum is expected to be more
complex than the prediction of the usual quark model.
The gluons (which mediate the strong interactions) carry
color charges and interact among themselves, so that a
particular type of bound state—glueballs—should exist
even in the quarkless world. The study of glueballs may
give a unique insight into the non-Abelian dynamics of
QCD. Theoretical investigations—including lattice simu-
lations [1–3], model researches [4–6], and sum-rule analy-
ses [7–18]—have been going on for a long time, but no
decisive evidence of the existence of glueballs has been
confirmed by experimental research up to now [19,20].
Further investigation on glueballs still makes sense.
One of the obstacles in the theoretical study of glueballs

is that the nonperturbative dynamics of QCD—which is
responsible for the formation of hadrons—is difficult to
handle. In particular, the tunneling effect between the
degenerate vacua of QCD should be taken into account.
In the leading order, this effect is described by instantons
[21,22] and shown to be of great significance in generating
the properties of the unusual hadrons (glueballs). Now, the
QCD vacuum is recognized to be a medium with nontrivial
structure, and it may have a large impact on the attributes of
hadrons. Moreover, the glueball may be mixed with usual
mesons of the same quantum numbers, making the iden-
tification of the glueballs more complicated [12,23].
Instantons, as the strong topological fluctuations of

gluon fields in QCD, are widely believed to play an

important role in the physics of the strong interaction
(for reviews, see Refs. [22,24]). In particular, instantons
provide mechanisms for the violation of both Uð1ÞA and
chiral symmetry in QCD, and may therefore be important
in determining hadron masses and the resolution of the
famous Uð1ÞA problem. Furthermore, it was recently
shown that instantons persist through the deconfinement
transition, so that instanton-induced interactions between
quarks and gluons may underlie the unusual properties of
the so-called strongly coupled quark-gluon plasma recently
discovered at RHIC [25].
In conventional perturbation theory one computes fluc-

tuations around the trivial zero solution. The correct
quantization process is to consider all classical solutions
of the field equations and their quantum fluctuations. In the
path integral representation of QCD the partition function
is, hence, dominated by an ensemble of extended particles
(instantons) in four dimensions. In the simplest case the
partition function describes a diluted ideal gas of indepen-
dent instantons. Unfortunately, this assumption leads to an
infinite instanton density caused by large instantons, which
is obviously against the dilution gas hypothesis for instan-
tons. This problem is called the infrared problem.
The problem is avoided by assuming a repulsive inter-

action between instantons [26] which prevents the collapse.
This is the model of a four-dimensional instanton liquid.
Under certain circumstances the interaction can be replaced
by an effective density. The instanton liquid model in a
narrow sense describes the QCD vacuum as a sum of
independent instantons with radius ρ ¼ ð600 MeVÞ−1 and
effective density n ¼ ð200 MeVÞ4. The correctness of this
model is still being intensively investigated. So far the
model is essentially justified by its phenomenological
successes. The most important predictions of the model
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are probably the breaking of the chiral symmetry in the
axial triplet channel [27,28] and the absence of Goldstone
bosons in the axial singlet channel.
The instanton distribution is closely connected with the

vacuum condensates, which have been proposed as the
nonperturbative effects of QCD arising from the nontrivial
vacuum, since the mean size and density of instantons can
be deduced from the quark and gluon condensates and vice
versa. Moreover, the values of condensates can be repro-
duced from the instanton distribution [29–32]. The con-
tributions of instantons and those of the condensates may
reveal the same nonperturbative effects, and thus including
both contributions at the same time will cause the so-called
double-counting problem [33]. To avoid it, a semiclassical
expansion in instanton background fields was suggested in
our previous works to analyze the properties of the lowest
0þþ scalar glueball [13,34] and 0−þ pseudoscalar one [15–
18], where the correlation functions of the glueball currents
are calculated by just including the contributions from the
pure instantons, the pure quantum gluons, and the inter-
ference between both, instead of working with both
instantons and condensates at the same time. In fact, the
condensate contributions turned out to be very small as
compared with those of instantons (including the classical
and quantum interference contributions) in the glueball
channels, and may be understood as a small fraction of the
latter in the local limit [13,15,16].
In this paper, we investigate the mass scale and the

magnitude of the width for the lowest state of tensor
glueballs along the same line with our previous works
[13–18]. This issue was first considered in a nonrelativistic
approach by assuming a large value of the effective gluon
mass [35], and the mass m2þþ of the lowest tensor glueball
was predicted to be about 1.6 GeV; later, relying on the
construction of an efficient quasiparticle gluon basis for
Hamiltonian QCD in Coulomb gauge, m2þþ was deter-
mined to be 2.42 GeV. The lattice simulation on an
anisotropic lattice for quenched QCD shows that the mass
of the lowest state of the tensor glueballs is about
2.3–2.4 GeV [36,37]. The first prediction of the traditional
QCD sum-rule approach was m2

2þþ ≈ 1.6 GeV2 [38,39].
By assuming very small mixing between the tensor glueball
and quarkonia, the sum-rule prediction was increased to
m2þþ ≈ 2.00 GeV [40,41]. Up to now, the theoretical
results have been controversial. Finally, let us mention
that the prediction in the flux tube model—being composed
of a closed loop of fundamental flux with no constituent
gluons at all—is m2þþ ≈ 2.84 GeV [42].
Our paper is organized as follows. In Sec. II we define

our form for the current of the tensor glueball and the
corresponding correlation function, and make its Lorentz
decomposition and associate it with a unique Lorentz-
invariant amplitude. In Sec. III a low-energy theorem
suitable for the correlation function is derived. The pure
quantum and pure instanton contributions (including the

traditional condensate one) are presented in Sec. IV. Our
main work—namely, the calculation of the interference
contribution—is carried out in Sec. V. In Sec. VI we
construct the spectral function for the invariant amplitude
of the correlation function. The finite-width Laplacian sum
rules—which we also used in our previous works—are
presented in Sec. VII. The numerical simulation is
described in Sec. VIII. Finally, in Sec. IX our results
and conclusions are summarized, and a discussion of some
issues is given.

II. THE CORRELATION FUNCTION AND ITS
LORENTZ DECOMPOSITION

The current composed of two gluon fields, which carries
the quantum numbers JPC ¼ 2þþ, is defined as

Oμν ¼ ημαð∂Þηνβð∂Þαsθαβ; ð1Þ

with

θαβ ¼
�
−Ga

αγGa
βγ þ

1

4
δαβGa

γδG
a
γδ

�
−

ð2Þ

being the traceless energy-momentum density tensor in
Euclidean pure QCD, where Ga

μν is the gluon field strength
tensor with the color index a and Lorentz indices μ and ν,
and ημνð∂Þ ¼ δμν − ∂μ∂ν=∂2 is the transverse projection
operator. It is important to note that the overall subscript
“−” on the rhs of Eq. (2) indicates that the corresponding
trace anomaly should be deleted, and this subscript will
not be specified hereafter. The current Oμν is a Lorentz-
irreducible, SUcð3Þ gauge-invariant, and local composite
operator with the lowest dimension. Obviously, Oμν is also
a Lorentz-symmetric traceless tensor obeying the trans-
verse condition

Oμν ¼ Oνμ; Oμμ ¼ 0; ∂μOμν ¼ 0; ð3Þ

where the third equation is valid not only in pure QCD but
also in full QCD by means of using the projection
operator ημνð∂Þ.
The QCD correlation function of the current Oμν is

defined as

Πμν;μ0ν0 ðqÞ ¼
Z

d4xeiq·xhΩjTOμνðxÞOμ0ν0 ð0ÞjΩi: ð4Þ

Equation (3) leads to the symmetric, traceless, and trans-
verse conditions for Πμν;μ0ν0 ðqÞ as follows:

Πμν;μ0ν0 ðqÞ ¼ Πνμ;μ0ν0 ðqÞ ¼ Πμν;ν0μ0 ðqÞ;
Πμμ;μ0ν0 ðqÞ ¼ Πνμ;μ0μ0 ðqÞ ¼ 0;

∂μΠμν;μ0ν0 ðqÞ ¼ ∂μ0Πμν;μ0ν0 ðqÞ ¼ 0: ð5Þ
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For any momentum q, there is a unique transverse
symmetric Lorentz tensor in Euclidean space-time, namely,

ημνðqÞ ¼ δμν −
qμqν
q2

: ð6Þ

By means of ημνðqÞ, it is easy to find that there are only two
possible Lorentz tensors of rank four that satisfy the
symmetric and transverse conditions shown in Eq. (5):

Tð1Þ
μν;μ0ν0 ¼ ημνðqÞημ0ν0 ðqÞ;

Tð2Þ
μν;μ0ν0 ¼ ημμ0 ðqÞηνν0 ðqÞ þ ημν0 ðqÞηνμ0 ðqÞ: ð7Þ

Then, the traceless Lorentz tensor of rank four, ημν;μ0ν0 , can
be expressed as the linear combination of the above two
tensors:

ημν;μ0ν0 ¼ ημμ0ηνν0 þ ημν0ηνμ0 −
2

3
ημνημ0ν0 ; ð8Þ

where the factor −2=3 in front of the third term is
determined by the traceless condition, and the argument
q of η is ignored from now on for the sake of brevity. It is
important to note that ημν;μ0ν0 is the unique Lorentz tensor of
the fourth rank constructed from q and δμν, and it is
proportional to the density matrix of spin two possessing
the desired properties of Eq. (5). We conclude that the
correlation function Πμν;μ0ν0 ðqÞ can be expressed as

Πμν;μ0ν0 ðqÞ ¼
1

10
ηνμ;μ0ν0Πðq2Þ; ð9Þ

with Πðq2Þ being a scalar function of q2, and we introduce
the factor of 1

10
for convenience. By contracting both sides

of Eq. (9) with the product of the metric tensors δμμ0δνν0 and
using the identity δμμ0δνν0ηνμ;μ0ν0 ¼ 10, we have

Πðq2Þ ¼ Πμν;μνðqÞ; ð10Þ

which is the Lorentz-invariant amplitude that our sum rule
is, of course, written for.

III. LOW-ENERGY THEOREM

To compare with the scalar and pseudoscalar cases of
glueballs, we want to evaluate the correlation function in
the low-energy limit of q,

lim
low q

Πðq2Þ ¼ lim
low q

Z
d4xeiq·xhΩjTOμνðxÞOμνð0ÞjΩi: ð11Þ

We note that the current O is the energy-momentum tensor
in pure QCD which is symmetric and conserved according
to our definition, and so it is in fact renormalization group
invariant at least at one-loop order.

Now, it is noticed that the renormalization group
invariance of O enables us to extrapolate it to a low-energy
scale, at which it may be reduced to the symmetric and
conserved energy-momentum tensor in the low-energy
limit of QCD. On the other hand, the 1=Nc expansion
indicates that the confinement is present for largeNc, and in
the region of confinement the fundamental theory of QCD
is reduced to a weakly coupled field theory of mesons, such
as pions [43,44]. Therefore, at the low-energy scale, the
energy-momentum tensor of QCD may be reduced to
the symmetric and conserved energy-momentum tensor
for the pion field theory at the leading order,

OðπÞ
μν ¼ ∂μπ

a∂νπ
a −

1

2
δμν½∂απ

a∂απ
a −m2

ππ
2�; ð12Þ

where πa is the pion isotopic amplitude (πaπa ¼ π0π0þ
2πþπ−). In fact, the low-energy energy-momentum tensor
(12) is Lorentz reducible, and its nonvanishing trace
(possessing no projection on the 2þþ state) should be
deleted according to our definition. The traceless part of

OðπÞ
μν is

OðπÞ
μν− ¼ ∂μπ

a∂νπ
a −

1

4
δμν∂απ

a∂απ
a: ð13Þ

Inserting the two-pion intermediate states between the two
currents on the rhs of Eq. (11), using Eq. (13), we obtain

lim
low q

Πðq2Þ ¼ 10 × 2 ×
3

4
m4

πθðq2 − 4m2
πÞ; ð14Þ

where the factor 10 is introduced by convention [see
Eqs. (9) and (10)], and the factor of 2 comes from the
multiplicity of the pion isotopic states πa with the approxi-
mate equal mass mπ. We note that the appearance of a step
function θðq2 − 4m2

πÞ is due to the consideration of the
energy conservation. For the finiteness of the pion mass, we
have

lim
q→0

Πðq2Þ ¼
Z

d4xhΩjTOðπÞ
μν−ðxÞOðπÞ

μν−ð0ÞjΩi ¼ 0; ð15Þ

without consideration of the possibility of a 2þþ meson or
glueball decaying into two photons.
There is also another argument for the low-energy

theorem (15) for the tensor glueball current. Inserting
the full intermediate states into the correlation function
between the two currents OμνðxÞ and Oμνð0Þ, it is easy to
see that all intermediate states have no contribution, with
the possible exceptions of the vacuum jΩi and the multi-
massless pions jnπi with n ¼ 2; 4; � � � due to energy-
momentum conservation. The intermediate vacuum state
has no contribution,
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hΩjOðπÞ
μν−ð0ÞjΩi ¼ 1

4
δμνhΩjOðπÞ

αα−ð0ÞjΩi ¼ 0; ð16Þ

where the first equality is due to the Lorentz covariance,
and the second equality comes from our definition of our
current O which is exactly traceless. The intermediate
multipion states jnπi do not contribute as well, since n
pions—each of which has vanishing energy and momen-
tum in the massless limit—cannot possess the total angular
momentum of two so that

hnπjOðπÞ
μν−ð0ÞjΩimπ¼0;q→0 ¼ 0;

in keeping the angular momentum conservation.

IV. PURE QUANTUM AND PURE INSTANTON
CONTRIBUTIONS

We work in the framework of the semiclassical expan-
sion to evaluate the Euclidian path integrals, as in lattice
QCD. Instead of using the global minimum of the QCD
action (Aμ ¼ 0) as the starting point in the usual perturba-
tion theory, we may use the local minima (instantons)
AμðxÞ, which are the nonperturbative solutions of the
classical field equations of Euclidean QCD with a finite
action, so that the glue potential field BðxÞ may be
decomposed into a summation of the classical instanton
A and the corresponding quantum gluon field a as

BμðxÞ ¼ AμðxÞ þ aμðxÞ: ð17Þ

Consequently, the pure-glue Euclidean action can be
expressed as

S½B� ¼ S0 −
Z

d4x

�
L½Aþ a� þ 1

2ξ
aaμDabμDbcνacν

�

¼ S0 −
1

2

Z
d4x

�
aaμ

�
DabλDbcλδμν þ 2gfabcFbμν

−
�
1 −

1

ξ

�
DabμDbcν

�
acν − 2gfabcabμacνDadμadν

−
1

2
g2fabcabμacνfadeadμaeν

�
; ð18Þ

where S0 ¼ 8π2=g2 is the one-instanton contribution to the
action, Faμν is the instanton field-strength tensor

FaμνðAÞ ¼ ∂μAaν − ∂νAaμ þ gsfabcAbμAcν; ð19Þ
and DabμðAÞ is the covariant derivative associated with the
classical instanton field Aaμ,

DabμðAÞ ¼ ∂μδab þ gfacbAcμ: ð20Þ
In addition, following ’t Hooft [21], the background field
gauge

DμðAÞaμ ¼ 0 ð21Þ

is used, with ξ being the corresponding gauge parameter,
and certainly the corresponding Faddeev-Popov ghosts
according to the standard rule should be added to restore
unitarity. We note here that the structure constants fabc
should be understood as ϵabc when any one of the color
indices (a, b, or c) is associated with an instanton field due
to the property of the closure of any group.
According to the decomposition (17), the invariant

amplitude of the correlation function splits into three parts,
namely, the pure classical part, the pure quantum part, and
the interference part in the leading order,

ΠQCD ¼ ΠðclÞ þ ΠðquÞ þ ΠðintÞ; ð22Þ

where the superscript indicates that it is calculated in the
underlying dynamical theory (QCD). It is important to note
that every part on the rhs of Eq. (22) is gauge-invariant
because the decomposition (17), in principle, has no impact
on the gauge invariance of the correlation function.
The first part of Eq. (22) arises from the contribution of

pure classical field configurations—the Belavin-Polyakov-
Schwarz-Tyupkin instanton and anti-instanton—which are
the simplest nonperturbative solutions of the Euclidean
pure-QCD field equation, and the instanton field is written
(in the singular gauge) as

AaμðxÞ ¼
2

gs
ηaμνðx − zÞνϕðx − zÞ; ð23Þ

with

ϕðx − zÞ ¼ ρ2

ðx − zÞ2½ðx − zÞ2 þ ρ2� ; ð24Þ

and the corresponding field-strength tensor is

FaμνðxÞ ¼ −
8

gs

�ðx − zÞμðx − zÞρ
ðx − zÞ2 −

1

4
δμρ

�

× ηaνρ
ρ2

½ðx − zÞ2 þ ρ2�2 − ðμ ↔ νÞ; ð25Þ

where z and ρ denote the center and size of the instanton,
respectively, which are called collective coordinates
together with the color orientation, and ηaμν is the ’t
Hooft symbol which should be replaced with the anti–’t
Hooft one ηaμν for an anti-instanton field. The fact that the
strong coupling constant gs appears in the denominator of
the rhs of Eq. (23) reveals the nonperturbative nature of
these classical configurations. However, at the leading
order, the so-called direct instantons do not contribute to
the correlation function considered [7,38], namely,

ΠðclÞ ¼ 0; ð26Þ
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because

θαβðFÞ ¼ −Fa
αγFa

βγ þ
1

4
δαβFa

γδF
a
γδ ¼ 0; ð27Þ

as expected for vacuum fields, for which the energy-
momentum tensor should vanish.
The second part of Eq. (22) arises from the pure quantum

contribution, and has already been calculated at the leading
order [38],

ΠðquÞ ¼ −
1

2π2
q4 ln

q2

μ2
; ð28Þ

with μ being the renormalization scale, and with the
additional ordinary power corrections due to the gluon
condensates

ΠðcondÞ ¼ 50παs
3q4

h2O1 −O2i; ð29Þ

where

O1 ¼ ðfabcGb
μαGc

ναÞ2; O2 ¼ ðfabcGb
μνGc

αβÞ2; ð30Þ

with fabc being the structure constants for SUcð3Þ. We note
that the contribution from the vacuum condensates starts
with the Q−8 term, and in fact is negligible (as checked in
Fig. 5 in Appendix C) in comparison with the Borel
transformations of ΠðintÞ, ΠðquÞ, and ΠðcondÞ.

V. THE INTERFERENCE CONTRIBUTION

One of our main tasks in this work is to calculate the
contribution ΠðintÞ in Eq. (22), which comes from the
interference between the classical instantons and quantum
gluons in the framework of the semiclassical expansion for
QCD with the instanton background, and which is certainly
very important because of the vanishing pure-classical
contribution (26). After imposing the background covariant
Feynman gauge (ξ ¼ 1) for the quantum gluon fields, we
are still free to choose a gauge for the background field A.
In the following, the singular gauge is chosen for the
nonperturbative instanton field configurations, as shown
in Eq. (23).
Before starting with the contraction between the quan-

tum fields, we note that the time development of the
instanton vacuum produces the preexponential factor for
the distribution of the instantons [21,45,46], and ΠðintÞ is
understood as taking the ensemble average over the
collective coordinates in addition to taking the usual
vacuum expectation value due to the separation (23),

ΠðintÞ ¼
X
I;I

Z
dρnðρÞ

Z
d4z

Z
d4xeiq·x

× hΩjTfOμνðxÞOμνð0ÞgðintÞjΩi; ð31Þ

where the superscript “(int)” indicates that the correspond-
ing quantity only contains the interference part between the
quantum and classical ones. Using the spike distribution for
the random instantons, Eq. (31) becomes

ΠðintÞ ¼ 2n
Z

d4z
Z

d4xeiq·x

× hΩjTfOμνðxÞOμνð0ÞgðintÞjΩi; ð32Þ
where the value of the instanton effective density n is
already given in the introduction, and the factor of 2 comes
from the mutually equal contributions of both the instanton
and anti-instanton. The next important step is to specify the
form of the gluon propagator which in the background-field
Feynman gauge can be read from the part of S½B� quadratic
in a [47,48],

Dab
μνðx; yÞ ¼ hΩjTfaaμðxÞabνðyÞgjΩi

¼ hxj
�

1

P2δμν − 2Fμν

�
ab
jyi; ð33Þ

with Pab
μ ¼ −iDab

μ . Keeping only terms proportional to F,
one has [49]

Z
d4xeiq·xDab

μνðx; yÞ ¼ eiq·ðy−zÞδab

�
1

q2
δμν þ gs

2

q4
FμνðzÞ

−igs
ðy − zÞρFρσðzÞqσ

q4
δμνðzÞþ � � �

�
;

ð34Þ

where the first term on the rhs of the above equation is the
pure-gluon propagator in the usual Feynman gauge, and
the second and third terms are the leading contribution of
the instanton field to the gluon propagator. For the short-
distance region, we assume that the contribution from a
single instanton is dominant over multi-instantons [50]. At
the leading loop level, the gluon propagator (33) in the
background-field Feynman gauge becomes the pure-gluon
one in the usual Feynman gauge, which is what we use in
our calculation.
Rewriting the tensor glueball current (1) as

Oμν ¼ ~Oμν −
1

4
δμν ~Oαα; ð35Þ

with

~Oμν ¼ −GaμαGaνα; ð36Þ
the invariant amplitude (32) becomes

ΠðintÞ ¼ 2n

�
δμμ0δνν0 −

1

4
δμνδμ0ν0

�Z
d4z

×
Z

d4xeiq·xhΩjTf ~OμνðxÞ ~Oμ0ν0 ð0ÞgjΩi: ð37Þ
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In our calculation, we expand ~Oμν into terms which are
products of quantum gluon fields and their derivatives with
coefficients being composed of the instanton fields,

~Oμν ¼
X10
i¼1

~OðiÞ
μν ; ð38Þ

where the operators ~OðiÞ
μν in terms of the instanton and

quantum gluon fields are listed in Appendix A. Then,
Eq. (37) can be expressed as

ΠðintÞ ¼ 2n

�
δμμ0δνν0 −

1

4
δμνδμ0ν0

�

×
X
i;j

Z
d4z

Z
d4x

× eiq·xhΩjTf ~OðiÞ
μν ðxÞ ~OðjÞ

μ0ν0 ð0ÞgjΩi

¼
X12
i¼1

ΠðintÞ
i þ � � � ; ð39Þ

where � � � denotes the contributions from the products of
operators that are proportional to g3s , and the expressions for

ΠðintÞ
i are shown in Appendix B. The corresponding 12

kinds of Feynman diagrams are shown in Fig. 1, where the
contributions from the first three diagrams are of the order
of αs, the contributions of the remainders are superficially
of the order of α2s , and those from diagrams 4 and 6 are in
fact vanishing as they violate the conservation of color
charge, namely,

ΠðintÞ
i ¼ 0; for i ¼ 4; 6: ð40Þ

Now, we are in the position to evaluate the contributions
of the remainder diagrams in Fig. 1. Using the standard
technique to regularize the ultraviolet divergence in the
modified minimal subtraction scheme, the result for the
interference part of the correlation function is

ΠðintÞ ¼ n

�
c1πα−1s ðμ2Þ þ c2πðqρÞ−2α−1s ðμ2Þ þ c3

þ c4ðqρÞ−2 þ ½c5ðqρÞ2 þ c6 þ c7ðqρÞ−2� ln
q2

μ2

�
;

ð41Þ

where μ is the renormalization scale, we have ignored terms
that are proportional to the positive powers of q2 which
vanish after Borel transformation, and (after a tedious
calculation) the dimensionless coefficients ci are

c1 ¼ 48;

c2 ¼ −144;

c3 ¼ −764þ 664

3
ðγ − ln 4πÞ ¼ −1196.44;

c4 ¼ −4416;

c5 ¼ 27;

c6 ¼ 364 − 140ðγ − ln 4πÞ ¼ 637.53;

c7 ¼ 2208; ð42Þ
where γ is the Euler constant. The detailed calculation will
appear elsewhere. It should be noted that there is no
infrared divergence, as expected due to the instanton size
being fixed in the liquid instanton vacuum model, which
actually provides the regularization for the interference
correlation function with the standard parameters.
Putting everything above together, our final expression

for the invariant amplitude ΠQCD calculated in QCD is of
the form

FIG. 1. Feynman diagrams for the interference contribution
ΠðintÞ, where spiral lines, dotted lines, and the lines with circles
denote gluons, instantons, and the instanton field-strength tensor,
respectively, and crosses stand for the positions of the instantons.
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ΠQCDðq2Þ ¼ n

�
c1πα−1s ðμ2Þ þ c2πðqρÞ−2α−1s ðμ2Þ þ c3

þ c4ðqρÞ−2 þ ½c5ðqρÞ2 þ c6

þ c7ðqρÞ−2� ln
q2

μ2

�
−

1

2π2
q4 ln

q2

μ2
; ð43Þ

where the condensate contribution Πcond given in Eqs. (29)
and (30) is neglected due to its small magnitude, as shown
in Appendix C.

VI. SPECTRAL FUNCTION

Now we construct the spectral function for the invariant
amplitude (the scalar part of the correlation function) of the
tensor glueball current, ΠQCD. The usual lowest resonance
plus a continuum model is used to saturate the phenom-
enological spectral function:

1

π
ImΠPHENðsÞ ¼ 1

π
ρHADðsÞ þ θðs − s0Þ

1

π
ImΠQCDðsÞ;

ð44Þ

where s0 is the QCD-hadron duality threshold, θðs − s0Þ is
the step function, and ρHADðsÞ is the spectral function for
the lowest tensor glueball state. In the usual zero-width
approximation, the spectral function for a single resonance
is assumed to be

ρHADðsÞ ¼ F2δðs −m2Þ; ð45Þ

where m is the mass of the lowest glueball, and F is the
coupling constant of the current to the glueball defined as

h0jOð0ÞjGi ¼ F: ð46Þ

The threshold behavior for ρHADðsÞ is

ρHADðsÞ → λ20s
2θðs − 4m2

πÞ; for s → 4m2
π: ð47Þ

In fact, the threshold behavior (47) may only be valid near
the chiral limit. Therefore, instead of considering the
coupling F as a constant [7], we choose the following
model for F:

F ¼
8<
:

0; for s ≤ 4m2
π;

λ0sθðs − 4m2
πÞ; for 4m2

π < s < 4m2
π þ δs;

fm2; for s ≥ 4m2
π þ δs;

ð48Þ

where λ0 and f are some constants determined late in the
numerical simulation, and δs is a small constant determined
by simulation.
To go beyond the zero-width approximation, in facing

the near-actual situation, the Breit-Wigner form for a single
resonance is assumed for ρHADðsÞ,

ρHADðsÞ ¼ F2mΓ
ðs −m2 þ Γ2=4Þ2 þm2Γ2

; ð49Þ

where Γ is the width of the lowest glueball. Further, the
one-isolated-lowest-resonance assumption is questioned
from the admixture with quarkonium states, and it is
known from the experimental data that there are three
2þþ tensor resonances up to and around the mass scale
1.525 GeV. The form of the spectral function for three
resonances is taken to be

ρHADðsÞ ¼
X3
i¼1

F2
i miΓi

ðs −m2
i þ Γ2

i =4Þ2 þm2
iΓ2

i
; ð50Þ

where mi and Γi are the mass and width of the ith
resonance, respectively. For the sake of simplicity, all
coupling constants Fi for s < m2

π are fixed with the same
λ0 as shown in Eq. (48).

VII. FINITE-WIDTH LAPLACIAN SUM RULE

Now we are in a position to construct the appropriate
sum rules of the tensor glueball current. The invariant
amplitude Π obeys a dispersion relation,

Πðq2Þ ¼
Z

∞

0

ds
1

sþ q2
1

π
ImΠðsÞ þ subtractions; ð51Þ

which is defined up to a finite number n of subtractions. To
dispose of the dependence on these subtractions, one takes
the nth derivative of Πðq2Þ to obtain

ð−1Þn dn

ðdQ2Þn Πðq
2Þ ¼

Z
∞

0

ds
n!

ðsþQ2Þnþ1

1

π
ImΠðsÞ;

ð52Þ

with Q2 ¼ q2, which can be regarded as a global duality
relation (i.e., sum rule) in the sense that the weighted
average of the physical spectral function ð1=πÞImΠðsÞ≡
ð1=πÞImΠPHENðsÞ [a model of ð1=πÞImΠPHENðsÞ is given
in Eq. (44)], for sufficiently large Q2 values in the weight,
must match the nth derivative ofΠðq2Þ≡ ΠQCDðQ2Þ on the
lhs, which is a calculable quantity in QCD [an approxi-
mated form is given in Eq. (43)]. To make the sum rule
more sensitive to the low-energy behavior of the spectral
function, one applies the Borel transformation

L̂≡ lim
N→∞
Q2→∞
Q2=N≡t

ð−1ÞN
ðN − 1Þ! ðQ

2ÞN
�

d
dQ2

�
N

ð53Þ

to both sides of Eq. (52). Then, a family of Laplacian sum
rules can be formed [51],

LHAD
k ðs0; tÞ ¼ LQCD

k ðs0; tÞ ð54Þ
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and

LHAD
k ðs0; tÞ ¼

Z
s0

0

dsske−s=t
1

π
ρHADðsÞ; ð55Þ

for the phenomenological contributions to the sum rules,
and for the theoretical contributions

LQCD
k ðs0; tÞ ¼ LQCD

k ðtÞ − LCONT
k ðs0; tÞ; ð56Þ

with LQCD
k ðtÞ and LCONT

k ðs0; tÞ being
LQCD
k ðtÞ ¼ tL̂½ð−Q2ÞkΠQCDðQ2Þ� ð57Þ

and

LCONT
k ðs0; tÞ ¼

Z
∞

s0

dsske−s=t
1

π
ImΠQCDðsÞ: ð58Þ

Substituting Eq. (43) into Eq. (57), we have

LQCD
−1 ðtÞ ¼ −n½c1πα−1s ðtÞ þ c2πα−1s ðtÞðtρ2Þ−1

þc3 þ c4ðtρ2Þ−1 − c5tρ2 − c6γ

þc7ð1 − γÞðtρ2Þ−1� − a0t2; ð59Þ

LQCD
0 ðtÞ ¼ n½c2πα−1s ðtÞρ−2 þ c4ρ−2 þ c5t2ρ2

−c6t − c7γρ−2� − 2a0t3; ð60Þ

LQCD
1 ðtÞ ¼ −nð−2c5ρ2t3 þ c6t2 − c7ρ−2tÞ − 6a0t4: ð61Þ

VIII. NUMERICAL ANALYSIS

The expressions for the three-loop running coupling
constant αsðQ2Þwith three massless flavors ðNf ¼ 3Þ at the
renormalization scale μ [52]

αsðμ2Þ
π

¼ αð2Þs ðμ2Þ
π

þ 1

ðβ0LÞ3
�
L1

�
β1
β0

�
2

þ β2
β0

�
ð62Þ

are used, where αð2Þs ðμ2Þ=π is the two-loop running cou-
pling constant with ðNf ¼ 0Þ

αð2Þs ðμ2Þ
π

¼ 1

β0L
−
β1
β0

lnL
ðβ0LÞ2

ð63Þ

and

L ¼ ln

�
μ2

Λ2

�
;

β0 ¼
1

4

�
11 −

2

3
Nf

�
;

β1 ¼
1

42

�
102 −

38

3
Nf

�
;

β2 ¼
1

43

�
2857

2
−
5033

18
Nf þ

325

54
N2

f

�
; ð64Þ

with the color number Nc ¼ 3 and the QCD renormaliza-
tion invariant scale Λ ¼ 120 MeV. We take μ2 ¼ t after
calculating Borel transforms based on the renormalization
group improvement for Laplacian sum rules [53]. The
values of the average instanton size and the overall instanton
density are adopted from the instanton liquid model [29],

n ¼ 1 fm−4 ¼ 0.0016 GeV4;

ρ ¼ 1

3
fm≃ 1.667 GeV−1: ð65Þ

The resonance masses and widths appearing in Eq. (50)
could be estimated by optimally matching both sides of the
sum rules (55) in the fiducial domain (sum rule window)
where the mentioned resonance parameters should be
approximately stable. At tmax of the sum rule window,
the resonance contribution should be greater than the
continuum one,

LQCD
k ðs0; tmaxÞ ≥ LCONT

k ðs0; tmaxÞ; ð66Þ

according to the standard requirement that in the energy
region above tmax the perturbative contribution is dominant.
At tmin, which lies in the low-energy region, we require that
the single instanton contribution should be relatively large
so that

Lint
k ðs0; tminÞ

LQCD
k ðs0; tminÞ

≥ 50%: ð67Þ

At the same time, to keep the multi-instanton correction
negligible, we simply adopt the rough estimate

tmin ≥ ð2ρÞ−2 ∼
�

2

0.6 GeV

�
−2
: ð68Þ

To determine the value s0 for the threshold, it is obvious
that s0 must be greater than the squared masses of all of the
considered resonances, and should guarantee that there is a
sum rule window for the stability of our Laplacian sum
rules. According to the above requirements, we find that in
the domain

t ∈ ð1.0; 3.0Þ GeV2; s0 ∈ ð2.9; 3.9Þ GeV2 ð69Þ

our sum rules work very well for, e.g., k¼−1, 0, 1, as usual,
to consider the very important information comes from the
low-energy theorem. Finally, in order to measure the
compatibility between both sides of the sum rules (55)
in our numerical simulation, we divide the sum rule
window ½tmin; tmax� into N¼100 segments of equal width,
½ti; tiþ1�, with t0 ¼ tmin and tN ¼ tmax, and introduce a
variation δ which is defined as
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δ ¼ 1

N

XN
i¼1

½LðtiÞ − RðtiÞ�2
jLðtiÞRðtiÞj

; ð70Þ

where LðtiÞ and RðtiÞ are the lhs and rhs of Eq. (55)
evaluated at ti.
Let us first consider the case of single-resonance-plus-

continuum models [specified by Eqs. (46) and (50),
respectively] for the spectral function. The optimal param-
eters governing the sum rules with zero and finite widths
are listed in the first six lines of Table I and the corre-
sponding curves for the lhs and rhs of Eq. (55) with
k ¼ −1, 0, and þ1 are displayed in Figs. 2 and 3,
respectively. From Table I, the optical values of the tensor
glueball mass, width, coupling, and duality threshold with
the best matching are

m ¼ 1.522� 0.002 GeV;

f ¼ 0.115� 0.025 GeV;

s0 ¼ 3.4� 0.5 GeV2 ð71Þ
for one zero-width resonance model, and

m ¼ 1.525 GeV;

Γ ¼ 0.104� 0.007 GeV;

f ¼ 0.055� 0.004 GeV;

s0 ¼ 3.0� 0.1 GeV2 ð72Þ

for one finite-width resonance model, where here and
hereafter the errors are estimated from the uncertainties
of the spread between the individual sum rules. For the case

of three finite-width resonances plus the continuum model
(50) for the spectral function, the optimal parameters
governing the sum rules are listed in the remaining lines
of Table I. The corresponding curves for the lhs and rhs of
Eq. (55) with k ¼ −1, 0, and þ1 are displayed in Fig. 4.
Taking the average, the optical values of the widths of the
three lowest 2þþ resonances in the world of QCD with
three massless quarks and the corresponding optical fit
parameters are predicted to be

mf2ð1270Þ ¼ 1.275 GeV;

ff2ð1270Þ ¼ 0.016� 0.006 GeV;

Γf2ð1270Þ ¼ 0.185 GeV; ð73Þ

mf0
2
ð1525Þ ¼ 1.525 GeV;

ff0
2
ð1525Þ ¼ 0.052� 0.002 GeV;

Γf0
2
ð1525Þ ¼ 0.073 GeV; ð74Þ

mf2ð1950Þ ¼ 1.944 GeV;

ff2ð1950Þ ¼ 0.019� 0.009 GeV;

Γf2ð1950Þ ¼ 0.472 GeV; ð75Þ

with

s0 ¼ 3.0 GeV: ð76Þ

TABLE I. The optimal fitting values of the massm, width Γ, coupling constant f, continuum threshold s0, and compatibility measure δ
for the possible 2þþ resonances in the sum rule window ½tmin; tmax� for the best matching between the lhs and rhs of the sum rules (55)
with k ¼ −1, 0, 1 are listed, while all of the pure perturbative and interference contributions are included in the correlation function for
cases A, B, and C, in which a single zero-width resonance plus the continuum model of the spectral function is adopted for case A, a
single finite-width resonance plus the continuum model is adopted for case B, and three finite-width resonances plus the continuum
model is adopted for case C.

Cases k Resonances m (GeV) Γ (GeV) f (GeV) s0ðGeV2Þ ½tmin; tmax�ðGeV2Þ δ

A
−1 1.520 0 0.140 3.9 1.0–3.0 3.4 × 10−4

0 Glueball 1.523 0 0.112 3.3 1.0–3.0 8.4 × 10−5

1 1.521 0 0.094 3.0 1.0–3.0 4.9 × 10−5

B
−1 1.525 0.105 0.058 3.1 1.0–3.0 4.3 × 10−5

0 Glueball 1.525 0.110 0.059 3.1 1.0–3.0 1.8 × 10−4

1 1.525 0.097 0.052 2.9 1.0–3.0 8.3 × 10−5

C

f2ð1270Þ 1.275 0.185 0.022
−1 f02ð1525Þ 1.525 0.073 0.052 3.0 1.0–3.0 4.4 × 10−5

f2ð1950Þ 1.944 0.472 0.010
f2ð1270Þ 1.275 0.185 0.010

0 f02ð1525Þ 1.525 0.073 0.050 3.0 1.0–3.0 4.1 × 10−5

f2ð1950Þ 1.944 0.472 0.028
f2ð1270Þ 1.275 0.185 0.010

1 f02ð1525Þ 1.525 0.073 0.054 3.0 1.0–3.0 1.4 × 10−4

f2ð1950Þ 1.944 0.472 0.010
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FIG. 2. The lhs (dot line) and rhs (solid line) of the sum rules
(55) with k ¼ −1, 0, 1 versus t in the case where the correlation
function ΠQCD contains the interference and pure perturbative
contributions, and a single zero-width resonance plus the con-
tinuum model is adopted for the spectral function.
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FIG. 3. The lhs (dashed line) and rhs (solid line) of the sum
rules (55) with k ¼ −1, 0, 1 versus t in the case where the
correlation function ΠQCD contains the interference and pure
perturbative contributions, and a single finite-width resonance
plus the continuum model is adopted for the spectral
function.
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IX. CONCLUSION AND DISCUSSION

The main results of this work can be summarized as
follows.
First, the contribution to the correlation function arising

from the interference between the classical instanton fields

and the quantum gluon ones was derived in the framework
of the semiclassical expansion of the instanton liquid
vacuum model of QCD. The resultant expression is gauge
invariant, and free of the infrared divergence. It plays a
great role in sum-rule analysis in accordance with the spirit
of the semiclassical expansion. The imaginary part of the
correlation function including this interference contribution
is positive, as shown in Fig. 6 in Appendix D. Moreover,
the traditional condensate contribution is excluded in the
correlation function to avoid double counting [7], because
condensates can be reproduced by the instanton distribu-
tions [29–32]. Another reason to do so is that the usual
condensate contribution is proven to be unusually weak,
and cannot fully reflect the nonperturbative nature of the
low-lying gluonia [7,15,16,54]; in our opinion, the con-
densate contribution may be considered as a small fraction
of the corresponding instanton one, so it is naturally taken
into account already.
Second, the properties of the lowest-lying 2þþ tensor

glueball were systematically investigated in a family of
Laplacian sum rules in three different cases: a single zero-
width resonance plus the continuum model of the spectral
function was adopted for case A, a single finite-width
resonances plus the continuum model was adopted for
case B, and the three finite-width resonances plus the
continuum model was adopted for case C. The optimal
fitting values of the mass m, width Γ, coupling constant f,
and continuum threshold s0 for the possible 2þþ reso-
nances were obtained, and are quite consistent with each
other. The resultant Laplacian sum rules with k ¼
−1; 0;þ1 were carried out with a few of the standard
QCD input parameters, in accordance with the experi-
mental data.
Let us now identify where the lowest-lying 2þþ tensor

glueball is located. The results for the single-resonance-
plus-continuum models A and B [namely, Eqs. (70) and
(72)] imply that the meson f02ð1525Þ may be the most
viable candidate for the lowest-lying 2þþ tensor glueball
because the difference between the two models is just the
width of the resonances, and the latter is of course
believed to be more in accordance with reality. This
conclusion can further be justified by the result of the
three-resonances-plus-continuum model [namely,
Eqs. (73), (74), and (75)], which shows that ff0

2
ð1525Þ is

dominant.
As a discussion, we compare our result with other works.

Let us mention the following points in order.
(a) The results from lattice QCD are extracted from the fit

equation (2) in Ref. [55] by the variational procedure
in Monte Carlo simulations [36]; however, the mass of
the lowest-lying glueball should be understood as the
upper bound of the glueball in the channel of interest.
It is important to note that our result in this work is
estimated from the match both sides of our sum rule,
and should be compared to reality; in the sense of an
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FIG. 4. The lhs (dashed line) and rhs (solid line) of the sum
rules (55) with k ¼ −1, 0, 1 versus t in the case where the
correlation function ΠQCD contains the interference and pure
perturbative contributions, and a three-finite-width-resonances-
plus-continuum model is adopted for the spectral function.
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upper bound on the mass, our result is consistent with
those of lattice QCD.

(b) The so-called mass hierarchy [56] for the lowest 0þþ,
2þþ, and 0−þ glueballs (namely,m0þþ < m2þþ < m0−þ)
comes from lattice QCD; it is difficult to understand
because it is, in fact, an inequality of the possible upper
bounds on the mass determined by the variational
principle. On the other hand, phenomenologically,
the identification of the pseudoscalar glueball has been
a matter of debate since the Mark II experiment
proposed glueball candidates [57]. Later, in the mass
region of the first radial excitation of the η and η0
mesons, a supernumerous candidate—the ηð1405Þ—
was observed. It seems to be clear that ηð1405Þ is
allowed as a glueball-dominated state mixed with
isoscalar qq states due to its behavior in production
and decays, namely, it has comparably large branching
ratios in the J=ψ radiative decay, but it has not been
observed in γγ collisions [19,55,58]. A review of the
experimental status of qq was given in Ref. [19].
However, this state lies considerably lower than the
theoretical expectations: the lattice QCD predictions
suggest a glueball around 2.5 GeV [36,59]; the mass
scale of the pseudoscalar glueball obtained in the QCD
sum rule approach is above 2 GeV [7,15,16,60].
Moreover, there are attractive arguments for the scalar
and pseudoscalar glueballs being approximately degen-
erate in mass [61], and even the scenario that a
pseudoscalar glueball may be lower in mass than the
scalar one was recently discussed in Ref. [62]. The
possibly nonvanishing gluonium content of the ground
state η and η0mesonswas discussed inRefs. [12,63–65].
Up to now, only the topological model of the glueball as
a closed flux tube [61] predicts a degeneracy of the 0þþ
and 0−þ glueball masses and admits the region 1.3–
1.5 GeV before our recent result [13,14,17,18] was
published.

(c) The results in QCD-based constituent models are
inconsistent and even contradictory with each other:
the lowest-lying 2þþ glueball lies in the mass region
0.96–2.5 GeV [55], and our prediction is located in
between.

(d) In the QCD sum rule approach, our result is higher
than the previous one (≈1.26 GeV) fromRefs. [66,67],
and lower than the other ones (≈2.0 GeV) [40,41].

(e) We note here that a recent phenomenological analysis
[68] predicted that the mass of the lowest-lying tensor
glueball 1.40� 0.14 GeV, which is close to, but lower
than our present result.

(f) Finally, it is important to note that the Laplacian sun
rule (54) is based on the Borel transform for the global
duality relation (52), and not based on the so-called
strict local duality

1

π
ΠQCDðsÞ ¼ 1

π
ΠPHENðsÞ; ð77Þ

which corresponds the Gauss-Weierstrass transformed
sum rule in an appropriate limit [51]. This limit would
be equivalent to knowing the spectral function
everywhere, as well as the full perturbative and non-
perturbative dynamical effects of QCD; however, it is
an impossible task given the present state of develop-
ment of QCD and the experiments. We note here that
by integrating both sides of Eq. (77) from s ¼ 0 to
s ¼ s0, we get the so-called finite-energy sum
rule

Z
s0

0

ds
1

π
ΠQCDðsÞ ¼

Z
s0

0

ds
1

π
ΠPHENðsÞ; ð78Þ

which is usually used to determine the approximate
value of the threshold s0 in the sum rule. The lhs and
rhs of Eq. (78), as functions of s0, are shown in Fig. 7
in Appendix E, where the abscissa of the intersection
point of the two curves gives the value of s0, which is
very close to that given in Eq. (76).

In summary, our results suggest that f02ð1525Þ is a good
candidate for the lowest 2þþ tensor glueball with some
mixture with the nearby excited isovector and isoscalar qq
mesons. The predicted mass of the lowest-lying tensor
glueball is only a little bit higher than that of the scalar one
(1500 MeV) determined recently according to the same
approach [14]. The reason may be that, although the
leading instanton contribution is absent from the tensor
channel of glueballs, there is still a strong attractive force
arising from the interference between the quantum gluon
fields and the classical one, which almost solely governs
the final result. Such a situation is somehow the same as in
the case of the scalar channel, which causes the lowest
scalar and tensor glueballs to be almost degenerate, just as
predicted in the conventional bag model. The small differ-
ence between the masses of the glueball states could be
understood as the spin splitting. To explore the deep
physical reason for the above points, further investigation
will certainly be needed.
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APPENDIX A: THE OPERATORS ~Oμν
ðiÞ

The operators ~Oμν
ðiÞ in terms of instanton and quantum

gluon fields are
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~Oð1Þ
μν ¼ FaμρFaνρ;

~Oð2Þ
μν ¼ Faϕρabβ;αδabðδαφδβρ − δαρδβφÞðδφμδϕν þ δφνδϕμÞ;

~Oð3Þ
μν ¼ gsFaϕρAcαabβfacbðδαφδβρ − δαρδβφÞ

× ðδφμδϕν þ δφνδϕμÞ;
~Oð4Þ
μν ¼ abβ;αadλ;κδabδadðδαμδβρ − δαρδβμÞðδκνδλρ − δκρδλνÞ;

~Oð5Þ
μν ¼ gsðAeκadλabβ;αfaedδab þ Acαabβadλ;κfacbδadÞ

× ðδαμδβρ − δαρδβμÞðδκνδλρ − δκρδλνÞ;
~Oð6Þ
μν ¼ g2sAcαAeκabβadλfacbfaedðδαμδβρ − δαρδβμÞ

× ðδκνδλρ − δκρδλνÞ;
~Oð7Þ
μν ¼ gsFaϕλabβadλfabdδβφðδφμδϕν þ δφνδϕμÞ;

~Oð8Þ
μν ¼ gsadνaeρabβ;αfadeδabðδαμδβρ − δαρδβμÞ

þ gsabμacρadλ;κfabcδadðδκνδλρ − δκρδλνÞ;
~Oð9Þ
μν ¼ g2sfacbfadeAcαabβadνaeρðδαμδβρ − δαρδβμÞ

þ g2sfacbfadeAeκabμacρadλðδκνδλρ − δκρδλνÞ;
~Oð10Þ
μν ¼ g2sabμacρadνaeρfabcfade; ðA1Þ

where Faμν is the instanton field strength associated with
the instanton field A.

APPENDIX B: THE INTERFERENCE
CONTRIBUTIONS ΠðintÞ

i IN TERMS OF
THE OPERATORS ~Oμν

ðiÞ

The expressions for ΠðintÞ
i in terms of ~OðiÞ

μν are

ΠðintÞ
1 ¼ T̂hΩjT ~Oð2Þ

μν ðxÞ ~Oð2Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
2 ¼ 2T̂hΩjT ~Oð2Þ

μν ðxÞ ~Oð3Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
3 ¼ T̂hΩjT ~Oð3Þ

μν ðxÞ ~Oð3Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
4 ¼ 2T̂hΩjT ~Oð4Þ

μν ðxÞ ~Oð5Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
5 ¼ 2T̂hΩjT ~Oð4Þ

μν ðxÞ ~Oð6Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
6 ¼ 2T̂hΩjT ~Oð4Þ

μν ðxÞ ~Oð7Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
7 ¼ T̂hΩjT ~Oð5Þ

μν ðxÞ ~Oð5Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
8 ¼ T̂hΩjT ~Oð7Þ

μν ðxÞ ~Oð7Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
9 ¼ 2T̂hΩjT ~Oð5Þ

μν ðxÞ ~Oð7Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
10 ¼ 2T̂hΩjT ~Oð6Þ

μν ðxÞ ~Oð7Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
11 ¼ 2T̂hΩjT ~Oð5Þ

μν ðxÞ ~Oð6Þ
μ0ν0 ð0ÞjΩi;

ΠðintÞ
12 ¼ T̂hΩjT ~Oð6Þ

μν ðxÞ ~Oð6Þ
μ0ν0 ð0ÞjΩi; ðB1Þ
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FIG. 5. The magnitudes of the Borel transformations of ΠðintÞ

(solid line), ΠðquÞ (dotted line), and ΠðcondÞ (dashed line) with
k ¼ −1, 0, 1 versus t.
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where

T̂ ≡ 2n

�
δμμ0δνν0 −

1

4
δμνδμ0ν0

�Z
d4z

Z
d4xeiq·x: ðB2Þ

APPENDIX C: THE BOREL TRANSFORM OF
THE CONDENSATE CONTRIBUTION

Substituting Eq. (29) into Eq. (57), we obtain the
expression for the Borel transformation of the condensate
contribution as follows:

Lcond
−1 ðtÞ ¼ 1

2t2
50παs
3

h2O1 −O2i; ðC1Þ

Lcond
0 ðtÞ ¼ 1

t
50παs
3

h2O1 −O2i; ðC2Þ

Lcond
1 ðtÞ ¼ 50παs

3
h2O1 −O2i: ðC3Þ

The comparison of Lcond with the other Borel-transformed
contributions is shown in Fig. 5.

APPENDIX D: THE IMAGINARY PARTS OF THE
INIERFERENCE AND PERTURBATION

CONTRIBUTIONS

The imaginary part of the correlation function from the
interference contribution is

ImΠðintÞ ¼ n½c5ρ2s − c6 þ c7ðsρ2Þ−1�; ðD1Þ

and the one from the pure perturbative contribution is

ImΠðquÞ ¼ s2

2π
: ðD2Þ

Both contributions are shown in Fig. 6.

APPENDIX E: DETERMINATION OF THE
THRESHOLD s0 FROM THE FINITE-ENERGY

SUM RULE

The finite-energy sum rule for determining the value of
the threshold s0 reads

Z
s0

0

ds
1

π
ΠQCDðsÞ ¼

Z
s0

0

ds
1

π
ρHADðsÞ: ðE1Þ

The lhs and rhs of Eq. (E1) versus s0 are plotted as the solid
and dotted curves, respectively, in Fig. 7, and the abscissa
of the intersection point of the two curves is
s0 ¼ 2.98 GeV2, as indicated in the figure.
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