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We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron
internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the
decay widths from the one-pion emission for the known excited states, Λ�cð2595Þ, Λ�cð2625Þ, Λ�cð2765Þ,
Λ�cð2880Þ, and Λ�cð2940Þ, as well as for the ground states Σcð2455Þ and Σ�cð2520Þ. The decay properties of
the lower excited charmed baryons are well explained, and several important predictions for higher excited
baryons are given. We find that the axial-vector-type coupling of the pion to the light quarks is essential,
which is expected from chiral symmetry, to reproduce the decay widths especially of the low-lying Λ�c
baryons. We emphasize the importance of the branching ratios of ΓðΣ�cπÞ=ΓðΣcπÞ for the study of the
nature of higher excited Λ�c baryons.
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I. INTRODUCTION

Understanding of the internal structure of hadrons is an
important subject in hadron physics. One of the most
important problems is to identify the effective degrees of
freedom which should play essential roles at low energies,
because the bare quarks do not appear at such a scale
due to the color confinement of QCD. To identify the
effective degrees of freedom should serve not only for
the understanding of the QCD vacuum properties, but also
be useful to explain and predict experimental data with
simple physical terms. In this respect, what we are aiming
at is to establish the economized effective degrees of
freedom for various phenomena of the strong interaction
physics [1,2].
The charmed baryons, containing a single heavy charm

quark, is a good place to study the hadron structure. One of
the important features is the spin symmetry of the heavy
quark. QCD predicts that the spin-dependent interaction
of the heavy quark is suppressed by 1=mQ and thus in the
infinite mQ limit, the heavy quark spin is decoupled from
the dynamics of the light quarks. The dynamical decou-
pling of the light quark spin and the heavy quark spin is the
heavy quark symmetry (HQS) [3].
In the heavy quark limit, the total spin j of the light

degrees of freedom (so-called brown muck in the literature)
is conserved [3,4]. It contains not only the spins of the light
(anti)quarks and their angular momenta but also gluon
spins. Combining the spin j of the light degrees of freedom
and the spin of a heavy quark, heavy hadrons are classified
into a single state with the total spin J ¼ 1=2 for j ¼ 0 and
two degenerate states with the total spin J ¼ j� 1=2 for
j ≥ 1=2. The former is called the HQS singlet, and the latter

is called the HQS doublet. The classification based on the
HQS is useful for the investigation of the heavy hadrons,
because the spin of the light degrees of freedom serves as an
additional conserved quantum number reflecting the inter-
nal structure of the heavy hadrons. The HQS appears in
many properties of heavy hadrons, such as the mass
spectrum and the decay branching ratios.1

There is another interesting feature of the charmed
baryons. In the quark model description, we have two
different orbital motions in the low-energy excitations.
One is the relative motion between two light quarks, the so-
called ρ-mode. The other is the one between the center
of mass of the two light quarks and the charm quark, the
so-called λ-mode. Owing to the mass difference of the light
and heavy quarks, the excitation energies of the λ- and
ρ-modes are kinematically well separated, and the internal
excitations are dominated exclusively by either the ρ-mode
or the λ-mode with only small mixing [23]. This contrasts
with light quark baryons where the two modes generally
mix largely, and thus is the reason that we can study the two
basic modes exclusively in the heavy baryons.
In general, internal structures of hadrons are reflected

not only in mass spectrum but also in various transition
properties such as productions and decays. Among them,
two-body decay processes through the one-pion emission
are particularly interesting due to the following reasons.
(i) The pion couples only to the light quarks, and the charm
quark behaves simply as a spectator. The dynamics of the

1The heavy quark symmetry can be applied also to exotic
heavy hadrons such as hadronic molecules [5–15] as well as to
the heavy hadrons in the nuclear medium [15–21]. See Ref. [22]
as a review for the latter.

PHYSICAL REVIEW D 95, 014023 (2017)

2470-0010=2017=95(1)=014023(20) 014023-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.014023
http://dx.doi.org/10.1103/PhysRevD.95.014023
http://dx.doi.org/10.1103/PhysRevD.95.014023
http://dx.doi.org/10.1103/PhysRevD.95.014023


pion is governed by chiral symmetry in a unique manner.
Therefore, the transitions accompanying pion emission
should bring important information about the dynamics
of the two light quarks in a heavy baryon. This is also
helpful to understand diquark properties in a heavy baryon.
(ii) Some low-lying states of excited charmed baryons have
significantly smaller excitation energies than light baryon
excitations, and the emitted pion carries only a small
momentum. Therefore, the pion emission from the excited
charmed baryons is a good place to study the quark-pion
interaction, which should be well determined by the low-
energy chiral dynamics. This can be checked by comparing
the theoretical results with the observed decays of the low-
lying charmed baryons.
In this paper we consider the pion emission decays from

the orbitally excited charmed baryons2 Λ�cð2595Þ, Λ�cð2625Þ,
Λ�cð2765Þ, Λ�cð2880Þ, Λ�cð2940Þ into Σcð2455Þπ and
Σ�cð2520Þπ, and those from orbital ground state charmed
baryons Σcð2455Þ and Σ�cð2520Þ into Λcð2286Þπ. The decay
paths are summarized in Fig. 1. To estimate the decay widths
numerically, we employ a nonrelativistic constituent quark
model with a harmonic oscillator potential as the quark
confinement force. The model is rather simple but we expect
that essential and universal features can be extracted.
There are previous works investigating strong decays of

charmed baryons [3,18,25–31]. In Ref. [30], based on
heavy hadron chiral perturbation theory the importance
of heavy quark symmetry is discussed in the heavy quark
limit. In Ref. [18], including the correction terms from
the next-to-leading order Oð1=mQÞ, relationships between
decay widths in several decay channels were obtained. In
Ref. [31], nonrelativistic quark model calculations were
performed and decays of various quark model states were
investigated. In the present study, we will also employ the
nonrelativistic quark model. It is worthwhile to emphasize
the difference between the works in Ref. [31] and ours. In
Ref. [31], the baryon wave functions are constructed in
the so-called LS coupling scheme, while we do so in the jj
coupling scheme where the total spin j of the light degrees
of freedom is first formed. In doing so, we will derive
various relations and selection rules in relation to HQS.
In a similar fashion, the one-pion emission of the heavy

baryons has been investigated in Ref. [32] (see also [33]).
There the constituent quark model was referred to in order
to derive various relations among couplings between the
heavy baryons and pion with respect to HQS also. Then
effective coupling strengths appeared there were evaluated
by comparing their amplitudes with available experimental
data. In our approach here, the one-pion emission decay
widths are explicitly evaluated by using quark model wave
functions of the harmonic oscillator type with a few model

parameters. Our quark model calculations also satisfy the
heavy quark symmetry.
In our study, we will shed light upon the following

issues. First, we check the validity of the present framework
by calculating the decay widths of the two Σc baryons,
Σcð2455ÞðJP ¼ 1=2þÞ and Σ�cð2520ÞðJP ¼ 3=2þÞ, which
are the orbital ground state of charmed baryons. These
baryons decay into Λcð2286Þπ as the only possible channel
in strong decay. Because both the initial and final charmed
baryon states are in the orbital ground states in the quark
model, those charmed baryons are good objects for con-
firmation of the validity of our formalism for the one-pion
emission. We will see that our results are in reasonably
good agreement with the experimental values.
Second, we investigate the decay properties of Λ�cð2595Þ
ðJP ¼ 1=2−Þ and Λ�cð2620ÞðJP ¼ 3=2−Þ as the lowest-
lying orbital excitations in a p-wave. They are interesting
because they have the subcomponent, the spin-0 diquark
system, which is moving in the p-wave orbital of the
λ-mode [27,34,35]. They have been observed in eþe−
collisions and pp̄ collisions [36–38] as well as in photo-
productions [39]. An interesting feature of them is that the
Λ�cð2595Þð1=2−Þ baryon has a considerably large decay
width into the Σcπ channel although its phase space is very
small. In contrast, Λ�cð2625Þð3=2−Þ has a very small width
although there is sufficiently large phase space in its decay
channel Σcπ. We show that the quark model description
with the λ-mode can explain these decay properties very
well for these low-lying Yc states. We find that, to achieve
good agreement, the πqq interaction Lagrangian of the
derivative coupling (axial-vector coupling) is needed to
reproduce the experimental decay width. This strongly
implies that the nonlinear chiral dynamics works for the
pion and constituent quarks. We will present that decay
properties of Λ�cð2595Þ in particular are much affected by
the isospin breaking effect near the thresholds.

FIG. 1. Level structure of the charmed baryons with isospin
I ¼ 0 and I ¼ 1 YcðmassÞJP considered in this study. The
hatched squares denote their total decay widths in Particle Data
Group (PDG) [24]. The arrows indicate the possible decay paths
with one-pion emission evaluated in this study.

2In this article, we express the ground and excited charmed
baryons as Yc and Y�c.
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Third, we study higher excited charmed baryons,
Λ�cð2765Þ, Λ�cð2880Þ, and Λ�cð2940Þ. Because their spins
and parities are not fully determined experimentally, we
consider various patterns of assignments of 1=2�, 3=2�,
and 5=2� which are formed by the quark model. By
comparing the resulting decay widths with existing exper-
imental data, we will see that several assignments of spin
and parity will be excluded.
Finally, we will pay special attention to Λ�cð2880Þ for the

determination of its spin and parity. In PDG [24], the spin
of the Λ�cð2880Þ is 5=2, which is determined by the angular
distribution of the Σcð2455Þπ decay [24,40], and the
positive parity is inferred from the agreement of the
observed decay branching ratio Σ�cð2520Þ=Σcð2455Þ in
comparison to the prediction from heavy quark symmetry
[3,30,40]. As carefully argued in Ref. [30], however, the
possible p-wave contribution was simply ignored in the
evaluation of the branching ratio. We show that the many
configurations for the Λ�c baryons with JP ¼ 5=2þ are
turned out to be incompatible with the present experimental
data [40] if the p-wave contribution is properly considered.
We find that only one configuration leads to a result
consistent with the data where p-wave contribution van-
ishes due to the selection rule working for the pion emission
between diquarks, the occurrence of which is a unique
feature of heavy baryons where a heavy quark behaves as a
spectator, namely in heavy quark symmetry.
This article is organized as follows. In Sec. II, we explain

wave functions of the charmed baryons employed in
our constituent quark model. In Sec. III we present the
formalism for the one-pion emission decay of the charmed
baryon. We show our numerical results for the decay widths
in Sec. IV. Finally, Sec. V is devoted to a summary.

II. BARYON WAVE FUNCTIONS WITHIN
THE QUARK MODEL

We construct the baryon wave functions in a scheme
inspired by the heavy quark symmetry. Namely, first we
construct a wave function using light degrees of freedom,
which is then combined with the heavy quark to form
the total baryon wave functions. In this manner, we will be
able to see in a transparent manner various relations and
selection rules which are valid in the heavy quark limit. Let
us start with the harmonic oscillator Hamiltonian for the
orbital wave function,

H ¼ −
X3
i¼1

~∇2
i

2mi
þ
X
i≠j

k
2
ð~ri − ~rjÞ2; ð1Þ

where ~ri are the spatial coordinates of the ith quark of mass
mi and k the spring constant.
Quark 1 and quark 2 denote the two light quarks of mass

m (m1 ¼ m2 ¼ m), and quark 3 the charm quark of massM
ðm3 ¼ MÞ. The Hamiltonian can be divided into one for the

center-of-mass motion ~X and those for the relative motions

~ρ and ~λ as

H ¼ HG þHρ þHλ; ð2Þ

where

HG ¼ −
~∇2
X

2ð2mþMÞ ; ð3aÞ

Hρ ¼ −
~∇2
ρ

2mρ
þmρω

2
ρ

2
~ρ2; ð3bÞ

Hλ ¼ −
~∇2
λ

2mλ
þmλω

2
λ

2
~λ2: ð3cÞ

Here, the coordinate of the center of mass ~X is defined as

~X ¼ 1

2mþM
ðmð~r1 þ ~r2Þ þM~r3Þ; ð4Þ

and ~ρ and ~λ are the Jacobi coordinates defined as

~ρ ¼ ~r1 − ~r2; ð5aÞ

~λ ¼ 1

2
ð~r1 þ ~r2Þ − ~r3: ð5bÞ

As indicated in Fig. 2, ~ρ is the relative coordinate between

the two light quarks (quark 1 and quark 2), and ~λ is the
relative coordinate between the center of mass of the two
light quarks and the charm quark.
The reduced masses mλ and mρ are defined by

mρ ¼
m
2
; mλ ¼

2mM
2mþM

; ð6Þ

and the frequencies of the oscillator for the λ- and
ρ-modes by

FIG. 2. Definitions of the Jacobi coordinates ~ρ and ~λ. The quarks
1 and 2 are the light quarks, and 3 the heavy (charm) quark.
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ωρ ¼
ffiffiffiffiffi
3k
m

r
; ωλ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð2mþMÞ

mM

r
: ð7Þ

Orbital wave functions of the three-quark state are
expressed by a simple product of the eigenfunctions of
the separated Hamiltonians

Ψð~r1; ~r2; ~r3Þ ¼ ψλð~λÞψρð~ρÞei~P·~X; ð8Þ

where ~P is the total momentum of the three-quark state,

and ψλð~λÞ and ψρð~ρÞ the wave functions of the Jacobi

coordinates ~λ and ~ρ. The wave functions of the harmonic
oscillator are given by

ψnlmð~xÞ ¼ RnlðrÞYlmðx̂Þ; ð9Þ

where the radial function RnlðrÞ is summarized in
Appendix A and Ylm is the spherical harmonics. We will
call the excitation with either nλ ≠ 0 (radial excitation) or
lλ ≠ 0 (orbital excitation) the λ-mode. This is also the case
for the ρ-mode. When both the λ-mode and the ρ-mode
happen, this is called the λρ-mode.
The full wave functions of baryons are constructed by

products of the isospin (flavor) part, the spin part, and the
orbital part. For the isospin part, we introduce the notation
DI
ðIzÞ for the two light quarks as

D0∶
�
D0

0 ¼
1ffiffiffi
2
p ðud − duÞ

�
; ð10Þ

for an I ¼ 0 state, and

D1∶
�
D1

1 ¼ uu;D1
0 ¼

1ffiffiffi
2
p ðudþ duÞ; D1

−1 ¼ dd

�
; ð11Þ

for I ¼ 1 states. The flavor wave function of the Λc baryons
having I ¼ 0 is then expressed by D0c (c stands for
the charm quark), and that of the Σc baryons with I ¼ 1

by D1c.
Similarly, the spin wave functions of the two light quarks

are expressed by dsðszÞ,

d0∶
�
d00 ¼

1ffiffiffi
2
p ð↑↓ − ↓↑Þ

�
; ð12Þ

d1∶
�
d11 ¼ ↑↑; d10 ¼

1ffiffiffi
2
p ð↑↓þ ↓↑Þ; d1−1 ¼ ↓↓

�
: ð13Þ

For the charm quark spin, we use the symbol χc for either
spin-up or -down.
By making use of these expressions, the full wave

functions of the ΛcðJÞ and ΣcðJÞ with total spin J are
constructed as

ΛcðJMÞ ¼ ½½ψnλlλmλ
ð~λÞψnρlρmρ

ð~ρÞ; d�j; χc�JMD0c; ð14Þ

ΣcðJMÞ ¼ ½½ψnλlλmλ
ð~λÞψnρlρmρ

ð~ρÞ; d�j; χc�JMD1c ð15Þ

by antisymmetrizing the light quark part including the
color part, which is not explicitly shown here. The total
spin J of the charmed baryon is given by the sum of the
spin of the charm quark and the “total” angular momen-
tum j of the remaining part (hereafter referred to as “light-
component spin j” or simply “light spin j”), which is
obtained by composing the orbital angular momenta lλ

and lρ and diquark spin d. For example, the wave
functions of the orbital ground state for the charmed
baryons are given by

Λcð1=2þÞ ¼ ½½ψ0sð~λÞψ0sð~ρÞ; d0�0; χc�1=2D0c; ð16Þ

Σcð1=2þÞ ¼ ½½ψ0sð~λÞψ0sð~ρÞ; d1�1; χc�1=2D1c; ð17Þ

and

Σ�cð3=2þÞ ¼ ½½ψ0sð~λÞψ0sð~ρÞ; d1�1; χc�3=2D1c: ð18Þ

In Table I, we summarize the quark configurations
for the charmed baryons considered in this article. The
observedΛc excited statesΛ�cð2595Þ andΛ�cð2625Þ baryons
are, due to their small excitation energies, assigned to be
the p-wave excitations of the λ-mode (nλ ¼ 0, lλ ¼ 1)
with a spin-0 diquark (d0). Their quark configurations are
given by

Λ�cð1=2−; λ-modeÞ ¼ ½½ψ0pð~λÞψ0sð~ρÞ; d0�1; χc�1=2D0c;

ð19Þ

and

Λ�cð3=2−; λ-modeÞ ¼ ½½ψ0pð~λÞψ0sð~ρÞ; d0�1; χc�3=2D0c:

ð20Þ

Another possibility to construct the negative parity
excited states for Λ�c is the so-called ρ-mode excitation
(nρ ¼ 0, lρ ¼ 1), which must have the spin-1 diquark (d1)
due to the antisymmetrization of the wave function. The
total spin j of the light component can be j ¼ 0, 1 and 2,
leading to a HQS singlet with the baryon spin J ¼ 1=2,
and two HQS doublets J ¼ ð1=2; 3=2Þ and J ¼ ð3=2; 5=2Þ,
respectively. For example, the concrete form for the HQS
singlet is given by
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Λ�cðJ−; ρ-modeÞ ¼ ½½ψ0sð~λÞψ0pð~ρÞ; d1�j; χc�J¼j�1=2D0c:

ð21Þ

The minimal configuration for JP ¼ 1=2þ state for Λc
baryons is an orbital excitation for the nodal quantum
number nλ¼1 or nρ¼1 as with the spin-0 diquark given by

Λ�cð1=2þ; nλ ¼ 1Þ ¼ ½½ψ1sð~λÞψ0sð~ρÞ; d0�0; χc�1=2; ð22Þ

Λ�cð1=2þ; nρ ¼ 1Þ ¼ ½½ψ0sð~λÞψ1sð~ρÞ; d0�0; χc�1=2; ð23Þ

both of which are the HQS singlets.
The higher excited states of JP with P ¼ þ can be

constructed by the d-wave excitation as the total angular

momentum. In this case, we have three possibilities, as
ðlλ;lρÞ ¼ ð2; 0Þ, (1,1), and (0,2). In the (2,0) and (0,2)
cases, the diquark spin should be 0, and the total baryon
spin can be J ¼ 3=2, 5=2, as

Λ�cðJþ;lλ ¼ 2Þ ¼ ½½ψ0dð~λÞψ0sð~ρÞ; d0�2; χc�J¼2�1=2D0c;

ð24Þ

Λ�cðJþ;lρ ¼ 2Þ ¼ ½½ψ0sð~λÞψ0dð~ρÞ; d0�2; χc�J¼2�1=2D0c:

ð25Þ

In the case with ðlλ;lρÞ ¼ ð1; 1Þ, the diquark spin should
be 1, as

Λ�cðJþ;lλ ¼ 1;lρ ¼ 1Þ ¼ ½½ψ0pð~λÞψ0pð~ρÞ; d1�j; χc�JD0c:

ð26Þ

The total angular momentum l (~l ¼ ~lλ þ ~lρ) can be 0, 1,
or 2, and the resulting light-component spin can be j ¼ ð1Þ,
(0,1,2), and (1,2,3), giving 13 states. The heavy baryons
are the HQS singlet only for j ¼ 0 and the HQS doublet
for the others.
We leave a comment on the difference between the wave

function used in Ref. [31] and ours. In Ref. [31], the bases
of the quark wave function are given by 2sþ1lJ, namely

½½lλlρ�l½½s1s2�s3�s�J; ð27Þ

while ours are given by

½½½lλlρ�l½s1s2�s12 �js3�J: ð28Þ

They are different in general except for the highest
weight state of l and s. In the latter, the subcomponent
½½lλlρ�l½s1s2�s12 �j, which is assigned as the light-
component spin j, decouples from the heavy quark spin
s3 in the heavy quark limit. Hence the latter basis is
compatible with the heavy quark symmetry.

III. FORMULATION

A. Basic interaction of the pion

In the constituent quark model, the pion can couple to a
single quark through the Yukawa interaction, which is
considered to contribute dominantly to one-pion emission
decays (Fig. 3). In the relativistic description, there are two
independent couplings of pseudoscalar and axial-vector
types,

q̄γ5~τq · ~π; q̄γμγ5~τq · ∂μ~π: ð29Þ

In the nonrelativistic model, they correspond to the follow-
ing two terms,

TABLE I. Quark configurations considered in this article.
ðnλðρÞ;lλðρÞÞ are the nodal and the angular momentum quantum
numbers for the λðρÞ-motion wave function. The spin wave
function of the two light quarks is expressed by d. The spin and
the parity of the light component is expressed by jP. The total

angular momentum ~l ¼ ~lλ þ ~lρ are also shown for the λρ-mode.
The spin and parity JP and supposed physical charmed baryons
are also shown.

Ground state charmed baryons

ðnλ;lλÞ ðnρ;lρÞ ds jP JP Possible assignment

(0,0) (0,0) d0 0þ 1=2þ Λcð2286Þ
(0,0) (0,0) d1 1þ ð1=2; 3=2Þþ Σcð2455Þ, Σ�cð2520Þ

Negative parity excited charmed baryons

ðnλ;lλÞ ðnρ;lρÞ ds jP JP possible assignment

(0,1) (0,0) d0 1− ð1=2; 3=2Þ− Λ�cð2595Þ, Λ�cð2625Þ
(0,0) (0,1) d1 0− 1=2−

1− ð1=2; 3=2Þ−
2− ð3=2; 5=2Þ− Λ�cð2880Þ(?)

Positive parity excited charmed baryons

ðnλ;lλÞ ðnρ;lρÞ ds jP JP possible assignment

(1,0) (0,0) d0 0þ 1=2þ

(0,2) (0,0) d0 2þ ð3=2; 5=2Þþ Λ�cð2880Þ(?)
(0,0) (1,0) d0 0þ 1=2þ

(0,0) (0,2) d0 2þ ð3=2; 5=2Þþ Λ�cð2880Þ(?)

Positive parity excited charmed baryons (λρ-mode)

ðnλ;lλÞ ðnρ;lρÞ ds l jP JP possible assignment

(0,1) (0,1) d1 0 1þ ð1=2; 3=2Þþ
1 0þ 1=2þ

1þ ð1=2; 3=2Þþ
2þ ð3=2; 5=2Þþ Λ�cð2880Þ(?)

2 1þ ð1=2; 3=2Þþ
2þ ð3=2; 5=2Þþ Λ�cð2880Þ(?)
3þ ð5=2; 7=2Þþ Λ�cð2880Þ(?)
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~σ · ð~pi − ~pfÞ ¼ ~σ · ~q; ~σ · ð~pi þ ~pfÞ; ð30Þ

where ~pi ð~pfÞ is the momentum of the initial (final) quarks
and ~q is the pion momentum. We keep in mind that these
two couplings in Eq. (29) are equivalent for the on-shell
particles in the initial and final states, but not for the off-
shell particles confined within a finite size. The present
case is the latter, because the quarks are confined in the
harmonic oscillator potential. In this work, we employ the
axial-vector-type coupling,

LπqqðxÞ ¼
gqA
2fπ

q̄ðxÞγμγ5~τqðxÞ · ∂μ~πðxÞ; ð31Þ

in accordance with the low-energy chiral dynamics. The
nonrelativistic limit in Eq. (31) leads to the combination
of the two terms in Eq. (29). In Eq. (31), gqA is the axial
coupling of the light quarks, for which we use the value
gqA ¼ 1 [41,42]. As we will see later, importantly, the axial-
vector coupling can explain surprisingly well the decay of
Λ�cð2595Þ through the time-derivative piece in Eq. (31). On
the contrary, the pseudoscalar coupling cannot reproduce it
because it is proportional to the pion momentum q which
almost vanishes. This strongly supports the chiral dynamics
of the pion working with constituent light quarks.

B. Matrix elements with the quark model
wave functions

In this section, we formulate the one-pion emission
decay of a charmed baryon within the quark model. The
relevant diagram is shown in Fig. 3, where one pion is
emitted from a single light quark. We write the state vector
for the Yc baryon (Yc ¼ Λc or Σc) with mass MYc

, spin J,
and momentum P in the baryon rest frame in the momen-
tum representation as

jYcðP; JÞi ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MYc

q X
fs;lg

Z
d3pρ

ð2πÞ3
Z

d3pλ

ð2πÞ3

×
1ffiffiffiffiffiffiffi
2m
p 1ffiffiffiffiffiffiffi

2m
p 1ffiffiffiffiffiffiffi

2M
p ψlρð~pρÞψlλð~pλÞ

× jq1ðp1; s1Þijq2ðp2; s2Þijq3ðp3; s3Þi; ð32Þ

which is a superposition of quarks in the momentum
space jq1ðp1; s1Þi, jq2ðp2; s2Þi, and jq3ðp3; s3Þi, weighted
by the baryon wave functions ψρð~pρÞ and ψλð~pλÞ. Here the
relative momenta ~pρ and ~pλ are defined by

~pλ ¼
1

2mþM
ðM~p1 þM~p2 − 2m~p3Þ; ð33Þ

~pρ ¼
1

2
ð~p1 − ~p2Þ; ð34Þ

and the total momentum of three quarks, which is the
baryon momentum, is given by

~P ¼ ~p1 þ ~p2 þ ~p3: ð35Þ

The factors of 1=
ffiffiffiffiffiffiffi
2m
p

are for the normalizations of the

confined quark states so that
R d3pj

ð2πÞ3 jψð~pjÞj2 ¼ 1. The sumP
fs;lg is taken over the spins of the three quarks and their

angular momenta such that the total angular momentum
gives the spin J.
The decay amplitude for Yc → Y 0cπ is given byZ

d4x1hY 0cðP0; J0ÞπðqÞjiLðx1ÞjYcðP; JÞi; ð36Þ

where only one light quark jq1i in the initial and final
baryon state participates in the transition as

hq01ðp01; s01ÞπðqÞjiLπqqðx1Þjq1ðp1; s1Þi

≃ i
gqA
2fπ

eiðp01−p1þqÞ·x1fiωπhχs0
1
jð~p1 þ ~p01Þ · ~σjχs1i

− i2mhχs0
1
jð~p1 − ~p01Þ · ~σjχs1ig; ð37Þ

while the other light quark jq2i and the charm quark jq3i
are spectators and then their matrix elements are just delta
functions of their three-momenta

hq0jðp0j; s0jÞjqjðpj; sjÞi ¼ 2Ejð2πÞ3δð3Þð~p0j − ~pjÞδsjs0j
¼ 2Ej

Z
d3xje

−ið~p0j−~pjÞ·~xjhχs0j jχsji;

ð38Þ

where j ¼ 2 or 3. We have now ten x-integrals asZ
dx01d

3x1d3x2d3x3eiðp
0
1
−p1þqÞ·x1e−ið~p02−~p2Þ·~x2e−ið~p03−~p3Þ·~x3 ;

ð39Þ

and the first x01-integral leads to the energy conservation
ð2πÞδðE1 − E01 − ωπÞ in the q1 → q01π process. We rewrite
the remaining ~x-integrals in terms of the Jacobi coordinates
and we find

FIG. 3. Decay amplitude of the charmed baryon Yc to Y 0c with
one-pion emission.
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Z
d3Xd3ρd3λe−ið~P

0−~PÞ·~Xe−ið~p0ρ−~pρÞ·~ρe−ið~p
0
λ−~pλÞ·~λe−i~q·ð~Xþ

M
2mþM~λþ1

2
~ρÞ: ð40Þ

The ~X-integral leads to the total three-momentum conservation, via ð2πÞ3δð3Þð~P − ~P0 − ~qÞ. By eliminating the common
delta functions for the energy-momentum conservation, we find the amplitude for Yc → Y 0cπ decay as

−itYc→Y 0cπ ¼
X
fΛ;Σg

i
gqA
2fπ

ffiffiffiffiffiffiffiffiffiffiffi
2MYc

q ffiffiffiffiffiffiffiffiffiffiffi
2MY 0c

q 1

2m

Z
d3pρ

ð2πÞ3
Z

d3p0ρ
ð2πÞ3

Z
d3pλ

ð2πÞ3
Z

d3p0λ
ð2πÞ3

Z
d3λ

×
Z

d3ρψ�l0ρð~p0ρÞe−i~p
0
ρ·~ρψlρð~pρÞei~pρ·~ρψ�l0λð~p

0
λÞe−i~p

0
λ·
~λψlλð~pλÞei~pλ·~λe−i~qλ·~λe−i~qρ·~ρ

×

�
iωπhχs0

1
jð~p0λ þ 2~p0ρÞ · ~σjχs1i þ i

�
ωπ

M
2mþM

− 2m

�
hχs0

1
j~σ · ~qjχs1i

�
hχs0

2
jχs2ihχs0c jχsci; ð41Þ

where the effective momentum transfer ~qλ and ~qρ appearing in the pion plane wave e−i~q·~x1 is defined by

~qλ ¼
M

2mþM
~q; ~qρ ¼

1

2
~q: ð42Þ

The first term in Eq. (41) involves the relative momenta ~p0ρ and ~p0λ of the constituent quarks in the final baryon, which can be
replaced by the derivative of the wave functions as

Z
d3p0ρ
ð2πÞ3 ~p

0
ρψ
�
l0ρ
ð~p0ρÞe−i~p0ρ·~ρ ¼ i ~∇ρ

Z
d3p0ρ
ð2πÞ3 ψ

�
l0ρ
ð~p0ρÞe−i~p0ρ·~ρ ¼ i ~∇ρψ

�
l0ρ
ð~ρÞ; ð43Þ

and the same for ~p0λ. In the case of ΛcðJMÞþ → ΣcðJ0M0Þþþπ−, after performing the momentum integrals and by showing
the flavor (isospin) part explicitly, the decay amplitude is given by

−itΛþc →Σþþc π− ¼ −
gqA
2fπ

ffiffiffiffiffiffiffiffiffiffiffi
2MΛc

q ffiffiffiffiffiffiffiffiffiffiffi
2MΣc

q 1

2m

Z
d3λd3ρe−i~qλ·~λe−i~qρ·~ρhD1cjτþð1ÞjD0cih½½ψlλðλÞψlρðρÞ; d�j

0
; χc�J0M0 j

×

�
ωπði∇ λ þ 2i∇ ρÞ · ~σð1Þ þ

�
ωπ

M
2mþM

− 2m

�
~σð1Þ · ~q

�
j½½ψlλðλÞψlρðρÞ; d�j; χc�JMi; ð44Þ

where ~σð1Þ and τþð1Þ matrices operate the spin and isospin
wave functions of quark 1. For simplicity, the notation for
the bra and ket states

j½½ψlλðλÞψlρðρÞ; d�j; χc�JMi
≡ X
fl;sg

ψlλðλÞψlρðρÞjχs1ijχs2ijχsci; ð45Þ

are used in Eq. (44). The derivatives ∇ λ and ∇ ρ operate the
final state wave functions. We also have to consider the case
that the pion couples to the another light quark q2ðx2Þ.
Summing over the amplitudes of the two cases coherently,
we obtain the total decay amplitude.

C. Decay widths with the helicity amplitude

The decay width of Bi → Bfπ is given by

Γ ¼ 1

16π2
q

2M2
i

Z
dΩ

X
f

jtBi→Bfπj2; ð46Þ

where q is themagnitude of the three-momentum of the final
pion in the center-of-mass frame, and the sum is taken over
the possible quantum numbers, in the present case, the spin
state (helicity) of the final baryon for a given initial baryon
spin. The matrix element depends on the decay angleΩ (the
angle between the quantization axis of the initial baryon spin
and the momentum vector ~pf of the final baryon) and on the
helicity of Bf. In this article, we employ the helicity
amplitude approach to calculate the decay width in Eq. (46).
In this approach, we expand the initial spin state
jBiðJ; Jz0 ¼ JÞiz0 , which is quantized along a fixed êz0 axis,
in the angular momentum basis quantized along the direction
of the momentum of the final baryon, êz ¼ ~pf=j~pfj, by

jBiðJ; JÞiz0 ¼
X
M

jBiðJ;MÞizDJ
MJð−ϕ; θ;ϕÞ; ð47Þ

where DJ
MJ are the Wigner’s D functions [43]. If the spin of

the final state hBfð~pf; hÞj is quantized along êz, then the
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helicity h is equal to the third component of the final state
spin,

hBfð~pf; hÞj ¼ zhBfð~pf; J0; hÞj; ð48Þ

where J0 is the spin of the final baryon Bf.
Hence the matrix element is written with its angular

dependence shown explicitly as

zhBfð~pf; J0; hÞπð−~pfÞjt̂jBiðJ; JÞiz0
¼ DJ

MJð−ϕ; θ;ϕÞzhBfð~pf; J0; hÞπð−~pfÞjt̂jBiðJ; hÞiz;
ð49Þ

where only the diagonal element M ¼ h remains after
summing over

P
M, because of the helicity (spin z-

component) conservation. In Eq. (49) both of the initial
and final spins are quantized along the êz axis.
Now, the helicity amplitude Ah is defined by

ð2πÞ4δð4ÞðPf−PiÞAh¼ zhBfð~pf;J0;hÞπð−~pfÞjt̂jBiðJ;hÞiz:
ð50Þ

The amplitude Ah depends on J, J0, and h, but does not
depend on the decay angle, because the spin quantization
axis is chosen along the direction of the momentum of the
final baryon ~pf, which is equal to the situation of the decay
into the z direction. The possible angular dependence of ~pf

is taken care of by the D function, and the angular-integral
dΩ in Eq. (46) then can be performed exactly and finally
we find

Γ ¼ 1

4π

q
2M2

i

1

2J þ 1

X
h

jAhj2; ð51Þ

where q ¼ j~pfj. Here, the amplitude A−h with the opposite
helicity has the same form as Ah.

D. Parameters

In the present Hamiltonian of the harmonic oscillator in
Eq. (1), we have three model parameters; m the mass of the
light quark, M that of the heavy quark, and k the spring
constant. The masses of the quarks are set to be

m ¼ 0.35� 0.05 ðGeVÞ;
M ¼ 1.5� 0.1 ðGeVÞ: ð52Þ

We tune the value of k so that the level spacing of
the λ-mode excitation as ωλ ∼ 0.35� 0.05 GeV and the
root-mean-square radius of the charmed baryon asffiffiffiffiffiffiffiffiffi
hR2i

p
∼ 0.45–0.55 fm, which is defined as the average

of the distance of each quark from the center of mass as

R2 ≡ 1

3

X3
i¼1
ð~ri − ~XÞ2

¼ 1

3

�
2ð2m2 þM2Þ
ð2mþMÞ2 λ2 þ 1

2
ρ2
�
: ð53Þ

We summarize the model parameters used in the present
calculation in Table II. Depending on these input param-
eters, the range parameters of the Gaussian wave functions
vary within the range of

aλ ¼ 0.36–0.44 ðGeVÞ;
aρ ¼ 0.26–0.32 ðGeVÞ; ð54Þ

which is the source of the uncertainty in our theory
predictions.

III. NUMERICAL RESULTS

A. Decays of the ground state Σcð1=2þÞ
and Σ�cð3=2þÞ → Λcð1=2þÞπ

The Σcð2455Þ baryon is an orbital ground state
baryon having JP ¼ 1=2þ. The mass of the Σcð2455Þþþ
is 2453.97� 0.14 MeV and its full width is
1.89þ0.09−0.18 ðMeVÞ [24]. The Σcð2455Þ → Λcð2286Þπ decay
channel is the only possible strong decay and its branching
ratio is ∼100%. The Σ�cð2520Þ baryon has JP ¼ 3=2þ and
is expected to form a HQS doublet with Σcð2455Þ. The
mass of the Σ�cð2520Þþþ is 2518.41þ0.21−0.19 ðMeVÞ and its
width is 14.78þ0.30−0.40 ðMeVÞ [24]. Again the Λcð2286Þπ
decay channel is the only possible channel in the strong
decay and its branching ratio is ∼100%. Because both
Σcð2455Þ and Σ�cð2520Þ baryons are the spin and isospin
flip states of the ground state Λcð2286Þ, their decay
rates reflect mainly the spin-isospin structure and is rather
insensitive to the spatial structure. Therefore, we can use
these processes to check the validity of the present quark
model calculations.

TABLE II. Range of the model parameters of fm;M; kg
(inputs) and the properties of resulting harmonic oscillator
(H.O.) functions (outputs).

Inputs light quark mass m 0.3–0.4 (GeV)
heavy quark mass M 1.4–1.6 (GeV)
H.O. potential k 0.02–0.038 ðGeV3Þ
H.O. energy ωλ 0.3–0.4 (GeV)

Outputs H.O. energy ωρ 0.42–0.58 (GeV)
Gauss range aλ 0.36–0.44 (GeV)
Gauss range aρ 0.26–0.32 (GeV)ffiffiffiffiffiffiffiffi
hλ2i

p
0.55–0.67 (fm)ffiffiffiffiffiffiffiffiffi

hρ2i
p

0.76–0.93 (fm)ffiffiffiffiffiffiffiffiffi
hR2i

p
0.45–0.55 (fm)
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The helicity amplitude for the Σcð1=2þÞ → Λcð1=2þÞπ
decay is given by

Ah ¼ A∇·σ
h þ Aq·;σ

h ; ð55Þ

where A∇·σ
h and Aq·σ

h correspond to the ð ~∇λ þ 2 ~∇ρÞ · ~σ term
and the ~q · ~σ term in Eq. (44), respectively. They are
given by

−iA∇·σ
1=2 ¼ G

ωπ

m

�
−

1ffiffiffi
3
p

��
1

2
qλ þ qρ

�
FðqÞ; ð56Þ

and

−iAq·σ
1=2 ¼ −G

q
m

�
−

1ffiffiffi
3
p

��
M

2mþM
ωπ − 2m

�
FðqÞ;

ð57Þ

where qλðρÞ ≡ j~qλðρÞj and G denotes the coupling constant
and the normalizations as

G ¼ gqA
2fπ

ffiffiffiffiffiffiffiffiffiffiffi
2MΛc

q ffiffiffiffiffiffiffiffiffiffiffi
2MΣc

q
: ð58Þ

The function FðqÞ denotes the Gaussian form factor as

FðqÞ ¼ e−q
2
λ=4a

2
λe−q

2
ρ=4a2ρ ; ð59Þ

which is the Fourier transform of ground to ground
transition amplitude. The factors of aλ and aρ correspond
to the inverse of the range of the Gaussian wave functions
for λ- and ρ-motions, respectively, and their definitions
are given in Appendix A. Similarly, the helicity amplitude
for the Σ�cð3=2þÞ→ Λcð1=2þÞπ decay is given by the same
expressions as Eqs. (56) and (57) but the factor −1=

ffiffiffi
3
p

is
replaced by

ffiffiffiffiffiffiffiffi
2=3

p
in both equations.

In Table III, we show the numerical results for the
Σcð2455Þð1=2þÞþþ → Λþc πþ decay. The calculated decay
width is almost twice as large as the experimental value.
We also show the results of the Σ�cð2520Þð3=2þÞ decay in
the same table. The calculated decay width of Σ�cð3=2þÞ is
again twice as large as the experimental value.

As shown in the table, the uncertainty from the ambi-
guities of the quark model parameters ðm;M; kÞ is small,
which means the decay width of the ground state to the
ground state does not depend on the detail of the wave
functions, as anticipated. Therefore the discrepancy might
come from the axial-coupling constant gqA for the πqq
interaction.
In the present calculation, we employ gqA ¼ 1 for the

qππ coupling, but it is also known that this value does
not reproduce the axial-coupling constant of the nucleon
gNA ¼ 1.25 but leads to gNA ¼ 5=3 instead. To reproduce
the axial-coupling constant of the nucleon gNA , one needs
a suppression factor of about 3=4 for gqA, which reduces
the decay width by a factor ð3=4Þ2 ∼ 0.56, the result of
which is consistent with the experimental data. This is
expected because the pion emission decays essentially
measure the axial couplings for the relevant baryons
(transitions). Our input here is the axial coupling of the
constituent quarks, which can take in principle any value
when chiral symmetry is spontaneously broken. Here we
have shown that it is about 3=4 empirically from the
phenomena of the ground state baryons not only for the
nucleon but also for charmed baryons, which is not far
from the discussion of Weinberg [41]. The suppression
of gA has been considered to be originated from the
mixing of p-waves due to relativistic corrections or pion
clouds [44]. This, however, may vary for different
baryon excitations. Keeping this in mind, in the follow-
ing calculations for decays of the excited states, we keep
using the value gqA ¼ 1.

B. Λ�cð2595Þð1=2−Þ → Σcð2455Þð1=2þÞπ
The Λ�cð2595Þþ baryon is the first excited charmed

baryons with I ¼ 0 and is expected to have JP ¼ 1=2−.
The total decay width is Γexp ¼ 2.6� 0.6 MeV, where
the Λþc ππ channel is the only strong decay. The Λþc ππ
seems to be dominated by Σcð2455Þπ and its branching
ratio ΓðΣcπÞ=ΓðtotalÞ is quoted as BRðΣþþc π−Þ ¼
BRðΣ0

cπ
þÞ ¼ ð24� 7Þ% [24]. The direct three-body

decay width is 18� 10%, which we do not calculate
in this article.
Employing the quark model, we have three possibilities

to describe the excited Λ�c baryon having JP ¼ 1=2− as
discussed in the previous section. One is the λ-mode
excitation having jP ¼ 1−, and the other two are the ρ-
mode excitations having jP ¼ 0− and jP ¼ 1−.
The helicity amplitude for the π− emission decay of

Λ�cð1=2−; λÞþ → Σcð1=2þÞþþπ− is found again as the sum

Ahð1=2−; λÞ ¼ A∇·σ
h ð1=2−; λÞ þ Aq·σ

h ð1=2−; λÞ; ð60Þ

where

TABLE III. Calculated decay widths of Σcð2455Þþþ and
Σ�cð2520Þþþ into the Λcð2286Þþπþ pair. q is the momentum
of the final particle in the center-of-mass frame.

Bi JP

(MeV)
Γexp

(MeV)
q

(MeV/c)
ΓthðΣcðJþÞþþ →

Λcð2286ÞþπþÞ (MeV)

Σcð2455Þþþ 1=2þ 1.89 89 4.27–4.33
(2453.98)
Σ�cð2520Þþþ 3=2þ 14.78 177 30.3–31.6
(2517.9)
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−iA∇·σ
1=2ð1=2−;λÞ¼ iG

ωπ

m

�
c0aλþc2

�
1

2
qλþqρ

�
qλ
aλ

�
FðqÞ;

ð61Þ

and

−iAq·σ
1=2ð1=2−; λÞ ¼ −iG

q
m

�
M

2mþM
ωπ − 2m

�
c2

qλ
aλ

FðqÞ;

ð62Þ

where

c0 ¼ −
1ffiffiffi
2
p ; c2 ¼

1

3
ffiffiffi
2
p ; ð63Þ

which are determined by the Clebsch-Gordan coefficients.
We summarize the general expressions in Appendix B. We
can see that the A∇·σ starts from Oðq0Þ, reflecting properly
the nature of the possible s-wave decay, while Aq·σ is of
order Oðq2Þ. We will see that the former gives a consid-
erable contribution to the Λ�cð2595Þ decay width.
As for the ρ-mode with j ¼ 1, we find a similar form for

the Λ�cð1=2−; ρj¼1Þþ → Σð1=2þÞþþπ− decay as

− iA∇·σ
1=2ð1=2−; ρj¼1Þ

¼ iG
ωπ

m

�
c0aρ þ c2

�
1

2
qλ þ qρ

�
qρ
aρ

�
FðqÞ; ð64Þ

and

− iAq·σ
1=2ð1=2−; ρj¼1Þ

¼ −iG
q
m

�
M

2mþM
ωπ − 2m

�
c2

qρ
aρ

FðqÞ; ð65Þ

where

c0 ¼ 2; c2 ¼ −
1

3
: ð66Þ

In contrast to the above two cases, the situation is quite
different for the decay of Λ�cð1=2−; ρj¼0Þ having the light
spin j ¼ 0. The amplitudes are exactly zero as

A∇·σ
1=2ð1=2−; ρj¼0Þ ¼ 0; ð67Þ

Aq·σ
1=2ð1=2−; ρj¼0Þ ¼ 0; ð68Þ

for the decay into the Σcð1=2þÞ baryon. This is due to the
spin conservation of the light component; the spin-parity
jP ¼ 0− state cannot decay into jP ¼ 1þ with the pion 0−

for any combination of relative angular momentum.
Generally, as we will see in other examples, such require-
ments lead to selection rules due to the consistency between

the decays of baryons and decays of the light component, or
the diquark in the quark model because the pion couples
only to the light quarks. Such observations can be done best
by using the baryon wave functions as inspired by the
heavy quark symmetry.
To estimate the decay width of the Λ�cð2595Þ baryon, we

should take the finite width of the finial Σc baryon into
account, because the Σcπ threshold is very close to the
Λ�cð2595Þ mass. Indeed, the Σþþc π− and Σ0

cπ
þ channels

barely close at the Λ�cð2595Þ mass while the Σþc π0 channel
opens, which means the isospin breaking is large contrary
to the assumption made in PDG [24]. To this end, we
convolute the decay width of Λ�cð2595Þ by the finite width
of Σc as

~ΓΛ�c ¼
1

N

Z
d ~MΣc

Im
ΓΛ�cð ~MΣc

Þ
~MΣc

−MΣc
þ iΓΣc

ð ~MΣc
Þ=2 ; ð69Þ

where ΓΛ� ð ~MΣÞ is the calculated decay width of Λ�c given in
Eq. (51) which depends on the mass ~MΣ of the final Σc
baryon. The normalization factor N is defined by

N ¼
Z

d ~MΣc
Im

1

~MΣc
−MΣc

þ iΓΣc
ð ~MΣc

Þ=2 : ð70Þ

We take into account the phase space factor for the Σc
decay width in the convolution integral as

ΓΣð ~MΣc
Þ ¼ ΓΣc

MΣc

~MΣc

�
λ1=2ð ~M2

Σc
;M2

Λc
; m2

πÞ
λ1=2ðM2

Σc
;M2

Λc
; m2

πÞ
�3

× θð ~MΣc
−MΛc

−mπÞ; ð71Þ

where MΛc
is the mass of the ground state Λcð2286Þ, and

ΓΣc
is the decay width of Σc given by ΓΣc

¼ 1.89 ðMeVÞ
for Σþþc , ΓΣc

¼ 1.83 ðMeVÞ for Σ0
c. Because only the upper

limit is determined for Σþc , we calculate the ratio of
ΓðΣþþc Þ=ΓðΣþc Þ by employing our formalism discussed
in Sec. IVA, and then estimate it as ΓΣc

¼ 2.1 ðMeVÞ
for Σþc . The convolution corresponds to the consideration
of the sequential decay of the Λ�c → Σcπ followed by
Σc → Λcπ as depicted in Fig. 4. The double π0 emission
decay of Λ�cð2595Þþ → Λcð2286Þπ0π0 can be approxi-
mated by the convoluted single π0 decay of Λ�cð2595Þþ →
Σcð2455Þþπ0 (including a symmetry factor for the two

FIG. 4. Feynman diagram of the sequential decay of Λ�c → Σcπ
followed by Σc → Λcπ supposed in Eq. (69).
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identical particles), because of the dominant contribution
of the on-shell Σc [27]. Similarly, the charged pion decay
Λcπ

þπ− is approximated by the sum of the Σþþc π− and
Σ0
cπ
þ decays.

In Fig. 5, we show the calculated result for the decay
width of the Λ�cð2595Þ baryon in the case of the λ-mode
as functions of the mass of the Λ�c (the total energy

ffiffiffi
s
p

).
We find that the π� decay width remains finite even atffiffiffi
s
p ¼ MΛ�c , which is below the π� threshold, owing to the
finite width of the Σc baryon. We can also see that the π0

threshold is located at 5 MeV below
ffiffiffi
s
p ¼ MΛ�c and then

the π0 decay width is much larger than that of π�, meaning
a large isospin breaking. We also show the resulting

Breit-Wigner (BW) form in Fig. 5 with the fixed width
at

ffiffiffi
s
p ¼ MΛ�c ¼ 2592.25 ðMeVÞ and with the energy-

dependent width. In the present case, the two BW functions
resemble each other because of the resulting small width.
However, the energy dependence of the width is large, so
we have to be careful when estimating the BW width
for Λ�cð2595Þ.
In Table IV we show the calculated decay widths

of Λ�cð2595Þþ → Σcð2455Þþþπ−, Σcð2455Þ0πþ, and
Σcð2455Þþπ0 together with the sum of these three channels
evaluated at

ffiffiffi
s
p ¼ MΛ�c ¼ 2592.25 ðMeVÞ. These numbers

have uncertainty reflecting that of model parameters of
ðm;M; kÞ as discussed in Sec. III D. The uncertainty of the
model parameters leads to an almost factor-2 difference in
the decay widths. In spite of this uncertainty, including the
one coming from gqA, using the axial-vector coupling works
well to reproduce the relatively large decay width of
Λ�cð2595Þ located at almost the Σcπ threshold. This is
due to the time-derivative term with the strength determined
by the mass of the pion. Thus the decay of Λ�cð2595Þ
provides a good example to show that the chiral theory
works up to the order OðmπÞ. As discussed in the previous
section, we find that, by employing the pseudoscalar
coupling (γ5) for the pion, we obtain less than 1 (keV)
for the Λ�cð2595Þ decay due to the small pion momentum q.
We also find that the assignment of the ρ-mode con-

figuration with jP ¼ 1− to the Λ�cð2595Þ leads to an almost
2.5–5 times larger width than the experimental value for the
total width. They are significantly large even if we consider
the uncertainty of the pion coupling, because the exper-
imental total width contains not only the Σcπ decay channel
but also the nonresonant three-body decay of Λcππ, which
we do not consider in this paper.
In addition, the ρ-mode configuration with jP ¼ 0−

cannot decay into Σcπ. Therefore we can conclude that,
by a detailed study of decay width, it is likely that the
Λ�cð2595Þ baryon is dominated by the λ-mode configuration

TABLE IV. Calculated decay width of the Λ�cð2595Þ → Σcð2455Þπ. The charge decay channels are indicated in the table, where
½Σcπ�þ denotes the isospin summed width. The quantum numbers of the λ- and ρ-modes are indicated by ðnλ;lλÞ and ðnρ;lρÞ, and
JΛ�cðjÞP stands for the assigned spin and parity for Λ�c with the light-component spin j. The masses of Λ�c, Σc, and π are also shown in the
table. The symbol † indicates the closed channels for on-shell Σcπ.

Λ�cð2595Þþ Decay width [MΛ� ¼ 2592.25 ðMeVÞ]
Decay channel full ½Σcπ�þ Σþþc π− Σ0

cπ
þ Σþc π0

Experimental value Γexp (MeV) [24] 2.6� 0.6 � � � 0.624 (24%) 0.624 (24%) � � �
Momentum of final particle q (MeV/c) � � � � � � † † 34

This work ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞP
Γ (0,1), (0,0) 1=2ð1Þ− 1.5–2.9 0.13–0.25 0.15–0.28 1.2–2.4
(MeV) (0,0), (0,1) 1=2ð0Þ− 0 0 0 0

1=2ð1Þ− 6.5–11.9 0.57–1.04 0.63–1.15 5.3–9.7
MΣ (MeV) 2453.97 2453.75 2452.9

input parameters employed ΓΣ (MeV) 1.89 1.83 2.2
in the convolution Eq. (69) mπ (MeV) 139.57 139.57 134.98

FIG. 5. Convoluted decay width of Λ�cð2595; λ-modeÞ →
Σcð2455Þπ as functions of total energy (¼ the mass of the
Λ�c). The thin (blue) lines denote the π−, π0, and πþ emission
decay widths as indicated in the figure. The thick (red) solid
line denotes the sum of the three charge states. The resulting
Breit-Winger spectral functions of the Λ�c are also shown in
arbitrary units.
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as expected. We might add a comment that other assign-
ments of the JP ¼ 3=2− or higher spin configurations for
Λ�cð2595Þ cannot reproduce the large experimental value
for the decay width due to the d-wave (or higher partial
wave) nature.

C. Λ�cð2625Þð3=2−Þ → Σcð2455Þð1=2þÞπ
The Λ�cð2625Þþ baryon is a very narrow resonant state

and is expected to have JP ¼ 3=2−. In PDG, only the upper
limit of the decay width is given as Γexp < 0.97 MeV [24].
The Λþc ππ and its submode Σcπ are the only strong decay
channels. The branching ratio BRðΣþþc π−Þ=BRðΛþc πþπ−Þ
is less than 5%, and therefore the partial decay width for
ΓexpðΛ�cð2625Þþ → Σþþc π−Þ is less than 0.05 MeV.
As discussed in the previous section, the Λ�cð2625Þ

baryon is assigned to be the low-lying orbital excitation
state with lλ ¼ 1 with a spin-0 light diquark. The helicity
amplitude for the Λ�cð3=2−; λÞþ → Σþþc π− is then given
by the same expressions as Eqs. (61) and (62) but with the
different coefficients as

c0 ¼ 0; c2 ¼ −
1

3
: ð72Þ

In contrast to the case of Λ�cð2595Þ, the coefficient c0 of the
q0 term is zero and then the helicity amplitudes A∇·σ

h and
Aq·σ
h are of order of Oðq2Þ, as expected for the 3=2− →

1=2þ þ 0− decay.
We have two more possible quark configurations for the

Λ�c excitations with JP ¼ 3=2−, which are the ρ-mode
excitations with j ¼ 1 and j ¼ 2. The helicity amplitudes
for these configurations are found to be again the same as
Eqs. (64) and (65) but with different coefficients as

c0 ¼ 0; c2 ¼ −
1

3
ffiffiffi
2
p ; ð73Þ

for the Λ�cð3=2−; ρj¼1Þ → Σcð1=2þÞπ decay, and

c0 ¼ 0; c2 ¼
1ffiffiffiffiffi
10
p ; ð74Þ

for Λ�cð3=2−; ρj¼2Þ → Σcð1=2þÞπ decay.
In Table V we show the numerical results for the

Λ�cð2625Þþ → Σcð2455Þþþπ− decay. In the Λ�cð2625Þ case,
we do not convolute over the finite width of Σc because the
Σcπ threshold is well below the Λ�cð2625Þ mass, and the
convolution does not change the result much. In the table,
we also show the calculated decay widths of other assign-
ments than JP ¼ 3=2−.
We find that the assignment of the λ-mode configu-

ration with JP ¼ 3=2− for Λ�cð2625Þ works very well
to describe the small decay width of Λ�cð2625Þ→ Σcπ,
while the assignment of 1=2− leads to a larger width
than the experimental value. In contrast to the case of

Λ�cð2595Þð1=2−Þ, however, we cannot exclude the possibil-
ities of the ρ-mode configurations for Λ�cð2625Þð3=2−Þ by
the study of decay width, because the calculated Σcπ decay
widths for the λ-mode and the two ρ-modes with J ¼ 3=2−

are accidentally similar to each other. It is interesting,
however, that these three modes give quite different
transition amplitudes for the Σ�cð3=2þÞπ decay as will be
discussed later in Sec. IV D, although the Σ�cπ channel is
closed for Λ�cð2625Þ. To discuss the structure of Λ�cð2625Þ
in more detail, we need systematical analyses of the mass
spectrum [23], nonresonant three-body decay, and so on.

D. Decays of the higher excited Λ�c baryons

In Ref. [24], three more Λ�c states are nominated,
Λ�cð2765Þ, Λ�cð2880Þ, and Λ�cð2940Þ, though Σ�cð2765Þ
cannot be excluded for Λ�cð2765Þ. Among them, spin of
Λ�cð2880Þ is the only quantum number that is well
determined in the experiment. The parity of Λ�cð2880Þ is
assigned to be positive, but it deserves being carefully
examined. Therefore we consider possible assignments of
both positive and negative parity cases. For these higher
states, the Σ�cð2520Þπ channel opens in addition to the
Σcð2450Þπ channel. The ratio of ΓðΣ�cπÞ=ΓðΣcπÞ also can
help us to determine the quantum numbers, and the quark

configuration as well. In the following discussions, Σð�Þc

denotes Σcð2455Þ with 1=2þ or Σ�cð2520Þ with 3=2þ.

1. Λ�cð2765Þ→ Σð�Þc π decay

The Λ�cð2765Þ baryon is seen in Λþc πþπ− channel
as a broad peak [24,45]. The width is reported as
Γexp ¼ 50 ðMeVÞ, but its quantum numbers are still
unknown. For this baryon, we consider the p-wave
excitations in a λ- or ρ-mode with negative parity;
fðnλ;lλÞ; ðnρ;lρÞg ¼ fð0; 1Þ; ð0; 0Þg or fð0; 0Þ; ð0; 1Þg.

TABLE V. Calculated decay widths of the Λ�cð2625Þ →
Σcð2455Þþþπ−. The quantum numbers of the λ- and ρ-mode
are indicated by ðnλ;lλÞ and ðnρ;lρÞ, and JΛ�cðjÞP stands for the
assigned spin and parity for Λ�c with the light-component spin j.
The masses of the Σþþc and π− are MΣþþc ¼ 2453.97 ðMeVÞ and
mπ− ¼ 139.57 ðMeVÞ.
Λ�cð2625Þþ decay width [MΛ� ¼ 2628.11 ðMeVÞ]
decay channel full Σþþc π−

Experimental value Γexp (MeV) [24] < 0.97 < 0.05ð< 5%Þ
Momentum of final particle q (MeV/c) � � � 101

This work ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞP
Γ (0,1), (0,0) 1=2ð1Þ− 5.4–10.7
(MeV) 3=2ð1Þ− 0.024–0.039

(0,0), (0,1) 1=2ð0Þ− 0
1=2ð1Þ− 24.0–45.1
3=2ð1Þ− 0.013–0.019
3=2ð2Þ− 0.023–0.034
5=2ð2Þ− 0.010–0.015
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We also consider the possibility of s-wave or
d-wave excitations in λ-mode with positive parity;
fðnλ;lλÞ; ðnρ;lρÞg ¼fð1; 0Þ; ð0; 0Þg or fð0; 2Þ; ð0; 0Þg.
Further studies on Λ�cð2765Þ with other quark configura-
tions are in progress and will be discussed elsewhere [46].
In Table VI, we summarize the possible Λ�c spin-parity

considered here together with the calculated results.
Because the partial decay widths are not measured yet,
we show the isospin summed width calculated by using the
isospin-averaged massesMΣð�Þc

and mπ . The concrete forms

of the helicity amplitudes are summarized in Appendix B.
We find that, for a higher j, the decay width tends to be
smaller due to the suppression of the phase space for higher
relative angular momentum in the final state.
In the last column in Table VI, we also show the ratio of

the decay widths to Σcð2455Þπ and Σ�cð2520Þπ defined by

R ¼ ΓðΛ�c → Σ�cπÞ
ΓðΛ�c → ΣcπÞ

: ð75Þ

We find the order of magnitudes of the ratio R are
quite different for different configurations even if the
spin-parity is the same, e.g. JΛ�cðjÞP ¼3=2ð1Þ−ðλ-modeÞ,
3=2ð1Þ−ðρ-modeÞ, and 3=2ð2Þ−ðρ-modeÞ. In fact, these
three modes give similar widths for the Σcπ decay as
discussed in the previous section, but give quite different
widths for Σ�cπ. In principle, the Λ�cð3=2−Þ baryon can
decay by s-wave to Σ�cð3=2þÞπð0−Þ, while it decays by
d-wave to Σcð1=2þÞπð0−Þ. Then the ratio R can be
expressed by

R ¼ ΓðΣ�cπÞs þ ΓðΣ�cπÞd
ΓðΣcπÞd

; ð76Þ

which is, in general, larger than unity. This is the case for
the JΛ�cðjÞP ¼ 3=2ð1Þ− as

Rð3=2ð1Þ−ðλ-modeÞÞ ¼ 5.6–7.8; ð77Þ

Rð3=2ð1Þ−ðρ-modeÞÞ ¼ 49–70: ð78Þ

In contrast, the light quark system having jP ¼ 2− cannot
decay by s-wave to that of 1þ in Σ�cð3=2þÞπð0−Þ because of
the spin-parity conservation. This is another example of the
selection rules in the heavy quark limit. Due to the absence
of an s-wave contribution, the ratio R is smaller than unity
for 3=2ð2Þ− as

Rð3=2ð2Þ−ðρ-modeÞÞ ¼ ΓðΣ�cπÞd
ΓðΣcπÞd

¼ 0.25–0.26: ð79Þ

In this configuration, the amplitudes of Σcπ and Σ�cπ decays
are the same except the momentum q of pion as discussed
in Ref. [3]. Here, we stress that the s-wave suppression for
JPΛ�c ¼ 3=2− is found only in the case of jP ¼ 2−, and not in
the other quark configurations. This is the same phenome-

non that the 1=2ð0Þ− state cannot decay into Σð�Þc π as
mentioned in Sec. IV B, and also is seen for the decay of the
Λ�cð2880Þ as discussed in the next section.
As for the magnitude of the decay width, we find that the

assignments of JΛ�cðjÞP ¼ 1=2ð1Þ− and 3=2ð1Þ− (lρ ¼ 1)
give rather large decay widths due to the s-wave nature into
either Σcð1=2þÞπ or Σ�cð3=2þÞπ. We can exclude these
assignments because the resulting decay widths are too
large. Calculated widths for λ-modes (lλ ¼ 1) are slightly
larger as compared with the observed full width, which

TABLE VI. Calculated decay widths of the Λ�cð2765Þ → Σcð2455Þπ and→ Σ�cð2520Þπ. The quantum numbers of the λ- and ρ-modes
are indicated by ðnλ;lλÞ and ðnρ;lρÞ, and JΛ�cðjÞP stands for the assigned spin and parity for Λ�c with the light-component spin j.

½Σð�Þc π�þ denotes the isospin summed width calculated by using the isospin average masses MΣc
¼ 2453.5 ðMeVÞ,

MΣ�c ¼ 2518.1 ðMeVÞ, and mπ ¼ 138.0 ðMeVÞ. The ratio R indicates the Σ�c=Σc defined in the text.

Λ�cð2765Þþ Decay width [MΛ� ¼ 2766.6 ðMeVÞ]
Decay channel full ½Σð�Þc π�total ½Σcπ�þ ½Σ�cπ�þ R

Experimental value Γexp (MeV) 50 [24] � � � � � � � � �
Momentum of final particle q (MeV/c) 265 197

ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞP
(0,1), (0,0) 1=2ð1Þ− 65.1–146.3 61.2–140.2 3.9–6.1 0.044–0.064

3=2ð1Þ− 52.2–104.2 7.9–11.9 44.3–92.4 5.6–7.8
(0,0), (0,1) 1=2ð0Þ− 0 0 0 � � �

This work 1=2ð1Þ− 325.8–676.3 323.7–673.3 2.1–3.0 0.0044–0.0064
Γ 3=2ð1Þ− 210.4–413.5 4.2–5.8 206.2–407.7 49–70
(MeV) 3=2ð2Þ− 9.4–13.1 7.6–10.5 1.9–2.7 0.25–0.26

5=2ð2Þ− 6.3–8.8 3.4–4.7 2.9–4.2 0.87–0.90
(1,0), (0,0) 1=2ð0Þþ 1.6–4.5 0.86–2.49 0.78–1.98 0.79–0.91
(0,2), (0,0) 3=2ð2Þþ 4.7–10.9 4.4–10.1 0.33–0.72 0.071–0.076

5=2ð2Þþ 1.9–4.4 0.13–0.32 1.77–4.04 12.8–13.8
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does not seem inconsistent if we consider the uncertainty of
gqA. However, by taking into account contributions of
decays into nonresonant three-body Λππ, these λ-mode
states will receive a larger full width, with which the
possibility for them to be identified with Λ�cð2765Þ might
decrease.
Among the considered assignments in this article, the

other assignments JΛ�cðjÞP ¼ 1=2ð0Þ−, 1=2ð0Þþ, 3=2ð2Þ−,
3=2ð2Þþ, 5=2ð2Þ−, and 5=2ð2Þþ cannot be excluded

because the total Σð�Þc π decay width is consistent with
the experimental value. The ratio R, however, takes a
different value reflecting the structure of the Λ�c baryon,
which will help to determine the quantum numbers.

2. Λ�cð2880Þ→ Σð�Þc π decay

The Λcð2880Þ charmed baryon is observed in the Λcππ
channel [40,45] as well as in the pD0 channel [47]. The
spin is determined as 5=2 from the angular distribution of
the decay into Σcð2455Þπ [40]. In PDG [24], the parity is
assigned to be positive from the analysis of the Σ�c=Σc
branching ratio in comparison with the prediction of the
chiral perturbation [30] with the heavy quark symmetry [3].
However, as discussed in [30] a subtlety arises when
calculating the ratio.

In Table VII we summarize the quark configurations
considered here for Λ�cð2880Þ. By comparing the observed
full width Γexp ¼ 5.8 MeV and the calculated total one-pion
decay width, we can exclude all of the p-wave configura-
tions with the negative parity including 5=2−. As for 5=2−

with ρ-mode excitation, both of the decays Λ�cð5=2−Þ →
Σcð1=2þÞπ and Λ�cð5=2−Þ →Σ�cð3=2þÞπ [ðjP ¼ 2−Þ →
ðjP ¼ 1Þþ0− in terms of the light spin] go through by d-
wave, and the Σ�c=Σc ratio R is larger than unity as

Rð5=2ð2Þ−; ρÞ ¼ 1.6–1.8; ð80Þ

which does not agree with the experimental value R ¼
0.225� 0.062� 0.010 [40]. This conclusion is consistent
with the chiral perturbation calculation with heavy quark
symmetry [3,30].
For the spin-parity 5=2þ case, we can consider five

configurations as shown in Table VII; one d-wave excita-
tion in λ-motion [5=2ð2Þþ with lλ ¼ 2, denoted by λλ], the
one in ρ-motion [5=2ð2Þþ with lρ ¼ 2, denoted by ρρ], and
three double-p-wave excitations in the λ- and ρ-motions

[JΛðjÞPl ¼ 5=2ð2Þþ1 , 5=2ð2Þþ2 , 5=2ð3Þþ2 where ~l ¼ ~ll þ ~lρ

with ðlλ;lρÞ ¼ ð1; 1Þ, denoted by λρ]. Some of these
configurations give a decay width consistent with the
observed full width Γexp ¼ 5.8 ðMeVÞ. As for the Σ�c=Σc

TABLE VII. Calculated decay width of the Λ�cð2880Þ → Σcð2455Þπ and→ Σ�cð2520Þπ. The quantum numbers of the λ- and ρ-modes
are indicated by ðnλ;lλÞ, ðnρ;lρÞ, and JΛ�cðjÞP stands for the assigned spin for Λ�c with the light-component spin j and the parity P. For

the fð0; 1Þ; ð0; 1Þg configurations, we also show the total angular momentum ~l ¼ ~lλ þ ~lρ as a subscript l in JΛ�cðjÞPl . ½Σð�Þc π�þ denotes
the isospin summed width calculated by using the isospin-averaged masses MΣc

¼ 2453.5 ðMeVÞ, MΣ�c ¼ 2518.1 ðMeVÞ, and
mπ ¼ 138.0 ðMeVÞ. The ratio R indicates the Σ�c=Σc defined in the text.

Λ�cð2880Þþ Decay width [MΛ� ¼ 2881.53 ðMeVÞ]
Decay channel full ½Σð�Þc π�total ½Σcπ�þ ½Σ�cπ�þ R

Experimental value Γexp (MeV) 5.8� 1.1 [24] 0.225 [40]
Momentum of final particle q (MeV/c) 375 315

ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞP
(0,1), (0,0) 1=2ð1Þ− 111.9–254.8 76.9–204.0 35.0–50.8 0.25–0.46

3=2ð1Þ− 129.6–248.8 37.7–52.1 91.9–196.7 2.4–3.8
(0,0), (0,1) 1=2ð0Þ− 0 0 0 � � �

This work 1=2ð1Þ− 502.5–1129.7 483.9–1104.7 18.6–24.9 0.038–0.023
Γ 3=2ð1Þ− 439.3–919.5 20.0–25.6 419.3–893.9 21–35
(MeV) 3=2ð2Þ− 52.8–68.5 36.0–46.0 16.7–22.4 0.46–0.49

5=2ð2Þ− 42.0–55.3 16.0–20.5 26.0–34.9 1.6–1.7
(1,0), (0,0) 1=2ð0Þþ 3.7–13.5 1.3–5.6 2.4–7.9 1.4–1.8
(0,2), (0,0) 3=2ð2Þþ 16.3–39.5 13.9–34.2 2.4–5.3 0.16–0.17

5=2ð2Þþ 11.2–26.1 1.2–2.8 9.9–23.3 8.1–8.4
(0,0), (1,0) 1=2ð0Þþ 16.5–40.2 7.0–18.2 9.5–22.1 1.2–1.4
(0,0), (0,2) 3=2ð2Þþ 44.8–85.4 39.5–76.0 5.3–9.4 0.12–0.13

5=2ð2Þþ 27.8–52.2 1.4–2.6 26.4–49.5 18.7–18.9
ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞPl

(0,1), (0,1) 5=2ð2Þþ2 51.7–109.6 1.8–3.5 49.9–106.1 27.5–30.1
5=2ð2Þþ1 0.63–1.68 0 0.63–1.68 (∞)
5=2ð3Þþ2 2.9–5.8 2.1–4.0 0.85–1.73 0.41–0.43
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ratio, however, we obtain considerably different values for
different configurations like

Rð5=2ð2Þþ; λλÞ ¼ 8.1–8.4;

Rð5=2ð2Þþ; ρρÞ ¼ 18.7–18.9;

Rð5=2ð2Þþ2 ; λρÞ ¼ 27.5–30.1;

Rð5=2ð2Þþ1 ; λρÞ ¼ ð∞Þ;
Rð5=2ð3Þþ2 ; λρÞ ¼ 0.41–0.43; ð81Þ

where the ambiguities of model parameters are almost
canceled. Note that (∞) for the 5=2ð2Þþ1 ðλρÞ state is due to
the zero decay width into Σcπ. Among these five configu-
rations, we find that only one configuration ½5=2ð3Þþ2 ; λρ�
with the light spin j ¼ 3 with l ¼ 2 agrees both with the
small ratio R < 1 and with the magnitude of total decay
width. This seems to contrast with the calculation in
Ref. [30], where the other quark configuration for 5=2þ
also gives the small R.
This discrepancy can be explained as follows. The decay

of Λ�cð5=2þÞ → Σcð1=2þÞπ goes through only by the
f-wave in the final two-body state, while the decay
Λ�cð5=2þÞ → Σ�cð3=2þÞπ can go through by both the f-
and p-waves. The discussion based on the heavy quark
limit leading to the model independent relation is possible
only when the same f-waves are taken, which is completely
contaminated by the presence of the p-wave contribution.
As shown explicitly in Appendix B, the amplitude for
Λ�cð5=2þÞ → Σ�cð3=2þÞπ can contain the p-wave contribu-
tion [the c1 term in Eq. (B6)]. Thus we have

Rð5=2þÞ ¼ ΓðΣ�cπÞp þ ΓðΣ�cπÞd
ΓðΣcπÞd

> 1; ð82Þ

except for the case of 5=2ð3Þþ2 . For the case of 5=2ð3Þþ2 ,
the p-wave contribution [the ~c1 term in Eq. (B7)] is
zero because of the conservation of the spin-parity of
the light component; the light system having jP ¼ 3þ
cannot decay into that of 1þ with the pion 0− in the p-
wave, which leads to

Rð5=2ð3Þþ2 ; λρÞ ¼
ΓðΣ�cπÞd
ΓðΣcπÞd

< 1: ð83Þ

We stress here again that the p-wave suppression is found
only in the case of 5=2ð3Þþ with l ¼ 2, and not in the other
states with 5=2þ. Here it is worth mentioning that the
Oðq1Þ contribution, which allows us to distinguish the
possible quark configurations for the same spin-parity,
appears only in the A∇·σ term arising from the axial-vector
coupling γμγ5 of the pion.
If Λ�cð2880Þ is assigned as a λρ-mode state, a question

arises as to where the λλ-mode states with lλ ¼ 2 are.
Excitation energies of the λλ-mode states are expected to be
lower than those of the λρ-mode states. Other information
such as production rates as discussed in Ref. [48] is helpful
to solve this problem, for which an experimental meas-
urement is planned in J-PARC [49].

3. Λcð2940Þ→ Σð�Þc π decay

As for Λ�cð2940Þ, a narrow peak is observed both in the
pD0 channel [47] and in the Σcπ channel [40]. The total

TABLE VIII. Calculated decay width of the Λ�cð2940Þ → Σcð2455Þπ and→ Σ�cð2520Þπ. The quantum numbers of the λ- and ρ-modes
are indicated by ðnλ;lλÞ, ðnρ;lρÞ, and JΛ�cðjÞP stands for the assigned spin for Λ�c with the light-component spin j and the parity P. For

the fð0; 1Þ; ð0; 1Þg configurations, we also show the total angular momentum ~l ¼ ~lλ þ ~lρ as a subscript l in JΛ�cðjÞPl . ½Σ
ð�Þ
c π�þ denotes

the isospin summed width calculated by using the isospin-averaged masses MΣc
¼ 2453.5 ðMeVÞ, MΣ�c ¼ 2518.1 ðMeVÞ, and

mπ ¼ 138.0 ðMeVÞ. The ratio R indicates the Σ�c=Σc defined in the text.

Λ�cð2940Þþ Decay width [MΛ� ¼ 2939.3 ðMeVÞ]
Decay channel full ½Σð�Þc π�total ½Σcπ�þ ½Σ�cπ�þ R

Experimental value Γ (MeV) 17þ8−6 [24] (seen) …
Momentum of final particle q (MeV/c) 427 369

ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞP
(0,1), (0,0) 1=2ð1Þ− 144.8–313.8 73.8–215.4 71.0–98.4 0.46–0.96

3=2ð1Þ− 182.2–332.0 65.4–85.7 116.8–246.3 1.8–2.9
(0,0), (0,1) 1=2ð0Þ−

This work 1=2ð1Þ− 557.0–1299.3 519.3–1250.9 37.6–48.3 0.039–0.072
Γ 3=2ð1Þ− 536.5–1152.9 34.6–42.2 501.8–1110.7 15–26
(MeV) 3=2ð2Þ− 96.2–119.4 62.3–75.9 33.9–43.5 0.54–0.57

5=2ð2Þ− 80.4–101.4 27.7–33.7 52.7–67.7 1.9–2.0
(1,0), (0,0) 1=2ð0Þþ 3.7–17.4 1.1–6.4 2.7–11.0 1.7–2.5
(0,2), (0,0) 3=2ð2Þþ 24.9–61.7 20.1–51.0 4.8–10.8 0.21–0.24

5=2ð2Þþ 19.8–46.6 2.8–5.9 17.1–40.7 6.2–6.9
ðnλ;lλÞ, ðnρ;lρÞ JΛðjÞPl

(0,1), (0,1) 7=2ð3Þþ2 5.8–11.1 2.6–4.8 3.2–6.2 1.22–1.29
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width is Γexp ¼ 17þ8−6 ðMeVÞ [24]. The spin-parity is not
determined.
In Table VIII, we show the calculated one-pion decay

widths together with the considered quark configurations for
Λ�cð2940Þ. In the previous section, we pointed out the
possibility that Λ�cð2880Þ is a 5=2ð3Þþ2 excitation. If this
is the case, a new question arises: which Yc baryon is the
partner of the HQS doublet possessing 7=2ð3Þþ2 ? To discuss
the possibility of Λ�cð2940Þ being the doublet partner of
Λ�cð2880Þ, we also show the one-pion decay width with
the 7=2ð3Þþ2 assignment for Λ�cð2940Þ in the last line of
Table VIII. We can see that this assignment can be consistent
with the experimental full width in [24] in the sense that the
calculated total one-pion emission decay width does not
exceed the reported full width. For the same reason, the
negative parity assignments can be excluded for Λ�cð2940Þ.
Similarly to other Λ�c baryons, the partial decay widths and/
or the Σ�c=Σc ratio will help us to determine the quantum
numbers and the possible quark configuration as well.

IV. SUMMARY

We have systematically evaluated the decay widths
of the charmed baryons Λ�cð2595Þ, Λ�cð2625Þ, Λ�cð2765Þ,
Λ�cð2880Þ, and Λ�cð2940Þ into Σcð2455Þπ and Σ�cð2520Þπ, as
well as Σcð2455Þ and Σ�cð2520Þ into Λcπ within the non-
relativistic quark model. We have emphasized the usefulness
of working in the baryon wave functions constructed to be
consistent with heavy quark symmetry. This provides various
selection rulesassociatedwith thepionemissionbetween light
component of the baryons. Our findings are as follows:

(i) For the low-lying Λ�cð2595Þ and Λ�cð2625Þ baryons
the quark model descriptions as the λ-mode excita-
tions with a spin-0 diquark can explain the decay
properties very well.

(ii) The derivative coupling derived from the axial-
vector interaction of πqq is essentially important
to produce the experimental decay rate of Λ�cð2595Þ.

(iii) Only one quark configuration, JΛ�cðjÞP ¼ 5=2ð3Þþ2
for Λ�cð2880Þ, among the five possible 5=2þ con-
figurations can lead to a result consistent with the
experimental data, while all other four configura-
tions of 5=2þ cannot if the p-wave is properly
considered. We note that the HQS does not neces-
sarily lead to the small decay ratio of ΓðΣ�cπÞ=ðΣcπÞ
for 5=2þ. This fact calls attention to the discussion
based on the HQS [3,30], which requires decays in
only one partial wave.

(iv) Having the above conclusion, we have discussed
the possibility of Λ�cð2940Þ being the HQS doublet
partner of Λ�cð2880Þ possessing 7=2ð3Þþ2 . Here we
emphasize that our results concerning the possible
HQS doublet, Λ�cð2880Þ and Λ�cð2940Þ, can be
reached with a jj coupling scheme which respects
the heavy quark symmetry.

(v) The ratios of ΓðΣ�cπÞ=ΓðΣcπÞ are considerably differ-
ent fordifferent quarkconfigurationseven if thebaryon
spin-parity is the same. This fact is particularly useful
for knowing the structure of charmed baryons.

In this study, we have discussed the various constraints
for the one-pion emission decays due to the selection rules
associated with the conservation of the spin j of the light
component in the baryons. We have to keep in mind,
however, that there is still a small breaking of heavy quark
symmetry for a charm quark. Studies along these lines will
be left for future works.
In our discussions in the quark model, we have consid-

ered only the excitations of valence quarks. We expect that
they provide a good description for low-lying states. For
higher excitations, however, there may be other modes such
as pair creations of quark and antiquark, gluon excitations,
and so on. The former can be taken into account in the
quark model by couplings to mesons or by unquenched
configurations [50], and in effective hadron models by
hadronic molecule configurations [51,52]. The present
systematic studies will help us to know where and how
these configurations beyond the quark model ones show up,
which should be studied in future J-PARC experiments.
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APPENDIX A: HARMONIC OSCILLATOR
WAVE FUNCTIONS

The radial functions RnlðζÞ are given as

R00ðζÞ ¼
2a3=2ζ

π1=4
e−a

2
ζζ

2=2; ðA1Þ

R01ðζÞ ¼
�
8

3

�
1=2 a5=2ζ

π1=4
ζ; e−a

2
ζζ

2=2; ðA2Þ

R02ðζÞ ¼
�
16

15

�
1=2 a7=2ζ

π1=4
ζ2; e−a

2
ζζ

2=2; ðA3Þ

R10ðζÞ ¼
ffiffiffi
6
p

a7=2ζ

π1=4

�
1 −

2

3
a2ζζ

2

�
e−a

2
ζζ

2=2; ðA4Þ

where

aζ ¼ ffiffiffiffiffiffiffiffiffiffiffi
mζωζ
p

: ðA5Þ
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The ζ is either λ or ρ. The reduced masses ofmλ and mρ are
defined in Eq. (6).

APPENDIX B: MATRIX ELEMENTS

In this appendix, we summarize the concrete forms of the
helicity amplitudes Ah.

1. Ground state Σc decays

The amplitudes for the decays of Σð�Þc → Λcð1=2þÞπ− are
given by

−iA∇·σ
1=2 ¼ G

ωπ

m
c
�
1

2
qλ þ qρ

�
FðqÞ;

iAq·σ
1=2 ¼ −G

q
m
c

�
M

2mþM
ωπ − 2m

�
FðqÞ; ðB1Þ

where the coefficent c is given as

c ¼
(
−1=

ffiffiffi
3
p

for Σcð1=2þÞ;ffiffiffiffiffiffiffiffi
2=3

p
for Σ�cð3=2þÞ:

ðB2Þ

The factor G denotes the coupling constant and the
normalizations as

G ¼ gqA
2fπ

ffiffiffiffiffiffiffiffiffiffiffi
2MΛc

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MΣð�Þc

q
; ðB3Þ

and the function FðqÞ denotes the Gaussian form factor as

FðqÞ ¼ e−q
2
λ=4a

2
λe−q

2
ρ=4a2ρ : ðB4Þ

2. Negative parity Λ�cðJ−Þ decays
The amplitudes for the decays of the negative parity

excitations with a p-wave of Λ�cðJ−Þ → Σð�Þc π are given by

−iA∇·σ
h ¼ iG

ωπ

m

�
c0aζþc2

�
1

2
qλþqρ

�
qζ
aζ

�
FðqÞ;

−iAq·σ
h ¼ iG

q
m

�
M

2mþM
ωπ −2m

�
ð−1Þc2

qζ
aζ

FðqÞ; ðB5Þ

where the coefficients c0 and c2 are summarized in
Table IX. The subscript ζ is either λ or ρ, depending on
the λ- or ρ-mode excitations.

TABLE X. Coefficients for the positive parity Λ�cðJþÞ decays
with an s-wave (nζ ¼ 1) or a d-wave (lζ ¼ 2) in Eq. (B6).

λ-mode excitation (ζ ¼ λ)
ðnλ;lλÞ ðnρ;lρÞ JΛ�cðjÞP JΣð�Þc

h c1 c3

(1,0), (0,0) 1=2ð0Þþ 1=2þ 1=2 1

3
ffiffi
2
p − 1

6
ffiffi
2
p

3=2þ 1=2 − 1
3

1
6

(0,2), (0,0) 3=2ð2Þþ 1=2þ 1=2 1
3

ffiffi
5
2

q
− 1

3
ffiffiffiffi
10
p

3=2þ 1=2 − 1

6
ffiffi
5
p 1

3
ffiffi
5
p

3=2 − 1

2
ffiffi
5
p 0

5=2ð2Þþ 1=2þ 1=2 0 1

2
ffiffiffiffi
15
p

3=2þ 1=2
ffiffiffiffi
3
10

q
− 1ffiffiffiffi

30
p

3=2 1ffiffi
5
p 0

ρ-mode excitation (ζ ¼ ρ)
(0,0), (1,0) 1=2ð0Þþ 1=2þ 1=2

ffiffi
2
p
3

− 1

6
ffiffi
2
p

3=2þ 1=2 − 2
3

1
6

(0,0), (0,2) 3=2ð2Þþ 1=2þ 1=2
ffiffiffiffi
10
p
3

− 1
3
ffiffiffiffi
10
p

3=2þ 1=2 − 1

3
ffiffi
5
p 1

3
ffiffi
5
p

3=2 − 1ffiffi
5
p 0

5=2ð2Þþ 1=2þ 1=2 0 1

2
ffiffiffiffi
15
p

3=2þ 1=2
ffiffi
6
5

q
− 1ffiffiffiffi

30
p

3=2 2ffiffi
5
p 0

TABLE IX. Coefficients for the negative parity Λ�c decays in
Eq. (B5).

λ-mode excitation (ζ ¼ λ)
ðnλ;lλÞ ðnρ;lρÞ JΛðjÞP JPΣ h c0 c2

(0,1), (0,0) 1=2ð1Þ− 1=2þ 1=2 − 1ffiffi
2
p 1

3
ffiffi
2
p

3=2þ 1=2 0 − 1
3

3=2ð1Þ− 1=2þ 1=2 0 − 1
3

3=2þ 1=2 − 1ffiffi
2
p

ffiffi
2
p
3

3=2 − 1ffiffi
2
p 0

ρ-mode exciation (ζ ¼ ρ)
(0,0), (0,1) 1=2ð0Þ− 1=2þ 1=2 0 0

3=2þ 1=2 0 0
1=2ð1Þ− 1=2þ 1=2 2 − 1

3

3=2þ 1=2 0 − 1

3
ffiffi
2
p

3=2ð1Þ− 1=2þ 1=2 0 − 1

3
ffiffi
2
p

3=2þ 1=2 2 − 1
6

3=2 2 − 1
2

3=2ð2Þ− 1=2þ 1=2 0 1ffiffiffiffi
10
p

3=2þ 1=2 0 1

2
ffiffi
5
p

3=2 0 − 1

2
ffiffi
5
p

5=2ð2Þ− 1=2þ 1=2 0 1ffiffiffiffi
15
p

3=2þ 1=2 0 1ffiffiffiffi
30
p

3=2 0 1ffiffi
5
p
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3. Positive parity Λ�cðJþÞ decays
The amplitudes for the decays of the positive parity excitations with an s-wave (nζ ¼ 1) or a d-wave (lζ ¼ 2) of

Λ�cðJþÞ → Σð�Þc π are given by

−iA∇·σ
h ¼ G

ωπ

m

�
c1qζ þ c3

�
1

2
qλ þ qρ

�
q2ζ
a2ζ

�
FðqÞ;

−iAq·σ
h ¼ G

q
m

�
M

2mþM
ωπ − 2m

�
ð−1Þc3

q2ζ
a2ζ

FðqÞ; ðB6Þ

where the coefficients c1 and c3 are summarized in Table X. The subscript ζ is either λ or ρ, depending on the λ- or ρ-mode
excitations.
The amplitudes for the decays of the positive parity excitations with λ − ρ mixed excited states ðlλ;lρÞ ¼ ð1; 1Þ of

Λ�cðJþÞ → Σð�Þc π are given by

−iA∇·σ
h ¼ G

ωπ

m

�
~c1

�
ð−1Þl2aρ

qλ
aλ
þ aλ

qρ
aρ

�
þ ~c3

qλqρ
aλaρ

�
1

2
qλ þ qρ

��
FðqÞ;

−iAq·σ
h ¼ G

q
m

�
M

2mþM
ωπ − 2m

�
ð−1Þ~c3

qλqρ
aλaρ

FðqÞ; ðB7Þ

where l denotes the total angular momentum ~l ¼ ~lλ þ
~lρ and the coefficients ~c1 and ~c3 are summarized in
Table XI.

APPENDIX C: MATRIX ELEMENTS IN THE
HEAVY QUARK LIMIT

In this appendix, we derive the matrix elements in the
heavy quark limit to show how and when the geometric
factor is separated, leading to the model independent
relations [3]. Let us consider one-pion emission of a heavy
baryon containing one heavy quark Q and a pair of light
quarks qq. Following the notation in this paper, let the
initial baryon denoted by ΛQ and the final one by ΣQ. Then
the spin and angular momentum couplings for the initial Λc
and final Σcπ states are

jii ¼ jΛci ¼ ½jΛQ
; sQ�JΛcMΛQ ;

jfi ¼ jΣcπi ¼ ½YL; ½jΣQ
; sQ�JΣQ �JfMf ; ðC1Þ

where JΛQ;ΣQ
is the baryon spin, jΛQ;ΣQ

the total spin of
the light degrees of freedom, L the relative angular
momentum of πΣQ, and Jf the total spin JΣQ

þ L. The
decay probability is then computed as

Γ ∼
X
L

jhfjLintjiij2; ðC2Þ

where Lint is the pion-quark interaction, and the sum over
the final state is taken over possible L’s. For instance, for
the decay of 5=2þ → 3=2þ, the angular momentum L can
be both 1 (P-wave) and 3 (F-wave), while for the decay of
5=2þ → 1=2þ, only the F-wave is possible.
In the literature, the model independent relation has been

discussed for the ratio of the decays into Σ�cð3=2þÞ and into
Σcð1=2þÞ. In the heavy quark limit it can be obtained only

TABLE XI. Coefficients for the positive parity Λ�cðJþÞ decays
with λ − ρ mixed excitations in Eq. (B7). l denotes the total

angular momentum defined by ~l ¼ ~lλ þ ~lρ.

λ − ρ mixed excitation
ðnλ;lλÞ ðnρ;lρÞ JΛ�cðjÞP l JP

Σð�Þc

h ~c1 ~c3

(0,1), (0,1) 5=2ð2Þþ 2 1=2þ 1=2 0 1
3

ffiffi
1
5

q
3=2þ 1=2 − 3

2

ffiffiffiffi
1
10

q
1
3

ffiffiffiffi
1
10

q
3=2þ 3=2 − 3

2

ffiffiffiffi
1
15

q
1ffiffiffiffi
15
p

1 1=2þ 1=2 0 0
3=2þ 1=2 − 1

2

ffiffiffiffi
3
10

q
0

3=2þ 3=2 − 1
2

ffiffi
1
5

q
0

5=2ð3Þþ 2 1=2þ 1=2 0 − 2
3

ffiffiffiffi
2
35

q
3=2þ 1=2 0 − 2

3

ffiffiffiffi
1
35

q
3=2þ 3=2 0

ffiffiffiffiffiffi
2

105

q
7=2ð3Þþ 2 1=2þ 1=2 0 −

ffiffiffiffiffiffi
2

105

q
3=2þ 1=2 0 − 1ffiffiffiffiffiffi

105
p

3=2þ 3=2 0 − 1ffiffiffiffi
21
p
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for the decay into the same and single partial wave L. As
we have discussed in Sec. IV D in detail, this is possible
only in some limited cases where a selection rule due to
the diquark transitions imposes an additional constraint.
For a single L, after recouping the final state, we obtain the
matrix element as follows:

h½YL; ½jΣQ
; sQ�JΣQ �JfMf jLintj½jΛQ

; sQ�JΛQMΛQ i

¼
X
jf

ĴΣQ
ĵfð−1ÞjΣQþSQþJfþL

�
JΣQ

jΣQ
sQ

jf Jf L

�

× h½½YL; jΣQ
�jf ; sQ�JfMf jLintj½jΛQ

; sQ�JΛQMΛQ i: ðC3Þ

Because the interaction Lint is active only for the light
quarks, after the application of the Wigner-Eckart
theorem, the matrix element in the third line can be
factorized into one of the light degrees of freedom,
h½YL; jΣQ

�jf jjLintjjjΛQ
i, and the trivial one of the heavy

quark. If, furthermore, the configuration of the light
degrees of freedom is uniquely determined, which is to
fix jf at a single value, the JΣQ

dependence is com-
pletely dictated by the six-j symbol and the normali-
zation ĴΣQ

. This explains how and when the ratio in
Eq. (75) can be determined in a model independent
manner by the formula (C3).
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