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We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent
extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer
in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC
simulations of the hadronization process with a finite number of produced hadrons, expressing the relevant
probabilities in terms of the eight leading twist quark-to-quark transverse-momentum-dependent (TMD)
splitting functions (SFs) for elementary q → q0 þ h transition. We present explicit expressions for the
unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank 2. Further,
we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark
TMD SFs violate the positivity constraints, and we propose a quark model based ansatz for these input
functions that circumvents the problem. We validate our MC framework by explicitly proving the absence
of unphysical azimuthal modulations of the computed polarized FFs, and by precisely reproducing the
earlier derived explicit results for rank-2 pions. Finally, we present the full results for pion unpolarized and
Collins FFs, as well as the corresponding analyzing powers from high statistics MC simulations with a
large number of produced hadrons for two different model input elementary SFs. The results for both sets of
input functions exhibit the same general features of an opposite signed Collins function for favored and
unfavored channels at large z and, at the same time, demonstrate the flexibility of the quark-jet framework
by producing significantly different dependences of the results at mid to low z for the two model inputs.
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I. INTRODUCTION

One of the more fascinating topics in modern high
energy physics is the description of hadronization of
partons after hard scattering. Within a QCD factorized
approach, this part of the inclusive cross section is
described by nonperturbative parton fragmentation func-
tions (FFs) [1]. These were introduced 40 years ago by
Field and Feynman [2,3]. For each parton flavor q and
hadron type h, they are a function of the ratio of the hadron
light-cone momentum to the fragmenting quark light-cone
momentum z,Dh

qðzÞ. In this simplest form, the polarization
of partons and the produced hadron transverse momentum
(with respect to the parton’s flight direction) were not
considered. These FFs, often called collinear, have proven
to be a powerful tool for studying the nucleon structure. For
example, using the data from deep inelastic semi-inclusive
hadron production (SIDIS), these one-dimensional FFs
allow one to disentangle the quark flavor distributions in
an unpolarized or a longitudinally polarized nucleon.
The complete description of partonic constituents

for a fast moving nucleon is encoded in the spin and
parton transverse-momentum-dependent (TMD) parton

distribution functions (PDFs). One can access these PDFs
using, for example, SIDIS from a polarized nucleon. In
particular, the quark transversity PDF can be accessed if the
TMD FF of a transversely polarized quark into an unpolar-
ized hadron, the so-called Collins FF, does not vanish [4]. At
present, both the collinear andTMDFFs are parametrized by
fitting high energy inclusive data; recent phenomenological
fits of the pion Collins function can be found in Refs. [5,6].
To better understand the physics of hadronization, several
dynamic models, such as the quark-diquark spectator model
[7] and the quark-jet model [8] based on Nambu–Jona-
Lasinio (NJL) effective quark theory [9,10], have been used.
Recently, important progress has been achieved inmodeling
polarized hadronization in the quark-jet approach [11].
In this work all eight elementary polarized TMD q → q0

splitting functions, which can be calculated by using
effective quark theories, were taken into account in the
resulting integral equations for polarized TMD FF.
Another widely used approach describing hadronization

is based on the Lund string model [12] and implemented in
the MC event generators PYTHIA [13] and LEPTO [14].
In these event generators it is rather straightforward to
include the polarization of the initial nucleon and the active
parton. Then it becomes possible to include, in these MC
programs, some of the spin-dependent effects, like the
Sivers effect [15] in SIDIS, and describe the existing data
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and make predictions for forthcoming experiments, as was
done in Refs. [16–18]. On the other hand, because at
present there is no MC framework for polarized parton
hadronization, it is not possible to simulate the Collins
effect [4], which appears to be significant in SIDIS and
electron-positron annihilation measurements. A proposal
on how to include quark transverse polarization effects in
hadronization was presented in [19], but still no MC
realization of this framework exists. Finally, it is important
to note that there is no clear way to extract the independent
quark fragmentation functions from the Lund string model,
where the hadronization of the color flux string depends on
both the type of the initial quark of interest at one end of the
string and the colored remnant (antiquark in eþe−, diquark
in SIDIS, etc.) at the other end [20].
In this paper we describe the MC framework for

transversely polarized quark to pion FFs based on the
extended quark-jet framework of Bentz et al. [11]. The
quark-jet framework describes the hadronization of a quark
as a sequential emission of hadrons that do not interact with
each other or re-interact with the remnant, as schematically
depicted in Fig. 1. The quark to hadron fragmentation
functions are then calculated as the corresponding number
densities, either using integral equations or Monte Carlo
techniques. The original model of Field and Feynman [2,3]
has been significantly extended in recent years to describe
various phenomena in hadronization in the so-called NJL-
jet model, which uses the NJL effective quark model [9,10]
to calculate the input elementary hadron emission proba-
bilities. The extensions include the calculations of the
collinear FFs for various hadrons [8,21–23], transverse-
momentum-dependent FFs [24], dihadron FFs [25–28], and
spin-dependent effects [29–31]. The latter have proven
especially challenging, as the naive interpretations of the
polarization transfer dynamics lead to higher-order Collins
modulations [32] that are nonphysical, while the proba-
bilities of hadron emission should only depend linearly on
the polarization of the initial quark. This problem was
circumvented in Ref. [31] by including only a single
emission step with Collins modulation, which allowed
one to study the connection between polarization induced
azimuthal modulations in one- and two-hadron FFs
recently observed in the COMPASS experiment [33].

This paper is organized in the following way. In the next
section we present the theoretical framework behind the
MC generator. In Sec. III we briefly describe the details of
the model used to extract the polarized FFs. In Sec. IV we
present the MC computations for the unpolarized and
Collins FFs of pions produced by an up quark, and we
finish with the conclusions in Sec. V.

II. QUARK-JET FRAMEWORK AND THE
POLARIZATION TRANSFER

Recently, we have derived a general, self-consistent
formalism within the quark-jet framework [11] to describe
the hadronization of a polarized quark that is independent
of the details of the model input splitting functions. Here
we reiterate some of the key points in this derivation and
adapt it for MC simulations.

A. Intermediate quark polarization

The key component in building the extended quark-jet
model is the description of the polarization of the remnant
quark in the jet after each hadron emission. Here, to describe
this process, we use the spin density matrix formalism of
Ref. [34], which has been successfully used in the past for
describing the polarized SIDIS cross section, e.g. [35].
In general, the polarization of a spin 1=2 particle q is

describe by the spin density matrix ρ, which can be
expressed in terms of the Pauli-Lubanski 4-vector a,

ρq ¼
1

2
ðpþmÞ½1 − γ5a�; ð1Þ

where p andm are the 4-momentum and the mass of q. The
4-vector a is defined in the particle’s rest frame as

a ¼ ð0; sqÞ; ð2Þ
where the polarization vector sq itself equals twice the
expectation value of the spin of the particle at rest.
Let us consider the elementary FF in the first fragmen-

tation step q → q1. The probability density for this tran-
sition can be expressed in terms of the respective density
matrices ρq and ρq1 ,

fq→q1 ¼ Tr½ρq1AρqĀ�; ð3Þ
where A is some matrix describing the interaction with the
other particles in this process. It is more convenient to
work with the corresponding polarization vectors sq and
sq1 . Then the probability density fq→q1 should be a linear
function in both sq and sq1 ,

fq→q1ðsq; sq1Þ ¼ αq þ βq · sq1 ; ð4Þ
where both αq and βq are linear functions of sq that also
depend on the momenta of the quarks. We can express these
coefficients in terms of the 8 leading-twist quark-to-quark
TMD SFs [see Eq. (2.19) in Ref. [11]]

FIG. 1. Schematic depiction of the extended quark-jet frame-
work.
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αq ≡ D̂ðz1; p2
1⊥Þ þ

ðp1⊥ × sTÞ · ẑ
z1M

Ĥ⊥ðz1; p2
1⊥Þ; ð5Þ

βq∥ ≡ sLĜLðz1; p2
1⊥Þ −

ðp1⊥ · sTÞ
z1M

Ĥ⊥
L ðz1; p2

1⊥Þ; ð6Þ

βq⊥ ≡ p1⊥0

z1M
D̂⊥

T ðz1; p2
1⊥Þ −

p1⊥
z1M

sLĜTðz1; p2
1⊥Þ

þ sTĤTðz1; p2
1⊥Þ þ

p1⊥ðp1⊥ · sTÞ
z21M

2
Ĥ⊥

T ðz1; p2
1⊥Þ; ð7Þ

where z1 and p1⊥ are the light-cone momentum fraction and
the transverse momentum of q1 with respect to q, while
M is the mass of q1. The momentum vector p1⊥0≡
ð−p1;y; p1;xÞ. The unit vector ẑ denotes the direction of
the 3-momentum of q, which also helps to define sT and sL
as the transverse and longitudinal components of
sq ¼ ðsT; sLÞ. In this work we use hats on TMD SFs to
distinguish them from the analogous TMD FFs.
In the extended quark-jet model this quark q1 itself

fragments into a hadron and a remnant quark q2. Indeed,
the quark q1 is unobserved, and its polarization is com-
pletely determined by sq, z1 and p1⊥. According to
Ref. [34], it can be expressed as

sq1 ¼
βq
αq

: ð8Þ

The probability to produce quark q1 with light-cone
momentum fraction z1 and transverse momentum p1⊥ is
determined from Eq. (4),

f̂q→q1ðz1; p1⊥; sqÞ ¼ αq: ð9Þ
Then, for the next fragmentation step q1 → q2, we have a

completely analogous situation, where

fq1→q2ðsq1 ; sq2Þ ¼ αq1 þ βq1 · sq2 ; ð10Þ
and

sq2 ¼
βq1
αq1

: ð11Þ

Here again, αq1 and βq1 are both linear functions of sq1 that
also depend on the momentum of q2 with respect to q1.
We can write for them analogous relations to those in
Eq. (5), involving the light-cone momentum fraction η2 and
transverse momentum p⊥2 of quark q2 relative to q1.
Nevertheless, since sq1 itself is determined by sq, we can
infer that sq2 should also be completely determined by sq, as
well as the light-cone momentum fraction z2 and transverse
momentum p2⊥ of quark q2 with respect to q. Then, in the
quark-jet framework, the probability of the q → q2 tran-
sition is given by

f̂ð2Þq→q2ðz2; p⊥2; sqÞ
¼ f̂q→q1ðz1; p1⊥; sqÞ ⊗ f̂q1→q2ðη2; p2⊥; sq1Þ; ð12Þ

where

f̂q1→q2ðη2; p⊥2; sq1Þ ¼ αq1 ; ð13Þ
and the convolution ⊗ relates the corresponding relative
momenta (the detailed relations will be discussed in the
next section).
We can conclude that for the remnant quark qN after N

emissions, the polarization sqN is completely determined by
the momenta of the quarks in the chain and the polarization
sq of the initial fragmenting quark q. Within the quark-jet
framework, the probability for this quark to have certain
momentum with respect to the initial quark is a convolution
of elementary probabilities that themselves are determined
by the polarization of the initial fragmenting quark and
the momenta of all the quarks in the jet up to the one
under consideration. These elementary probabilities are
those for polarized quark splitting into an unpolarized
quark [see Eq. (9)].

B. Monte Carlo approach

The application of the quark polarization propagation
mechanism in the quark-jet hadronization chain with an
infinite number of produced hadrons results in a set of
coupled integral equations for the unpolarized and Collins
FFs, as detailed in Ref. [11]. Also, this iterative picture
allows us to readily adapt the extended quark-jet framework
for MC simulations with a finite number of produced
hadrons, similar to our previous work in Refs. [24,29,30].
The basic concept is to adapt the number density imple-
mentation of the FFs, which then can be calculated using
Monte Carlo techniques as averages of these densities taken
over a large number of quark hadronization event simu-
lations. In the instance of polarized quark fragmentation
into unpolarized hadrons, the corresponding number den-
sity is the following polarized fragmentation function:

Dh=q↑ðz; p2⊥;φÞ ¼ Dh=qðz; p2⊥Þ
−H⊥h=qðz; p2⊥Þ

p⊥sT
zmh

sinðφCÞ; ð14Þ

where Dh=qðz; p2⊥Þ and H⊥h=qðz; p2⊥Þ denote the unpolar-
ized and Collins fragmentation function, respectively. The
variables z and p2⊥ are the light-cone momentum fraction
and the transverse momentum squared of the produced
hadron with respect to the momentum of the initial
fragmenting quark, and mh denotes its mass. Here, sT is
the modulus of the transverse component of the quark’s
polarization. The Collins angle for the hadron φC ≡ φ − φs
is defined as the difference of the azimuthal angles of the
produced hadron’s transverse momentum φ and the trans-
verse polarization of the initial quark φs. We calculate

MONTE CARLO IMPLEMENTATION OF POLARIZED … PHYSICAL REVIEW D 95, 014021 (2017)

014021-3



Dh=q↑ðz; p2⊥;φÞ by computing the average number of
hadrons h with given momenta produced in the hadroniza-
tion chain of q. This can be accomplished by sampling the
remnant quark’s momentum according to the elementary
quark-to-quark splitting functions, Eq. (9), and calculating
the type and the momentum of the produced hadron using
flavor and momentum conservation. Equivalently, we can
sample the quark-to-hadron splitting functions and recon-
struct the remnant quark’s type and momentum. The
remnant quark’s polarization is then determined according
to Eq. (8). We can continue the hadronization chain until
we reach some predetermined termination condition, which
we choose as a given number of produced hadrons NL. In
the text below we denote the hadrons produced at the nth
step in the hadronization chain as rank-n hadrons.

C. Two-step process

Here we discuss two-hadron production in a quark-jet
picture, where the initial quark q emits rank-one hadron h1
with remnant quark q1, which in turn emits the rank-2
hadron h and leaves a remnant quark q2.We are interested in
the azimuthal modulations of the transverse momentum of h
when the initial quark q has nonzero transverse polarization,
denoted as sT . Hence sq ¼ ðsT; sLÞ, with sL being the
longitudinal component. The remnant quark q1 has momen-
tum z1; p1⊥ with respect to q and polarization s1. Then, q1
emits hadron h carrying its light-cone momentum fraction
z2 and transverse momentum p2⊥ with respect to its
3-momentum. The direction of the 3-momentum of q is
denoted by ẑ, while that of q1 by ẑ0, as depicted in Fig. 2.
The momentum components of the second produced

hadron h with respect to q are given by

z ¼ z1z2; ð15Þ

p⊥ ¼ z2p1⊥ þ p2⊥: ð16Þ

Then we can write the probability density for such a
process as

Fð2Þ
q→hðz; p⊥; sÞ
¼

X
q1

f̂q→q1ðz1; p1⊥; sqÞ ⊗ f̂q1→hðz2; p2⊥; sq1Þ: ð17Þ

The explicit form for the quark-to-quark probability
density Eq. (9) has a Collins-like modulation,

f̂q→q1ðz; p⊥; sÞ

¼ D̂ðq→q1Þðz; p2⊥Þ þ
ðp⊥ × sTÞ · ẑ

zM
Ĥ⊥ðq→q1Þðz; p2⊥Þ;

ð18Þ

and the quark-to-unpolarized hadron probability is also
given by the familiar form

f̂q→hðz; p⊥; sÞ

¼ D̂ðq→hÞðz; p2⊥Þ þ
ðp⊥ × sTÞ · ẑ

zmh
Ĥ⊥ðq→hÞðz; p2⊥Þ: ð19Þ

Clearly, the unpolarized and Collins terms in these two
expressions are related to each other [11].
We can use the expressions in Eqs. (5), (8), (18), and (19)

to prove that the probability density for h can be written as a
sum of two terms

Fð2Þ
q→hðz; p⊥; sqÞ

¼ Dð2Þ
q→hðz; p2⊥Þ þ

1

zmh
ðp⊥ × sTÞ · ẑH⊥ð2Þ

q→hðz; p2⊥Þ; ð20Þ

where Dð2Þ and H⊥ð2Þ correspond to the unpolarized and
Collins function for the hadron h at rank 2. These can be
expressed in terms of the elementary TMD SF functions

Dð2Þ
q→hðz; p2⊥Þ ¼ 2

X
q1

Z
1

0

dz1

Z
1

0

dz2

Z
d2p1⊥

Z
d2p2⊥ × δðz − z1z2Þδ2ðp⊥ − z2p1⊥ − p2⊥Þ

×

�
D̂q→q1ðz; p2

1⊥ÞD̂q1→hðz2; p2
2⊥Þ þ

1

zMmh
ðp1⊥ · p2⊥ÞD̂⊥ðq→q1Þ

T ðz1; p2
1⊥ÞĤ⊥ðq1→hÞðz2; p2

2⊥Þ
�
; ð21Þ

where we sum over all possible intermediate quarks q1.

FIG. 2. Depiction of the two-step process kinematics in the
quark-jet picture. The axis ẑ is defined by the 3-momentum q of
the initial quark q, while the axis ẑ0 is defined by the momentum
vector p1 of the first remnant quark q1. The vectors p2 and p are
the momenta of the second produced hadron h in the two different
coordinate systems.
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Then integral expression for the Collins function reads

H⊥ð2Þ
q→hðz; p2⊥Þ ¼ 2

zmh

ðp⊥ × sTÞ · ẑ
X
q1

Z
1

0

dz1

Z
1

0

dz2

Z
d2p1⊥

Z
d2p2⊥ × δðz − z1z2Þδ2ðp⊥ − z2p1⊥ − p2⊥Þ

×

�
1

z1M
ðp1⊥ × sTÞ · ẑĤ⊥ðq→q1Þðz1; p2

1⊥ÞD̂ðq1→hÞðz2; p2
2⊥Þ

þ 1

z2mh

�
p2⊥ ×

�
sTĤ

ðq→q1Þ
T ðz1; p2

1⊥Þ þ p1⊥ðp1⊥ · sTÞ
1

z21M
2
Ĥ⊥ðq→q1Þ

T ðz1; p2
1⊥Þ

��
· ẑĤ⊥ðq1→hÞðz2; p2

2⊥Þ
�
:

ð22Þ

III. MODELS FOR ELEMENTARY SPLITTINGS
AND POSITIVITY CONSTRAINTS

The quark-jet framework requires elementary fragmen-
tation functions as input. To calculate the polarization of the
intermediate quarks, we need access to all 8 elementary SFs
for quark-to-quark transitions, both T-even and T-odd. The
corresponding two quark-to-hadron TMD SFs should be
related to these to preserve momentum and isospin. In
general, we can use any quark model calculations or
parametric forms to best reproduce the observables. In
this work we use the tree-level spectator-type calculations
of the T-even functions within the NJL effective quark
model [11]. The T-odd SFs calculated at the same level
yield vanishing results [11,36], similar to the case of quark-
to-hadron SFs [4]. In these models one-loop interference-
type cut diagrams are needed to generate nonzero T-odd
functions, (see e.g. [36,37]). To summarize, to date the
model calculations of the T-even SFs involve only the tree-
level cut diagrams, while those for the T-odd functions
involve only the one-loop interference-type diagrams. This
yields model elementary TMD SFs that violate the pos-
itivity bound of the overall polarized SF, making it
impossible to use them for MC simulations.

A. Positivity bounds for splitting functions

To demonstrate the violations of the positivity bound by
mixed-order calculations for the elementary T-even and
T-odd functions, we employ the positivity relations derived
in Ref. [38] to impose constraints on the FFs, which should
also hold for model SFs. First let us define the notation for
any function Fðz; p2⊥Þ,

F½1�ðz; p2⊥Þ≡ p2⊥
2z2M2

Fðz; p2⊥Þ; ð23Þ

Hðz; p2⊥Þ≡HTðz; p2⊥Þ þH⊥½1�
T ðz; p2⊥Þ: ð24Þ

The relations of Ref. [38] for the TMD FFs can then be
expressed as

jHj ≤ 1

2
ðDþGLÞ ≤ D; ð25Þ

jH⊥½1�
T j ≤ 1

2
ðD −GLÞ ≤ D; ð26Þ

ðG½1�
T Þ2 þ ðH⊥½1�Þ2 ≤ p2⊥

4z2M2
ðDþ GLÞðD −GLÞ

≤
p2⊥

4z2M2
D2; ð27Þ

ðH⊥½1�
L Þ2 þ ðD⊥½1�

T Þ2 ≤ p2⊥
4z2M2

ðDþ GLÞðD −GLÞ

≤
p2⊥

4z2M2
D2: ð28Þ

We can check the validity of relevant relations for the T-
even SFs in the spectator model using the explicit expres-
sions shown in Eqs. (A1)–(A6). Here we find

jĤj ¼ 1

2
ðD̂þ ĜLÞ ≤ D̂; ð29Þ

so the first part of the “Soffer bound” in Eq. (25) is
saturated.
Furthermore,

jĤ⊥½1�
T j ¼ 1

2
ðD̂ − ĜLÞ ≤ D̂; ð30Þ

with the first parts of the inequality again being satisfied at
the limit (of equality).
We can then easily calculate the expressions

ðĜ½1�
T Þ2 ¼ ðĤ⊥½1�

L Þ2 ¼ p2⊥
4z2M2

ðD̂þ ĜLÞðD̂ − ĜLÞ

≤
p2⊥

4z2M2
D̂2; ð31Þ

which, according to the relations in Eqs. (27) and (28),
requires that
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Ĥ⊥ðz; p2⊥Þ ¼ 0; ð32Þ
D̂⊥

T ðz; p2⊥Þ ¼ 0: ð33Þ
In conclusion, in order to satisfy the positivity con-

straints for the tree-level calculations of T-even SFs in
Eqs. (A1)–(A6), the T-odd functions Ĥ⊥ and D̂⊥

T should
both vanish. Thus, the previous model calculations of these
functions violate the positivity constraints. This result
does not depend on the details of the regularization of
the transverse momentum dependence, etc.
This observation is analogous to the case of the TMD

PDFs, where the violation of the positivity by the mixed-
order model calculations of the T-even and T-odd functions
has been known for some time (see Refs. [39–42]).

IV. MONTE CARLO SIMULATIONS
AND RESULTS

The results from Sec. III A indicate that the straightfor-
ward leading-order quark model calculations of the elemen-
tary TMD FFs violate positivity and cannot be used for
MC simulations, most likely because of the mixed-order
calculations of the T-even and T-odd ones. Further inves-
tigation of this problem, including the next-order calcu-
lations of the T-even FFs, is beyond the scope of this work.
Thus, here we choose to use ansatz FFs based on the NJL
model calculations. First, to accommodate any nonzero
T-odd FFs, we slightly increase the unpolarized FF by a
constant factor

D̂ðzÞ ¼ 1.1D̂treeðzÞ; ð34Þ
where D̂treeðzÞ is the tree-level result, regularized in the
extended Lepage-Brodsky scheme of Ref. [24]. For MC
simulations we use the numerical values of model param-
eters from the same article.
For the Collins function we choose a simplistic ansatz,

which satisfies the kinematic conditions outlined in
Ref. [4],

p⊥
zM

Ĥ⊥ðq→hÞðz; p2⊥Þ
D̂ðq→hÞðz; p2⊥Þ

¼ 0.4
2p⊥MQ

p2⊥ þM2
Q
; ð35Þ

where MQ is the mass of the remnant quark, and the
coefficient 0.4 is chosen to satisfy the positivity constraints
in Eqs. (25)–(28). Additionally, we use the model relations

D̂ðq→hÞðz; p2⊥Þ ¼ D̂ðq→q1Þð1 − z; p2⊥Þ; ð36Þ

Ĥ⊥ðq→hÞðz; p2⊥Þ ¼ −Ĥ⊥ðq→q1Þð1 − z; p2⊥Þ; ð37Þ

Ĥ⊥ðq→q1Þðz; p2⊥Þ ¼ −D̂⊥ðq→q1Þ
T ðz; p2⊥Þ; ð38Þ

where all the elementary splittings are assumed to be
normalized, as described in Ref. [24].

In this work we present only p2⊥-integrated quantities for
brevity. Then the relevant number density becomes

Dh=q↑ðz;φÞ ¼
1

2π
½Dq→hðzÞ − 2H⊥ð1=2Þ

q→h ðzÞsT sinðφCÞ�;
ð39Þ
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FIG. 3. Comparison of results of D (a), H⊥ð1=2Þ (b), and
H⊥ð1=2Þ=D (c) of integral expressions (IE) and MC results for
πþ produced at rank 2 in the quark-jet picture. The plots in (b) and
(c) show the different contributions to the Collins function at rank
2 shown in Eq. (22).
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where

Dq→hðzÞ ¼ π

Z
∞

0

dp2⊥Dðz; p2⊥Þ; ð40Þ

H⊥ð1=2ÞðzÞ ¼ π

Z
∞

0

dp2⊥
p⊥
2zmh

H⊥ðz; p2⊥Þ: ð41Þ

We can extract the collinear unpolarized FFDq→hðzÞ and
the 1=2 moment of the Collins function H⊥ð1=2Þ

q→h ðzÞ by
fitting the relation (39) with a functional form linear in
sinðφCÞ,

Lðz;φCÞ ¼ c0ðzÞ − c1ðzÞ sinðφCÞ: ð42Þ

We can easily access the full TMD FFs of Eq. (14) using the
same method from unintegrated number densities we
compute, but here we focus on presenting the overall
MC framework and reserve presenting full TMD results
for future work.
For simplicity, we calculate only the FFs of the u quark

to pions in this work. In our simulations we use 100 points
to discretize z and p2⊥, and 600 points for the azimuthal
angles. To achieve high precision results needed for
validating various aspects of the MC framework, for each
of the computations presented here we simulated at least

quark-jet: linear
Flip: linear
Flip: quadratic

N
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10

100

2
dof

1 10 100 1000

FIG. 4. Histogram of the values of χ2dof for fits of all polarized
fragmentation functions of the u quark to rank-2 pions, fitted with
linear and quadratic polynomials in sinðφCÞ of Eqs. (42) and (43)
for MC simulations of rank-2 hadrons. The label “Flip” denotes
the simulations where the transverse polarization of the quark is
simply flipped after each hadron emission step.
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FIG. 5. Fitted values of D (a) and 2H⊥ð1=2Þ (b) for u → πþ as a
function of z for hadrons at different ranks from Monte Carlo
simulations using model SFs.
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FIG. 6. Fitted values of D (a) and 2H⊥ð1=2Þ (b) for u → πþ as a
function of z for hadrons at different ranks from Monte Carlo
simulations using model SFs modified by a factor ð1 − zÞ4 .
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1011 hadronization chains by running the MC software in
parallel on a small computer farm.

A. Quark-to-hadron FFs for rank-2 hadrons

First, we verify the MC framework by comparing the
results for the unpolarized and Collins functions of the
rank-2 πþ produced by the u quark with those obtained via
numerical integration of relations (21) and (22). The

corresponding plots, which also compare the contributions
of the three terms in (22), are shown in Fig. 3. Here,
the label “RECOIL” refers to the term involving
Ĥ⊥ðq→q1Þ ⊗ D̂ðq1→hÞ, while ĤT and Ĥ⊥

T refer to the terms
where the corresponding functions are convoluted with
Ĥ⊥ðq1→hÞ. The plots show a perfect agreement between the
MC results and those from Eqs. (21) and (22). Moreover,
we see that the recoil term is almost canceled by the one
involving Ĥ⊥

T . Further, we see that the recoil term in the
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FIG. 7. Fitted values of zD (a), 2H⊥ð1=2Þ (b), and 2H⊥ð1=2Þ=D
(c) as a function of z from Monte Carlo simulations for u → π,
with NL ¼ 10 emitted hadrons.
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FIG. 8. The analogous plots to those in Fig. 7 for the modified
model.
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analyzing power 2H⊥ð1=2Þ=D vanishes as z → 0, while the
other two remain nonzero.

B. Higher-order modulations in a naive model

One of the main motivations for this work was to extend
the quark-jet formalism to include the quark polarization
propagation in a self-consistent manner that does not
induce unphysical higher-order sinðφCÞ modulations, as
discussed in the Introduction. If present, these modulations
should appear for hadrons at rank 2 and higher. To test our
model, we calculated the values of χ2dof for fits to the
polarized FF in (39) for every value of z and all pions at
rank 2, about 300 fits in total (we skip the few z bins with a
very small number of events for a given hadron that would
yield very large statistical uncertainties). The results are
shown in Fig. 4, where the χ2dof values are sharply peaked
around 1, with a maximum value not exceeding 1.5. Also in
this figure, the histograms labeled “Flip” are the results for
the naive model, where the transverse component of the
fragmenting quark’s polarization is simply flipped (the
azimuthal angle is increased by π) after every emission
step, while its modulus and the longitudinal components
are unchanged. We readily see that the linear form in
sinðφCÞ of Eq. (42) fails to provide reasonable fits to the
MC results, while the quadratic form

Qðz;φCÞ ¼ c0ðzÞ − c1ðzÞ sinðφCÞ − c2ðzÞ sin2ðφCÞ ð43Þ

fits perfectly. This once again demonstrates the presence of
the higher-order modulations in models where the polari-
zation transfer of the quark to its remnant is not correctly
described. We also explicitly checked that the linear
function produces high quality fits to hadrons of all the
ranks in our simulations with the self-consistent formalism.

C. Results for the FFs

Here we present the results for the model calculations
with NL ¼ 10 hadron emissions. Also, to demonstrate the
flexibility of our model, we include results where the input
model FFs have been multiplied by ð1 − zÞ4. This modified
model mimics the effects of QCD evolution, where the
unpolarized FF is peaked at low values of z, unlike in our
unevolved model [21].
The plots in Figs. 5 and 6 show the unpolarized and

Collins terms of the πþ produced at a given rank by an
initial u quark in the two models. It is clear that the original
model rapidly converges with respect to the rank of the
hadron for any reasonably large value of z. On the other
hand, the modified model converges slower due to the
skewed input unpolarized splitting favoring small z in each
hadron emission step.
The plots in Figs. 7 and 8 show the unpolarized terms,

the Collins terms, and the analyzing powers of the pions
produced by an initial u quark in the two models. We used a

large number of produced hadrons, NL ¼ 10, in each
hadronization chain to ensure complete saturation of the
results up to very small z for both models. While the results
for both calculations share common features of opposite
sign for the favored and unfavored Collins functions at
large z, the detailed behavior over mid to low values of z
can be clearly tuned to best reproduce the data. For
example, the results by COMPASS, STAR and BELLE
indicate significant asymmetries at z ¼ 0.2, with opposite
signs for the favored and unfavored FFs, which seem to
best suit the scenario in the modified model.

V. CONCLUSIONS

The accurate description of the polarized quark hadro-
nization process remains one of the most challenging
aspects in the phenomenological description of deep
inelastic scattering processes. For example, the treatment
of the quark polarization and the corresponding correla-
tions are, to date, not included in any of the well-known
event generators, such as PYTHIA [13], HERWIG [43], and
SHERPA [44]. In this work we presented Monte Carlo
implementation of the extended quark-jet hadronization
framework [11], aimed at calculating various spin-
dependent observables such as the Collins FFs. In
Sec. II A we presented the theoretical framework for the
iterative description of the quark-to-quark fragmentation
process based on the spin density matrix formalism, and
the calculation of the transition probability and the final
quark’s polarization in terms of the 8 elementary TMD SFs.
In Sec. II B we briefly described the procedure for
extracting the unpolarized and Collins FFs of the produced
hadrons, similar to our earlier work, and in Sec. II C we
presented explicit expressions for the unpolarized and
Collins FFs of hadrons produced at rank 2.
One of the important inputs to the quark-jet framework

are the 8 elementary quark-to-quark TMD SFs that can be
either calculated in effective quark models or parametrized.
There are, however, stringent constraints set on these SFs
to guarantee the positivity of the total polarized quark
fragmentation probability density, derived in Ref. [38]. At
the same time, the current models describing quark-to-
quark and quark-to-hadron fragmentations use the so-called
spectator approximation. Here, the T-even SFs are calcu-
lated at the tree level, while the nonvanishing contributions
to T-odd functions first appear at one loop. In Sec. III Awe
prove that the spectator-type quark model calculations of
the 6 T-even TMD SFs satisfy these constraints only if the
two T-odd SFs, the Collins and “polarizing” functions,
vanish. In this work we circumvented this problem by
introducing an ansatz for the TMD SFs, based on NJL
model calculations of the T-even functions.
We presented the results of our MC simulations in

Sec. IV for up-quark fragmentation into pions. First, in
Sec. IVAwe used the explicit results for the rank-2 hadrons
of Sec. II C to validate the MC method for calculating both
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unpolarized and Collins FFs. The plots in Fig. 3 demon-
strated that we could precisely reproduce the MC results by
calculating the multidimensional integrals numerically.
Another important test for these MC simulations is that
the resulting polarized FFs should only depend linearly on
the initial quark’s polarization and thus also on sinðφCÞ. In
Sec. IV B we demonstrated that the linear form of Eq. (42)
perfectly fits the results of MC simulations, as shown in
Fig. 4. Further, we once again demonstrated in the same
figure that, the naive model with transverse polarization flip
after each hadron emission, generates unphysical quadratic
dependence on the polarization of the initial quark already
for the rank-2 hadrons.
Finally, the fullmodel resultswere presented in Sec. IV C.

Here, in addition to the model ansatz for the TMD FFs
described in the beginning of Sec. IV, we also introduced a
second form for these functions to demonstrate the flexi-
bility of our MC framework. The plots in Figs. 7 and 8
showed the corresponding results for the unpolarized and
Collins FFs of an up quark to pions, as well as the analyzing
powers. The analyzing powers demonstrated the distinctive
features of the quark-jet framework: opposite sign for the
large z values for favored and unfavored channels. The
results for the favored channel then fall off in magnitude
more rapidly than the unfavored ones with decreasing z, and
they cross the zero at some small z. It is also interesting to
note that the shapes of the analyzing powers and the zero
crossover points for the favored ones drastically depend on
the forms of the input splitting functions. For example, the
second model ansatz was constructed to mimic the effect of
QCD evolution on the unpolarized FFs by skewing the
corresponding functions towards the small z region. This
yielded roughly equal in magnitude and opposite in sign
favored and unfavored analyzing powers for 0.15 ≤ z ≤ 0.3,
as shown in Fig. 8. For example, this behavior looks
strikingly similar to the recent results by the STAR
Collaboration [45], where our original model fails to
describe the shape of the experimental results in z ≈ 0.2.
Of course, the experimentally measured single spin

asymmetries (SSAs) are ratios of convolutions of PDFs
andFFs, and it is naive to directly compare analyzing powers
of fragmentation functions to them. A more meaningful
comparison to the phenomenological fits of the Collins
function to the data of Refs. [5,6] indeed shows that there are
significant discrepancies. Most notably, the zero crossing of
the favored Collins function in ourmodel at small z is absent
in the parametrizations. There are several reasons for such
differences. First, the current functional forms used in
Refs. [5,6] to fit the Collins FFs do not allow a sign change
by construction since the present sizable experimental
uncertainties do not allow one to discriminate any possible
nodes of the Collins function at small values of z. Moreover,
the SIDIS experimental measurements to date that are used
in the phenomenological fits are presented for z ≥ 0.2,
leaving the z < 0.2 behavior of the fitting functions

unconstrained. Finally, the measurements are done at sub-
stantially larger Q2 than that assumed in the NJL model;
thus, we expect the zero-crossing point of the favored FF
entering themeasured SSA to be pushed to even smaller z by
QCD evolution. Similarly, the scaleQ2

0 ¼ 2.4 GeV2 used to
plot the final results in both Refs. [5,6] is significantly larger
than that typically assigned to input elementary FFs calcu-
lated in the NJLmodel (Q2

NJL ≈ 0.2 GeV2). The “evolution-
mimicking” ansatz still should not be expected to give
results that can be directly compared with the data at much
higher scales, as can be judged by the unpolarized FFs in
Figs. 7(a) and 8(a). Instead, it is used to demonstrate the
flexibility of the framework. In our model we still do not
include the vector meson production and strong decays,
which should also have a significant influence, especially in
the small-z region [22].Nevertheless, thisworkwas aimed at
numerically validating the quark-jet framework approach
and to demonstrate the flexibility of the framework, with a
perspective that, in the future, a very good description of the
experimental data could be achieved by employing flexible
functional forms for the input TMD FFs and adjusting the
parameters.
The future developments of this model, such as the

inclusion of the strange quarks and kaons, as well as the
vector meson production and strong decays, will allow one
to precisely describe a large range of phenomena that
involve polarized quark hadronization. The computation of
various polarized dihadron FFs will provide an improved
set of predictions compared to our previous work [31] with
a simplistic model. Further work on the model calculations
of the input TMD FFs would give more predictive power to
the framework. At the same time, the polarization transfer
mechanism used in this work can be readily adapted into
the well-known MC event generators such as PYTHIA [13],
with parametric forms for the input functions that can be
tuned to best reproduce various experimental data.
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APPENDIX: T-EVEN SPLITTING FUNCTION
FROM SPECTATOR MODEL

In spectator-type models, the leading-order elementary
T-even TMD SFs are calculated using the cut diagram by
evaluating the traces of the quark-quark correlator [11,36].
The resulting TMD SFs are shown in Eqs. (A1)–(A6),
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where we list the “bare” results without any regularization
scheme or form factors for the divergent transverse momen-
tum dependence. It is important to note that any analytic
regularization scheme should not affect the inequalities in
Sec. III A that follow purely from the relations between the
numerators of the splitting functions in Eqs. (A1)–(A6),

D̂ðz; p2⊥Þ ¼ C½p2⊥ þ ð1 − zÞ2M2�; ðA1Þ

ĜLðz; p2⊥Þ ¼ C½−p2⊥ þ ð1 − zÞ2M2�; ðA2Þ

ĜTðz; p2⊥Þ ¼ C½2zð1 − zÞM2�; ðA3Þ

ĤTðz; p2⊥Þ ¼ −D̂ðz; p2⊥Þ; ðA4Þ

Ĥ⊥
L ðz; p2⊥Þ ¼ ĜTðz; p2⊥Þ; ðA5Þ

Ĥ⊥
T ðz; p2⊥Þ ¼ C½2z2M2�; ðA6Þ

where

Cðz; p2⊥Þ

≡ 1 − z
12

g2π
ð2πÞ3

1

ðp2⊥ þM2ð1 − zÞ2 þ zm2
πÞ2

: ðA7Þ
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