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We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light
of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor
meson f2ð1270Þ as well as of the scalar meson f0ð980Þ. We confirm a previous finding that the η; η0 and
helicity-2 f2ð1270Þ contributions saturate one of these sum rules up to photon virtualities around 1 GeV2.
At larger virtualities, our sum rule analysis shows an important contribution of the f2ð1565Þ meson and
provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to
predict the helicity-0 and helicity-1 transition form factors of the f2ð1270Þ meson. Furthermore, our
analysis also provides an update for the scalar and tensor meson hadronic light-by-light contributions to the
muon’s anomalous magnetic moment.
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I. INTRODUCTION

The anomalous magnetic moment of the muon aμ ¼
ðg − 2Þμ=2 has since long been studied as a test of the
Standard Model of particle physics and for its high
potential of probing new, beyond the Standard Model,
physics. The presently observed 3–4σ deviation between
theory and experiment in this observable [1] has indicated
that with the obtained precision, one may be tantalizingly
close to probe new physics. On the experimental side, this
discrepancy has triggered new ðg − 2Þμ measurements both
at Fermilab (E989) [2] as well as at Japan Proton
Accelerator Research Complex [3] within the next few
years with the aim of reducing the experimental error on aμ
by a factor of 4 over the present value. However, the
interpretation of aμ critically depends on the knowledge of
the strong-interaction contributions, which at present
totally dominate the Standard Model uncertainty. This
has motivated an intense activity also on the theoretical
side to reliably estimate contributions of hadrons to aμ; for
a recent review, see Ref. [4] and references therein. The
hadronic uncertainties mainly originate from the hadronic
vacuum polarization (HVP) and the hadronic light-by-light
(HLbL) processes. Forthcoming data from high-luminosity
eþe− colliders, particularly from the BESIII experiment,
aim to reduce the uncertainty in the HVP by around a factor
of 2 over the next few years [4]. Unlike the HVP
contribution, in most of the existing estimates of the
HLbL contribution, the description of the nonperturbative
light-by-light matrix element is based on hadronic models
rather than being determined from data. Unfortunately, a
reliable estimate based on such models is possible only
within certain kinematic regimes, resulting in a large,
mostly uncontrolled uncertainty of aμ. To reduce the model
dependence implies resorting to ab initio approaches such

as lattice QCD [5] in combination with data-driven dis-
persive approaches [6–8] for the HLbL contribution to aμ.
Dispersive techniques provide strong constraints for the

HLbL process as they relate the forward light-by-light
scattering amplitude through sum rules to energy-weighted
integrals of the (virtual) photon-photon fusion cross sec-
tions, which can be accessed experimentally. A previous
work has derived three such superconvergence sum rule
relations [9], complementing an earlier derived supercon-
vergence relation for the photon-photon fusion process
based on the extension of the Gerasimov-Drell-Hearn
(GDH) sum rule [10–12]. These light-by-light scattering
sum rules have been shown to hold exactly in quantum
field theory. In an application of these sum rules to the γ�γ-
production of mesons, it has been shown that they lead to
relations between the γ�γ transition form factors (TFFs) for
C-even scalar, pseudoscalar, axial-vector, and tensor mes-
ons [9]. These TFFs can then be inserted in the HLbL
contribution to aμ, allowing one to estimate the contribu-
tion of different meson poles [13]. In a further recent
application, these sum rules have been used to test the
lattice QCD calculation of the forward light-by-light
scattering [14], thus providing an important constraint
for lattice QCD calculations of aμ.
Using the empirical information on meson decays into

two real photons, Ref. [9] has found that the helicity-
difference sum rule, involving the cross section difference
between mesons with helicity-2 and helicity-0, requires
cancellations between different mesons in order to be
satisfied. For the light-quark isovector mesons, the π0

contribution was found to be compensated to around
70% by the contribution of the lowest-lying tensor meson
a2ð1320Þ. For the light-quark isoscalar mesons, the η and η0
contributions were found to be entirely compensated within
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the experimental accuracy by the two lowest-lying tensor
mesons f2ð1270Þ.
The helicity difference sum rule has also been applied

for the case of one real and one virtual photon. In this case,
the γ�γ fusion cross sections depend on the meson TFFs. In
the absence of any experimental data on scalar and tensor
meson TFFs, the helicity-difference sum rule was used in
Ref. [9] to provide estimates for the dominant tensor meson
TFFs. In particular, the f2ð1270Þ tensor TFF was expressed
in terms of the η, and η0, TFFs and the a2ð1320Þ tensor TFF
in terms of the π0 TFF. As empirical information on
pseudoscalar meson TFFs is available, these relations
provided predictions for f2ð1270Þ and a2ð1320Þ tensor
meson TFFs.
Recently, the Belle Collaboration has released new data

for the γ�γ → π0π0 process over a wide range of photon
virtualities and for the invariant massW of the π0π0 system
in the range 0.5 GeV < W < 2.1 GeV [15]. Through a
partial-wave analysis, the Belle Collaboration has extracted
first empirical results for the f2ð1270Þ tensor meson TFFs
and for the f0ð980Þ scalar meson TFF. It is the aim of this
work to confront our earlier analysis for two of these light-
by-light sum rules with the Belle data and to extend these
sum rule analyses to finite Q2. Furthermore, we also
provide for the first time an analysis of the light isoscalar
meson contributions to a third light-by-light sum rule.
These studies allow us to also extract the subdominant
TFFs for the f2ð1270Þ tensor meson, as well as for the
f2ð1565Þ meson.
The present paper is organized as follows. In Sec. II, we

introduce the three light-by-light sum rules which are the
objects of study in this work. In the narrow resonance
approximation, we then provide the full expressions for all
meson TFF contributions to these three light-by-light sum
rules. In Sec. III, we review the empirical parametrization
of meson TFFs. In particular, we include the new Belle data
in our discussion and provide an error analysis. In Sec. IV,
we provide our results and discussion for the light-quark
meson TFF contributions to the three light-by-light sum
rules. As an application of our sum rule analysis, we also
estimate the HLbL contributions of the f0ð980Þ, a0ð980Þ
scalar mesons and the four lowest-lying tensor mesons to
the muon’s aμ. The expressions to define the TFFs for
pseudoscalar, scalar, axial-vector, and tensor mesons are
collected in the Appendix.

II. FORWARD LIGHT-BY-LIGHT SUM
RULES FOR THE PRODUCTION OF

LIGHT-QUARK MESONS

In order to constrain the HLbL scattering, three exact
superconvergence relations were derived in Ref. [9],
which relate the forward light-by-light scattering to energy
weighted integrals of the γ�γ-fusion cross sections. These
three superconvergence relations, valid for at least one real

photon [e.g. the first photon is spacelike with (negative)
virtuality q21 ¼ −Q2

1 ≤ 0, whereas the second photon is real
and thus has virtuality q22 ¼ −Q2

2 ¼ 0], can be written as

0 ¼
Z

∞

s0

ds
1

ðsþQ2
1Þ
Δσðs;Q2

1; 0Þ; ð1aÞ

0 ¼
Z

∞

s0

ds
1

ðsþQ2
1Þ2

�
σ∥ þ σLT þ ðsþQ2

1Þ
Q1Q2

τaTL

�
Q2

2
¼0

;

ð1bÞ

0 ¼
Z

∞

s0

ds

�
τTLðs;Q2

1; Q
2
2Þ

Q1Q2

�
Q2

2
¼0

; ð1cÞ

where s is the total c.m. energy squared and s0 is the first
inelastic threshold for the γ�γ fusion process. The first sum
rule corresponds with the extension of the GDH sum rule
[10–12] and involves the helicity difference cross section
Δσðs;Q2

1; Q
2
2Þ≡ σ2 − σ0 for the γ�γ� → X process, where

σΛ stands for the helicity cross section with Λ ¼ 0, 2
the helicity of the two-photon state. The sum rules of
Eqs. (1b) and (1c) involve cross sections for linear photon
polarizations with both polarization directions parallel to
each other (σ∥), mixed transverse (T)-longitudinal (L)
cross sections (σLT), or interference cross sections (which
are not sign definite) with one T and one L photon
(τaTL; τTL); see Ref. [9] for definitions. All these response
functions are observable quantities in the γ�γ� → X fusion
process, which is described by eight independent structure
functions [16].
All of the above relations were verified exactly in

perturbation theory at leading order in scalar and spinor
QED [9], and a proof to all orders in perturbation theory
was given within the context of the ϕ4 quantum field theory
[17]. These superconvergence relations were subsequently
applied to the γ�γ -production of mesons, and it was shown
quantitatively that they lead to relations between the γ�γ
TFFs for scalar (S), pseudoscalar (P), axial-vector (A), and
tensor mesons (T ).
Lorentz invariance allows us to decompose the γ�γ� →

S;P;A; T matrix elements in terms of form factors which
are scalar functions of the photon virtualities. Explicit
definitions of the TFFs and their relations to the cross
sections are given in Ref. [9]. For convenience of the
reader, the expressions relevant to this work are collected in
the Appendix.
The sum rule of Eq. (1a) has dominant contributions

coming from the pseudoscalar and tensor mesons. Besides
them, there are also scalar and axial-vector meson con-
tributions. The latter enter only for nonzero virtuality and
are therefore suppressed at lowQ2

1. In the narrow resonance
approximation, the first sum rule (1a), which wewill denote
by SR1, can be expressed in terms of meson TFFs, defined
in the Appendix, as
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0 ¼ −
X
P

16π2
ΓγγðPÞ
m3

P

�
FPγ�γ� ðQ2

1; 0Þ
FPγ�γ�ð0; 0Þ

�
2

−
X
S

16π2
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m3

S

�
FT
Sγ�γ� ðQ2
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FT
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þ
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�2
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T γ�γ� ðQ2

1; 0Þ
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�2�
1þ Q2

1

m2
T

�
2
�
; ð2Þ

where α≃ 1=137 is the fine structure constant, ΓγγðP; S; TÞ are the total two-photon decay widths for pseudoscalar (P),
scalar (S), and tensor (T ) mesons, respectively, and rðΛÞ is the ratio of the two-photon decay widths of the tensor meson with
specific helicity Λ to the total two-photon decay width:

rðΛÞ ≡ ΓγγðT ðΛÞÞ
ΓγγðT Þ : ð3Þ

In the narrow resonance approximation, the sum rules of Eqs. (1b) and (1c), which we will denote by SR2 and SR3,
respectively, have dominant contributions coming from the axial-vector and tensor mesons. In terms of the meson TFFs,
defined in the Appendix, they take the following forms,
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and
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where the equivalent two-photon decay width ~ΓγγðAÞ for
axial-vector mesons is defined in Eq. (A8) and where we
have introduced the following TFF ratios:

RL
SðQ2

1Þ≡
FL
Sγ�γ�ðQ2

1; 0Þ
FT
Sγ�γ�ðQ2

1; 0Þ
; RL

T ðQ2
1Þ≡

Fð0;LÞ
T γ�γ�ðQ2

1; 0Þ
Fð0;TÞ
T γ�γ�ðQ2

1; 0Þ
;

ð6Þ

Rð1Þ
A ðQ2

1Þ≡
Fð1Þ
Aγ�γ� ð0; Q2

1Þ
Fð1Þ
Aγ�γ� ðQ2

1; 0Þ
; Rð1Þ

T ðQ2
1Þ≡

Fð1Þ
T γ�γ� ð0; Q2

1Þ
Fð1Þ
T γ�γ� ðQ2

1; 0Þ
:

ð7Þ

III. EMPIRICAL PARAMETRIZATIONS
OF MESON TFFS

Experimental information on TFFs is available for the
light pseudoscalar mesons π0; η; η0 [18], for light axial-
vector mesons f1ð1285Þ, f1ð1420Þ [19,20], and, from
recent measurements by the Belle Collaboration [15], also
for the f0ð980Þ and f2ð1270Þ mesons. In this section, we
discuss the parametrizations of the corresponding TFFs
which will be used in this work when evaluating the light-
by-light sum rules.
The TFFs for the light pseudoscalar and scalar mesons,

M≡ P;S, can be parametrized by the monopole form

FMγ�γ� ðQ2
1; 0Þ

FMγ�γ� ð0; 0Þ
¼ 1

1þQ2
1=λ

2
M

; ð8Þ
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while for the axial-vector mesons we assume a dipole
parametrization, see Ref. [9] for details,

Fð1Þ
Aγ�γ� ðQ2

1; 0Þ
Fð1Þ
Aγ�γ� ð0; 0Þ

¼ Fð0Þ
Aγ�γ� ðQ2

1; 0Þ
Fð0Þ
Aγ�γ� ð0; 0Þ

¼ 1

ð1þQ2
1=λ

2
AÞ2

;

Rð1Þ
A ðQ2

1Þ ¼
m2

A þ 3Q2
1

m2
A þQ2

1

; ð9Þ

where the experimental information on the monopole ΛM
and dipole λA mass parameters are collected in Table I.
The TFFs for a tensor meson in a state with helicity Λ

can be parametrized by a dipole form,

FðΛÞ
T γ�γ�ðQ2

1; 0Þ
FðΛÞ
T γ�γ� ð0; 0Þ

¼ 1

ð1þQ2
1=λ

2
T ðΛÞÞ2

; ð10Þ

for the cases Λ ¼ 2, Λ ¼ ð0; TÞ, Λ ¼ ð0; LÞ, and Λ ¼ 1.
The Q2 dependence of the Λ ¼ 2, Λ ¼ ð0; TÞ, and

Λ ¼ 1 TFFs for the tensor meson f2ð1270Þ have recently
been measured by the Belle Collaboration through the
γ�γ → π0π0 process [15]. In Ref. [15], the Q2 dependence
of the γ�γ → JP cross section has been expressed through a
partial-wave analysis as

σðγ�γ → JPðΛÞÞ ¼ δðs −m2Þ8π2 ð2J þ 1ÞΓγγðJPÞ
m

×
�
1þQ2

m2

�
½TðΛÞðQ2Þ�2; ð11Þ

where the relations between the tensor meson TFFs TðΛÞ
extracted in Ref. [15] and the ones used in this work are
given by

Tð2ÞðQ2
1Þ ¼

ffiffiffiffiffiffiffi
rð2Þ

p "
Fð2Þ
T γ�γ� ðQ2

1; 0Þ
Fð2Þ
T γ�γ� ð0; 0Þ

#
;

Tð0;TÞðQ2
1Þ ¼

ffiffiffiffiffiffiffi
rð0Þ

p �
1þ Q2

1

m2
T

�"
Fð0;TÞ
T γ�γ�ðQ2

1; 0Þ
Fð0;TÞ
T γ�γ� ð0; 0Þ

#
;

Tð1ÞðQ2
1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πα2Q2

1

5mT ΓγγðT Þ

s
Fð1Þ
T γ�γ�ðQ2

1; 0Þ: ð12Þ

Furthermore, in Ref. [15], also the transverse photon TFF
TðTÞ for f0ð980Þ has been measured and defined through
Eq. (11). Its relation to the scalar TFF used in this work is
given by

TðTÞðQ2
1Þ ¼

�
FT
Sγ�γ� ðQ2

1; 0Þ
FT
Sγ�γ�ð0; 0Þ

�
: ð13Þ

In Fig. 1, we show the experimental data from the Belle
Collaboration for Tð2Þ, Tð0;TÞ, and Tð1Þ, for the f2ð1270Þ
tensor meson, as well as the data for TðTÞ for the f0ð980Þ
scalar meson. The bands in Fig. 1 show the best fits to these
data. The fits yield the dipole mass parameters λT ðΛÞ
according to Eq. (10) as well as the monopole mass
parameter λS according to Eq. (8). These best fit parameters
and corresponding χ2=d:o:f: values are listed in Table II.
The ratios rð2Þ and rð0Þ of Eq. (3) for f2ð1270Þ are fixed

from the real photon point analysis of Ref. [22], and the

corresponding values of Fð2Þ
T γ�γ�ð0; 0Þ and Fð0;TÞ

T γ�γ� ð0; 0Þ are
also shown in Table II. Furthermore, the value of

Fð1Þ
T γ�γ�ð0; 0Þ for f2ð1270Þ is only weakly constrained by

the Belle data, which do not extend below Q2 < 3 GeV2

(lower left panel of Fig. 1). The dipole mass values λ for the
Λ ¼ ð0; LÞ TFF for the f2ð1270Þ meson and its normali-

zation Fð0;LÞ
T γ�γ� ð0; 0Þ are at present not available from data. In

the next section, we will discuss how the light-by-light sum

rules allow us to provide predictions for Fð1Þ
T γ�γ� ð0; 0Þ and

Fð0;LÞ
T γ�γ�ð0; 0Þ, which are listed in Table II.

IV. SUM RULE ANALYSIS FOR LIGHT-QUARK
MESON TFFS: RESULTS AND DISCUSSION

In this section, we use the available data on the dominant
meson TFF contributions to evaluate the three light-by-
light sum rules of Eqs. (2), (4), and (5). We will provide an
error analysis based on the existing empirical information.
For this purpose, all the uncertainties are summed in
quadrature. If the uncertainties are asymmetric, for sim-
plicity we make them symmetric, by enlarging the smallest
error. Therefore, our following predictions based on the
sum rules are very conservative estimates.

TABLE I. Experimentally extracted mass parameters λ accord-
ing to the fit of Eq. (8) for the γ�γ → P TFF to the data from the
CLEO Collaboration [18] and according to the fit of Eq. (9)
for the γ�γ → AðΛ ¼ 1Þ TFF to data from the L3 Collaboration
[19,20]. The meson masses and the pseudoscalar meson γγ decay
widths are from PDG [21].

m (MeV) Γγγ (keV) λ (MeV)

π0 134.9766� 0.0006 ð7.8� 0.5Þ × 10−3 776� 22

η 547.862� 0.017 0.516� 0.020 774� 29
η0 957.78� 0.06 4.35� 0.25 859� 28
f1ð1285Þ 1281.8� 0.6 3.5� 0.8 1040� 78
f1ð1420Þ 1426.4� 0.9 3.2� 0.9 926� 78
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A. Sum rule I

We start with the sum rule SR1 of Eq. (2), which involves
the difference between γγ-fusion cross sections with
helicity-0 and helicity-2. For the production of isoscalar

mesons by two real photons, it was found [9] that the large
negative (i.e. helicity-0) contribution due to the η and η0
mesons in Eq. (2) is compensated to around 90% by the
helicity-2 contribution due to the lowest-lying tensor meson

FIG. 1. The Belle Collaboration data [15] for the f2ð1270Þ TFFs of Eq. (12), as well as the f0ð980Þ TTF of Eq. (13), with the
corresponding fits given by Eqs. (10) and (8), respectively. The fit values of the TFF parameters are collected in Table II.

TABLE II. Couplings and mass parameters of the γ�γ → S; T TFFs. For f2ð1270Þ, the mass parameters λ corresponding with Λ ¼ 2,
Λ ¼ ð0; TÞ, and Λ ¼ 1 TFF are determined from a fit of Eq. (10) to the Belle data [15], shown in Fig. 1, whereas the ratios rðΛÞ from
Eq. (3) for the Λ ¼ 2 and Λ ¼ ð0; TÞ states are fixed from the real photon point, according to Ref. [22]. The values of the coupling
constants for the Λ ¼ 1 and Λ ¼ ð0; LÞ states are determined by saturating sum rules SR2 and SR3 as discussed in Sec. IV. For f2ð1565Þ,
the Λ ¼ 2 coupling, which is assumed to dominate, is determined from the total two-photon decay width, and the associated TFF mass
parameter λ is obtained by saturating SR1 as discussed in Sec. IV. The meson masses and their total γγ decay widths Γγγ are from the
PDG [21]. The last column gives the χ2=d:o:f: obtained for the fitted values of λ.

m (MeV) Γγγ (keV) rðΛÞ (%) λ (MeV) FðΛÞ
T γ�γ� ð0; 0Þ χ2=d:o:f:

f0ð980Þ 990� 20 0.31� 0.05 796� 54 0.086� 0.007 0.46
f2ð1270Þ 1275.5� 0.8 2.93� 0.40
Λ ¼ 2 91.3� 1.7 1222� 66 0.500� 0.034 0.30
Λ ¼ ð0; TÞ 8.7� 1.7 1051� 36 0.095� 0.011 0.30
Λ ¼ ð0; LÞ 877� 66 −0.90� 0.30 (prediction)
Λ ¼ 1 916� 20 0.24� 0.05 0.58
f2ð1565Þ 1562� 13 0.70� 0.14
Λ ¼ 2 100 (def.) 2719� 53 0.23� 0.02 (prediction)
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f2ð1270Þ. This has motivated the assumption in Ref. [9]
that the helicity-2 TFF Fð2ÞðQ2; 0Þ for f2ð1270Þ will also
provide the dominant contribution to SR1 when considering
(small) nonzero values of Q2. The new Belle results for the
f2ð1270Þ TFFs [15] allow one to quantitatively test such an
assumption.
Using the fit to the Belle data shown in Fig. 1 for the

Λ ¼ 2 and Λ ¼ ð0; TÞ TFFs of f2ð1270Þ, we display in
Fig. 2 their contribution to SR1. In Fig. 2, we furthermore
show the η and η0 contributions to SR1 using their much
better known TFFs according to Eq. (8), with monopole
mass parameters given in Table I. From Fig. 2, one can see
that the three dominant contributions due to η, η0 and
f2ð1270Þ production saturate SR1 to 65% of the f2ð1270Þ
(Λ ¼ 2) contribution at Q2 ¼ 0, but only to around 25%
of the f2ð1270Þ (Λ ¼ 2) contribution at Q2 ¼ 1 GeV2.
Therefore, for larger values of Q2, there is a clear signal for

some additional positive (i.e. helicity-2) contribution. We
expect it to come from another tensor meson ðf2ð1565ÞÞ
which has a two-photon width of Γγγðf2ð1565ÞÞ ¼
0.70� 0.14 keV. Adding this term allows one to saturate
SR1 up to Q2 ≃ 5 GeV2 within its experimental error,1 as
shown in Fig. 2 (upper right panel). The resulting pre-

diction for the TFF Fð2Þ
T γ�γ�ðQ2; 0Þ for the tensor meson

f2ð1565Þ is shown in Fig. 2 (lower right panel). At the real
photon point (Q2 ¼ 0), the normalization of the TFF is
fixed from the experimentally known two-photon decay
width, using Eq. (A11), which therefore constrains the error
band at low virtualities. Adding the real photon point to the
graph, and assuming rð2Þ ¼ 1, allows us to extract the TTF

FIG. 2. Dominant contributions to the helicity sum rule SR1 of Eq. (2). The upper left panel shows the η, η0, f2ð1270Þ, and f2ð1565Þ
contributions, as well as the sum of all four, in the low Q2 region. The upper right panel shows SR1 multiplied by Q4 to emphasize the
higherQ2 region. Bottom left panel: estimate of the subdominant contributions to SR1 due to f0ð980Þ, f1ð1285Þ, and f1ð1420Þ. Bottom
right panel: Prediction for the Λ ¼ 2 TFF of the f2ð1565Þ tensor meson based on the saturation of SR1. Its normalization at the real
photon point results from the PDG value [21] of its total two-photon decay width, assuming helicity-2 dominance, i.e. rð2Þ ¼ 1.

1The tiny region at very low Q2 ¼ 0 where the sum rule is
nonzero within errors may hint at small unaccounted contribu-
tions (like 2π channel) with a fast Q2 falloff.
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of f2ð1565Þ using a reasonably small uncertainty. The fit
shown in Fig. 2 (green band) corresponds to λ ¼ 2719�
53 MeV in Eq. (10). It will be interesting to test this sum
rule prediction for f2ð1565Þ by future data.
In Fig. 2 (bottom left panel), we also show for com-

pleteness estimates for the much smaller contributions to
SR1 from the scalar meson f0ð980Þ, as well as from the
axial-vector mesons f1ð1285Þ and f1ð1420Þ, which start
contributing at nonzero values of Q2. Their contributions

to SR1 are smaller than our error bar and are therefore
neglected.

B. Sum rules II and III

We next discuss the sum rules SR2 and SR3 of Eqs. (4)
and (5), respectively, and first consider them in the limit of
one real photon and one quasireal photon (Q2

1 ≈ 0). In that
limit, Eqs. (4) and (5) take the simpler forms:

0 ¼
X
S

16π2
ΓγγðSÞ
m5

S

ð1 − RL
Sð0ÞÞ −

X
A

8π2
3 ~ΓγγðAÞ
m5

A

þ
X
T

8π2
5ΓγγðT Þ
m5

T

�
rð2Þ þ rð0Þð2þ RL

T ð0ÞÞ þ
πα2mT

10ΓγγðT Þ ½F
ð1Þ
T γ�γ� ð0; 0Þ�2

�
; ð14Þ

and

0 ¼ −
X
S

16π2
ΓγγðSÞ
m3

S

RL
Sð0Þ þ

X
A

8π2
3 ~ΓγγðAÞ
m3

A

þ
X
T

8π2
5ΓγγðT Þ
m3

T

�
rð0ÞRL

T ð0Þ −
πα2mT

10ΓγγðT Þ ½F
ð1Þ
T γ�γ� ð0; 0Þ�2

�
:

ð15Þ

Wewill estimate the contributions to both sum rules from
the axial-vector mesons f1ð1285Þ and f1ð1420Þ, from the
scalar meson f0ð980Þ, as well as from the tensor mesons
f2ð1270Þ and f2ð1565Þ, based on the empirical informa-
tion listed in Tables I and II. For the f2ð1270Þ meson, the

Λ ¼ 1 TFF normalization Fð1Þ
T γ�γ� ð0; 0Þ is not well con-

strained by the Belle data, which are only available for
Q2 ≥ 3 GeV2 (see the lower left panel of Fig. 1).
Furthermore, no empirical information on the longitudinal
coupling ratio RL

T ð0Þ for f2ð1270Þ is available at present. In
this work, we will therefore provide empirical estimates
of both couplings by saturating SR2 with the f1ð1285Þ,
f1ð1420Þ, f0ð980Þ, f2ð1270Þ, and f2ð1565Þ contributions
and SR3 with the f1ð1285Þ, f1ð1420Þ, and f2ð1270Þ
contributions. This allows us to identify two relations
which follow from Eqs. (14) and (15):

SR2½nb=GeV2� ¼ þ53þ 11.6RL
T ð0Þ þ 975½Fð1Þ

T γ�γ� ð0; 0Þ�2;
ð16Þ

SR3½nb�¼þ274þ18.9RL
T ð0Þ−1585½Fð1Þ

T γ�γ� ð0;0Þ�2: ð17Þ

Both equations can be satisfied simultaneously, i.e. setting
both left-hand sides equal to zero, by choosing the
unknown values for f2ð1270Þ as

RL
T ð0Þ¼−9.5�3.0; Fð1Þ

T γ�γ� ð0;0Þ¼0.24�0.05: ð18Þ

The error bar on Fð1Þ
T γ�γ�ð0; 0Þ is fixed from the Belle data

(lower left panel of Fig. 1). More precise data at low Q2,
which may become available from forthcoming BESIII
analyses, will allow us to experimentally determine the

value of Fð1Þ
T γ�γ� ð0; 0Þ and to test our sum rule prediction.

The error bar on RL
T ð0Þ in Eq. (18) is fully attributed to the

error in evaluating the other contributions to SR2;3 and is
obtained as the averaged error from SR2 and SR3. We show
the contributions of the individual mesons to SR2 and SR3

with their respective error estimates in Tables III and IV,
respectively.
We next consider the SR2 and SR3 for the case of a

virtual photon with finite virtuality, i.e. for Q2
1 > 0. We

use the empirical information on the TFFs of f0ð980Þ,
f1ð1285Þ, and f1ð1420Þ, as well as the empirical informa-
tion on the Λ ¼ 2, Λ ¼ ð0; TÞ, and Λ ¼ 1 TFF of the tensor
meson f2ð1270Þ as discussed in Sec. III. For the unknown
Q2

1 dependence of the TFF ratios of Eqs. (6) and (7), we
make the following assumptions:

Rð1Þ
A ðQ2

1Þ ¼ 1; Rð1Þ
T ðQ2

1Þ ¼ 1;

RL
SðQ2

1Þ ¼ −1� 0.5;

RL
T ðQ2

1Þ ¼ RL
T ð0Þ

�
1þQ2

1=λ
2
ð0;TÞ

1þQ2
1=λð0;LÞ

�2
: ð19Þ

Our estimate for the value of RL
S for scalar mesons is

guided by two calculations: first, a one-loop calculation of
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the γ�γ → S vertex through a two-pion intermediate state
and, second, the quark model calculation of Ref. [23]. Both
calculations give a negative value for RL

S around -1, and we
take the spread between these two predictions as our error
estimate on this quantity. For the numerically more important
RL
T value for the tensormesonf2ð1270Þ,we allow for a dipole

mass parameter λð0;LÞ, which we obtain by simultaneously
saturating SR2 and SR3 at finiteQ2. In Fig. 3, we show theQ2

dependence of the individual meson contributions to SR2

and SR3, in the lower Q2 region, where we expect Eqs. (19)
to be reasonable approximations. For SR2, we have also
included the (small) Λ ¼ 2 TFF contribution of f2ð1565Þ
based on our extraction of SR2 (lower right panel of Fig. 2).
Indeed, we see from Fig. 3 that both sum rules can be

satisfied within error bars over this Q2 range. Figure 4
shows our sum rule prediction for theQ2 dependence of the
Λ ¼ ð0; LÞ TFF multiplied by RL

T ð0Þ for the f2ð1270Þ
tensor meson. The extracted longitudinal dipole mass
parameter from our fit is λð0;LÞ ¼ 877� 66 MeV. Given

the relative large extracted value, RL
T ð0Þ ¼ −9.5� 3.0, for

f2ð1270Þ, a direct measurement of this TFF ratio may be
very worthwhile. To extract RL

T directly from experiment,
will require double-tagged experiments, where both pho-
tons are virtual. Upcoming experiments at BESIII, using a
forward tagging spectrometer, will provide an opportunity
to measure this quantity and test the sum rule prediction
shown in Fig. 4.

C. Scalar and tensor meson light-by-light
contributions to aμ

For an application of our TFF sum rule analysis, we may
estimate the contributions of the scalar meson f0ð980Þ and
the tensor mesons f2ð1270Þ and f2ð1565Þ to the HlbL
contribution to the muon’s aμ. For this purpose, we use the
meson pole formalism, detailed in Ref. [13].
For the scalar mesons f0ð980Þ and a0ð980Þ, we assume a

factorized monopole TFF in both virtualities entering the
HLbL two-loop diagram to aμ. We take the monopole
parameter λ from the fit to the f0ð980Þ Belle data, given
in Table II, and assume the corresponding λ parameter for
the a0ð980Þ TFF to be equal to its isoscalar counterpart
f0ð980Þ. We show the corresponding results for aμ in
Table V. Although we expect the largest scalar meson
contribution to come from the low-lying and broad f0ð500Þ
state, which cannot be estimated reliably as a meson pole
contribution and will require a full treatment of the γ�γ� →
ππ process, see e.g. Refs. [6,7], the analysis performed in
this work allows one to put an empirical estimate for the
next dominant scalar meson states around 1 GeV. One sees
from Table V that their contribution to aμ is around a factor
50 smaller than the accuracy goal δaμ ∼ 16 × ×10−11 of the
next round of ðg − 2Þμ experiments [2,3].
We can also estimate the contribution of the leading

tensor mesons f2ð1270Þ and f2ð1565Þ based on the TFF

TABLE III. Individual meson contributions to SR2 of Eq. (14) for the case of quasireal photons (Q2
1;2 ≈ 0). We

used Eq. (18) to fix the unknown Λ ¼ ð0; LÞ and Λ ¼ 1 couplings of the f2ð1270Þ meson.

m (MeV) Γγγ (keV)

R
ds
s2 σ∥ðsÞ

(nb=GeV2)

R
ds½1s

τaTL
Q1Q2

�
Q2

i¼0

(nb=GeV2)

R
ds½ 1s2 σ∥ þ 1

s
τaTL
Q1Q2

�
Q2

i¼0

(nb=GeV2)

f1ð1285Þ 1281.8� 0.6 3.5� 0.8 0 −93� 21 −93� 21
f1ð1420Þ 1426.4� 0.9 3.2� 0.9 0 −50� 14 −50� 14
f0ð980Þ 990� 20 0.31� 0.05 þ20� 4 þ20� 11 þ40� 13
f2ð1270Þ 1275.5� 0.8 2.93� 0.40
Λ ¼ 2 þ122� 17 0
Λ ¼ ð0; TÞ þ23� 3 0
Λ ¼ ð0; LÞ 0 −111� 15
Λ ¼ 1 0 þ58� 24

Sum þ145� 20 −53� 24 þ92� 26

f2ð1565Þ 1562� 13 0.70� 0.14
Λ ¼ 2 þ12� 2 0 þ12� 2

Sum ≈0 (def.)

TABLE IV. Individual meson contributions to SR3 of Eq. (15)
for the case of quasireal photons (Q2

1;2 ≈ 0). We used Eq. (18) to
fix the unknown Λ ¼ ð0; LÞ and Λ ¼ 1 couplings of the f2ð1270Þ
meson.

m (MeV) Γγγ (keV)

R∞
s0

ds
h
τTLðs;Q2

1
;Q2

2
Þ

Q1Q2

i
Q2

i¼0

(nb)

f1ð1285Þ 1281.8� 0.6 3.5� 0.8 þ153� 35
f1ð1420Þ 1426.4� 0.9 3.2� 0.9 þ102� 29
f0ð980Þ 990� 20 0.31� 0.05 þ19� 10
f2ð1270Þ 1275.5� 0.8 2.93� 0.40
Λ ¼ ð0; LÞ −180� 43
Λ ¼ 1 −94� 40

Sum −274� 53
Sum ≈0 (def.)
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analysis performed in this work. For this purpose, we
assume a factorized dipole TFF in both virtualities and take
the corresponding dipole parameters λ from the empirical
analysis of this work, given in Table II. For our estimate
of aμ, we only consider the dominant Λ ¼ 2 tensor meson
TFF. We also estimate the contribution from the two
lowest-lying isovector tensor mesons a2ð1320Þ and

FIG. 3. Left panels: individual meson contributions to SR2 and SR3 using Eqs. (19) and (18), respectively. For the f2ð1270Þ meson,
the dipole mass parameter λð0;LÞ is determined by saturating SR2 and SR3 simultaneously. Right panels: sum of all contributions to SR2

and SR3.

TABLE V. f0ð980Þ and a0ð980Þ scalar meson pole contribu-
tions to aμ based on the present PDG values [21] of their masses
m, their 2γ decay widths Γγγ , and the monopole mass parameter λ
from the empirical TFF analysis of this work for f0ð980Þ, shown
in Table II. The monopole parameter for the a0ð980Þ TFF is
assumed to be equal to its isoscalar counterpart.

m (MeV) Γγγ (keV) λ (MeV) aμ (10−11)

f0ð980Þ 990� 20 0.31� 0.05 796� 54 −0.13� 0.04
a0ð980Þ 980� 20 0.30� 0.10 796� 54 −0.13� 0.06

Sum −0.26� 0.07

FIG. 4. Sum rule prediction for the Q2 dependence of the

longitudinal TFF RL
T ð0Þ

hFð0;LÞ
T γ�γ� ðQ2

1
;0Þ

Fð0;LÞ
T γ�γ� ð0;0Þ

i
for the f2ð1270Þ meson.

Light and dark red bands are constraints from SR2 and SR3,
respectively, while the green band corresponds to the fit of Eq. (10).
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a2ð1700Þ, by taking their PDG values [21] for the two-
photon decay widths, and assuming their dipole parameters
to be equal to their isoscalar counterparts. Using the meson
pole formalism of Ref. [13], we are thus able to provide an
update of the four lowest-lying tensor meson contributions
to aμ, which we show in Table VI. Our estimate shows that
their combined sum yields aμðtensorÞ ¼ ð0.91� 0.14Þ×
10−11, which is around an order of magnitude smaller than
the accuracy goal of δaμ ∼ 16 × 10−11 of the next round of
ðg − 2Þμ experiments [2,3].
Our empirical analysis thus confirms the conclusions

reached in Ref. [13] that for the forthcoming ðg − 2Þμ
experiments, the contributions of the scalar mesons beyond
the f0ð500Þ and the contribution of the lowest-lying tensor
mesons are well within the anticipated experimental
uncertainty. The axial-vector meson contributions to aμ
on the other hand were found to be more sizeable [13]
and of importance given the forthcoming experimental
uncertainty.

V. CONCLUSIONS

In this work, we have evaluated the light-quark isoscalar
meson contributions to three exact light-by-light scattering
sum rules in light of new data by the Belle Collaboration,
which recently has extracted the TFF for the scalar meson
f0ð980Þ and the helicity Λ ¼ 2, Λ ¼ ð0; TÞ, and Λ ¼ 1
TFFs for the tensor meson f2ð1270Þ. We improved upon a
previous analysis [9], which was based upon two of these
sum rules. Our previous study had assumed that the
helicity-2 minus helicity-0 difference sum rule for trans-
verse photons (SR1) was saturated by the pseudoscalar
mesons η; η0, and the tensor meson f2ð1270Þ. Furthermore,
for a second sum rule which involves both transverse
and longitudinal photons (SR2), it was assumed that it
was saturated by the axial-vector mesons f1ð1285Þ and
f1ð1420Þ and the tensor meson f2ð1270Þ. This has allowed
us to provide an empirical estimate for the dominant
helicity Λ ¼ 2 TFF for f2ð1270Þ, which was found to

be in very good agreement with the Belle data. The current
work has gone beyond our previous analysis of Ref. [9] by
including contributions beyond the Λ ¼ 2 TFF for the
tensor meson f2ð1270Þ, as well as including contributions
of higher mesons.
First, in the narrow resonance approximation, we have

provided the full formulas expressing the three considered
light-by-light sum rules in terms of all meson TFFs. This
has allowed us to update our previous analysis for SR1 and
SR2 and to provide for the first time the expressions for a
third light-by-light sum rule which involves both transverse
and longitudinal photons (SR3). We then analyzed the
empirical information, which is currently available on the
TFFs for isoscalar mesons, parametrizing the data for
the η; η0 TFFs by monopoles and the data for the
f1ð1285Þ, f1ð1420Þ axial-vector TFFs by dipoles. We have
furthermore analyzed the new Belle data for the TFFs of
f0ð980Þ and the Λ ¼ 2, Λ ¼ ð0; TÞ, and Λ ¼ 1 TFFs for
the tensor meson f2ð1270Þ at finite Q2, in combination
with the values at the real photon point. We parametrized
the scalar meson TFF in terms of a monopole and the
f2ð1270Þ tensor meson TFFs in terms of a dipole form and
extracted the corresponding mass parameters. This empiri-
cal information then allowed us to provide an error analysis
of the meson contributions to the three light-by-light
sum rules.
For SR1, we have confirmed our previous findings that

the η; η0 and Λ ¼ 2 production of f2ð1270Þ saturates the
sum rule within the experimental uncertainty up to around
1 GeV2. For larger values of Q2, we found a clear signal
for additional Λ ¼ 2 strength. Adding the second-lowest
tensor meson, f2ð1565Þ, allowed us to saturate SR1 up to
Q2 ≃ 5 GeV2, corresponding with the whole range of the
Belle data. This has allowed us to make a prediction for the
Λ ¼ 2 TFF for the tensor meson f2ð1565Þ over the whole
range inQ2, which can be tested by future data at lowerQ2.
We then analyzed SR2 and SR3, which both involve

the TFFs for longitudinal and transverse photons. We
accounted for the contributions of the f1ð1285Þ,
f1ð1420Þ, f0ð980Þ, f2ð1270Þ, and f2ð1565Þ mesons to
SR2 and the f1ð1285Þ, f1ð1420Þ, and f2ð1270Þ mesons to
SR3. We showed that both sum rules can be satisfied well
up to around Q2 ≃ 1 GeV2 within the experimental uncer-
tainty. This has for the first time allowed us to extract the
Λ ¼ 1 and Λ ¼ ð0; LÞ TFF for the f2ð1270Þ meson in the
low Q2 region, up to around 1 GeV2. We predict a very
sizable value for the longitudinal, i.e. Λ ¼ ð0; LÞ, TFF of
the tensor meson f2ð1270Þ. A direct measurement of this
longitudinal TFF may be very worthwhile and may be
possible in the near future at BESIII in a double-tagged
experiment.
We have used our estimates to provide updates for the

corresponding hadronic light-by-light contributions to the
muon’s aμ. Using a meson pole analysis, we have estimated
the scalar meson contributions, beyond the f0ð500Þ, as well

TABLE VI. Tensor meson pole contributions to aμ based on the
present PDG values [21] of their masses m, their 2γ decay widths
Γγγ , and the dipole mass parameters λ from the Λ ¼ 2 empirical
TFF analysis of this work for f2ð1270Þ and f2ð1565Þ, shown in
Table II. The corresponding dipole mass parameters for the
isovector mesons a2ð1320Þ and a2ð1700Þ are assumed to be equal
to their isoscalar counterparts.

m (MeV) Γγγ (keV) λ (MeV) aμ (10−11)

f2ð1270Þ 1275.5� 0.8 2.93� 0.40 1222� 66 0.50� 0.13
f2ð1565Þ 1562� 13 0.70� 0.14 2719� 53 0.21� 0.05
a2ð1320Þ 1318.3� 0.6 1.00� 0.06 1222� 66 0.14� 0.03
a2ð1700Þ 1732� 16 0.30� 0.05 2719� 53 0.06� 0.01

Sum 0.91� 0.14
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as the contribution from the four lowest-lying tensor
mesons as

aμ½f0ð980Þ; a0ð980Þ�
¼ ð−0.26� 0.07Þ × 10−11;

aμ½f2ð1270Þ; f2ð1565Þ; a2ð1320Þ; a2ð1700Þ�
¼ ð0.91� 0.14Þ × 10−11: ð20Þ

Our empirical estimates show that for the interpretation of
upcoming ðg − 2Þμ experiments, the HLbL contributions of
the scalar mesons beyond the f0ð500Þ, and the contribution
of the lowest-lying tensor mesons are well within the
anticipated experimental uncertainty.
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APPENDIX: γ�γ� → MESON TRANSITION
FORM FACTORS

In this Appendix, we provide a brief summary of the
matrix elements which are used in this paper for the process
γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → meson, describing the transition
from an initial state of two virtual photons, with 4-momenta
q1, q2 and helicities λ1; λ2 ¼ 0;�1, to a C-even meson. We
will successively discuss the matrix element for pseudo-
scalar (JPC ¼ 0−þ), scalar (JPC ¼ 0þþ), axial-vector
(JPC ¼ 1þþ), and tensor (JPC ¼ 2þþ) mesons. This matrix
element depends on one or more meson TTF, which are
functions of the photon virtualities Q2

1 ¼ −q21, Q2
2 ¼ −q22.

We will furthermore use the Mandelstam invariant
s≡ ðq1 þ q2Þ2 ¼ m2, withm the meson mass; the crossing
symmetric variable ν≡ q1 · q2 ¼ ðsþQ2

1 þQ2
2Þ=2; and a

virtual photon flux factor X ≡ ðq1 · q2Þ2 − q21q
2
2. The latter

reduces to X ¼ ν2 for the case where one photon is
real (Q2

2 ¼ 0).

1. Pseudoscalar mesons

The production of a pseudoscalar meson P ¼ π0; η;
η0;…. (JPC ¼ 0−þ), with mass mP , by two photons is
described by the matrix element,

Mðλ1; λ2Þ ¼ −ie2εμναβεμðq1; λ1Þενðq2; λ2Þ
× qα1q

β
2FPγ�γ� ðQ2

1; Q
2
2Þ; ðA1Þ

where εαðq1; λ1Þ and εβðq2; λ2Þ are the polarization vectors
of the virtual photons and where the meson structure

information is encoded in the TFF FPγ�γ�, which is a
function of the virtualities of both photons, satisfy-
ing FPγ�γ� ðQ2

1; Q
2
2Þ ¼ FPγ�γ� ðQ2

2; Q
2
1Þ.

The TFF at Q2
1 ¼ Q2

2 ¼ 0, FPγ�γ� ð0; 0Þ, is related to the
two-photon decay width of the pseudoscalar meson as

ΓγγðPÞ ¼
πα2

4
m3

PjFPγ�γ� ð0; 0Þj2; ðA2Þ

with α ¼ e2=ð4πÞ≃ 1=137.

2. Scalar mesons

A scalar meson S (JPC ¼ 0þþ), with mass mS , can be
produced either by two transverse photons or by two
longitudinal photons. Therefore, the γ�γ� → S transition
can be parametrized by the matrix element

Mðλ1; λ2Þ ¼ e2εμðq1; λ1Þενðq2; λ2Þ
�

ν

mS

�

×

�
−Rμνðq1; q2ÞFT

Sγ�γ� ðQ2
1; Q

2
2Þ

þ ν

X

�
qμ1 þ

Q2
1

ν
qμ2

��
qν2 þ

Q2
2

ν
qν1

�

× FL
Sγ�γ� ðQ2

1; Q
2
2Þ
�
; ðA3Þ

where the symmetric tensor Rμν, which projects on two
transverse photons, is defined as

Rμνðq1; q2Þ≡ −gμν þ 1

X
fνðqμ1qν2 þ qμ2q

ν
1Þ

þQ2
1q

μ
2q

ν
2 þQ2

2q
μ
1q

ν
1g: ðA4Þ

InEq. (A3), the scalarmeson structure information is encoded
in the form factors FT

Sγ�γ� and FL
Sγ�γ� , which are a function

of the virtualities of both photons, where the superscripts
indicate the situationwhere either both photons are transverse
(T) or both are longitudinal (L). Both form factors are
symmetric under the interchange of both virtualities:

FT;L
Sγ�γ� ðQ2

1; Q
2
2Þ ¼ FT;L

Sγ�γ�ðQ2
2; Q

2
1Þ: ðA5Þ

The transverse FF at Q2
1 ¼ Q2

2 ¼ 0, FT
Sγ�γ� ð0; 0Þ,

describes the two-photon decaywidth of the scalar meson as

ΓγγðSÞ ¼
πα2

4
mSjFT

Sγ�γ� ð0; 0Þj2: ðA6Þ

3. Axial-vector mesons

The production of a spin-1 meson by two real photons is
forbidden due to the symmetry under rotational invariance,
spatial inversion, as well as the Bose symmetry, which is
known as the Landau-Yang theorem [24]. However, the
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production of an axial-vector meson A (JPC ¼ 1þþ), with mass mA and helicity Λ ¼ �1; 0, by two photons is possible
when one or both photons are virtual. The corresponding matrix element for the process γ� þ γ� → A is described by three
structures and can be parametrized as

Mðλ1;λ2;ΛÞ ¼ e2εμðq1; λ1Þενðq2; λ2Þεα�ðpf;ΛÞiερστα
�
Rμρðq1; q2ÞRνσðq1; q2Þðq1 − q2Þτ

ν

m2
A

Fð0Þ
Aγ�γ� ðQ2

1;Q
2
2Þ

þRνρðq1; q2Þ
�
qμ1 þ

Q2
1

ν
qμ2

�
qσ1q

τ
2

1

m2
A

Fð1Þ
Aγ�γ� ðQ2

1;Q
2
2ÞþRμρðq1; q2Þ

�
qν2 þ

Q2
2

ν
qν1

�
qσ2q

τ
1

1

m2
A

Fð1Þ
Aγ�γ� ðQ2

2;Q
2
1Þ
�
;

ðA7Þ

where εαðpf;ΛÞ is the polarization tensor for an axial-vector meson with 4-momentum pf and helicity Λ. In Eq. (A7), the

axial-vector meson structure information is encoded in the TFFs Fð0Þ
Aγ�γ� and Fð1Þ

Aγ�γ� , where the superscript indicates the
helicity state of the axial-vector meson. Note that only transverse photons give a nonzero transition to a state of helicity zero.

The TFFs are functions of the virtualities of both photons, and Fð0Þ
Aγ�γ� is symmetric under the interchange Q2

1 ↔ Q2
2. In

contrast, Fð1Þ
Aγ�γ� does not need to be symmetric under interchange of both virtualities, as can be seen from Eq. (A7).

The matrix element Fð1Þ
Aγ�γð0; 0Þ allows one to define an equivalent two-photon decay width for an axial-vector meson to

decay in one quasireal longitudinal photon and a (transverse) real photon as2

~ΓγγðAÞ≡ lim
Q2

1
→0

m2
A

Q2
1

1

2
ΓðA → γ�LγTÞ ¼

πα2

4
mA

1

3
½Fð1Þ

Aγ�γ� ð0; 0Þ�
2; ðA8Þ

where we have introduced the decay width ΓðA → γ�LγTÞ for an axial-vector meson to decay in a virtual longitudinal
photon, with virtuality Q2

1, and a real transverse photon (Q2
2 ¼ 0) as

ΓðA → γ�LγTÞ ¼
πα2

2
mA

1

3

Q2
1

m2
A

�
1þ Q2

1

m2
A

�
3

½Fð1Þ
Aγ�γ�ðQ2

1; 0Þ�2: ðA9Þ

4. Tensor mesons

The process γ� þ γ� → T ðΛÞ, describing the transition from an initial state of two virtual photons to a tensor meson T
(JPC ¼ 2þþ), with mass mT and helicity Λ ¼ �2;�1; 0, is described by five independent structures and can be
parameterized as

Mðλ1; λ2;ΛÞ ¼ e2εμðq1; λ1Þενðq2; λ2Þε�αβðpf;ΛÞ

×

��
Rμαðq1; q2ÞRνβðq1; q2Þ þ

s
8X

Rμνðq1; q2Þðq1 − q2Þαðq1 − q2Þβ
�

ν

mT
Fð2Þ
T γ�γ� ðQ2

1; Q
2
2Þ

þ Rναðq1; q2Þðq1 − q2Þβ
�
qμ1 þ

Q2
1

ν
qμ2

�
1

mT
Fð1Þ
T γ�γ� ðQ2

1; Q
2
2Þ

þ Rμαðq1; q2Þðq2 − q1Þβ
�
qν2 þ

Q2
2

ν
qν1

�
1

mT
Fð1Þ
T γ�γ�ðQ2

2; Q
2
1Þ

þ Rμνðq1; q2Þðq1 − q2Þαðq1 − q2Þβ
1

mT
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2Þ

þ
�
qμ1 þ

Q2
1

ν
qμ2

��
qν2 þ

Q2
2

ν
qν1

�
ðq1 − q2Þαðq1 − q2Þβ

1

m3
T

Fð0;LÞ
T γ�γ� ðQ2

1; Q
2
2Þ
�
; ðA10Þ

where εαβðpf;ΛÞ is the polarization tensor for the tensor meson with 4-momentum pf and helicity Λ. Furthermore, in

Eq. (A10), FðΛÞ
T γ�γ� are the γ�γ� → T TFFs, for tensor meson helicity Λ. For the case of helicity zero, there are two form

factors depending on whether both photons are transverse (superscript T) or longitudinal (superscript L).

2In defining the equivalent two-photon decay width for an axial-vector meson, we follow the convention of Ref. [23].
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The transverse FFs Fð2Þ
T γ�γ� and Fð0;TÞ

T γ�γ� at Q2
1 ¼ Q2

2 ¼ 0

describe the two-photon decay widths of the tensor meson
with helicities Λ ¼ 2 and Λ ¼ 0, respectively,3

ΓγγðT ðΛ ¼ 2ÞÞ ¼ πα2

4
mT

1

5
jFð2Þ

T γ�γ� ð0; 0Þj2;

ΓγγðT ðΛ ¼ 0ÞÞ ¼ πα2mT
2

15
jFð0;TÞ

T γ�γ� ð0; 0Þj2: ðA11Þ

5. Other mesons

As pointed out in Ref. [25], in principle all neutral
mesons with even C-party should contribute to the hadronic
light-by-light scattering and sum rules. These also include
states that carry exotic quantum numbers, e.g. JPC ¼ 1−þ
and 2−þ. In our analysis, we limit ourselves to the states
which correspond to conventional quantum numbers and
are expected to be dominant ones. This follows from the
educated guess that the two-photon width of a conventional
qq̄ meson is larger than the two-photon width of a compact
four-quark system. In addition, the closest candidate,
π01ð1400Þ, has already a relatively large mass, while
SR2;3 drop according to a 1=m3 behavior.
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