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Machine learning methods incorporating deep neural networks have been the subject of recent proposals
for new hadronic resonance taggers. These methods require training on a data set produced by an event
generator where the true class labels are known. However, this may bias the network towards learning
features associated with the approximations to QCD used in that generator which are not present in real
data. We therefore investigate the effects of variations in the modeling of the parton shower on the
performance of deep neural network taggers using jet images from hadronic W bosons at the LHC,
including detector-related effects. By investigating network performance on samples from the Pythia,
Herwig and Sherpa generators, we find differences of up to 50% in background rejection for fixed signal
efficiency. We also introduce and study a method, which we dub zooming, for implementing scale
invariance in neural-network-based taggers. We find that this leads to an improvement in performance
across a wide range of jet transverse momenta. Our results emphasize the importance of gaining a detailed
understanding of what aspects of jet physics these methods are exploiting.
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I. INTRODUCTION

The past decade has seen an explosion of interest in
understanding and exploiting the distribution of energy
(substructure) within hadronic jets and boosted resonances
at the Large Hadron Collider (LHC) [1–4]. The study of jet
substructure and the ability to identify (“tag”) the hadronic
decay products of a wide variety of such resonances—
the Higgs, W and Z bosons; top quarks; supersymmetric
particles; and other beyond-the-Standard-Model (BSM)
states—is crucial in the analysis of both Standard Model
processes and in searches for BSM physics, which will only
become more important now that the LHC is running at
high energy and with future colliders on the horizon.
Since the foundational work in Ref. [5] on studying

jet substructure in Higgs-boson-associated production, a
multitude of taggers and variables related to substructure
have been proposed [5–14] (further discussion of which
can be found in the BOOST proceedings [1–4]). These
generally exploit our knowledge of QCD to construct
functions which effectively discriminate between signal
and background. Some of these techniques have already
been applied to the problem of identifying boosted massive
vector bosons and top quarks by the ATLAS and CMS
collaborations in run 1 of the LHC [15–25].
Another approach currently under development involves

the application of machine learning (ML) techniques to

hadronic resonance tagging and searches for new physics.
The ML community has made large strides in problems
related to image recognition and computer learning, which
may now also be applied to particle physics. Signals
produced by the LHC detectors may be processed into
pixelated jet images [26], and ML algorithms can be
adapted to discriminate between a signal (such as h → bb̄
or boosted hadronic top decays [27]) and background.
These algorithms have also been proposed as classifiers in
neutrino experiments [28,29].
The use of ML, and neural networks in particular, has a

long history in particle physics and the idea of using
neural networks for quark-gluon discrimination [30–32],
Higgs tagging [33] and track identification [34] goes back
over 25 years. However, the development of efficient
deep neural networks (DNNs) and the computing power
associated with graphics processing units (GPUs) means
that image recognition technology has become extremely
powerful, driving the resurgence of interest in these
techniques.
Recent work has seen the application of neural networks

with two hidden layers to hadronic top-quark tagging
[27], and deep convolutional neural networks (known to
have excellent performance in image classification) to the
problem of identification of hadronicW decays [35]. These
initial papers focussed on demonstrating and understanding
the network performance, and used truth-level Monte Carlo
(MC). The effects of pileup and detector resolution were
explored in Ref. [36], which showed that despite the loss of
resolution when these are taken into account the neural
network is still somewhat superior to traditional techniques.
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There has also been work on extending these methods to jet
flavor classification [37].
The theoretical study of these techniques and their

utility in high-energy particle physics is still in its infancy,
and there are a number of issues still to be clarified in how
deep learning methods may be applied at the LHC. Some
of these are related to the robustness of these techniques:
How can we guarantee that a network is learning about
the physics differences between signal and background,
and not details particular to a specific MC event gen-
erator? How robust are taggers based on these networks
against detector effects such as smearing and how do they
degrade in the presence of pileup? A particular concern is
that the network achieves a substantial fraction of its
discriminatory power from soft features in the spectrum
which are modeled phenomenologically rather than via
perturbative QCD. This paper provides a study of some of
these issues.
We study the behavior of neural networks over a number

of different event generators, and hence different parton
showers and models for hadronization. For simplicity, we
will usually just refer to these collectively as the parton
shower.
We find that varying the parton shower leads to changes

in the background rejection efficiency of up to 50%,
depending on the shower model and selected signal
efficiency. We consider this to be large, and perhaps more
than would be expected from perturbative uncertainties
from the parton shower. We believe that caution is therefore
required before these methods are applied on data, and our
results emphasize the necessity of understanding what
features of the jet images the neural networks are relying
on to achieve their discriminatory power. We also find
changes in the factorization and renormalization scales lead
to negligible differences, while the addition of pileup leads
to an overall degradation in network performance (in
agreement with Ref. [36]) but not to a change in our
conclusions.
There has also been interest recently in the development

of scale-invariant jet and substructure taggers [38–41], and
we discuss how similar ideas may be implemented in DNN-
based taggers by applying a pT-dependent “zooming”
factor on the jet images. The addition of zooming leads
to a slight improvement of around 10%–20% in the
network performance over a wide range of jet transverse
momenta. While in this article we focus on discriminating
between hadronically decaying W bosons and QCD jets as
a “standard candle,” these methods should be applicable to
a wide variety of tagging and substructure issues.
In Sec. II we outline the architecture and training of the

neural networks and in Sec. III discuss how we construct jet
images, and present an idea of how to implement a scale-
invariant tagger. In Sec. IV we show the variability in the
DNN performance across multiple event generators and
parton shower models.

II. NETWORK ARCHITECTURE, TRAINING, AND
PERFORMANCE EVALUATION

We follow Ref. [35] in our choice of network architec-
ture, who have already investigated the performance of a
variety of different neural networks. While we have
investigated convolutional networks, all results we present
here have been produced using the MaxOut [42] architec-
ture. The network input consists of 625 units, equal to the
number of pixels (25 × 25) present in each jet image. The
input layer is followed by two dense MaxOut layers
consisting of 256 and 128 units each. The next two layers
are fully connected with 64 and 25 units and use a ReLU
activation function [43]. The output layer consists of two
nodes and a sigmoid activation. Further discussion of
network choices can be found in Ref. [35].
We used the Keras Deep Learning library [44] and

the Adam algorithm [45] to train our networks on four
NVIDIA Tesla K80 GPUs. After selecting jet images
within a window on the jet mass, 50 < m < 110 GeV,
and transverse momentum, 200 < pT < 500 GeV, net-
works were trained with approximately 3M signal and
3M background images where the signal and background
images have been weighted to produce flat pT distributions.
A portion (10%) of the training images were set aside to
evaluate a cross-entropy loss function after each epoch and
the network training terminated after 100 epochs or after
10 epochs without an improvement in the loss function.
The Adam algorithm learning rate parameter was initially
set to 0.001 and then reduced by 2% after each epoch. We
obtained reasonable performance with a batch size of 100.
We also implemented and tested a cross-validated Bayesian
optimization procedure to determine optimal parameter
values but did not observe performance that was signifi-
cantly better and so we have left such investigations for
future work. Further optimizing the DNN should anyway
not affect our conclusions here as we probe the general
variability of a DNN with reasonable performance over
different parton shower models.
Finally, we evaluate the performance of a network by

computing the inverse background efficiency as a function
of signal efficiency across a binned likelihood ratio of the
signal-to-background output of the network. This variant of
the standard receiver operating characteristic (ROC) curve
better displays differences in background rejection at low
signal efficiency and can be constructed from arbitrary jet
observables or combinations of observables through a
(possibly multidimensional) binned likelihood ratio.

III. CONSTRUCTING A JET IMAGE

This section provides a complete description of how we
construct jet images, from event generation to image
output, along with the reasoning behind many of our
choices. Our process closely follows the one described
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in Ref. [35] with the addition that we have also tested an
optional zooming step to reduce pT dependence.
We have developed a new framework for jet image

construction, network training and performance evaluation.
Low-level Cython [46] wrappers have been developed for
PYTHIA [47], Delphes [48], and FastJet [49] that
allow these tools to be connected in the Python program-
ming language, where particles, calorimeter towers, jets,
and jet images are stored as structured NumPy [50] arrays
and optionally written to files on disk in the HDF5 [51]
format. This design provides the potential to train networks
on jet images generated on the fly. For the studies presented
here, however, we have created large HDF5 data sets of jet
images once that are then split and used for network
training and performance studies. Aside from the direct
interface with PYTHIA, the framework is able to study
output from other event generators by reading intermediate
HepMC [52] files.
Following event generation, particles are given to the

Delphes detector simulator configured with ATLAS-like
settings where calorimeter towers extend to a maximum
absolute pseudorapidity of 4.9. Jets are then reconstructed
from the calorimeter towers (referred to as jet constituents
below) using the anti-kt algorithm [53] as implemented
by FastJet 3.1.3. We have selected a jet clustering size
of R ¼ 1.0 for all studies presented here. For boosted W
bosons with two-body decays the characteristic maximal
separation of the subjets scales according to

ΔR ¼ 2mW

pmin
T

ð3:1Þ

where pmin
T is the minimum transverse momentum of the

jets to be considered in the analysis. We have studied jets
with transverse momenta above 200 GeV, making R ¼ 1.0
a reasonable choice.
The highest pT jet is selected and subjets are formed in a

jet trimming [7] stage, which also serves to lessen con-
tributions from soft radiation in the underlying event. Using
the kt algorithm we recluster the jet constituents into subjets
with a fixed size of r ¼ 0.3 and then discard all subjets with
less than 5% of the original jet momentum to form a
trimmed jet. All jet observables are computed with the
trimmed jet.
The next stages are designed to remove spatial sym-

metries. First, all constituents of the trimmed jet are
translated in η − ϕ space to place the leading subjet at
the origin. We then define a grid of pixels with a resolution
of 0.1 × 0.1 in η − ϕ space and a jet image is formed by
taking the total transverse energy measured within each
pixel,

ET;i ¼
X

j

Ej

cosh ηj
; ð3:2Þ

for all constituents j in pixel i, with energy Ej and original
pseudorapidity ηj. This image is rotated, either to put the
subleading subjet directly below the leading subjet or to
align the principle component of the jet image along the
vertical axis if only one subjet is present. It is then reflected,
either to put the third-leading subjet on the right-hand side
of the image or to ensure that the total image intensity is
highest on the right-hand side if there are only two subjets.
After the reflection stage above we are left with an image

in which the leading subjet is centered and the subleading
subjet (if present) is directly below. The separation between
the two subjets is not constant, but varies linearly with
2m=pT . By standardizing this separation we can potentially
improve the DNN performance over a wide range of jet
pT . The aim is to pick a scaling factor that enhances
and standardizes features in signal images, i.e. those from
boosted W decays, without artificially creating similar
features in background QCD images. This optional step
is in addition to those detailed in Ref. [35].
Denoting the physical separation between the two leading

subjets asΔRact, enlarging all jet images by a factorR=ΔRact
for some fixedR gives a standardized jet image in which the
separation (in pixels) between the two leading subjets is
fixed for all images. The downside of this approach is that
this is true for both signal and background images, so an
improvement in isolation of the subleading subjet is tem-
pered by an enhancement of signal-like features in back-
ground images. For this reason we use the characteristic size
assuming the W mass, s ¼ 2mW=pT , and enlarge all jet
images by a scaling factor maxðR=s; 1Þ, where R is the
original jet clustering size. Images are enlarged by perform-
ing bicubic interpolation [54] at a higher resolution. For
signal imagesΔRact ≈ s, so this rescaling is very similar to, if
a little less effective than, using the actual separation of
subjets to define the scaling factor. For background images
this scaling is not strongly correlated with the subjet
separation so the subleading subjet tends to be smeared out.
Jet images are then cropped at 25 × 25 pixels (whether

they have been zoomed or not) and are normalized such that
the sum of the squared pixel intensities is 1. As discussed in
Ref. [35] this does not preserve the jet mass that can be
calculated from the original jet image, but our zooming step
destroys this information anyway.
In summary, the full jet image construction and prepro-

cessing steps are as follows:
(i) Jet clustering and trimming: Reconstruct jets from

all calorimeter towers using the anti-kt algorithm
with a jet size R ¼ 1.0 and select the leading jet.
Trim the jet using the kt algorithm with a subjet
size r ¼ 0.3.

(ii) Translation: All jet constituents are translated in
η − ϕ space to put the leading subjet at the origin.

(iii) Pixelization: Pixelize the transverse energy of the jet
using pixels of size (0.1,0.1) in η − ϕ space. This
produces a jet image.
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(iv) Rotation: Rotate the jet image to put the subleading
subjet directly below the leading subjet. If no subjets
are present rotate to align the principle component of
the jet image along the vertical axis.

(v) Reflection: Reflect the jet image horizontally to put
the third-leading subjet on the right-hand side. If
there are only two subjets, reflect to ensure that the
summed image intensity is highest on the right-
hand side.

(vi) Zooming: Optionally zoom the jet image by a factor
that reduces dependence on the jet momentum.

(vii) Cropping and normalization: Crop the jet image at
25 × 25 pixels and normalize pixel intensities to
make the sum of their squares equal to 1.

In Fig. 1 we show the average jet images for boosted W
and QCD jets in the range 200 < pT < 500 GeV for the
default PYTHIA shower using the standard preprocessing
in the top panels, and using the zooming procedure in the
bottom panels. For the W-jets we note that the zooming
procedure results in a more regular and compact average
shower shape, and that the second (lower pT) subjet
becomes better spatially defined as expected. While the
average image of the QCD jets becomes more compact, the

subjets remain somewhat smeared compared with the
W-jets. Since the subjets do not originate in the decay of
a heavy resonance and hence are not associated with a
specific mass scale, this is not a surprise.
An obvious conceptual advantage of using the zooming

technique is that it makes the construction of scale-invariant
taggers easier. Scale-invariant searches [38–41] which are
able to interpolate between the boosted and resolved parts
of phase space have the advantage of being applicable over
a broad range of masses and kinematics, allowing a single
search or analysis to be effective where previously more
than one may have been necessary.
We show in Fig. 2 the ROC curves for two different

neural networks: the first (the solid blue line) was trained
without zooming, while the second (the green dashed line)
used zooming. Both networks were trained and tested on
samples of jet images in the mass window 50 < m <
110 GeV and a large pT range, 200 < pT < 500 GeV. As
predicted, the zoomed network outperforms the unzoomed
one, particularly at low signal efficiency, where the
background rejection rises by around 20%. We obtain
similar results when we do not restrict the sample of jet
images within a mass window. We find that the zooming
has the greatest effect at high pT . For less boosted W
decays the enhancement in background rejection is
around 10%, which rises to just over 20% for
300 < pT < 500 GeV.

FIG. 1. We show the average jet images obtained for hadronic
W bosons and QCD as modeled by the PYTHIA default shower.
The images on the top have been preprocessed in the standard
way, while those on the bottom have also undergone the zooming
procedure outlined in Sec. III. The axes are left unlabeled since
they do not correspond to the physical η and ϕ dimensions
following image rotations, reflections, and zooming. Pixels are
colored according to higher (red) and lower (blue) average
normalized pixel intensities.

FIG. 2. The ROC curves for the zoomed (solid blue) and
unzoomed (dashed green) jet images for the PYTHIA default
shower. The lower panel shows the ratio of the zoomed to
unzoomed efficiencies, also showing the efficiency sliced in bins
from 200 < pT < 300 GeV (dotted-dashed red) and 300 < pT <
500 GeV (short dashed blue).
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IV. EVENT GENERATOR DEPENDENCY

The networks require supervised training prior to being
applied on unlabeled data. Since it is difficult to isolate
regions of very high signal purity, training on simulated
data is necessary before application to real LHC events.
However, all MC event generators and parton showers
are only approximations of the full Standard Model.
Understanding what features of QCD a DNN is learning
about, and whether it is learning event-generator-dependent
approximations is thus an important question. Furthermore,
there are features of real-world QCD such as color
reconnection which, while modeled in the parton shower,
are in reality poorly understood. We will not attempt to
quantify those effects in this work.
To gain an understanding of the systematic uncertainties

in using networks trained on simulated data, we study the
behavior of networks across a variety of different gener-
ators and parton showers which all provide an adequate
description of current LHC data. We assume that given a
number of different ROC curves derived from different
generators and parton showers, the envelope of these curves
provides an approximate uncertainty band associated with
training the network on simulated, rather than real, data.
Recently, Bellm et al. [55] studied parton shower

uncertainties in HERWIG7. They divided the uncertainties
into a number of classes: numerical, parametric, algorith-
mic, perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external to
the MC generator: masses, couplings, PDFs and so forth.
The focus of our work in this section is on algorithmic
uncertainties, those due to different choices of parton
shower algorithm. Bellm et al. [55] focused on perturbative
and phenomenological uncertainties, which are from trun-
cation of expansion series and parameters deriving from
nonperturbative models. Our work is more in the spirit of
that of Andersen et al. [56]. Previous studies also exist
within the HERWIG framework on the implications of MC
uncertainties on jet substructure in the context of Higgs
searches [57].
We generate background and signal events with three

of the most widely used MC generators: PYTHIA8.219
[47], SHERPA2.0 [58,59] and HERWIG7.0 [60,61]. For
PYTHIA8 we study both the default shower and the
VINCIA shower [62,63], and for HERWIG we include
both the default (angular ordered) and dipole showers
[64,65], giving us five different parton shower models
to study.
The default HERWIG shower (known as QTilde) is based

on 1 → 2 splittings using the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations, with an angular
ordering criterion [66]. The SHERPA shower is based on
a Catani-Seymour dipole formalism [67]. In this case one
particle of the dipole is the emitter which undergoes the
splitting, while the other is a spectator which compensates

for the recoil from the splitting and ensures that all particles
remain on their mass shells throughout the shower, leading
to easier integration with matching and merging techniques.
The default shower in PYTHIA8 is also a dipole-style
shower [68], ordered in transverse momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another pos-
sibility is to consider color-connected parton pairs which
undergo 2 → 3 branchings (note that this is distinct from
Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In these
so-called antenna showers, the two-parton antenna is
described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [62,63] plug-in for PYTHIA8 as a representative
antenna shower.
These event generators also provide different treatments

of the soft radiation from the underlying event which
accompanies each hard partonic scattering. They also
possess different implementations of the parton-to-hadron
fragmentation process being based either around cluster
fragmentation ideas (HERWIG and SHERPA) or the Lund
string model (PYTHIA), giving us a wide range of QCD-
related effects to probe. To incorporate detector effects such
as smearing we pass all events through the Delphes 3
detector simulator [48]. In the studies presented here, our
baseline shower is PYTHIA8 with its default settings.

FIG. 3. This figure shows the W-jet image differences between
the default PYTHIA shower and the alternate VINCIA shower in
PYTHIA (top left), the default SHERPA shower (top right), the
default HERWIG angular shower (bottom left) and the HERWIG
dipole shower (bottom right). The plots have been individually
normalized.
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We construct average jet images for all five different
generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the differences in the average radiation patterns. The
results are shown in Fig. 3 for the W-jet signal. We have
normalized the intensity differences of the pixels so that red
indicates a region of excess and blue a deficit relative to the
PYTHIA default. While the VINCIA is roughly similar to
the PYTHIA default, the SHERPA and HERWIG dipole
showers exhibit more intense radiation in the resolved
subjets and a substantial deficit in the region between the
subjets. The HERWIG angular shower shows the opposite,
with less radiation in the subjet cores and more diffuse
radiation. QCD radiation exhibits similar features.
Next we show ROC curves for the different showers in

Fig. 4. We used the same network discussed in Sec. III
trained on the default PYTHIA shower (without zooming),
and then used events from the other generators and parton
showers as input; e.g. we ask a neural network trained
on the PYTHIA shower to discriminate between QCD and
W-jets from SHERPA.
We do not extend the ROC curves down to zero signal

efficiency since they are more statistically limited there. The
PYTHIA ROC is higher than all other shower efficiency

curves. While both the SHERPA and HERWIG dipole
images exhibit superficial similarities in Fig. 3, the network
is better at discriminating theSHERPA events. At a fixed low
signal efficiency the HERWIG angular and dipole showers
have the lowest background rejection, smaller than that
obtained using the PYTHIA default by a factor of 2.
The VINCIA and SHERPA showers have a slightly lower
rejection rate than the PYTHIA one. For signal efficiency of
50% the uncertainty from changing the event generator is
around 40%.
For a large background rejection rate we note that the

network trained on the PYTHIA events has a lower
efficiency for selecting signal events generated from the
other showers; i.e. it is maximally efficient for the shower it
was trained on. This may be due to the network learning
some features associated specifically with the PYTHIA
shower and thus performing well on PYTHIA-like events.
We also show in Fig. 4 the ROC curves we obtain for the

trimmed jet mass and the n-subjettiness ratio τ21 ≡ τ2=τ1
[11] which is often used as a discriminating variable in
studies of jet substructure [69]. We see that the neural
network consistently outperforms these variables (in agree-
ment with the conclusions already reached in Ref. [35]).
This result stands independent of the uncertainty induced

FIG. 4. This figure shows the ROC curves of the PYTHIA (solid blue), VINCIA (dashed green), HERWIG angular (red dotted-dashed)
and dipole (dashed purple), and SHERPA (solid gold) showers for the DNN output (left) and the combination of the jet mass and
n-subjettiness ratio τ21 through a two-dimensional binned likelihood ratio (right). The lower panels show the ratio of the ROCs with the
default PYTHIA shower. All ROC curves are computed using jet images within a window on the jet mass, 50 < m < 110 GeV, and
transverse momentum, 250 < pT < 300 GeV.
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by the choice of event generator, although the results for the
HERWIG showers are close to being degenerate with it.
In the right panel of Fig. 4 we show the ROC curves we

obtain from the combined jet mass and τ21 observables for
the different parton showers. We see that the parton shower
uncertainties in this case are very similar to those obtained
from the jet images. The uncertainties related to varying the
parton shower for the jet images are thus of similar size to
those associated with other more common variables, such
as those found in theoretical studies of the D2 tagger
[70,71] and those used by the ATLAS Collaboration in
searches for boosted W-bosons [18].
Another possible independent source of uncertainty is

the dependence of the shower profile on the common
renormalization and factorization scales, μR and μF respec-
tively, which for our purposes are set to be μ ¼ pT . As is
standard, we vary the scale μ upwards and downwards by a
factor of 2 from its default value of μ ¼ pT;W . We find that
the changes in ROC curves due to this were negligible.

V. CONCLUSIONS

The use of deep neural networks to construct classifiers
for hadronic substructure using jet images is an exciting
proposal. However, it is important to quantify the depend-
ence on the training data set, and whether the network is
learning the approximations inherent in the MC generator.
We trained a network on the default parton shower from the
PYTHIA generator and studied its performance on events
from HERWIG and SHERPA. We found that the network
performed better on test events also from the default
PYTHIA shower, indicating that the network may be
learning some PYTHIA-specific features. The change in
performance through using different parton showers could
be up to a factor of 2 in background rejection. Our results
thus indicate that care is required to avoid overinterpreta-
tion of small changes in ROC curves, given the parton
shower uncertainties. These uncertainties are relatively
large, and further study is required to ascertain whether
the network performance is truly being driven by features in
the parton shower (which are under control in perturbative
QCD) or by softer physics such as hadronization modeling
(which is not). Either way, our results demonstrate that
caution is required in the application of machine learning

techniques on simulated data. We intend to return to this
issue in the near future.
There are many opportunities for further work in this

area. One way to achieve event generator independency is
by avoiding the use of training data through using data-
driven unsupervised learning algorithms. Will these prove
as powerful as the supervised techniques using DNNs
proposed thus far? It would also be desirable to incorporate
more than just calorimeter information into jet images, in a
similar vein to recent work on heavy flavor tagging [37].
We note that tracking information has been proposed in the
context of substructure as being particularly important at
high energies [72]. Since jet images can be both large and
sparse, new algorithms may be required to render this
feasible [73]. In an ideal world, it would be possible to use
information from the whole detector to classify events into
signal or background, as in event deconstruction [74].
The main outcome of our study is to emphasize the

importance of what the neural networks are learning and
how they use it to discriminate between signal and back-
ground. This lesson is true for any application of machine
learning in particle physics, from widely used techniques
such as boosted decision trees to newermethods like the deep
neural network we have studied. However, provided that
cautious and detailed studies of the uncertainties involved
lead tomethods to constrain them in the analysis of real data,
thesemethodsmay prove to be powerful and reliable analysis
tools for future searches and measurements.
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