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In this paper we extend our recent nonperturbative functional renormalization group analysis of Reggeon
field theory to the interactions of Pomeron and Odderon fields. We establish the existence of a fixed point
and its universal properties, which exhibits a novel symmetry structure in the space of Odderon-Pomeron
interactions. As in our previous analysis, this part of our program aims at the investigation of the IR limit of
Reggeon field theory (the limit of high energies and large transverse distances). It should be seen in the
broader context of trying to connect the nonperturbative infrared region (large transverse distances) with the
UV region of small transverse distances where the high energy limit of perturbative QCD applies. We
briefly discuss the implications of our findings for the existence of an Odderon in high energy scattering.
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I. INTRODUCTION

In a recent paper [1] we have started an analysis of the
flow equations of Reggeon field theory (RFT) [2–7],
following the idea that RFT might provide a good descrip-
tion of strong interactions in the Regge limit and infrared
region: rapidity Y → ∞ and transverse distances (impact
parameter) jx⊥j → ∞. We have used the Wetterich formu-
lation of the functional renormalization group equations
[8,9] to study directly the problem in two transverse
dimensions. As our main result we have established the
existence of a critical theory (fixed point) with one relevant
direction: in the multidimensional space of the parameters
of the effective potential, there exists one direction which is
UV attractive (IR repulsive), whereas all other directions
are IR attractive. We have verified that the properties of
such a fixed point belong to the universal behavior which
RFT shares with the simplest directed percolation model in
statistical physics [10], and we have found a good agree-
ment with some related numerical Monte Carlo analysis.
This investigation of Reggeon field theory should be

seen as a first step in searching for an effective theory which
describes the high energy Regge limit of QCD. Regge
theory is being used to analyze the nonperturbative pp̄
scattering at the Tevatron (FermiLab), pp scattering at the
ISR (CERN), RHIC (BNL) and at the LHC (CERN), and
γp-scattering at HERA (DESY). On the perturbative side,
high energy QCD has been analyzed using Regge theory
(in particular, the Balistky-Fadin-Kuraev-Lipatov (BFKL)
Pomeron with various applications in eþe− scattering,
forward jets in γ�p scattering, and Mueller-Navelet jets

in pp or pp̄). Whereas the first group of high energy
scattering processes is characterized by transverse distances
of hadronic sizes, the second one addresses scattering
processes of small transverse diameters. This suggests
the search, in the space of 2þ 1-dimensional Reggeon
field theories, for an interpolation between the two
domains: for long transverse distances the Pomeron field
has intercepts very close to unity and a nonzero t-slope; for
short transverse distances the BFKL intercept is signifi-
cantly above 1, and the slope is very small.
Within such a program in [1] we have restricted our

analysis to one Reggeon field, the Pomeron field. Whereas
other secondary Reggeons (e.g. ρ, ω, or φ) have intercepts
well separated from the Pomeron and, in a first approxi-
mation, can therefore safely be neglected, there exists one
other Regge singularity for which this is not the case, the
Odderon with intercept at or near 1. In the nonperturbative
region, the search for the Odderon has stimulated a long-
lasting debate: the strongest evidence for its existence
comes from the observed difference in the dip structure
in the t-dependence of elastic cross section of pp or pp̄
scattering. In contrast, in the perturbative region the
existence of the Odderon is well established [11]: in
non-Abelian SUð3Þ gauge theory bound states of
Reggeized gluons exist for the two Casimir operators,
the BFKL Pomeron [12] and the Odderon. These two states
represent the two equally important fundamental bound
states of the SUð3Þ gauge theory. Whereas the BFKL
intercept is well above 1, the Odderon intercept has been
found to be exactly at 1. In N ¼ 4 supersymmetric Yang-
Mills theory or in planar QCD, higher order corrections
also do not alter this striking feature [13] of the spectrum of
the so-called Bartels-Kwiecinski-Praszalowicz (BKP)
equations [14–16]. Self interactions of the Pomeron
[17–20] as well as interactions between the Pomeron

*jochen.bartels@desy.de
†carlos.contreras@usm.cl
‡vacca@bo.infn.it

PHYSICAL REVIEW D 95, 014013 (2017)

2470-0010=2017=95(1)=014013(13) 014013-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.014013
http://dx.doi.org/10.1103/PhysRevD.95.014013
http://dx.doi.org/10.1103/PhysRevD.95.014013
http://dx.doi.org/10.1103/PhysRevD.95.014013


and Odderon naturally appear in perturbative QCD analysis
[21,22]. Analogous results are obtained also in the color
glass condensate, dipole andWilson line approach [23–25].
In summary, the existence of this perturbative Odderon is a
manifestation of the SUð3Þ gauge group of strong inter-
actions: in a SUð2Þ gauge theory there exists no second
Casimir operator, i.e the BFKL Pomeron is the only
fundamental bound state of the Reggeized gluons. On
the other hand, in a SUðNÞ gauge theory with N > 3 there
are more than two Casimir operators, and one expects more
fundamental gluonic bound states.
The existence of the Odderon in the pertubartive region

motivates interest in the question of whether the Odderon
exists also in the nonperturbative region. In an analysis
which is set up to explore the connection between the UV
region and the nonpertubative IR region, the Odderon has
to be included: the IR fixed point structure should confirm
whether the Odderon survives the flow from UV to IR.
Also, such an analysis should provide some information on
the interaction between the Odderon and Pomeron, e.g. on
the absorption of the nonperturbative Odderon.
In this paper we therefore extend our previous analysis to

interactions of two fields, Pomeron and Odderon. As we
discuss in more detail below, the fact that the Odderon has an
odd signature leads to a very pronounced feature of the
effective potential in the space of Pomeron-Odderon field
theories. As a first result of our investigations, we establish
the existence of a new critical theory (fixed point) which
includes both Pomeron and Odderon fields. This fixed point
now has two relevant directions (plus a possible third
relevant direction, for which we need more accurate analy-
sis). The fixed point allows, among others, for a solution
where both the Pomeron and the Odderon intercepts at
infinite energies approach unity, i.e. in pp scattering an
Odderon should exist at high energies. Although we still
refrain from a quantitative phenomenological analysis of this
fixed point, we nevertheless can deduce a few predictions for
the Pomeron-Odderon sector at high energies. A more
complete analysis of the phase diagram, in particular the
search for the possibility of other fixed points, requires
further investigations and is left for a future publication.
Again this investigation can have implications in the

statistical physics of generalized multicomponent directed
percolation models. In the absence of specific symmetries
these models are usually considered to belong to a single
universality class. We find first evidence that the RFT,
which should be related to the infrared high energy limit of
QCD, is instead characterized by symmetry properties
which map it on a novel percolating system.
This paper is organized as follows. In Sec. II we describe

our setup. The calculations of the fixed point conditions
(β-functions of the set of the parameters of the effective
potential) represent a rather nontrivial extension of the pure
Pomeron case. In the following section we present and
discuss numerical results. In a concluding section we

discuss the first implication for real physics. In an appendix
we briefly discuss, for future purposes, stationary points of
the combined Pomeron-Odderon effective potential.

II. THE SETUP

In the following we consider interactions between
Pomeron and Odderon fields. As before, ψ , ψ† denote
the Pomeron field, and for the Odderon we introduce the
field χ, χ†. The effective action has the form

Γ½ψ†;ψ ; χ†; χ� ¼
Z

dDxdτ

�
ZP

�
1

2
ψ†∂τ

↔
ψ − α0Pψ

†∇2ψ

�

þ ZO

�
1

2
χ†∂τ

↔
χ − α0Oχ

†∇2χ

�

þ Vk½ψ ;ψ†; χ; χ†�
�
: ð1Þ

Here D denotes the number of spatial dimension. D ¼ 2 is
the physical case of our interest, but in our analytic
formulas (Secs. II and III A–III C) we find it convenient
to keep D as a continuous parameter. The particular case
D ¼ 4 is the scaling dimension (critical dimension) of
Reggeon field theory, and later on (Sec. III D) it is useful to
refer to results obtained from the ϵ expansion in D ¼ 4 − ϵ
dimensions. The numerical results of our fixed point
analysis (Sec. IVA) are obtained for D ¼ 2. To illustrate
the quality of our approximation we find it instructive
(Sec. IV B) to compute anomalous dimensions in the whole
interval 0 < D < 4.
For the lowest truncation the effective action takes the

form

V3 ¼ −μPψ†ψ þ iλψ†ðψ þ ψ†Þψ − μOχ
†χ

þ iλ2χ†ðψ þ ψ†Þχ þ λ3ðψ†χ2 þ χ†2ψÞ: ð2Þ

For the quartic truncation we add the following terms:

V4 ¼ λ41ðψψ†Þ2 þ λ42ψψ
†ðψ2 þ ψ†2Þ þ λ43ðχχ†Þ2

þ iλ44χχ†ðχ2 þ χ†2Þ þ iλ45ψψ†ðχ2 þ χ†2Þ
þ λ46ψψ

†χχ† þ λ47χχ
†ðψ2 þ ψ†2Þ: ð3Þ

Similarly, the quintic truncation has the following eleven
terms:

V5 ¼ iðλ51ðψψ†Þ2ðψ þ ψ†Þ þ λ52ψψ
†ðψ3 þ ψ†3Þ

þ λ53χχ
†ðψ3 þ ψ†3Þ þ λ54ψψ

†χχ†ðψ þ ψ†ÞÞ
þ λ55ðχ2ψ†3 þ χ†2ψ3Þ þ λ56ðχ2ψ†2ψ þ χ†2ψ†ψ2Þ
þ λ57ðχ2ψ†ψ2 þ χ†2ψ†2ψÞ þ iðλ58ðχ4ψ† þ χ†4ψÞ
þ λ59ðχχ†Þ2ðψ þ ψ†ÞÞ þ λ510χχ

†ðχ2ψ þ χ†2ψ†Þ
þ λ511χχ

†ðχ2ψ† þ χ†2ψÞ: ð4Þ
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It is important to note the differences in the structure of the
effective potential compared to the pure Pomeron case. As
described in [1], for the pure Pomeron case the couplings
are real valued for even powers of the Pomeron fields,
whereas odd powers require imaginary couplings. This is a
consequence of the even signature of the Pomeron
exchange which leads to special trigonometric factors in
front of multi-Pomeron cut contributions in the t-channel
unitarity equations: the n-Pomeron contribution comes
with a factor ð−1Þn−1. This means, in particular, that the
two Pomeron cut contribution to the Pomeron self-energy
has a minus sign which is obtained by requiring the triple
Pomeron coupling to be purely imaginary.
For the Odderon the situation is different: the Odderon

has negative signature. This has several consequences.
First, because of signature conservation, t-channel states
with an odd number of Odderons never mix with pure
Pomeron channels. Second, the transition P → OO is real
valued: the two-Odderon cut is positive (in contrast to the
two Pomeron cut), and there is no need for an imaginary
coupling. On the other hand, the transition O → OP has to
be imaginary, since the Odderon-Pomeron cut carries a
minus sign. As a result, all triple couplings are imaginary,
except for the real-valued transition P → OO.
In the sector of quartic couplings, all couplings involving

Pomerons only are real valued. Once the Odderon is
included, again most quartic couplings remain real, but
there are two exceptions: the transitions O → OOO and
P → PþOO are imaginary. This can be easily understood
considering a contribution to such quartic vertices coming
by the composition of two triple ones. For the quintic part
the “exceptional” terms are in the second and fourth lines:
in all these terms we either create or annihilate a pair of
Odderons.
The signature-conservation rule, together with the

appearance of these exceptional cases, suggests the follow-
ing transition rules:

(i) states with even and odd numbers of Odderon
never mix.

(ii) states are labeled by the number of Odderon pairs, n.
We assign a quantum number On.

Signature rules imply that transitions changing n by odd
numbers come with exceptional couplings (e.g the tran-
sitions P → OO, O → OOO, or P → PþOO), whereas
transitions changing n by even numbers are “normal” and
have the same structure as pure Pomeron couplings (e.g.,
the transition of the Pomeron to four Odderons is imagi-
nary). This suggests decomposing the effective potential
into a sum terms VðnÞ,

V ¼ VΔn¼0 þ ΔV jΔnj¼1 þ ΔV jΔnj¼2 þ � � � ð5Þ

where the first term conserves n, the number of Odderon
pairs, the second one changes n by 1, etc.

In the perturbative region, the transition P → OO has
been computed [21,22] and found to be nonzero. As one of
our results we see that the dynamics allows for a critical
theory [as a fixed point of the flow in the local potential
approximation (LPA), eventually including anomalous
dimensions (LPA’)] at which n is conserved, i.e. all
couplings which change On go to 0,

ΔV jΔnj¼1 → 0; ΔV jΔnj¼2 → 0;…: ð6Þ

This applies, in particular, to the coupling of the P → OO
transition.
Next we introduce dimensionless variables. The field

variables are rescaled as follows:

~ψ ¼ Z1=2
P k−D=2ψ ; ~χ ¼ Z1=2

O k−D=2χ: ð7Þ

For the potential we introduce

~V ¼ V
α0Pk

Dþ2
: ð8Þ

This choice implies that we introduce the dimensionless
ratio

r ¼ α0O
α0P

; ð9Þ

and the Odderon slope α0O is written as

α0O ¼ rα0P: ð10Þ

Finally, using Eqs. (7) and (8), the couplings are rescaled in
the following way:

~μP ¼ μP
ZPα

0
Pk

2
; ~μO ¼ μO

ZOα
0
Pk

2
;

~λ ¼ λ

Z3=2
P α0Pk

2
kD=2; ~λ2;3 ¼

λ2;3

ZOZ
1=2
P α0Pk

2
kD=2: ð11Þ

With these definitions the classical scaling (canonical) of
the potential which would result by neglecting the quantum
fluctuations in the flow equation becomes

ð−ðDþ 2Þ þ ζPÞ ~V þ
�
D
2
þ ηP

2

��
~ψ
∂ ~V
∂ ~ψ þ ~ψ† ∂ ~V

∂ ~ψ†

�

þ
�
D
2
þ ηO

2

��
~χ
∂ ~V
∂ ~χ þ ~χ†

∂ ~V

∂ ~χ†

�
: ð12Þ

The scale k dependent regulator functions are chosen as
follows:
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RPðq2Þ ¼ ZPα
0
Pðk2 − q2ÞΘðk2 − q2Þ;

ROðq2Þ ¼ ZOα
0
Oðk2 − q2ÞΘðk2 − q2Þ

¼ rZOα
0
Pðk2 − q2ÞΘðk2 − q2Þ: ð13Þ

This optimized regulator [26] allows for a simple analytic
integration in a closed form. Moreover we define the
anomalous dimensions

ηP ¼ −
1

ZP
∂tZP;

ηO ¼ −
1

ZO
∂tZO ð14Þ

and

ζP ¼ −
1

α0P
∂tα

0
P;

ζO ¼ −
1

α0O
∂tα

0
O: ð15Þ

III. RG FLOW

A. Flow equations

In order to find the flow equation of the potential [which
included Pomeron and Odderon intercepts (masses) as well
as all possible interactions] we need to compute the rhs of
the dimensionful flow equations which result from scale k
controlled contributions from quantum fluctuations,

∂tΓ ¼ 1

2
Tr½Γð2Þ þ R�−1∂tR: ð16Þ

The trace on the rhs extends over a 4 × 4 matrix. The
propagator matrix can be written in the following form:

Γð2Þ þR ¼
 

Γð2Þ
P ΓPO

ΓOP Γð2Þ
O

!
; ð17Þ

where the 2 × 2 block matrices are

Γð2Þ
P ¼

 
Vψψ ZPð−iωþ α0Pq

2Þ þ RP þ Vψψ†

ZPðiωþ α0Pq
2Þ þ RP þ Vψ†ψ Vψ†ψ†

!
; ð18Þ

Γð2Þ
O ¼

 
Vχχ ZOð−iωþ α0Oq

2Þ þ RO þ Vχχ†

ZOðiωþ α0Oq
2Þ þ RO þ Vχ†χ Vχ†χ†

!
; ð19Þ

ΓPO ¼
 

Vψχ Vψχ†

Vψ†χ Vψ†χ†

!
; ð20Þ

and

ΓOP ¼
 

Vχψ Vχψ†

Vχ†ψ Vψψ†

!
: ð21Þ

The momentum integral contained in the trace
can be done in the same way as described in [1]. The
energy integral is performed by complex integration.
Unfortunately the analytic expression for the full flow of
the potential is quite involved and difficult to handle. Since
we are interested in an analysis based on polynomial
expansions of the potential in terms of the Pomeron and
Odderon fields, we find it more convenient to derive
directly the flow equations for the polynomial coefficients
(couplings).
In this work we limit ourselves to analyzing the flow of

the potential expanded around the origin (zero fields), i.e.

we employ a weak field expansion. We consider more
refined analysis in a future investigation. Therefore, for the
derivation of the beta-functions of the couplings we find it
convenient to expand the inverse of (17) in the following
way:

½Γð2Þ þ R�−1 ¼ ½Γð2Þ
free − Vint�−1

¼ Gðω; qÞ þ Gðω; qÞV intGðω; qÞ
þGðω; qÞV intGðω; qÞV intGðω; qÞ þ � � �

ð22Þ

Here we absorb the masses (intercepts minus 1) into the
free propagators,

Gðω; qÞ ¼
�
GPðω; qÞ 0

0 GOðω; qÞ

�
; ð23Þ

where

BARTELS, CONTRERAS, and VACCA PHYSICAL REVIEW D 95, 014013 (2017)

014013-4



GPðω; qÞ ¼
 

0 ðZPð−iωþ α0Pq
2Þ þ RP − μPÞ−1

ðZPðiωþ α0Pq
2Þ þ RP − μPÞ−1 0

!
ð24Þ

and

GOðω; qÞ ¼
 

0 ðZOð−iωþ α0Oq
2Þ þ RO − μOÞ−1

ðZOðiωþ α0Oq
2Þ þ RO − μOÞ−1 0

!
: ð25Þ

The interaction matrix V int is derived from the effective
potential, after removal of the Reggeon masses,

V int ¼ −

0
BBBBB@

Vr
ψψ Vr

ψψ† Vr
ψχ Vr

ψχ†

Vr
ψ†ψ

Vr
ψ†ψ† Vr

ψ†χ
Vr
ψ†χ†

Vr
χψ Vr

χψ† Vr
χχ Vr

χχ†

Vr
χ†ψ

Vr
χ†ψ† Vr

χ†χ
Vr
χ†χ†

1
CCCCCA: ð26Þ

Here the superscript “r” reminds us that the Reggeon
masses have been removed.
Finally we define the regulator matrix consisting of two

block matrices. First we define

O� ¼
�

0 1

�1 0

�
: ð27Þ

With this we find

_R ¼
�

_RP 0

0 _RO

�
; ð28Þ

where

_RP ¼ ∂tRPðq2ÞOþ ð29Þ

and

_RO ¼ ∂tROðq2ÞOþ: ð30Þ

After the momentum integrals and after the use of dimen-
sionless variables, the factors of the block matrices can be
replaced by

_RP → NDADðηP; ζPÞOþ ð31Þ

and

_RO → rNDADðηO; ζOÞOþ; ð32Þ

where the factors ND and AD are defined in [1], and ηP, ζP
and ηO, ζO are the anomalous dimensions of the Pomeron
and Odderon fields, respectively.
We are thus left with the energy integrals in the

expansion,

Z
dz0

2π
Tr½RGðz0Þð1þ V intGðz0Þ þ V intGðz0ÞV intGðz0Þ

þ V intGðz0ÞV intGðz0ÞV intGðz0Þ þ � � �Þ� ð33Þ

where z0 ¼ iω0=ðα0Pk2Þ, and the free propagators in (23), as
a result of the momentum integration and the use of
dimensionless variables, have become

GPðω; qÞ → GPðzÞ

¼
�

0 ð−zþ 1 − ~μPÞ−1
ðzþ 1 − ~μPÞ−1 0

�
; ð34Þ

GOðω; qÞ → GOðzÞ

¼
�

0 ð−zþ r − ~μOÞ−1
ðzþ r − ~μOÞ−1 0

�
: ð35Þ

For the derivation of the beta functions, we take derivatives
of (33) with respect to the field variables and subsequently
set the fields equal to 0. The first two terms on the rhs do
not contribute, and depending upon the truncation of the
potential, we only need a finite number of terms.

B. β functions

We begin with the lowest (cubic) truncation. For this
approximation of the effective potential, we keep on the rhs
of (33) the terms with two and three V’s. The z-integral is
done by complex integration. We report here the result for
the region r − μO > 0 which can be verified a posteriori to
be the physical relevant region. The beta functions in the
complementary region r − μO < 0 can be computed in a
similar way but we do not discuss them further. Including
also the canonical part on the rhs of the flow equations we
find
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_μP ¼ ð−2þ ηP þ ζPÞμP þ 2AP
λ2

ð1 − μPÞ2
− 2AOr

λ23
ðr − μOÞ2

;

_μO ¼ ð−2þ ηO þ ζPÞμO þ 2ðAP þ AOrÞ
λ22

ð1þ r − μP − μOÞ2
;

_λ ¼
�
−2þD=2þ ζP þ 3

2
ηP

�
λþ 8AP

λ3

ð1 − μPÞ3
− 4AOr

λ2λ
2
3

ðr − μOÞ3
;

_λ2 ¼
�
−2þD=2þ ζP þ 1

2
ηP þ ηO

�
λ2 þ

2λλ22ð6AP þ 5AOrÞ þ 4λ32ðAP þ AOrÞ − 4λ2λ
2
3ðAP þ 2AOrÞ

ð1þ r − μP − μOÞ3

þ 2APλλ
2
2ðr − μOÞ2

ð1 − μPÞ2ð1þ r − μP − μOÞ3
−

4AOrλ2λ23ð1 − μPÞ2
ð1 − μOÞ2ð1þ r − μP − μOÞ3

þ 2λλ22ð3AP þ AOrÞðr − μOÞ
ð1 − μPÞð1þ r − μP − μOÞ3

−
4λ2λ

2
3ðAP þ 3AOrÞð1 − μPÞ

ðr − μOÞð1þ r − μP − μOÞ3
;

_λ3 ¼
�
−2þD=2þ ζP þ 1

2
ηP þ ηO

�
λ3 þ

2λ22λ3ðAP þ 2AOrÞ
ðr − μOÞð1þ r − μP − μOÞ2

þ 4λλ2λ3ð2AP þ AOrÞ
ð1 − μPÞð1þ r − μP − μOÞ2

þ 2λ22λ3AOrð1 − μPÞ
ðr − μOÞ2ð1þ r − μP − μOÞ2

þ 4λλ2λ3APðr − μOÞ
ð1 − μPÞ2ð1þ r − μP − μOÞ2

: ð36Þ

Here we have defined

AP ¼ NDADðηP; ζPÞ; AO ¼ NDADðηO; ζOÞ: ð37Þ

For the next truncation, the quartic approximation, we have
to retain also the next term on the rhs of (33) (containing
four factors of V int). The results for the beta functions are
already lengthy and are not listed here. For the truncations
of fourth order and beyond we have used symbolic
computational tools (Mathematica).

C. Anomalous dimensions

Having derived the beta function we need to mention a
novel feature which was not present for the pure Pomeron
case: all beta functions depend upon the parameter r
defined in (10), the ratio of the Odderon and Pomeron
slopes. This dimensionless quantity by itself depends upon
the cutoff parameter k and therefore has its own beta
function. The critical theory satisfies the fixed point
condition _r ¼ 0. We therefore need not only the beta
functions for the parameters of the effective potential
(coupling constants) but also the anomalous dimensions.
With the anomalous dimensions defined in (14), the
evolution equation for r then becomes

_r ¼ rð−ζO þ ζPÞ; ð38Þ

which tells that at criticality the Pomeron and Odderon
transverse space scaling laws do coincide.
In order to obtain the anomalous dimensions we first

define the two-point vertex functions,

Γð1;1Þ
P ðω; qÞ ¼ δ2Γ

δψðω; qÞδψ†ðω; qÞ
����
ψ¼ψ†¼χ¼χ†¼0

ð39Þ

and

Γð1;1Þ
O ðω; qÞ ¼ δ2Γ

δχðω; qÞδχ†ðω; qÞ
����
ψ¼ψ†¼χ¼χ†¼0

: ð40Þ

From the flow equations we obtain

_Γð1;1Þ
P ðω; qÞ ¼ α0P

Z
dz0dDq0

ð2πÞDþ1
Tr

�
_RGðz0; q0Þ δV int

δψ†

× Gðzþ z0; qþ q0Þ δV int

δψ
Gðz0; q0Þ

�����
O
þ � � � ;

ð41Þ

_Γð1;1Þ
O ðω; qÞ ¼ α0P

Z
dz0dDq0

ð2πÞDþ1
Tr

�
_RGðz0; q0Þ δV int

δχ†

× Gðzþ z0; qþ q0Þ δV int

δχ
Gðz0; q0Þ

�����
O
þ � � � ;

ð42Þ

where the subscript “O” indicates that, after differentiation,
we have set all field variables inside the trace equal to 0:
ψ ¼ ψ† ¼ χ ¼ χ† ¼ 0, and the dots indicate that there are
more terms containing second derivatives of V int with
respect to the field variables which do not contribute when
taking derivatives in z0 or q02. We have already taken into
account that, from the derivatives with respect to ψ , ψ† (or
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χ, χ†), we have two identical contributions which com-
pensate the overall factor 1

2
. The anomalous dimensions are

obtained by taking derivatives with respect to energy and
momentum,

ZP ¼ lim
ω→0;q→0

∂
∂ðiωÞΓ

ð1;1Þ
P ðω; qÞ; ð43Þ

ZO ¼ lim
ω→0;q→0

∂
∂ðiωÞΓ

ð1;1Þ
O ðω; qÞ; ð44Þ

and

ZPα
0
P ¼ lim

ω→0;q→0

∂
∂q2 Γ

ð1;1Þ
P ðω; qÞ; ð45Þ

ZOα
0
O ¼ lim

ω→0;q→0

∂
∂q2 Γ

ð1;1Þ
O ðω; qÞ: ð46Þ

We introduce

_Γð1;1Þ
P ¼ Ið1;1ÞP ðω; qÞ; ð47Þ

_Γð1;1Þ
O ¼ Ið1;1ÞO ðω; qÞ: ð48Þ

The anomalous dimensions are then given by

−ηP ¼ 1

ZP
lim

ω→0;q→0

∂
∂ðiωÞ I

ð1;1Þ
P ðω; qÞ; ð49Þ

−ηO ¼ 1

ZO
lim

ω→0;q→0

∂
∂ðiωÞ I

ð1;1Þ
O ðω; qÞ; ð50Þ

and

−ηP − ζP ¼ 1

ZPα
0
P

lim
ω→0;q→0

∂
∂q2 I

ð1;1Þ
P ðω; qÞ; ð51Þ

−ηO − ζO ¼ 1

ZOα
0
O

lim
ω→0;q→0

∂
∂q2 I

ð1;1Þ
O ðω; qÞ: ð52Þ

The calculation of the derivatives with respect to z and q2

has been described in [1]. For the z-derivative we obtain
after the momentum integral

1

ZPα
0
P

dIð11ÞP

dz
¼ 2ND

Z
dz0

2πi
· Tr

��
ADðηP; ζPÞOþ 0

0 rADðηO; ζOÞOþ

�
Gðz0Þ δV int

δψ† Gðz0Þ
�
O− 0

0 O−

�
Gðz0Þ δV int

δψ
Gðz0Þ

�

ð53Þ

1

ZOα
0
P

dIð11ÞO

dz
¼ 2ND

Z
dz0

2πi
· Tr
��

ADðηP; ζPÞOþ 0

0 rADðηO; ζOÞOþ

�
Gðz0Þ δV int

δχ†
Gðz0Þ

�
O− 0

0 O−

�
Gðz0Þ δV int

δχ
Gðz0Þ

�
:

ð54Þ

Similarly, for the q2 derivative we find

1

ZPα
0
P

dIð11ÞP

dq2
¼ ND

D

Z
dz0

2πi
Tr

��
Oþ 0

0 rOþ

�
Gðz0Þ δV int

δψ† Gðz0Þ
�
Oþ 0

0 rOþ

�
Gðz0Þ δV int

δψ
Gðz0Þ

�
; ð55Þ

1

ZOα
0
O

dIð11ÞO

dq2
¼ ND

rD

Z
dz0

2πi
Tr

��
Oþ 0

0 rOþ

�
Gðz0Þ δV int

δχ†
Gðz0Þ

�
Oþ 0

0 rOþ

�
Gðz0Þ δV int

δχ
Gðz0Þ

�
: ð56Þ

We quote the results for the expansion around zero fields
(in this case, the results do not depend upon the truncation
since only cubic couplings are involved),

ηP ¼ −
2APλ

2

ð1 − μPÞ3
þ 2AOrλ23
ðr − μOÞ3

; ð57Þ

ηO ¼ −
4ðAP þ AOrÞλ22

ð1þ r − μP − μOÞ3
; ð58Þ

and

ηP þ ζP ¼ −
NDλ

2

Dð1 − μPÞ3
þ NDr2λ23
Dðr − μOÞ3

; ð59Þ

ηO þ ζO ¼ −
4NDλ

2
2

Dð1þ r − μP − μOÞ3
: ð60Þ
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D. Analysis near D= 4: ϵ-expansion

Fromaquick look at the beta functions given inEq. (36) of
the couplings λ, λ2 and λ3 of the cubic truncationone sees that
they do not scale when D → 4, which is indeed the scaling
(critical) dimension of the system. In this section we show
the results of an analysis of the theory close to the critical
dimension (D ¼ 4 − ϵ) at one loop, restricted to the cubic
truncation only. Such an analysis can help to identify a
possible critical behavior of the system which may survive,
at a qualitative level, down toD ¼ 2. In thenext section, after
a numerical analysis with higher truncations in D ¼ 2, we
also investigate numerically the fixed points of the cubic
truncation for continuous dimensions (0 < D < 4).
Evaluating Eqs. (36) and (37) and (57)–(60) for

D ¼ 4 − ϵ one searches for solutions such that
λ2; λ22; λ

2
3; μP; μO ¼ OðϵÞ. We find that, apart from the pure

Pomeron scaling solution, in the presence of the Odderon
field only the other fixed point is allowed,

μP ¼ ϵ

12
; λ2 ¼ 8π2

3
ϵ; ηP ¼ −

ϵ

6
;

ζP ¼ ζO ¼ ϵ

12
; μO ¼ 95þ 17

ffiffiffiffiffi
33

p

2304
ϵ;

λ22 ¼
23

ffiffiffi
6

p þ 11
ffiffiffiffiffi
22

p

48
ϵ; λ3 ¼ 0;

ηO ¼ −
7þ ffiffiffiffiffi

33
p

72
ϵ; r ¼ 3

16
ð
ffiffiffiffiffi
33

p
− 1Þ: ð61Þ

Moreover the spectral analysis of the stability matrix is
able to show the other universal quantities of the system,
apart from the anomalous dimensions. In particular we find
two negative eigenvalues, associated to two relevant
directions, and the corresponding critical exponents,

λð1Þ ¼ −2þ ϵ

4
→ νP ¼ 1

2
þ ϵ

16
;

λð2Þ ¼ −2þ ϵ

12
→ νO ¼ 1

2
þ ϵ

48
: ð62Þ

We note that the most negative eigenvalue (strongest
relevant operator) is associated to the Odderon sector. We
have not found other solutions with all real couplings and
λ3 ≠ 0. We also note that the values of the couplings and the
critical exponents and anomalous dimensions in the
Pomeron sector are exactly the same as in the pure
Pomeron case [1]. This seems to favor, at least in the
vicinity of the critical dimension D ¼ 4, the existence of
just two nontrivial fixed points, one with the pure Pomeron
content, and another one with both interacting fields, where
the interaction responsible for creating the Odderon fields
is turned off. That is, the scaling solution of Eq. (61) is a
theory conserving the Odderon number, and the direction in
parameter space which contains the operator breaking such
conservation is irrelevant.

IV. NUMERICAL RESULTS

A. Search for fixed points

Let us now focus on the physical case of D ¼ 2 trans-
verse dimensions. In a first step of searching fixed point
theories (scaling solutions)1 we set the anomalous dimen-
sions equal to 0 and search for fixed points of the whole
potential, which should be defined on the whole field space.
As already said, in this preliminary investigation we

perform a weak field expansion and consider the beta-
functions of the corresponding couplings, complemented
by the equation for _r, (38). In our analysis we search in the
region r − μO > 0. The computation of the beta-functions
depends on this condition and we have also computed them
in the case of r − μO ≤ 0. We have performed a fixed point
analysis in both regions and found that only in the first one
we find physically relevant solutions.
Our analysis is essentially in the LPA approximation

with the addition of an extra coupling r, depending on the
anomalous dimensions ζP and ζO, which we have evaluated
at the lowest order. In all the other beta functions the
anomalous dimensions have been completely neglected.
Such a strategy is based on our previous experience with
the RFT analysis of the pure Pomeron theory. Indeed, the
polynomial expansion around the origin without the inclu-
sion of the anomalous dimensions was giving, even if the
convergence was slow, a very good estimate of the critical
exponent ν. Instead the inclusion of the anomalous dimen-
sions has been shown to be reliable only in the lowest cubic
truncation, while it was giving completely incorrect results
in higher truncations. In order to include the anomalous
dimensions we were choosing a different (stationary) point
of expansion for the potential. We do not do this here and
leave it for future analysis. In this paper we report on the
existence of the fixed point which looks most promising.
In the cubic truncation we find a fixed point solution with

the following values: (μP ¼ 0.111111, μO ¼ 0.110753,
λ ¼ 1.05034, λ2 ¼ 1.44665, λ3 ¼ 0, r ¼ 0.921810). This
fixed point has three negative and three positive eigenvalues,
i.e. there are three relevant directions. Two of the negative
eigenvalues λO ¼ −1.9398 and λP ¼ −1.8860 are associated
to the νP and νO critical exponents, respectively. The third
negative eigenvalue λð3Þ ¼ −0.0916 is close to 0 and with an
eigenvector mainly associated to the r coupling. Since this is
associated to the anomalous dimensions which are evaluated
at the lowest order one should take the possibility of having a
third relavant direction “cum grano salis." Clearly further
checks with more accurate analysis are needed.
This solution, where the Pomeron sector is the same as in

the pure Pomeron case, but the Odderon sector is nontrivial,

1We stress that such solutions for the fixed point of the flow
cannot be related to a CFT in the whole 2þ 1-dimensional space
because they are characterized by anisotropic scaling between the
rapidity direction and the transverse space.
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is also the one found in the ϵ-expansion analysis close to
D − 4. We observe a decoupling of the two sectors:
compared to the pure Pomeron case, the Pomeron is not
affected by the presence of the Odderon, whereas the
Odderon “feels” the Pomeron. This decoupling is due to
the vanishing of the exceptional triple coupling λ3, i.e. the
vanishing of the first symmetry breaking term, ΔV, on the
rhs of (5). We remind the reader that in the UV region
where perturbative QCD applies, the coupling P → OO is
nonzero [21]. There is also an interesting property of the
eigenvectors at this fixed point: there is one eigenvector
which points in the direction of the exceptional coupling λ3
and is orthogonal to all the other eigenvectors (defining
both relevant or irrelevant directions). It has a positive
eigenvalue (so that the corresponding interaction is irrel-
evant) and thus lies inside the critical subspace.
All these features also appear in the following solution

obtained in the quartic truncation: (μP ¼ 0.274381,
μO ¼ 0.26979, λ ¼ 1.34738, λ2 ¼ 1.79401, λ3 ¼ 0.,
λ41 ¼ −2.88712, λ42 ¼ −1.27076, λ43 ¼ −0.83228,
λ44 ¼ 0., λ45 ¼ 0., λ46 ¼ −5.2784, λ47 ¼ −2.2078,
r ¼ 0.88018). The stability properties are the same as in
the cubic case: three negative eigenvalues (−1.8159,
−1.6751 and −0.20957). The Pomeron and Odderon
sectors are decoupled, since the three exceptional couplings

λ3, λ44, λ45 vanish. The Pomeron parameters are the same as
in the pure Pomeron case at the corresponding order. There
exist three eigenvectors which span the subspace of the
three exceptional couplings λ3, λ44, λ45. They have positive
eigenvalues, i.e. this subspace is part of the ten-dimensional
critical subspace. Inside this subspace they are orthogonal
to all other seven eigenvectors with positive eigenvalues.
Concerning the three eigenvectors with negative eigenval-
ues (which define the relevant directions), they are also
orthogonal to three eigenvectors in the exceptional
directions.
All this leads to the conclusion that near this fixed point

the exceptional couplings define a subspace inside the
critical subspace which is orthogonal both to the remaining
part of the critical subspace and to the three relevant
directions. This subspace decouples from the other part.
We observe that this special fixed point solution is

associated to a critical theory conserving the Odderon
number. We do not find any other physical critical solution
with all couplings being nonzero.
We then push the analysis for this special fixed point

solution up to order 9 in the polynomial expansion. We
collect the results found in two figures in order to show the
convergence with respect to the order of the truncation. In
Fig. 1 we show on the left side the values for μP and μO

FIG. 2. Values of the critical exponents of the fixed point solution of the LPA truncations for different orders n of the
polynomial (3 ≤ n ≤ 9). The two negative leading eigenvalues define the two critical exponents νP (red curve) and νO (blue dotted
curve) for the Pomeron and Odderon fields (left panel). We report also the value of a third negative eigenvalue found in our
approximation (right panel).

FIG. 1. Values of the parameters of the fixed point solution of the LPA truncations for different orders n of the polynomial (3 ≤ n ≤ 9).
The masses (which equal intercept minus 1) μP (red curve) and μO (blue dotted curve) for the Pomeron and Odderon fields are in the left
panel. The first nonzero couplings λ; λ2; λ41; λ42; λ43; λ46; λ47; r are reported on the right panel.
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while on the right side we give the values of the nonzero
couplings which characterize the truncation up to order
fourth, for all the orders n between 3 and 9. We note that
μP > μO in all truncations. We see how at order 9 a good
stability is reached. We stress that all the quantities reported
in this figure are not universal.
In the subsequent Fig. 2 we show the critical exponents

νP and νO (left plot) and the third negative eigenvalue (right
plot) found at different orders of the polynomial expansion.
Also here we see that at order 9 also the critical exponents
have reached values which are almost independent of the
order of the polynomial.

B. The fixed point solution in continuous dimensions

In this last part we restrict ourselves to the lowest cubic
truncation, use the expansion around the origin, include the
anomalous dimension and vary the transverse dimension D
continuously between 0 and 4. This provides some hints of
the quality of our approximations. We already have the
experience for the pure Pomeron sector that the cubic
expansion is less reliable in estimating the critical exponent
νP than an expansion around a nontrivial configuration field
configuration [in [1] we used an expansion around the
stationary point on the axes of the ðψ ;ψ†Þ plane]. Since the
fixed point of the interacting Pomeron-Odderon system
found above leaves the Pomeron sector unchanged, we

expect a similar situation in the present case. But even if we
cannot expect the critical exponents νP and νO (see Fig. 2)
to be well described, it interesting to see how they connect
with the result of the ϵ-expansion analysis near D ¼ 4.
We collect some results in Fig. 3 where on the left panel

we show the results of a numerical analysis for νPðDÞ for
the Pomeron sector only in the two different expansions
around the origin (continuous red line) and around a
nontrivial stationary point on the axes (dashed green line),
while on the right panel we compare the results of the
expansion around the origin νP and νO.
From our previous analysis of the pure Pomeron sector

we could observe that, contrary to the critical exponent ν,
an expansion around the origin within the cubic truncation
was able to give not too bad numerical predictions for the
anomalous dimensions at D ¼ 2. This was not true any-
more for higher order truncations. The expansion around a
nontrivial configuration on the axes was behaving much
better at a generic order of the polynomial, even if the
simple cubic truncation around the origin was giving better
values. This is shown on the left panel of Fig. 4, noting that
the Monte Carlo results for a directed percolation model in
D ¼ 2 which lies in the same universality class of the
Pomeron RFT are pointing to a value for the anomalous
dimension ηP ≃ −0.4. In the center and right plots of Fig. 4
we show ηP;OðDÞ and ζP;OðDÞ respectively. They are in

FIG. 4. Values of the anomalous dimension ηPðDÞ of the pure Pomeron critical theory obtained from two different polynomial
expansions (left panel). Values of ηP (red curve) and ηO (blue dotted curve) (center panel) and of ζP ¼ ζO (right panel) at the fixed point
obtained with a cubic truncation for 0 < D < 4. In the neighborhood of D ¼ 4 these curves are tangent to those associated to the ϵ-
expansion, according to Eq. (61).

FIG. 3. Values of the critical exponent νPðDÞ of the pure Pomeron critical theory obtained from two different polynomial expansions
(left panel). The values of νP and νO at the fixed point obtained from the cubic truncation around the origin for 0 < D < 4 (right panel).
In the neighborhood of D ¼ 4 these curves are tangent to those associated to the ϵ-expansion, according to Eq. (62).
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agreement with the behavior close to D ¼ 4 obtained from
the ϵ-expansion analysis in Eq. (61). Finally we find that
rðDÞ≃ 0.9 in the whole range of dimensions.

C. Summary of our numerical results

As the main result, we have found a fixed point with
two (or three) relevant directions: these directions are UV
stable (i.e. IR unstable), whereas all other eigenvalues
belong to infrared stable directions. In particular, we have
the following estimates for the critical exponents:
νP ≃ 0.73, νO ≃ 0.6. In our approximation we find also
a third negative eigenvalue λð3Þ ≃ −0.26 (relevant direc-
tion); for the anomalous dimensions we find ηP ≃ −0.33,
ηO ≃ −0.35 and ζP ¼ ζO ≃þ0.17. More corrected values
for the anomalous dimensions can be 20% larger in
magnitude according to what we observe from
Monte Carlo analysis in the pure Pomeron sector. This
generalizes the previous results obtained for the pure
Pomeron case, where we have found a fixed point with
one relevant direction.
For such a fixed point, at first sight, the situation looks

as follows. In the parameter space of the effective
potential, the relevant directions define an orthogonal
subspace which we name critical subspace. If one starts, at
k ≠ 0, within this subspace one ends up, for k → 0, at the
infrared stable fixed point. On the other hand, if one starts
at a generic value outside the critical subspace (not too far
away from the fixed point) the flow will eventually be
attracted by the relevant direction and move away from the
fixed point.
A closer look, however, leads to a somewhat different

picture. Our fixed point analysis was done in the space of
dimensionless parameters (cf. Sec. II), and the flow of the
physical (i.e. dimensionful) parameters can be quite differ-
ent. In particular, when k → 0, the nonvanishing fixed point
values of the (dimensionless) Pomeron and Odderon
masses lead to vanishing physical masses, quite in the
same way as in the pure Pomeron case discussed in [1]. A
flow starting outside the critical subspace may also lead to
finite values of μO or μP which can be positive or negative.
Detailed features of such flows require further studies.
Whereas for the pure Pomeron case we have performed
numerical studies of the flow of the dimensionless and
dimensionful parameters, for the Pomeron-Odderon system
such a study remains a task for future analysis.
There is another interesting feature of the fixed point

which we have found. Namely, a particular set of
Pomeron-Odderon couplings, although allowed by sig-
nature conservation, vanishes at the fixed point. We
interpret this result as a particular conservation law which
is valid at the fixed point: t-channel states formed by
Pomeron and Odderons conserve the number of Odderon
pairs. In particular, in the critical regime there are no
transitions from pure Pomeron states to states containing
Odderons.

V. DISCUSSION AND OUTLOOK

In this paper we have extended our previous fixed point
analysis of Pomeron-Reggeon field theory to a system of
interacting Pomeron and Odderon fields in the infrared
limit. Let us briefly discuss the potential implications of our
results for physical processes. To relate our flow analysis to
the high energy behavior of physical scattering amplitude
we assume that the infrared momentum cutoff, k, is related
to the transverse extension of the scattering system, the
radius RðsÞ. Since R grows with energy, we expect k2 ∼
1=R2 to go to 0, for example proportional to 1= ln s
(neglecting anomalous dimension).
As discussed in the introduction, the main motivation for

including the Odderon comes from the observation that, in
the UV region where perturbative QCD applies, there exist
two fundamental composite states of Reggeized gluons, the
BFKL Pomeron with intercept well above 1 and a very
small slope, and the Odderon with intercept at (or very
close to) 1 and a small slope. This raises the question, when
moving towards the nonperturbative IR region, of what
extent the interactions between these fundamental fields
lead to serious modifications, e.g. a suppression of the
Odderon exchange at high energies.
In our fixed point analysis we have found, very similar to

the pure Pomeron case, a fixed point which is infrared
stable in all but two (possibly three) directions. These
relevant directions define an orthogonal critical subspace.
This fixed point structure allows for several asymptotic
solutions.
If we start, in the UV region, inside the critical subspace,

we end up, in the IR limit, at the fixed point. At this fixed
point, both the Pomeron and the Odderon have intercept 1.
From (11) we see that near the fixed point both intercepts,
αPð0Þ − 1 ¼ μP=ZP ∼ k2−ζ ~μP and αOð0Þ − 1 ¼ μO=ZO∼
k2−ζ ~μO, go to 0 as k becomes small. Since the fixed point
value of ~μP is slightly larger than ~μO we conclude that, for
small but nonzero values of k, the Pomeron intercept is
larger than the Odderon intercept. This is consistent with
the Pomeranchuk theorem. Moreover, a first study of the
flow equations (in the cubic truncation) further away from
the fixed point shows that most trajectories belong to μP
above and μO below its fixed point values. This is
consistent with our expectations for the starting points in
the UV region; the Pomeron value μP should be positive,
whereas the Odderon mass μO shoul be at (or close to) 0.
However, the most important conclusion to be drawn from
this fixed point analysis is that the Odderon exists in the IR
limit and does not die out with energy. It should be clear
that our study does not include the couplings of the
Pomeron and Odderon to external particles; phenomeno-
logical studies indicate that the Odderon couplings are
smaller then those of the Pomeron. This may explain the
smallness of the Odderon contribution. For the ratio of the
Odderon and Pomeron slopes we find a fixed point value
slightly below 1. Phenomenologically, not much is known
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about the Odderon slope [27,28], and our result might be
seen as an asymptotic prediction.
At this stage, however, we also have to allow for another

possibility. If the UV starting point lies outside the critical
subspace, the flow may lead to another situation where
the intercepts may still be finite, but can be above 1
(supercritical), at 1 (critical) or below 1 (subcritical). These
solutions have to be investigated separately.
As mentioned before, at the fixed point those Pomeron-

Odderon couplings which change the number of Odderon
pairs are 0. In particular, the Pomeron → two-Odderon
coupling POO (which was found to be nonzero in pQCD)
vanishes. Thus the Pomeron is not affected by the presence
of the Odderon. The Odderon, on the other hand, undergoes
nonzero absorption by the Pomeron.
The possibility that in the deep IR region the POO vertex

is suppressed may also have phenomenological conse-
quences. Processes involving a simple Odderon exchange,
like hadron scattering pp-pp̄ or meson photoproduction
[29] would be allowed in asymptotic IR, while high mass
diffractive processes with a POO vertex would be possibly
allowed in an intermediate (more perturbative) regime [30],
but suppressed in the deep IR region.
Like the Pomeron RFT, the extended RFT model studied

in this paper may be related to a generalized multi-
component directed percolating system, characterized by
some special symmetries. For the latter we have found
slightly different critical exponents which suggest the
existence of a new universality class. This is certainly true
in the vicinity of D ¼ 4, from the ϵ-expansion analysis.
Nevertheless more refined analysis employing larger trun-
cations should be done for the case of two transverse
dimensions.
There are several questions to be addressed by future

studies. First, we have to search for possible alternative
fixed points. For this goal our fixed point analysis has to be
improved by considering polynomial expansions around
stationary points away from the origin. Experience from the
pure Pomeron case has shown that such expansions seem to
have better convergence properties when increasing the
order of truncation.
Most important, however, is the next—essential—step in

our program, the study of the flow equations formulated in
the region of perturbative QCD. In this region, one of the
crucial features to be addressed within the framework of the
flow equations is the fact that the BFKL Pomeron and also
the Odderon are composite states of Reggeized gluons, i.e.
we have to use a formulation which includes both the
Reggeized gluon as the fundamental field and the (non-
local) color singlet composite fields. Work along these lines
is in progress.
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APPENDIX: STATIONARY POINTS

Let us search for stationary points of the potential.
Nontrivial stationary points (saddles or extrema) may
indeed provide a better field configuration around
which one can perform a polynomial expansion of
the potential, with respect to the speed of convergence
properties, as was observed in the pure Pomeron RFT
analysis. We first restrict ourselves to the lowest
truncation.
The first derivatives are

∂V
∂ψ† ¼ ψð−μP þ iλð2ψ† þ ψÞÞ þ ðiλ2χ† þ λ3χÞχ; ðA1Þ

∂V
∂ψ ¼ ψ†ð−μP þ iλð2ψ þ ψ†ÞÞ þ χ†ðiλ3χ þ λ3χ

†Þ; ðA2Þ

∂V
∂χ† ¼ χð−μO þ iλ2ðψ† þ ψÞÞ þ 2λ3χ

†ψ ; ðA3Þ

∂V
∂χ ¼ χ†ð−μO þ iλ2ðψ þ ψ†ÞÞ þ 2λ3ψ

†χ: ðA4Þ

The last two equations are linear in χ and χ†: either we have

ðχ; χ†Þ ¼ ð0; 0Þ ðA5Þ

or the determinant vanishes,

ðμO − iλ2ðψ þ ψ†ÞÞ2 − 4λ23ψψ
† ¼ 0: ðA6Þ

In the first case we are back to the pure Pomeron case with
the four stationary points

ðψ ;ψ†Þ ¼ ð0; 0Þ; ðψ ;ψ†Þ ¼
�
μP
iλ

; 0

�
;

ðψ ;ψ†Þ ¼
�
0;
μP
iλ

�
; ðψ ;ψ†Þ ¼

�
μP
3iλ

;
μP
3iλ

�
: ðA7Þ

In the second case we have several possibilities. First we set

ψ ¼ 0: ðA8Þ

Then, from the condition (A6) we derive

ψ† ¼ μO
iλ2

ðA9Þ
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and from (A4) and (A2)

χ ¼ 0; χ†2 ¼ μ0
iλ2λ3

�
μP − μO

λ

λ2

�
: ðA10Þ

There exists also the solution

ψ ¼ ψ† ¼ ϕ: ðA11Þ

Equation (A6) leads to the two solutions

ϕ� ¼ μ0
2ðiλ2 � λ3Þ

ðA12Þ

and (A3) [or (A4)] implies either

χ ¼ −χ† ðA13Þ

with

χ2 ¼ ϕþ
μP − 3iλϕþ
λ2 − iλ3

ðA14Þ

or

χ ¼ χ† ðA15Þ

with

χ2 ¼ ϕ−
μP − 3iλϕ−

λ2 − iλ3
: ðA16Þ

There are also stationary curves (one parameter family
of stationary points) of the potential, which we do not
report here.
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