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Meson-baryon effective chiral Lagrangians at order p*
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We construct the three-flavor Lorentz-invariant meson-baryon chiral Lagrangians at the order p*,
with which a full one-loop investigation may be performed. One obtains 540 independent terms. The
processes with the minimal number of mesons and photons to which this order of Lagrangians may

contribute are also presented.
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I. INTRODUCTION

It is difficult for us to deal with strong interactions with
the underlying QCD in the low-energy region because of
the nonperturbative effects. Thanks to the chiral symmetry
of QCD and its spontaneous breaking, we may equivalently
describe low-energy physics involving pseudoscalar pions
with an effective theory at hadron level, chiral perturbation
theory (ChPT) [1-4]. The perturbative expansion is organ-
ized with the pion momentum (p), and the description
avoids the complex interactions between quarks and gluons.
In this effective field theory, the Lagrangian contains all
chirally invariant terms. According to Weinberg’s power
counting rules, the needed number of terms is finite when
one calculates the 7" matrix of a process to the required order
because the theory is renormalized order by order. At
present, the chiral Lagrangians (CLs) of pseudoscalar
mesons have been constructed up to the order O(p)
(two-loop level) for both normal and anomalous parts
[2,3,5-12]. They contain the whole 16 bilinear light-quark
currents (scalar, pseudoscalar, vector, axial-vector, and
tensor) of the special unitary group and the unitary group.

Matter fields (baryons, heavy mesons, etc.) can be intro-
duced into the framework of chiral perturbation theory with
the transformation of SU(2), or SU(3),. For the pion-
nucleon interaction, the relevant CLs have been obtained up to
the order O(p*) (one-loop level) [13—17]. To study the pion-
hyperon interaction in a model-independent approach, one
needs the SU(3) meson-baryon CLs. At present, the terms at
the order O(p?) have been obtained [18,19]. However, the
full one-loop-level investigation needs next-order terms.

The inclusion of nucleons in the chiral perturbation
theory makes the chiral expansion of p/A, problematic
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because both the baryon mass my and the scale of chiral
symmetry breaking A, are around 1 GeV. This problem is
cured in the heavy baryon chiral perturbation theory, where
the large parameter my is eliminated, and an exact power
counting rule exists. Although the expansion is convergent
and the theory works well in the pion-nucleon system
[15,20-22], the convergence in the kaon-hyperon systems
is slow or violated [23]. In the three-flavor meson-baryon
scattering processes at threshold, several Weinberg-
Tomozawa terms vanish, and the O(p*) calculation may
answer whether the heavy-baryon formalism still works or
not in these channels. To recover the relativistic formulation
of the theory, the infrared regularization scheme [24,25]
and the extended on-mass-shell (EOMS) renormalization
scheme [26] are proposed. The latter scheme seems to work
well [27-39]. Since the SU(3) baryon ChPT involves the
larger kaon mass, further explorations with the O(p*)
Lagrangians are helpful to understand the convergence of
the chiral expansion.

In baryon ChPT, not all interaction terms at the same
order contribute to the 7 matrix of a special process. There
are studies involving high-order interactions in the liter-
ature, although the complete Lagrangian is not known. In
Refs. [40—43], the nucleon masses were calculated up to the
order O(p®) (two-loop level). In Ref. [44], the ground-state
octet baryon masses and sigma terms were studied up to the
order O(p*) where seven O(p*) terms are involved. The
electromagnetic form factors of the ground-state baryon
octet were also studied up to the order O(p*) with five
terms at that order [45]. Needless to say, the complete
O(p*) chiral Lagrangians which are constructed system-
atically are helpful for further studies of meson-baryon
processes.

An obvious obstacle in the application of ChPT is the
determination of the parameters in the Lagrangian, the so-
called low-energy constants (LECs). In principle, once the
parameters are determined up to some chiral orders, they
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are applicable to all processes to those orders. Because of
the difficulty in low-energy QCD, one usually extracts the
LECs by fitting experimental data, a feasible method to
determine them. It seems that we still need more meson-
baryon scattering data, and high-order Lagrangians are not
useful. However, efforts have been tried to determine all the
LECs from QCD in the meson sector [46—49], and similar
study in the baryon sector is on the way. Various models
and symmetries are also used to constrain the values of
LECs or relations between them [50-53]. These studies
make further investigations with the baryon ChPT possible,
although the number of LECs becomes large for high-order
Lagrangians. With the development of computing capacity,
the lattice simulation or other numerical calculations will be
helpful to fix the LECs. Now, the investigations with ChPT
in the meson sector at two loops are relatively easy to
perform once the LECs are known [54]. In the baryon
sector, similar investigations are also possible. The starting
point for such studies is, of course, the meson-baryon chiral
Lagrangian.

In this paper, we would like to complete the Lagrangians
of the SU(3) meson-baryon chiral perturbation theory to
the one-loop O(p*) order. Deeper understanding on the
low-energy meson-baryon interactions needs these terms.
This work is organized as follows. In Sec. II, we review
the building blocks for the construction of the chiral
Lagrangians. In Sec. III, a systematic method for the
construction is introduced, which is based on the properties
of the building blocks and the linear relations to the final
results. In Sec. IV, we list our results and give a discussion.
Section V is a short summary.

II. BUILDING BLOCKS OF CHIRAL
LAGRANGIANS

The QCD Lagrangian £ can be written as
L = Lcp + q(v+ ays — s+ ipys)q, (1)

where EOQCD is the original QCD Lagrangian; g denotes the
quark field; and s, p, v#, and a* denote scalar, pseudo-
scalar, vector, and axial-vector external sources, respec-
tively. Conventionally, we ignore the tensor source and the
0 term here.

If the light quarks are massless, the QCD Lagrangian
Lcp exhibits a global SU(3),, x SU(3) chiral symmetry.
In the description of the effective chiral Lagrangiang, the
Goldstone bosons (pseudoscalar mesons) coming from the
spontaneous chiral symmetry breaking are collected into an
SU(3) matrix U. If the chiral rotation for the light quarks is
g = (g1, gr), the transformation for the meson field would
be U - g, U g;,. It is convenient to introduce u> = U to
simplify the construction of the chiral Lagrangians. The
field u transforms as u — g uh’ = hug'}'e under the chiral
rotation, where h in SU(3), from the breaking of

PHYSICAL REVIEW D 95, 014012 (2017)

SU(3), x SU(3)g is a function of the pion fields. The
baryon octet is denoted by another matrix B,

Vi r
_ 0
B= p) -+ o0 | (2)
= =0 _2A
- = Vo

Under the chiral rotation, this matrix transforms into
B' = hBh'.

To construct the Lagrangians, one collects the external
sources and meson and baryon fields together and defines
appropriate combinations of them. The fields or combina-
tions transforming like the baryon field are called building
blocks. The building blocks we will use are

u = i{u" (0" —ir)u — u(0* —il*)u'},
xe = uTyu £ uy'u,
= VHiyu? + VVuH,
i =uFP " +u' FRu,
= uFPu" — u Fu = —=VFPu¥ + VVuk,

B.B, (3)
where ' =vt+a*, I =v*—a*, y=2B(s+ip), Fy =0"r"—
Fri—ilr ], FY =0l — 0l —i[l*,I’], and B, is a
constant related to the quark condensate. In this paper,
we consider the case in which both v# and a* are traceless.

The definition of the covariant derivative V¥ acting on any
building block O is

VEO = 940 + [T*, 0], (4)
P — %{M(@ﬂ — it (@ — ity (5)

With this definition, all building blocks O’s, including their
covariant derivative forms, transform into O’ = hOh' under
the chiral rotation. As in Ref. [6], we also define ;(”i to
substitute the covariant derivative of y,

- ~ i
Ao =u' Vi pum £ uV yu =y, —z{h, u'}, (6)

because sometimes it is more convenient. Here,

Viy = Oy — ir'y + iyl*." In addition, the following two
relations of covariant derivatives are useful:

[V#, VY0 = [T, 0], (7)

[ = VAT¥ — VVI% — [[4,TY] = %[u”, W) - é 0 (8)

"The details of the covariant derivatives of X ;{T, and F’Z’fR can
be found in Ref. [5].
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III. CONSTRUCTION OF CHIRAL LAGRANGIANS

With the above building blocks, one can construct the
SU(3) meson-baryon chiral Lagrangians following the
steps given in this section. The final Lagrangian contains
minimal independent chirally invariant terms. This method
is very similar to the construction of the meson chiral
Lagrangians in Ref. [12].

A. Power counting and transformation properties

The construction of chirally invariant monomials needs
the power counting of the building blocks. We show their
chiral dimensions in the second column of Table I [2—
4,6,17,18]. The covariant derivative acting on the meson
fields or external sources is counted as O(p'), but that
acting on the baryon fields is counted as O(p°). For
convenience, we will use D# rather than V¥ to denote
the covariant derivative in the latter case. There is no
difference between V# and D¥. According to the forms of
the bilinear couplings of B and B in the low-energy
approximation, one assigns the chiral dimensions of the
elements of the Clifford algebra basis in the second column
of Table II [17,18,55].

The chiral Lagrangian is also invariant under the trans-
formation of parity (P), charge conjugation (C), and
Hermitian conjugation (h.c.). The transformation properties
of the building blocks are simple [6,17,18], and we collect
them in Table I, where the minus sign for D*B is from the
moving of the derivative [see Eq. (11)]. However, the
properties of the Clifford algebra are slightly complicated.
We here adopt the method used in Ref. [17] to analyze the
transformations. Generally speaking, the invariant mono-
mials have the forms

TABLE 1. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity of the building blocks.
Dim P C h.c.
u# 1 -, (u)T u*
h 2 —hy, ()T h*
X+ 2 tre ()" tre
yis 2 Ef F ()7 fi
B 0 B BT B
B 0 B BT B
D'B 0 D,B —(D"B)T -D'B
TABLE II. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity of the Clifford algebra elements.
Dim P C h.c.
1 0 + + +
2 1 - + -
7 0 + - +
rsr" 0 - + +
oM 0 + - +
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(BA*~®,,. B) + H.c., (BA")(Ay"®,, B) + Hc., ...,

©)

where (---) is a trace over SU(3) indices; A", A{", and
A4 are the products of meson fields and/or external sources;
and ©,,.. is the product of a Clifford algebra element
I €{1,7,.75.7574 0,0}, the Levi-Civita tensor £*#7, and
several covariant derivatives D;D, - -- acting on B. The
forms in Eq. (9) can have other deformations, such as
increasing traces, a change of the place of the B field, and so
on. For the P transformation, the y matrices are changed by
raising or lowering the Lorentz indices. Table II only lists the
extra signs. For the C and h.c. transformations, one may
change (BA*T,..D,..B) to (D, BA"™ T, B) with an
extra transpose or a whole Hermitian conjugation, where
A" comes from A#¥, Table II lists the plus or minus sign.
Other forms of monomials can be operated in a similar way.
Then, it is easy to move the covariant derivatives acting on B
to B with the partial integration relation [Eq. (11)]. The signs
in both Table I and Table II are given with this consideration
in mind.

B. Linear relations

In general, the invariant monomials that are combined
with the building blocks are not independent. Several linear
relations exist that can be used to find the independent
monomials. We collect these relations as follows:

(i) Partial integration:

The covariant derivative acting on the whole
monomial can be discarded, and one has

0= ((VFA)B--)(CD---) -
+(A(VEB) - Y(CD ) - -
+(AB--{(VFC)D ) -+ (AB )
x (C(VED)---) - -+ other terms, (10)

where “- - -” represents one or more building blocks.
Because the covariant derivative acting on baryon
fields is counted as O(p°) and that on other building
blocks is O(p'), we can simply employ the relation
[17,18]

(D,BA*T, B)=— (BA*T, .D,B) (11)

in reducing the number of monomials. The symbol
“=" means that both sides are equal if high-order
terms are ignored. This is also the origin of the extra
minus signs in Tables I and II discussed above.
(i) Equations of motion (EOM):
The lowest-order EOM from the pseudoscalar
CL is

T ) I
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where N is the number of quark flavors and we take
N = 3 here. This equation indicates that the mono-
mials including V,u* can be removed. Obviously, the
higher-order EOM only adds terms on the right-hand
side, and it has no impact on the construction of CL.
The EOM from the meson-baryon CL is a little
complicated, which limits the forms of ©,,,... to a small
set. We leave the discussions of this for Appendix A.
(iii) Bianchi identity:
From Egs. (7) and (8), one gets

VATV L VDM 4 VAT — 0, (13)

which gives a relation between the covariant deriv-
atives of T (or f*).
(iv) Schouten identity:
When e#“# exists in a monomial, the Schouten
identity indicates that

€yylpA6 _ eayﬂpAy _ €ﬂm1/)Av _ eﬂya/)All _ emz/laAp =0.
(14)
(v) Cayley-Hamilton relation:
All the building blocks are 3 x 3 matrices in

flavor space. For any 3 x 3 matrices A, B, and C,
one has

0=ABC+ACB+BAC+BCA+CAB+CBA

—AB(C)—AC(B) —BA(C)—BC{A) — CA(B)

—CB(A)—A(BC)—B{(AC)—C(AB) — (ABC)

—(ACB)+A(B)(C)+B(A)(C)+ C(A)(B)

+(A)(BC) + (B){AC) + (C)(AB) - (A)(B)(C),

(15)
which is the Cayley-Hamilton relation [6,12].
(vi) Contact terms:

In constructing the CL, we need to consider
separately the contact terms where only baryon
fields and pure external sources (Fi', F;", and y)
are involved. To adopt the constraint relations, we

also use the following formulas by revealing explic-
itly the sources in Eq. (3),

B = Sul (72 ),
P = Su(f =
X = %”()H +x-)u,
£ =5ul =g (16)

The number of such terms is small, and it is not
difficult to construct them directly. The O(p*)
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meson-baryon contact terms are the last three
monomials in Table V.

C. Reduction of the monomials

Because the number of D* acting on B is arbitrary, it
seems that there are infinite possibilities of monomials at a
given order. However, from Eq. (7) and the item (i) in
Appendix A, one finds that the covariant derivatives
D,D, --- acting on B have totally symmetric Lorentz
indices and any two Lorentz indices are completely differ-
ent. To reflect the symmetric nature, one may use the short
notation D, ,,... to denote multiple derivatives where

D,,,. = D,D,D, - -+ full permutation of D’s.  (17)

This symmetric property limits the possibilities of the
monomials.

On the other hand, some monomials with a different
order of building blocks and different indices may be equal.
The construction of independent monomials will be easier
if we change all the monomials to a unified form. The
following rules are helpful:

(i) Unlike the two-flavor zN CL in Ref. [17], where the
nucleon field V is fixed on the far left and the W is
fixed on the far right, now the positions of the
baryon fields B and B are not fixed except that B is
always on the right side of B. To fix the positions of
B and B, we first move the trace containing B to the
left and then move the field B to the far left. If B is in
another trace, we move the trace to the right-hand
side of the trace containing B and then move B to the
far right inside the trace. With this rule, the positions
of B and B are fixed. There may also exist traces
containing neither B nor B. We move them to the
right-hand side of the trace containing B. The
relative positions of these traces are also not fixed.
We treat them in the next item. The fixed form of the
monomials is like that in Eq. (9) where the factor
0,,... is moved to the left side of B.

(ii) For a trace without B and B, another rule is
introduced. All building blocks are numbered, in-
cluding the covariant derivative V. Table III shows
an example. The meaning of the number for each
building block is not significant. What we care about
is the relative size. Each cyclic permutation maps to
a vector, such as (uh) — (1161,1181), (hu) —
(1181,1161), (y,) — (1201), and (y_) — (1221).
We choose the smallest permutation so that the
smaller number is placed as far left as possible. For
example, (1161,1181) is smaller than (1181,1161),
and thus we choose the combination (uh) but not
(hu). If there is more than one trace without B and B,
we place the smaller one on the left. For example,
(1201) is smaller than (1221), so we choose

{r+){x-) but not (y_)(y.).
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TABLE III.  Examples of numbering for the building blocks (or
operator) and the Lorentz indices. No significant meaning is
given to the numbers, but the relative size of the numbers is
meaningful.

Operator  V u f- h I+ y x-
Number 1101 1161 1171 1181 1121 1201 1221
Index u v i p o

Number 1 2 3 4 5

(ii1)) For the Lorentz indices, the rule is the same as the
building blocks. All indices are numbered, too. We
also give an example in Table ITII. When the places of
all the building blocks are fixed, their indices are
mapped to vectors, such as (uwu*ut) — (1,2,1),
(wuruy - (1,1,2), (wu*u*) - (2,3,3), and so
on. Although the results are probably equal (as shown
here), we only choose the smallest permutation,
(u'u'u*) — (1,1,2). In this step, the Einstein sum-
mation convention and the symmetric and antisym-
metric relations for f%*, h*, and e"** are used.

We say that a monomial obeying the above rules has a
standard form. With these rules, two monomials having the
same standard form are equal. The final results are all in this
form. Besides the purpose of distinguishing monomials, the
standard form is also conveniently used for programming.

D. Classifications and substitutions

It is not complicated to obtain all possible invariant
monomials at a given order with the building blocks u”,
", y., f£, and their derivative forms and the constrained
0,,... in Appendix A. However, the number of the resulting
monomials is too large, and it makes further manipulation
difficult. A simpler way is to classify all the monomials
according to the external sources. It means that we can treat
first the category with four pseudoscalar sources, then the
category with three pseudoscalar sources plus one vector
current [or one covariant derivative; see Eq. (4)], and so on.
One may adopt such a classification because almost all the
linear relations in Sec. III B connect monomials with the
same type of external sources and one applies those
relations to monomials category by category. The excep-
tional case is for the contact terms where different types of
external sources may be connected with the relations in the
Sec. III B. We will deal with this case separately.

To simplify the calculation, we usually make the
following replacements:

F e i, 2o Viy,. (18)
Since our purpose is to construct all the O(p*) CL,
the differences induced by these replacements can be
compensated by other terms at the same chiral order. That
is, in constructing the CL, we use actually the definitions
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2t = Viy, and T = —if"" rather than the strict ones in
Egs. (6) and (8).

E. Independent linear relations and chiral Lagrangians

With the above preparations, now we can move on to
find out independent chirally invariant terms with a
systematic approach easy to program. This approach has
been used to construct meson chiral Lagrangians
in Ref. [12].

First, one sets up basic equations. So we may adopt the
linear relations in Sec. III B directly, it is convenient for us
to reveal the covariant derivatives in the constructed
monomials by using Egs. (3) and (8). Here, we use D, ;
to store all possible invariant monomials constructed with
B, B, u*, y., h*, "  f* and their derivative forms and
E; j to store all possible monomials revealing the covariant
derivatives (constructed with B, B, u*, y., I'*, and their
derivative forms). The index i labels the categories, and the
index j labels the monomials inside the category i. The
linear relations between D, ; and E; ; are

Dij=> AipEis
k

where the coefficient matrix A; for the category i is easy to
obtain with Eqgs. (3) and (8).

Second, one finds out independent constraint relations.
By applying the linear relations in Sec. llIB to E;;, we
obtain the constraint equations

ZRi,jkEi,k =0,
k

where the coefficient matrix R; for the category i is easy to
get. Usually, the relations are not independent. To extract
the independent ones, we transform the matrix R; to the
reduced row echelon form (row canonical form) S;. The
rank of R; or S; is equal to the number of independent linear
relations, and each nonzero row vector of S; gives a linear
relation. That is, the independent constraint equations read

> SiiwEix =0. (21)
k
With these constrains, Eq. (19) can be revised to the form

D;; = ZA:',_jkEi,kv (22)
k

where the matrix A} is from the matrices A; and S; after all
linear dependent constraints are removed.

Third, one extracts the independent terms. Now, the
independent terms in D; can be obtained with the help of
Al - They correspond to the elements derived with the

1

(19)

(20)

independent rows of A/ or the independent columns of A
Similar to the processing of Eq. (20), one transforms the
matrix A/ to the reduced row echelon form of A/". Then,
the labels of the independent terms in D; and thus the final
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TABLE IV. The processes with the minimal number of mesons
and photons to which the O(p*) monomials may contribute. The
numbers in the second column denote the labels of the monomials
in Table V.

Process n

B— B 471 ~ 473,481 ~ 487,538
B+y—B 406 ~ 407,474 ~ 480
B+y—->B+y 408 ~ 419

B+y— B+3y 539 ~ 540

B+M— B 464 ~ 467,469 ~ 470
B+M—>B+y 364 ~ 371,376 ~ 393,397 ~ 398,401

~405,462 ~ 463,468,525 ~ 531

354 ~ 363,372 ~ 375,394
~396,399 ~ 400

218 ~ 222,236 ~ 243,259 ~ 260, 266
~268,420 ~ 461,507 ~ 516,518
~524,532 ~ 537

216 ~ 217,228 ~ 235,244
~255,258,263 ~ 265,269
~353,505 ~ 506,517

211 ~ 215,223 ~ 227,256
~257,261 ~ 262

125 ~ 148,165 ~ 168,173
~184,193 ~ 196,206 ~ 207,209
~210, 488 ~ 504

93 ~ 124,149 ~ 164, 169
~172,185 ~ 192,197 ~ 205,208

1~92

B+M—B+2y

B+M—-B+M

B+M—>B+M+y

B+M—>B+M+2

B+M — B+2M

B+M—>B+2M+y

B+M— B-+3M

results can be extracted. The standard form defined in
Sec. III C ensures that all the linear relations have been
used and all the independent monomials of E; are really
independent.

Fourth, one constructs the contact terms. Because the
constraint relations may connect monomials in different
categories in this case, we collect all the D; ; and E; ; in two
big column vectors D} and Ej, respectively. By repeating
the same steps from Eq. (19) to Eq. (22), one gets the
independent terms containing contact terms.

Finally, according to the Hermiticity, one has to add an
extra i to some terms to ensure that the LECs are real. The
Lagrangian with the original building blocks is also
recovered with Eq. (18).

IV. RESULTS AND DISCUSSIONS

With the steps given above, we obtain the minimal three-
flavor meson-baryon CL to the order O(p?). As a cross-
check, we have confirmed the meson-baryon CLs obtained
in Refs. [17-19].

The O(p*) meson-baryon CL has the form

540
Lys = ¢,0,. (23)

n=1

PHYSICAL REVIEW D 95, 014012 (2017)

where ¢,’s are the LECs and O,’s are the independent
chirally invariant terms listed in Table V. The last three
terms are contact terms. In Table IV, we show processes
with the minimal number of mesons and photons to which
the O(p*) Lagrangian may contribute. The labels of related
O, terms are also given.

Besides the results in Refs. [17-19], we also check our
calculation through other approaches. The independent
terms in D; are C and h.c. invariant. Some of them contain
two parts as shown in Table V, e.g., O4. The relative phase
between them is only +1 or —1. However, the monomials in
E; need not be C or h.c. invariant in the calculation. This
property is used to check the correctness of the matrices A;
which must be suitable to keep the C and h.c. invariance on
the right-hand side of Eq. (19). It requires that the
coefficients of some pairs in E; are equal or only a minus
sign difference. In addition, a small mistake in the matrices
R; would also break the C and h.c. invariance of D, ; in
Eq. (22). It will generate confusing results, e,g., giving a
very large or very small number of independent terms
compared to the lower-order Lagrangians or two-flavor z-
nucleon CL of Refs. [17-19].

It seems that 540 is too large a number for independent
terms at the order O(p*). However, one could not find more
relations to reduce this number. Recall that the number of
independent normal terms for the SU(2) [SU(3)] meson
CL at the orders O(p?), O(p*), and O(p®) are 2, 10, and
56 (2, 12, and 94), respectively [2,3,6,7]. The increasing
number to high orders in the three-flavor case is larger than
that in the two-flavor case. In the baryon sector, the
numbers of independent terms [the term (i& —m) not
counted] at the orders O(p'), O(p?), O(p?), and O(p*)
are 1,7, 23, and 118, respectively, in the SU(2) case. Those
in the SU(3) case are 2, 16, 78, and 540, respectively. (Note
that the traceless vector and axial vector external sources
are adopted in the latter case.) The increasing number in the
SU(3) case is much larger. Thus, the number 540 at the
fourth chiral order is not so surprising. For a special
process, from Table IV, only parts of terms and the
determination of their coefficients are needed. In reality,
the number of independent parameters should be much less
than the number of terms shown here. On the other side, the
constraint of LECs at this order is possible with further
studies or the development of nonperturbative methods,
e.g., lattice QCD.

In studying low-energy meson-baryon interactions with
chiral perturbation theory, one usually needs to explore the
convergence of the chiral expansion. However, the high-
order correction is not the unique source to improve
the expansion. It has been shown that the inclusion of
decuplet baryons is also important (see, e.g., Ref. [56]).
The obtained Lagrangian may be used to answer which
effect is more important, high-order corrections or excited
baryon contributions, in specific processes in future
investigations.
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V. SUMMARY

In this paper, we present a systematic and mechanized
method for the construction of baryon chiral Lagrangians,
which is suitable for computer realization. In the construc-
tion, only the independent constraint relations for the
chirally invariant monomials are considered, which remark-
ably reduces the computational complexity. We have gotten
the SU(3) meson-baryon chiral Lagrangian at the order
O(p*). Now, all the Lorentz-invariant meson-baryon chiral
Lagrangians for the one-loop calculation are obtained.
Although the number of independent terms is large, only
parts of these terms are needed for a special process in which
one is interested. We hope that the present work is helpful for
further studies on the convergence of the chiral expansion,
LEC determinations, model constructions, and so on.
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APPENDIX A: y MATRIX AND EOM

This Appendix gives a brief introduction to the EOM
constraints on the meson-baryon CL. The types of y
matrices appearing in the Lagrangian are constrained.
One may find detailed descriptions in Refs. [17,22].
Although the discussions are for the two-flavor case there,
the results are the same as the present case. In this
Appendix, we also introduce several new relations.

The lowest-order EOM from the SU(3) meson-baryon
CL is [18]

'
lDB —MoB —1—57/”}/5[%,,3]

D 1
2 (1B = (08D ) =0, (A1)
where M|, is the octet baryon mass in the chiral limit,  and
D are the axial-vector coupling constants in the O(p')-
order CL. The equation means that

(iD= My)B = O(p'). (A2)

which is similar to the lowest-order EOM from the pion-
nucleon CL in Ref. [17],

(il — m)¥ = O(p"). (A3)

In other words, we can borrow the relations in Appendix A
of Ref. [17] directly, with the replacements ¥ — B and
m — M. For convenience, we collect the constraints on the
structure of ®,,,.. =T'x (1 or &%77) x (1 or derivatives D)
in Eq. (9) from the baryon EOM as follows:
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(i) The case I' = 1 can give a relation DB = —m’B +
O(p'), which is similar to the Klein-Gordon equa-
tion. From this, one understands that the Lorentz
indices of the covariant derivations acting on the
baryon field B should be completely different. The
existence of the Levi-Civitd tensor e%77 is allowed.

(i) The case I' =ys gives high-order terms, and it
should not exist solely in the Lagrangian.

(iii) In the case I' = y*, one can change it to iD* up to
high-order terms, and it should not appear solely in
the Lagrangian, either. The Levi-Civita tensor is
allowed, but the structure has been implied in the
case I' = 1.

(iv) The case I' = ¢** is a little complicated. The con-
traction of one or two indices of ¢ with those of the
covariant derivations acting on the baryon field B
gives high-order terms or zero. Therefore ¢* and the
derivatives should have completely different Lorentz
indices in the allowed monomials. When the Levi-
Civita tensor exists, the structure ,,, e = 2iysc™”
can be converted to the form of (ysy*D? — ysy” D*)up
to high-order terms, which is the following case (v).
Because 6,67 = (iglyso’ —igiyso" +igLysc™)
and the structure aﬂbeaﬁpf can also be converted to
the form (g;j’gfysyTD/’ + - -) up to high-order terms,
the independent monomials should not contain any
combinations of ¢** and %7,

(v) In the case I' = y5y#, the Lorentz index should be
different from that of any covariant derivative acting
on the baryon field B. In addition, up to high-order
terms, the structure ysyﬂe"”‘f’ can be converted to the
form of (6**D? + 6**D* + 6’ D*) and ysy*e€,p,, to
(gféaﬁf,D, + - - +), which has been incorporated in the
case I' = ¢/, Therefore, any combinations of ysy,
and €,,, should not exist in the minimal Lagrangian,
either.

To summarize, I" can be only 1, ysy#, or 6/*, and their
indices should be different from those of covariant deriv-
atives acting on the baryon field B. The Levi-Civita tensor
e exists only when I" = 1. To the O(p*) order, ©,,,... has
the forms in Eq. (A.21) of Ref. [17] because the number of
independent Lorentz indices of ©,,.. should be no more
than four. Explicitly, they are

I, D,  Du  Duw  Duu
Euvaps Euar DT, EwarDp,s
Ou» GWDG,, O'WDaﬂ,

Ystu  YstuDus ¥sVuDua  YsruDugp.  (A4)

Other types of structures can be reduced to these
forms. A simple method for the reduction is in the
heavy-baryon formalism. For example, from :%y%¢#13# =

H2(preh —ph 6™ + 0¥ 6™ —ivk g™ +iv” g*), one understands
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that the structure with ® = y*¢** may be reduced to the
forms like ¥ D% and D*.

The story is not over yet. When constraining the allowed
structures of ©,,.., we used only the baryon EOM. One
may also combine the EOM with the other relations in
Sec. III B to get new constraints. From the above items (iv)
and (v), we have

8'"I_3A"'}/5}/"'D...B (BA"'G'”D B+--),
=(BA"ysy "D.B+--),

(A5)
(A6)

where the Lorentz indices, some constants, and the right-
hand-side terms having similar structure are ignored. By
applying Schouten’s identity to the left-hand-side terms, we
obtain relations for the terms of the ysy type and the o type.
The independent ones are

PHYSICAL REVIEW D 95, 014012 (2017)

0=BA"* ,,6,,Ds’B + P(u,v,A,p.8), (A7)
0=BA"* ,,%6,,DsB +P(u,v.1,p.5),  (A8)
0=BA"* ,,1757,Ds’B +P(u,v,2,p,8),  (A9)
0=BA"*,,,°57,DsB +P(u, v, 4,p,8).  (A10)

Here, P means all permutations of the subscripts behind it.
Note that an odd permutation gives a minus sign. These
relations were not given in Ref. [17]. Fortunately, they only
have effects on terms not lower than O(p%). By combining
the baryon EOM with the partial integration, one obtains
three relations similar to Egs. (A.18)—-(A.20) of Ref. [17]. In
short, we do not obtain any new relations except for
Eqgs. (A7)—(A10).

APPENDIX B: MESON-BARYON CHIRAL LAGRANGIAN AT ORDER O(p*)

TABLE V. Terms in the O(p*) meson-baryon chiral Lagrangian.

n 0, n 0, n o,

1 (BB u,uu,) 181 (Bu*h**ysy’D,,,Bu,) + H.c. 361 i(Bf*ysy*D,Bf 1.,;)

2 <BBu”u”u”uy> 182 (B ”u”hl/’yg}/ﬂDMpB> +H.c. 362 l(l_?fJr f_ﬂ vsy,D,;B) + H.c.

3 (BBu'u"u,u,) 183 (Bu*u*h*ysy,D,,;,B) + H.c. 363 i(BfYY f_rsv,D,B) + H.c.

4 (Bu#Bu,u*u,) + H.c. 184 (Bu'u*h*ysy,D,,,B) + H.c. 364 i(Bysy*D'Bf .,/ h,;) + H.c.

5 (Bu*Bu*u,u,) 185 % (BBu,) (u,f_5,) 365 Z(Bysy”D Bf ., h,;) +H.c.

6 (Bu'u,Bu“u,) 186 " (Bu,f_,;)(u,B) +H.c. 366 i(BfysyuD’'Bhy,)

7 <Bu"u”Bu”uU> 187 eHvn (Bf >< B) + H.c. 367 i(B ’fysyﬂD Bh,,;)

8 (Butu’Bu ) 188 <By5y”D”B)<u u’lf )+ Hee. 368 l(Bh””ySyﬂD Bf ..

9 (Bu!u,u’Bu,) + H.c. 189 (Bu'f_,*)(u*ysy,D,B) + H.c. 369 i(BR*ysy*D,Bf ,;)

10 (Bu*u*u,Bu,) 190 (By Sy”D”B)(u uf_,,) +He. 370 i(Bf*h,'ysy,D,B) + H.c.

11 <Bu/‘uﬂu”ub3> 191 <Bu” )(u vsy,D,B) + H.c. 371 l< lfh/YSV/IDuB> + H.c.

12 <Bu”u”uﬂul,B> 192 (Bu ”f”’1>< u,ysy,D,B) +H.c. 372 ie””’lf’<BD”"Bf+Mf,p(,) + H.c.
13 (Bu*u*u,u,B) 193 (By 5;/”D”B)<u u'h,)) +H.c. 373 i€ (BD,"Bf . ,»f_;,) + H.c.
14 i(Bo" Bu,u,u*u,) + H.c. 194 (Bu'h,")(u*ysy,D,B) + H.c. 374 ie"*(Bf . ,.,f-,°D,-B) + H.c.
15 i(Bo* Bu,u'u,u;) + H.c. 195 (By Sy”D”B)<u uth,,;) + H.c. 375 e (Bf . ,°f-,D,,B) +H.c.
16 Z<BGWBM wtuyu,) 196 (Bu'h,")(u*ysy,D;B) + H.c. 376 ie"*(BD,"Bf ,,h,,) + H.c.
17 i(Bo™ Butu,u,u,) 197 e (BD,"Bu,){(u,f_0) 377 e (Bf,,,h;°D,,B) + He,
18 i(Bu'o,"Bu,u*u,) + H.c. 198 e (Bu, f_,%)(u;D,,B) + H.c. 378 '(BySy"D”prJFﬂbh,lp) +H.c.
19 i(Bu*6**Bu,u,u;) + H.c. 199 e (BD,°B) (u,u,f_;,) + H.c. 379 i(Bf"ysy,D," Bh,,)

0 ilBue Buyuyu) 200 (B, B, )ty f ) 380 i(Bi sy D, Bf )

21 i(Butu,c** Bu,u,) 201 e (Bu "f ) (4;D,,B) +H.c. 381 i(Bf*h*ysy,D,,,B) +H.c.
22 i(Bu'uto, Bu'u,) 202 e (Bf_,)(wu"D,,B) +He. 382 i(BysyD*BV,f,, u;) + He.
23 i(Bu'u*c,*Bu,u;) + H.c. 203 e (Bu,f_,;)(u°D,,B) + H.c. 383 i(Bysy*DVBV*f . ,u,) + H.c.
24 i(Bu"u’o,*Bu,u,) + H.c. 204 e (Bf u’)(u;D,,B) +H.c. 384 i(Bysy*DYBV*f , ,u,) + H.c.
25 i(Bu*u,u’c,Bu,) + H.c. 205 e (Bf_,"u,)(u;D,,B) + H.c. 385 l(BV”fﬂ vsy,D*Bu;)

26 i(Butu*uw’c,,Bu,) + H.c. 206 e (BD,”Bu, ) (u;h,,) 386 i(BVFf . ysy*D,Bu;)

(Table continued)
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n 0, n 0, n 0,

27 i(Bu'u’u*c,,Bu,) 207 % (Bu,h,®)(u;D,,B) + H.c. 387 i(BV¥ f*ysy,D,Bu,)

28 i(Butu,u*w'c,,B) + H.c. 208 <Bu"f”l><u”y5}/,,DMp )+ H.c. 388 i(Bu ut'ysy,D* BV*f,.;)

29 i(Bu”u”uﬂu’la ,B) + H.c. 209 <By5y”D”’1”B)(u u,hy,) +H.c. 389 i(Bu u'ysy’D,, BV*f. )

30 i(Bu”u”uUu‘(fMB> 210 (B ”h”)(u"]@yﬂ D,,;B) +H.c. 390 i(B "ysy”DiBVHerD,l)

31 i(Bu'u*u'u,0,,B) 211 (BBf™f ) 391 i(BVHf ., u'ysy,D,B) + Hee.
32 (BD" Bu,u,u'u;) + H.c. 212 (Bf*Bf_.,) 392 i(BV*f, *utysy,D,B) + H.c.
33 (BD* Bu,u*u,u;) + H.c. 213 (Bf*f_,B) 393 i(BV*f“*u,ysy,D;B) + H.c.
34 (BD"Bu,u*uu,) 214 i(Bo"Bf_ f_.) 394 e (Bf_,)(f,B) +H.c.
35 (BD* Bu'u,u,u;) 215 i(Bftf_,'0,,B) 395 i(Bysy"D*B)(f 1" 1)

36 (Bu"D,*Bu,uu;) + H.c. 216 i(B ’“’Bf_”’lh,,ﬁ + H.c. 396 i(BySy”D”B><f+ff_M>

37 (Bu"D,* Bu'u,uy) 217 i(Bf**h,'0,,B) + H.c. 397 iBysy'D*B){(f 1, hua)

38 (Bu* D**Bu,u,u,) +H.c 218 (BBh*"h,,) 398 i(}?y»;y"D’“B><f+/1 1)

39 (Bu*D"*Bu uﬂuﬂ) 219 <Bh””BhW> 399 i (Bf_ ”)( +MDP,,B> + H.c.
40 (Bu*u,D"*Bu,u;) 220 (Bh*h,,B) 400 e (Bf_,,)(f1,°D,B) +H.c.
41 <Bu"u”DwBu4u4) 221 i(Bo**Bh ’1hM> 401 e’“”l/’<Bh )<f+,,,1D B> +H.c.
42 (Bu”u”D/Bu,,u,Q + H.c. 222 i Bh’”’h/amm 402 i(Bysy" D" B (frwhip)

43 (Bu'u*D,Buyu,) + H.c. 223 (BD"Bf " f_.1) 403 i(Bysy*D*B)(V,.f 1., uy)

44 (Bu'u,u*D,"Bu;) + H.c 224 (Bf*D,'Bf_.;) 404 i(Bysy"D*B)(V'f,uu,)

45 (Bu'u*u,D,*Buy) 225 (Bf*f_,'D,B) 405 i(Bysy"D*B)(Vf au,)

46 <Bu“u”uleBu4) +H.c. 226 i(Bo*"*D”Bf_ i =) 406 <B(7/‘”BV VAf )

47 (Bu'u*u'D,,Bu,) 227 i(Bf* f¥%6,,D,,B) 407 (BVHV,,f*0,,B)

48 (Buu,u*u*D,,B) + H.c 228 (BD"Bf_,*h,,;) + H.c. 408 (BB f )

49 (Bu!u’u,u’D,;B) + H.c. 229 (Bf*D,*Bh,,) 409 (Bf*'Bfiw)

50 (Buu"u,u’D,;B) 230 (BW“D,'Bf_,) 410 (BfYfyuB)

51 (Bu*u*v*u,D,,B) 231 (Bf*h,'D,,B) + H.c. 411 i(Bo"Bf ., f 111)

52 l<1_36””D’1/’Bu uyuzu,) + 232 i(Bo**D¥Bf_,,h,,) + H.c. 412 i(Bf** f ., 0,,B)

53 i(Bo" D% Bu,uyu,u,) + 233 i(Bo*D¥Bf_,;h,,) +H.c. 413 (BD"Bf ., f02)

54 i(B ””D’V’Bu U U,) 234 i(Bf* ’6,,D,,B) + H.c. 414 <Bf”"D “Bf i)

55 l<Ba’“’Dﬂ/’Bu1u uy,) 235 <_f’”’h’1/’0 ,D,,B) +H.c. 415 <Bf””f+/DMB>

56 i(Bu*o,"D¥ Bu,uju,) + 236 (BD"Bh,'h,,) 416 (Baﬂ”DﬂﬂBfW )

57 (B wD 2By, + 237 (BW"D,'Bh,;) 47 iBfYf6,uD,,B)

58 i(Bu'c*' D, Bu,u,u,) 238 (BW*h,'D,;B) 418 (B f+>(f+,4 O'MB>

59 i(Bu'u“o, D'V’Buju/) 239 i(Bo*D* Bh,;h,,) 419 i(Bf*\(f"o 6,D,,B)

60 i(Bu"u’6,*D,” Buu,) + 240 i(BW*h*o,,D,,B) 420 (BBu'u,y.) + H c

61 i(Bu"u*6,'D,” Bu,u,;) + 241 (BD"*Bh,,h,,) 421 (BBu'y u,)

62 i(B ”u”a’V’D JBuju,) 242 (BW*D,,”” Bh,,) 422 (BuBu,y. ) +H.c

63 i(Bu*u*u*c,,D,"Bu,) + H.c. 243 (Bh**h**D,,;,B) 423 (By . Bu*u,)

64 i(Bu*u*u*c,;D,"Bu,) 244 (BButV*f_,,) + H.c. 424 (Bu'u,By )

65 i(Bu"u’v’c,’D,;Bu,) + H.c. 245 (Bu"BV*f_,,) 425 (Bu'y  Bu,) +H.c

66 i(Bu'u*u'u’o, D,lf, )+ H.c. 246 (BVFf_,YBu,) 426 (Bu*u,y, B) +H.c

67 i(Bu*wv*w’s,,D,,B) + H.c. 247 (Bu"V'f_,,B) +H.c. 427 (Bu'y u,B)

68 i(B /‘u’“ulul’a D ) 248 i(Bo"Bu,V*f_,,) + H.c. 428 i(Bo" Bu,u,y ) +H.c

69 i(Bu*wv*w’s,,D,,B) 249 i(Bo"Bu'V,f_,;) +H.c. 429 i(Bo" Bu,y  u,)

70 (BD** Bu,u,uyu,) 250 i(B ”Vﬂf"ﬂ 6,,B) + H.c. 430 i(Bu*o,"Buy )+ H.c

71 (Bu"D, ’W’Bu JUU,) 251 i(Bu*V'f_, c,,B) + H.c. 431 i(By, 6" Bu,u,)
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n 0, n 0, n 0,

72 (Bu*u*D,, " Bu,u,) 252 (BD*Bu,V*f_,;) +H.c 432 i(Buuc,,By.)

73 (Bu*u*u*D,,,"Bu,) 253 (Bu"D,*BV*f_,;) 433 i(Bu'y.0,'Bu,) + H.c.
74 (Bu*u*u*u’D,,,,B) 254 (BVf_*D,*Bu,) 434 i(Bu*u'y 0,,B) +H.c.
75 (BB)(u'u,u”u,) 255 (Bu*V'f_,'D,,B) +H.c 435 i(Bu*y u’c,,B)

76 (BBu") (u,u”u,) 256 (BB)(f*™f_u) 436 (BD"Bu,u,y. ) +Hc
77 (BButu,)(u*u,) 257 i(Bf*)(f_, 0,,B) 437 (BD"Bu,y . u,)

78 (BB) (uu” u,u,) 258 i(Bh*)(f_,*0,,B) + H.c. 438 (Bu*D,Bu,y,)+H.c
1 i(Bo"B) ) 259 (BB)(*h,,) £9 (By.D"Buu,)

80 i(Bo" Bu,u,) (utu;) 260 i(Bh*)(h,*,,B) 440 (Bu*u*D,,By )

81 i(Bu'vu,)(u*c,;B) + H.c 261 (BD"BY(f_,*f-u) 441 (Bu*y.D,*Bu,) + H.c.
82 (BD* B) (u,,u,u’uy) 262 i(Bf*)(f¥0,,D,,B) 442 (Bu*u*y,D,,B) +H.c.
83 (BD" Bu,) (u,u’u;) 263 (BD"B)(f_, hy;) 443 (Bu'y . u’D,,B)

84 (BD* Buy,u,) (utuy) 264 i(Bh*)(f*0,,D,,B) +H.c. 444 (BB)(u'u,x )

85 (Bu*u,)(uu'D,;B) + H.c 265 i(Bh*)(f*o,,D,,B) + H.c. 445 (BBu") (u,x )

86 (BDWB)(uutu,u,) 26 (BDB)(hh,) 46 (BBuw) ()

87 (Bu*w*u,)(u*D,;B) + H.c. 267 i(Bh*)(h*6,,D,,B) 447 (Bu'y . )(u,B) +H.c.

88 i(Bo" D¥ B) (u,u,uu,) 268 (BD"* B)(h,,h,,) 448 (By)(u'u,B) + H.c.

89 i(Bo*" D¥ Bu,u,)(uu,) 269 (BB)(u'V"f_,,) 449 (Byu*)(u,B) +H.c

90 i(Butu¥ ’1><uf’a »D.,B) +H.c. 270 i(BVFf_")(u*c,,B) + H.c. 450 (Bu#Buy,)(x )

91 (BD** B) (u,,u,uju,) 27 i(BV* ) (u,0,,B) + H.c. 451 i(Bo* B) (u,u,y. )

9 (BD™PBu,) (uu,) 2 (BDRB) V) 452 ilBomBuu)r.)

93 e (BBu,u,f_;,) + H.c. 273 i(BBf" u,u,) + H.c. 453 i(Bu'y . )(u’o,,B) +H.c
94 e (Bu,Bu,f_;,) + H.c. 274 i(BBu'f,"u,) 454 i(By.)(u'u’c,,B) + H.c.
95 e (Bu,f_,;Bu,) + H.c. 275 i(Bf" Bu,u,) 455 (BD"B) (u,u,x )

96 e (Bu,u,f_;,B) + H.c. 276 z<Bu”Bf+” u,) + H.c. 456 (BD"Buy,) (u,x..)

97 (Bysy*D*Bu,u’f_,;) + H.c. 277 i(Bf*"*u,Bu,) + H.c. 457 (BD"Bu,u,)(x 1)

98 (Bysy"D"Bu,u*f_,;) +H.c. 278 z(Bu”u Bfﬂw) 458 (Buwy . )(wD,,B) + H.c.
99 (Bysy*D"Bu*u,f_,;) + H.c. 279 i(Bf*" u,u,B) + H.c. 459 (By)(uw*u*D,,B) + H.c.
100 (Bysy"D'Bu*u,f_,;) +H.c. 280 i(Butf . " u,B) 460 (By,u*)(uD,,B) +H.c
101 (Bysy*D*Bu*u,f _,,) +H.c. 281 (Bo"Bf , u*u;) + Hec. 461 (Bu"D,"Bu )(;(+>

102 (Bysy*D*Bu, f_,*u;) + H.c. 282 (Bo"'B fﬂ, u,u,) + H.c. 462 (Bysy*D'Bf _,,x+) + Hec.
103 (Bysy"D*Bu, f_,*u;) + H.c. 283 (Bo*Bf ;, uju,) + H.c. 463 (Bf*y.vsv,D,B) +H.c.
104 (Bu'ysy,D'Bu’f_,;) + H.c. 284 (Bo*Bu, f.,u;) + H.c. 464 (Bysy*D'Bh,,x )+ H.c.
105 (Butysy*D,Bu’f_,;) +H.c. 285 (B “”Bu'lfﬂyu,l) 465 (Bh*y ,ysy,D,B) + H.c.
106 (Butysy*D*Bu,f_,;) +H.c. 286 (Bf¥o,,Butu,) 466 (Bysy*D"Bu,y.,) +H.c.
107 (Butysy*D*Bu,f_,;) +H.c. 287 (Bf*o,"Bu,u;) + H.c. 467 (Buwy"ysy,D,B) + H.c.
108 (Bu'ysy*D*Bu,f_,,) + Hec. 288 (Bu"o,'Bf,'u;) + H.c. 468 (By )(f“vsruD,B) + Hec.
109 (Bf*™ysy,D*Bu,u;) + H.c. 289 (Bu*o"*Bf |, u;) + H.c. 469 (By)(h*ysy,D,B) +H.c.
110 (Bf*ysy*D,Bu,u;) + H.c. 290 (Bu "UMBfﬂ,,lu ) + H.c. 470 (By')(u*ysy,D,B) +H.c.
111 (Bu*u"ysy,D*Bf_,;) + H.c. 291 (Bf, v uﬂa “Bu,) +H.c. 471 <BB)({‘W>

12 (Bu'wysy'D,Bf ;) + H.e. 292 (BfYfu'c,,Bu;) + H.c. 472 (BY%,B)

113 (Butf_, ysy,D*Bu;) + H.c. 293 (Bf*fu*c,)Bu,) + H.c. 473 (BB)(x'.,)

114 (But'f_ —u Yysy*D,Bu,) + H.c. 294 <Bu”u Bf ;) 474 (Bo* Bf+ﬂy;(+> + H.c.
115 (B ”f”lysyﬂD Bu,) + H.c. 295 (Bu'u¥ o, Bf+,,/1> + H.c. 475 (Bf Vi ”,,B)”)

16 (Bu'f“ysy,D,Bu;) + H.c. 296 (Bffw,u’c,;B) + He. 476 (By.o"Bf..)
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n 0, n 0, n 0,

7 (ButfeyeDBuy) +He, 297 (Bf*uu,0,B)+ He. T (B yi0B) + He

S (Bubufrs,D,B) + He, 298 (Bf*wu,B)+ He. 8 (B B)(f oyt

19 (Buwf_lrsp,D,B)+ He 299 (Buff, ulo,B) + He 9 (BB ) rs)

120 (Bu'wf_,'ysy,D,B) +H.c. 300 (Bu'f*u,0,,B) 480 (By.)(fo,,B) +Hec.

121 (Butu*f_,*ysy,D;B) + H.c. 301 i(BD*Bf . u,u;) + H.c. 481 (BBy%)

122 (Buf_ynD,B)+He 302 WBDBY.fuw) + He. 12 (BriBy,)

123 (Bu*f_,Yu*ysy,D;B) + H.c. 303 i(BD"Bu,f,,*u;) + H.c. 483 (By* B)

124 (Bu'f_Yutysy,D,B) + H.c. 304 i(Bf"D,*Bu,u;) + H.c. 484 (BB){x%)

125 (By y"D”Bu u‘hl,ﬁ + H.c. 305 i(Bu"D,Bf ., u;) + H.c. 485 (BBy, ) {ry)

126 (Bysy*D*Bu,u*h,;) + H.c. 306 i(Bu*D"*Bf , ,,u;) +H.c 4386 (By,){x.B)

127 (Bysy*D¥Bu'u hM> +H.c. 307 i(Bf**u,D,*Bu;) + H.c. 487 (By,B){ry)

128 (Bysy"D"Bu*u,h,;) + H.c. 308 i(Bf**u*D,;Bu,) + H.c. 488 i(Bysy*D¥Bu,u,y_) + H.c.
129 (Bysy*D*Bu*u;h,,) + H.c. 309 i(Bu*u*D,*Bf ;) + H.c 489 i(Bysy*D"Bu,u,y_) + H.c.
130 (Bysy"D¥Bu,h,*u;) + H.c. 310 i(Bf**w,u*D,,B) + H.c. 490 i(Bysy"*D"Bu,y_u,) + H.c.
131 (Butysy,D*Bu’h,;) + Hee, 311 i(Bf*utu,D,,B) + He. 491 i(Butysy,D'Bu,y_) + H.e.
132 (Bu'ysy*D,Bu’h,;) + H.c. 312 i(Bu'f,'u'D,,B) +H.c. 492 i(Bu'ysy*D,Bu,y_) + H.c.
133 (Bu*ysy*D*Bu,h,;) + H.c. 313 (Bo*'D"Bf ,uu,) + H.c. 493 i(By_ysy"D"Bu,u,) + H.c.
134 (Bu'ysy*D*Bu,h,,;) + H.c. 314 (Bo"™D¥Bf,u,u,) +H.c. 494 i(Bu*uysy,D,By_) + H.c.
135 (Bu*ysy*D*Bu,h,,) + H.c. 315 (Bo**D"Bf | u,u,) + H.c. 495 i(Bu*y_ysy,D*Bu,) + H.c.
136 (Bh*ysy,D*Bu,u;) + H.c. 316 (Bo**D*Bu,f,u,) + H.c. 496 i(Bu*y_ysy*D,Bu,) + H.c.
137 (Bu*uysy,D*Bh,,;) + H.c. 317 (B ﬂleﬂBuﬂfW u,) 497 i(Bu*u’y_ysy,D,B) + H.c.
138 (Bu*u"ysy*D,Bh,;) + H.c. 318 (Bf*’6,,D"Buyu,) 498 i(Bu*u*y_ysy,D,B) +H.c.
139 (Bu*h,"ysy,D*Bu,) + H.c. 319 (Bf*Yo,'D,”Buu,) + H.c. 499 i(Bu*y_u"ysy,D,B) + H.c.
140 (Bu*h,"ysy*D,Bu,) + H.c. 320 (Bu'o,"D"Bf ,,,u,) + H.c. 500 i(Bysy*D"B) (u,u,y_) + H.c.
141 (B ”h"’lySy D,Bu;) + H.c. 321 (Bu"¢**D,’Bf ;,,u,) + H.c. 501 i(Bysy*D¥Bu,u,)(y_) + H.c.
142 (Bu#h**ysy,D,Bu;) + H.c. 322 (Bu"¢**D,’Bf ,,,u;) + H.c. 502 i(Bu!y_)(u"ysy,D,B) + H.c.
143 (Bu#u,h**ysy,D,B) + H.c. 323 (Bf*"v'6,,D,’Bu,) + H.c. 503 i(By }(u"u vs7.D,B) +H.c.
144 (Bu*u*h,*ysy,D,B) + H.c. 324 (Bf*fu*c,,D,’Bu,) + H.c. 504 i(Bu'y_)(uysy,D,B) + H.c.
145 (Bu*u*h,*ysy,D,B) + H.c. 325 (Bfffu*c,’D,,Bu,) + H.c. 505 (Bot Bf_/w)( )+ H.c.

146 (B ”u”h,/ysyﬂDA )+ H.c. 326 (Bu'u’c,'D,Bf . ,,) + H.c. 506 (Bf*y_0,,B) + H.c.

147 (Bu*u*h,*ysy,D,B) + H.c. 327 (Buu*6*D,,Bf ,;,) 507 i(BD*Bh,,y_)+H.c.

148 (Bu#h,*uysy,D,B) + H.c. 328 (Bfffu*u’s,,D,,B) + H.c. 508 z(Bh’“’DWB;( )

149 e# (BD,°Bu,u,f_,,) + H.c. 329 (Bfffu*w’s,,D,,B) + H.c. 509 i(By_D"Bh,,)

150 e (BD,Buyu,f_,) +He. 330 (Bf*“u uﬂo—W,DMB> +He. 510 i(Bh _DWB) +He.

151 e (BD,°Bugu,f_,;,) + H.c. 331 (Bu*f*'uw’5,,D,,B) + H.c. 511 i(BBu'y_,) + H.c.

152 "% (BD,°Bu,f_;,u,) + H.c. 332 (Butfu o ,1DW, ) 512 i(Bu"By_,)

153 e (Bu,D,’Bu,f_,,) + H.c. 333 i(BB) (f" u,u,) 513 i(By* Bu,)

154 e (Bu,D,’Bu,f_;,) + H.c. 334 (Bo*B)(f \ ' u;) 514 i(Bu'y_,B) +H.c.

155 e (BuD,,Bu,f_;,) + H.c. 335 (Bo"Bf 1) (u'uy) 515 (Bo ””Bu,,)( ,) +He.

156 e (Bf _,,D;°Bu,u,) + H.c. 336 (Buu,)(f*0,,B) + H.c. 516 (Bu*y“0,,B) +H.c.

157 e (Bu,u’D,,Bf_;,) + H.c. 337 (Bo"B)(f, u,u;) +He. 517 (By-)(f*o,,B) + H.c.

158 e“(Bu,f_,,D,"Bu,) + H.c. 338 (Bo"Bf.,"){(u,u;) 518 i(BD"B)(h,x-)

159 e (Bu,f_,°D;,Bu,) + H.c. 339 (Butu*)(f,'0,,B) + H.c. 519 i(BD*Bh,,)(x_)

160 e"* (Bu "f_WDM u,) + H.c. 340 <I_5’u”>(f+/u’lamB> +H.c. 520 i(By_ ><h/‘”D ,B) +H.c.

161 e (Bu,u,f_,°D,,B) + H.c. 341 (Butu*)(f,"0,,B) + H.c. 521 i(BB)(u'y_,)
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TABLE V. (Continued)
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n 0, n 0, n 0,

162 e (Bu,u’f_,,D,,B) + H.c. 342 (Bf*u,)(u*s,,B) + H.c. 522 i(BBu") (y_,,)

163 €"””<Bu u,f-,,D,.B) +H.c. 343 i(BD*B)(f, u,u;) +H.c. 523 i(By*)(u,B) + H.c.

164 e (Bu, f_,,u°D,,B) + H.c. 344 i(Bu'u*)(f,,"D,;B) + H.c. 524 (By*)(u*o,,B) + H.c.

165 ¢ (BD,°Bu,u;h,,) + H.c. 345 (Bo** D" B)(f , s, 525 (Bysy*D'Bf | ,.x-) + H.c.
166 c#(Bu,D,"Buhy) + He. 346 (BoMDPBLL,,)uu,) $26 (Bf"rsr,D,Br)

167 &% (Bu,h,’D,,Bu,) + H.c. 347 (Buu*)(f”6,,D,,B) + He. 527 (By_ysr'D*Bf )

168 e (Bu,u,h;°D,,B) + H.c. 348 (Bo* D" B)(f , ,au,u,) + H.c. 528 (Bf*x_ysr,D,B) + H.c.
169 (Bysy*D*Bu,u;f_,,) + H.c. 349 (B MuD/{prﬂM)( ») 529 (Bysy"D*B){f yux-)

170 (Butysy"D,*Bu,f_,,) +He. 350 (Buw)(f”6,,D,,B) + H.c. 530 (Bysy*D*Bf ) (x-)

171 (Bu'f“ysy,D,Bu,) + He. 351 (Bu >< “10s,,D,;B) + He. 31 (By)(f"ysr,D,B) + Hc
172 (Butu* f*ysy;,D,,,B) + H.c. 352 (Butu*)(f* 6,,D,,B) + H.c. 532 (BBy*)

173 (Bysy" D" Bu,u,h;,) + H.c. 353 <Bf’“’ l}(u"o‘,lpDMB> + H.c. 533 (By_By_)

174 (Bysy*D“”Bu,u,h,,) + H.c. 354 e (BBf,,,f-;) +Hc. 534 (By’B)

175 (Bysy*D"”Bu,u,h,,) + H.c. 355 ie"*(Bf,.f-,B) +H.c. 535 (BBy_)(x_)

176 (Bu*ysy,D**Bu,h,;,) + H.c. 356 i(Bysy"D*Bf.,*f_,1) + H.c. 536 (By_){y_B)

177 (Bu"ysy*D,*"Bu,h;,) + H.c. 357 i(Bysy"D*Bf ' f ) + Hee. 537 (Br-B)(r-)

178 (But'ysy*D ’V’Buihwﬁ + H.c. 358 i(Bf +757;4D ‘Bf_,;) 538 (BB) (yx")

179 (Butu¥ YsvuD, /’Bh/l/,> +H.c. 359 i(Bf" y5y’1D Bf_,;) 539 (BB)(F’;;FRW) +H.c

180 (Bu*h**ysy,D,,* Bu,) + H.c. 360 i(Bf*ysy,D*Bf ,1) 540 (BD"B)(Fg,"Fg,;) +H.c
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