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I. INTRODUCTION

It is difficult for us to deal with strong interactions with
the underlying QCD in the low-energy region because of
the nonperturbative effects. Thanks to the chiral symmetry
of QCD and its spontaneous breaking, we may equivalently
describe low-energy physics involving pseudoscalar pions
with an effective theory at hadron level, chiral perturbation
theory (ChPT) [1–4]. The perturbative expansion is organ-
ized with the pion momentum (p), and the description
avoids the complex interactions between quarks and gluons.
In this effective field theory, the Lagrangian contains all
chirally invariant terms. According to Weinberg’s power
counting rules, the needed number of terms is finite when
one calculates the T matrix of a process to the required order
because the theory is renormalized order by order. At
present, the chiral Lagrangians (CLs) of pseudoscalar
mesons have been constructed up to the order Oðp6Þ
(two-loop level) for both normal and anomalous parts
[2,3,5–12]. They contain the whole 16 bilinear light-quark
currents (scalar, pseudoscalar, vector, axial-vector, and
tensor) of the special unitary group and the unitary group.
Matter fields (baryons, heavy mesons, etc.) can be intro-

duced into the framework of chiral perturbation theory with
the transformation of SUð2ÞV or SUð3ÞV. For the pion-
nucleon interaction, the relevantCLshavebeenobtainedup to
the orderOðp4Þ (one-loop level) [13–17]. To study the pion-
hyperon interaction in a model-independent approach, one
needs the SUð3Þmeson-baryon CLs. At present, the terms at
the order Oðp3Þ have been obtained [18,19]. However, the
full one-loop-level investigation needs next-order terms.
The inclusion of nucleons in the chiral perturbation

theory makes the chiral expansion of p=Λχ problematic

because both the baryon mass mN and the scale of chiral
symmetry breaking Λχ are around 1 GeV. This problem is
cured in the heavy baryon chiral perturbation theory, where
the large parameter mN is eliminated, and an exact power
counting rule exists. Although the expansion is convergent
and the theory works well in the pion-nucleon system
[15,20–22], the convergence in the kaon-hyperon systems
is slow or violated [23]. In the three-flavor meson-baryon
scattering processes at threshold, several Weinberg-
Tomozawa terms vanish, and the Oðp4Þ calculation may
answer whether the heavy-baryon formalism still works or
not in these channels. To recover the relativistic formulation
of the theory, the infrared regularization scheme [24,25]
and the extended on-mass-shell (EOMS) renormalization
scheme [26] are proposed. The latter scheme seems to work
well [27–39]. Since the SUð3Þ baryon ChPT involves the
larger kaon mass, further explorations with the Oðp4Þ
Lagrangians are helpful to understand the convergence of
the chiral expansion.
In baryon ChPT, not all interaction terms at the same

order contribute to the T matrix of a special process. There
are studies involving high-order interactions in the liter-
ature, although the complete Lagrangian is not known. In
Refs. [40–43], the nucleon masses were calculated up to the
orderOðp6Þ (two-loop level). In Ref. [44], the ground-state
octet baryon masses and sigma terms were studied up to the
order Oðp4Þ where seven Oðp4Þ terms are involved. The
electromagnetic form factors of the ground-state baryon
octet were also studied up to the order Oðp4Þ with five
terms at that order [45]. Needless to say, the complete
Oðp4Þ chiral Lagrangians which are constructed system-
atically are helpful for further studies of meson-baryon
processes.
An obvious obstacle in the application of ChPT is the

determination of the parameters in the Lagrangian, the so-
called low-energy constants (LECs). In principle, once the
parameters are determined up to some chiral orders, they
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are applicable to all processes to those orders. Because of
the difficulty in low-energy QCD, one usually extracts the
LECs by fitting experimental data, a feasible method to
determine them. It seems that we still need more meson-
baryon scattering data, and high-order Lagrangians are not
useful. However, efforts have been tried to determine all the
LECs from QCD in the meson sector [46–49], and similar
study in the baryon sector is on the way. Various models
and symmetries are also used to constrain the values of
LECs or relations between them [50–53]. These studies
make further investigations with the baryon ChPT possible,
although the number of LECs becomes large for high-order
Lagrangians. With the development of computing capacity,
the lattice simulation or other numerical calculations will be
helpful to fix the LECs. Now, the investigations with ChPT
in the meson sector at two loops are relatively easy to
perform once the LECs are known [54]. In the baryon
sector, similar investigations are also possible. The starting
point for such studies is, of course, the meson-baryon chiral
Lagrangian.
In this paper, we would like to complete the Lagrangians

of the SUð3Þ meson-baryon chiral perturbation theory to
the one-loop Oðp4Þ order. Deeper understanding on the
low-energy meson-baryon interactions needs these terms.
This work is organized as follows. In Sec. II, we review
the building blocks for the construction of the chiral
Lagrangians. In Sec. III, a systematic method for the
construction is introduced, which is based on the properties
of the building blocks and the linear relations to the final
results. In Sec. IV, we list our results and give a discussion.
Section V is a short summary.

II. BUILDING BLOCKS OF CHIRAL
LAGRANGIANS

The QCD Lagrangian L can be written as

L ¼ L0
QCD þ q̄ðvþ aγ5 − sþ ipγ5Þq; ð1Þ

where L0
QCD is the original QCD Lagrangian; q denotes the

quark field; and s, p, vμ, and aμ denote scalar, pseudo-
scalar, vector, and axial-vector external sources, respec-
tively. Conventionally, we ignore the tensor source and the
θ term here.
If the light quarks are massless, the QCD Lagrangian

L0
QCD exhibits a global SUð3ÞL × SUð3ÞR chiral symmetry.

In the description of the effective chiral Lagrangiang, the
Goldstone bosons (pseudoscalar mesons) coming from the
spontaneous chiral symmetry breaking are collected into an
SUð3Þmatrix U. If the chiral rotation for the light quarks is
g ¼ ðgL; gRÞ, the transformation for the meson field would
be U → gLUg†R. It is convenient to introduce u2 ¼ U to
simplify the construction of the chiral Lagrangians. The
field u transforms as u → gLuh† ¼ hug†R under the chiral
rotation, where h in SUð3ÞV from the breaking of

SUð3ÞL × SUð3ÞR is a function of the pion fields. The
baryon octet is denoted by another matrix B,

B ¼

0
BBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA: ð2Þ

Under the chiral rotation, this matrix transforms into
B0 ¼ hBh†.
To construct the Lagrangians, one collects the external

sources and meson and baryon fields together and defines
appropriate combinations of them. The fields or combina-
tions transforming like the baryon field are called building
blocks. The building blocks we will use are

uμ ¼ ifu†ð∂μ − irμÞu − uð∂μ − ilμÞu†g;
χ� ¼ u†χu† � uχ†u;

hμν ¼ ∇μuν þ∇νuμ;

fμνþ ¼ uFμν
L u† þ u†Fμν

R u;

fμν− ¼ uFμν
L u† − u†Fμν

R u ¼ −∇μuν þ∇νuμ;

B; B̄; ð3Þ
where rμ¼vμþaμ, lμ¼vμ−aμ, χ¼2B0ðsþipÞ,Fμν

R ¼∂μrν−
∂νrμ−i½rμ;rν�, Fμν

L ¼ ∂μlν − ∂νlμ − i½lμ; lν�, and B0 is a
constant related to the quark condensate. In this paper,
we consider the case in which both vμ and aμ are traceless.
The definition of the covariant derivative ∇μ acting on any
building block O is

∇μO ¼ ∂μOþ ½Γμ; O�; ð4Þ

Γμ ¼ 1

2
fu†ð∂μ − irμÞuþ uð∂μ − ilμÞu†g: ð5Þ

With this definition, all building blocksO’s, including their
covariant derivative forms, transform intoO0 ¼ hOh† under
the chiral rotation. As in Ref. [6], we also define χμ� to
substitute the covariant derivative of χ�,

χμ� ¼ u† ~∇μχu† � u ~∇μχ†u ¼ ∇μχ� −
i
2
fχ∓; uμg; ð6Þ

because sometimes it is more convenient. Here,
~∇μχ ≡ ∂μχ − irμχ þ iχlμ.1 In addition, the following two
relations of covariant derivatives are useful:

½∇μ;∇ν�O ¼ ½Γμν; O�; ð7Þ

Γμν ¼ ∇μΓν −∇νΓμ − ½Γμ;Γν� ¼ 1

4
½uμ; uν� − i

2
fμνþ : ð8Þ

1The details of the covariant derivatives of χ, χ†, and Fμν
L;R can

be found in Ref. [5].
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III. CONSTRUCTION OF CHIRAL LAGRANGIANS

With the above building blocks, one can construct the
SU(3) meson-baryon chiral Lagrangians following the
steps given in this section. The final Lagrangian contains
minimal independent chirally invariant terms. This method
is very similar to the construction of the meson chiral
Lagrangians in Ref. [12].

A. Power counting and transformation properties

The construction of chirally invariant monomials needs
the power counting of the building blocks. We show their
chiral dimensions in the second column of Table I [2–
4,6,17,18]. The covariant derivative acting on the meson
fields or external sources is counted as Oðp1Þ, but that
acting on the baryon fields is counted as Oðp0Þ. For
convenience, we will use Dμ rather than ∇μ to denote
the covariant derivative in the latter case. There is no
difference between ∇μ and Dμ. According to the forms of
the bilinear couplings of B̄ and B in the low-energy
approximation, one assigns the chiral dimensions of the
elements of the Clifford algebra basis in the second column
of Table II [17,18,55].
The chiral Lagrangian is also invariant under the trans-

formation of parity (P), charge conjugation (C), and
Hermitian conjugation (h.c.). The transformation properties
of the building blocks are simple [6,17,18], and we collect
them in Table I, where the minus sign for DμB is from the
moving of the derivative [see Eq. (11)]. However, the
properties of the Clifford algebra are slightly complicated.
We here adopt the method used in Ref. [17] to analyze the
transformations. Generally speaking, the invariant mono-
mials have the forms

hB̄Aμν���Θμν���Bi þ H:c:; hB̄Aμ���
1 ihAν���

2 Θμν���Bi þ H:c:;…;

ð9Þ
where h� � �i is a trace over SUð3Þ indices; Aμν���, Aμ���

1 , and
Aν���
2 are the products ofmeson fields and/or external sources;

and Θμν��� is the product of a Clifford algebra element
Γ ∈ f1; γμ; γ5; γ5γμ; σμνg, the Levi-Cività tensor εαβρτ, and
several covariant derivatives DλDη � � � acting on B. The
forms in Eq. (9) can have other deformations, such as
increasing traces, a change of the place of theB field, and so
on. For the P transformation, the γ matrices are changed by
raising or lowering the Lorentz indices. Table II only lists the
extra signs. For the C and h.c. transformations, one may
change hB̄Aμν���Γμ���Dν���Bi to �hDν���B̄A0μν���Γμ���Bi with an
extra transpose or a whole Hermitian conjugation, where
A0μν��� comes from Aμν���. Table II lists the plus or minus sign.
Other forms of monomials can be operated in a similar way.
Then, it is easy tomove the covariant derivatives acting on B̄
toBwith the partial integration relation [Eq. (11)]. The signs
in both Table I and Table II are given with this consideration
in mind.

B. Linear relations

In general, the invariant monomials that are combined
with the building blocks are not independent. Several linear
relations exist that can be used to find the independent
monomials. We collect these relations as follows:

(i) Partial integration:
The covariant derivative acting on the whole

monomial can be discarded, and one has

0 ¼ hð∇μAÞB � � �ihCD � � �i � � �
þ hAð∇μBÞ � � �ihCD � � �i � � �
þ hAB � � �ihð∇μCÞD � � �i � � � þ hAB � � �i
× hCð∇μDÞ � � �i � � � þ other terms; ð10Þ

where “� � �” represents one or more building blocks.
Because the covariant derivative acting on baryon
fields is counted asOðp0Þ and that on other building
blocks is Oðp1Þ, we can simply employ the relation
[17,18]

hDνB̄Aμν���Γμ���Bi≐ − hB̄Aμν���Γμ���DνBi ð11Þ
in reducing the number of monomials. The symbol
“≐” means that both sides are equal if high-order
terms are ignored. This is also the origin of the extra
minus signs in Tables I and II discussed above.

(ii) Equations of motion (EOM):
The lowest-order EOM from the pseudoscalar

CL is

∇μuμ ¼
i
2

�
χ− −

1

Nf
hχ−i

�
; ð12Þ

TABLE II. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity of the Clifford algebra elements.

Dim P C h.c.

1 0 þ þ þ
γ5 1 − þ −
γμ 0 þ − þ
γ5γ

μ 0 − þ þ
σμν 0 þ − þ

TABLE I. Chiral dimension (Dim), parity (P), charge con-
jugation (C), and Hermiticity of the building blocks.

Dim P C h.c.

uμ 1 −uμ ðuμÞT uμ

hμν 2 −hμν ðhμνÞT hμν

χ� 2 �χ� ðχ�ÞT �χ�
fμν� 2 �f�μν ∓ ðfμν� ÞT fμν�
B 0 B BT B
B̄ 0 B̄ B̄T B̄
DμB 0 DμB −ðDμBÞT −DμB
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where Nf is the number of quark flavors and we take
Nf ¼ 3 here. This equation indicates that the mono-
mials including∇μuμ can be removed. Obviously, the
higher-order EOM only adds terms on the right-hand
side, and it has no impact on the construction of CL.
The EOM from the meson-baryon CL is a little
complicated, which limits the forms ofΘμν��� to a small
set. We leave the discussions of this for Appendix A.

(iii) Bianchi identity:
From Eqs. (7) and (8), one gets

∇μΓνλ þ∇νΓλμ þ∇λΓμν ¼ 0; ð13Þ
which gives a relation between the covariant deriv-
atives of Γμν (or fμνþ ).

(iv) Schouten identity:
When ϵμνλρ exists in a monomial, the Schouten

identity indicates that

ϵμνλρAσ − ϵσνλρAμ− ϵμσλρAν− ϵμνσρAλ−ϵμνλσAρ¼ 0:

ð14Þ

(v) Cayley-Hamilton relation:
All the building blocks are 3 × 3 matrices in

flavor space. For any 3 × 3 matrices A, B, and C,
one has

0¼ABCþACBþBACþBCAþCABþCBA

−ABhCi−AChBi−BAhCi−BChAi−CAhBi
−CBhAi−AhBCi−BhACi−ChABi− hABCi
− hACBiþAhBihCiþBhAihCiþChAihBi
þhAihBCiþhBihACiþhCihABi− hAihBihCi;

ð15Þ
which is the Cayley-Hamilton relation [6,12].

(vi) Contact terms:
In constructing the CL, we need to consider

separately the contact terms where only baryon
fields and pure external sources (Fμν

R , Fμν
L , and χ)

are involved. To adopt the constraint relations, we
also use the following formulas by revealing explic-
itly the sources in Eq. (3),

Fμν
L ¼ 1

2
u†ðfμνþ þ fμν− Þu;

Fμν
R ¼ 1

2
uðfμνþ − fμν− Þu†;

χ ¼ 1

2
uðχþ þ χ−Þu;

χ† ¼ 1

2
u†ðχþ − χ−Þu†: ð16Þ

The number of such terms is small, and it is not
difficult to construct them directly. The Oðp4Þ

meson-baryon contact terms are the last three
monomials in Table V.

C. Reduction of the monomials

Because the number of Dμ acting on B is arbitrary, it
seems that there are infinite possibilities of monomials at a
given order. However, from Eq. (7) and the item (i) in
Appendix A, one finds that the covariant derivatives
DνDλ � � � acting on B have totally symmetric Lorentz
indices and any two Lorentz indices are completely differ-
ent. To reflect the symmetric nature, one may use the short
notation Dνλρ��� to denote multiple derivatives where

Dνλρ��� ¼ DνDλDρ � � � þ full permutation ofD’s: ð17Þ
This symmetric property limits the possibilities of the
monomials.
On the other hand, some monomials with a different

order of building blocks and different indices may be equal.
The construction of independent monomials will be easier
if we change all the monomials to a unified form. The
following rules are helpful:

(i) Unlike the two-flavor πN CL in Ref. [17], where the
nucleon field Ψ̄ is fixed on the far left and the Ψ is
fixed on the far right, now the positions of the
baryon fields B̄ and B are not fixed except that B is
always on the right side of B̄. To fix the positions of
B̄ and B, we first move the trace containing B̄ to the
left and then move the field B̄ to the far left. If B is in
another trace, we move the trace to the right-hand
side of the trace containing B̄ and then move B to the
far right inside the trace. With this rule, the positions
of B̄ and B are fixed. There may also exist traces
containing neither B̄ nor B. We move them to the
right-hand side of the trace containing B. The
relative positions of these traces are also not fixed.
We treat them in the next item. The fixed form of the
monomials is like that in Eq. (9) where the factor
Θμν��� is moved to the left side of B.

(ii) For a trace without B̄ and B, another rule is
introduced. All building blocks are numbered, in-
cluding the covariant derivative ∇. Table III shows
an example. The meaning of the number for each
building block is not significant. What we care about
is the relative size. Each cyclic permutation maps to
a vector, such as huhi → ð1161; 1181Þ, hhui →
ð1181; 1161Þ, hχþi → ð1201Þ, and hχ−i → ð1221Þ.
We choose the smallest permutation so that the
smaller number is placed as far left as possible. For
example, (1161,1181) is smaller than (1181,1161),
and thus we choose the combination huhi but not
hhui. If there is more than one trace without B̄ and B,
we place the smaller one on the left. For example,
(1201) is smaller than (1221), so we choose
hχþihχ−i but not hχ−ihχþi.
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(iii) For the Lorentz indices, the rule is the same as the
building blocks. All indices are numbered, too. We
also give an example in Table III. When the places of
all the building blocks are fixed, their indices are
mapped to vectors, such as huμuνuμi → ð1; 2; 1Þ,
huμuμuνi → ð1; 1; 2Þ, huνuλuλi → ð2; 3; 3Þ, and so
on.Although the results are probably equal (as shown
here), we only choose the smallest permutation,
huμuμuνi → ð1; 1; 2Þ. In this step, the Einstein sum-
mation convention and the symmetric and antisym-
metric relations for fμν� , h

μν, and ϵμνλρ are used.
We say that a monomial obeying the above rules has a

standard form. With these rules, two monomials having the
same standard form are equal. The final results are all in this
form. Besides the purpose of distinguishing monomials, the
standard form is also conveniently used for programming.

D. Classifications and substitutions

It is not complicated to obtain all possible invariant
monomials at a given order with the building blocks uμ,
hμν, χ�, f

μν
� , and their derivative forms and the constrained

Θμν��� in Appendix A. However, the number of the resulting
monomials is too large, and it makes further manipulation
difficult. A simpler way is to classify all the monomials
according to the external sources. It means that we can treat
first the category with four pseudoscalar sources, then the
category with three pseudoscalar sources plus one vector
current [or one covariant derivative; see Eq. (4)], and so on.
One may adopt such a classification because almost all the
linear relations in Sec. III B connect monomials with the
same type of external sources and one applies those
relations to monomials category by category. The excep-
tional case is for the contact terms where different types of
external sources may be connected with the relations in the
Sec. III B. We will deal with this case separately.
To simplify the calculation, we usually make the

following replacements:

fμνþ ↔ iΓμν; χμ� ↔ ∇μχ�: ð18Þ
Since our purpose is to construct all the Oðp4Þ CL,
the differences induced by these replacements can be
compensated by other terms at the same chiral order. That
is, in constructing the CL, we use actually the definitions

χμ� ¼ ∇μχ� and Γμν ¼ −ifμνþ rather than the strict ones in
Eqs. (6) and (8).

E. Independent linear relations and chiral Lagrangians

With the above preparations, now we can move on to
find out independent chirally invariant terms with a
systematic approach easy to program. This approach has
been used to construct meson chiral Lagrangians
in Ref. [12].
First, one sets up basic equations. So we may adopt the

linear relations in Sec. III B directly, it is convenient for us
to reveal the covariant derivatives in the constructed
monomials by using Eqs. (3) and (8). Here, we use Di;j
to store all possible invariant monomials constructed with
B̄, B, uμ, χ�; hμν, Γμν, fμν− , and their derivative forms and
Ei;j to store all possible monomials revealing the covariant
derivatives (constructed with B̄, B, uμ, χ�, Γμ, and their
derivative forms). The index i labels the categories, and the
index j labels the monomials inside the category i. The
linear relations between Di;j and Ei;j are

Di;j ¼
X
k

Ai;jkEi;k; ð19Þ

where the coefficient matrix Ai for the category i is easy to
obtain with Eqs. (3) and (8).
Second, one finds out independent constraint relations.

By applying the linear relations in Sec. III B to Ei;k, we
obtain the constraint equationsX

k

Ri;jkEi;k ¼ 0; ð20Þ

where the coefficient matrix Ri for the category i is easy to
get. Usually, the relations are not independent. To extract
the independent ones, we transform the matrix Ri to the
reduced row echelon form (row canonical form) Si. The
rank of Ri or Si is equal to the number of independent linear
relations, and each nonzero row vector of Si gives a linear
relation. That is, the independent constraint equations readX

k

Si;jkEi;k ¼ 0: ð21Þ

With these constrains, Eq. (19) can be revised to the form

Di;j ¼
X
k

A0
i;jkEi;k; ð22Þ

where the matrix A0
i is from the matrices Ai and Si after all

linear dependent constraints are removed.
Third, one extracts the independent terms. Now, the

independent terms in Di can be obtained with the help of
A0
i;jk. They correspond to the elements derived with the

independent rows of A0
i or the independent columns of A0T

i .
Similar to the processing of Eq. (20), one transforms the
matrix A0T

i to the reduced row echelon form of A0T
i . Then,

the labels of the independent terms in Di and thus the final

TABLE III. Examples of numbering for the building blocks (or
operator) and the Lorentz indices. No significant meaning is
given to the numbers, but the relative size of the numbers is
meaningful.

Operator ∇ u f− h fþ χþ χ−

Number 1101 1161 1171 1181 1121 1201 1221

Index μ ν λ ρ σ � � � � � �
Number 1 2 3 4 5 � � � � � �
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results can be extracted. The standard form defined in
Sec. III C ensures that all the linear relations have been
used and all the independent monomials of Ei;k are really
independent.
Fourth, one constructs the contact terms. Because the

constraint relations may connect monomials in different
categories in this case, we collect all theDi;j and Ei;k in two
big column vectors D0

j and E0
k, respectively. By repeating

the same steps from Eq. (19) to Eq. (22), one gets the
independent terms containing contact terms.
Finally, according to the Hermiticity, one has to add an

extra i to some terms to ensure that the LECs are real. The
Lagrangian with the original building blocks is also
recovered with Eq. (18).

IV. RESULTS AND DISCUSSIONS

With the steps given above, we obtain the minimal three-
flavor meson-baryon CL to the order Oðp4Þ. As a cross-
check, we have confirmed the meson-baryon CLs obtained
in Refs. [17–19].
The Oðp4Þ meson-baryon CL has the form

Lð4Þ
MB ¼

X540
n¼1

cnOn; ð23Þ

where cn’s are the LECs and On’s are the independent
chirally invariant terms listed in Table V. The last three
terms are contact terms. In Table IV, we show processes
with the minimal number of mesons and photons to which
theOðp4Þ Lagrangian may contribute. The labels of related
On terms are also given.
Besides the results in Refs. [17–19], we also check our

calculation through other approaches. The independent
terms in Di are C and h.c. invariant. Some of them contain
two parts as shown in Table V, e.g., O4. The relative phase
between them is onlyþ1 or−1. However, the monomials in
Ei need not be C or h.c. invariant in the calculation. This
property is used to check the correctness of the matrices Ai
which must be suitable to keep the C and h.c. invariance on
the right-hand side of Eq. (19). It requires that the
coefficients of some pairs in Ei are equal or only a minus
sign difference. In addition, a small mistake in the matrices
Ri would also break the C and h.c. invariance of Di;j in
Eq. (22). It will generate confusing results, e,g., giving a
very large or very small number of independent terms
compared to the lower-order Lagrangians or two-flavor π-
nucleon CL of Refs. [17–19].
It seems that 540 is too large a number for independent

terms at the orderOðp4Þ. However, one could not find more
relations to reduce this number. Recall that the number of
independent normal terms for the SUð2Þ [SUð3Þ] meson
CL at the orders Oðp2Þ, Oðp4Þ, and Oðp6Þ are 2, 10, and
56 (2, 12, and 94), respectively [2,3,6,7]. The increasing
number to high orders in the three-flavor case is larger than
that in the two-flavor case. In the baryon sector, the
numbers of independent terms [the term (iD −m) not
counted] at the orders Oðp1Þ, Oðp2Þ, Oðp3Þ, and Oðp4Þ
are 1, 7, 23, and 118, respectively, in the SUð2Þ case. Those
in the SUð3Þ case are 2, 16, 78, and 540, respectively. (Note
that the traceless vector and axial vector external sources
are adopted in the latter case.) The increasing number in the
SUð3Þ case is much larger. Thus, the number 540 at the
fourth chiral order is not so surprising. For a special
process, from Table IV, only parts of terms and the
determination of their coefficients are needed. In reality,
the number of independent parameters should be much less
than the number of terms shown here. On the other side, the
constraint of LECs at this order is possible with further
studies or the development of nonperturbative methods,
e.g., lattice QCD.
In studying low-energy meson-baryon interactions with

chiral perturbation theory, one usually needs to explore the
convergence of the chiral expansion. However, the high-
order correction is not the unique source to improve
the expansion. It has been shown that the inclusion of
decuplet baryons is also important (see, e.g., Ref. [56]).
The obtained Lagrangian may be used to answer which
effect is more important, high-order corrections or excited
baryon contributions, in specific processes in future
investigations.

TABLE IV. The processes with the minimal number of mesons
and photons to which the Oðp4Þ monomials may contribute. The
numbers in the second column denote the labels of the monomials
in Table V.

Process n

B → B 471 ∼ 473; 481 ∼ 487; 538
Bþ γ → B 406 ∼ 407; 474 ∼ 480
Bþ γ → Bþ γ 408 ∼ 419
Bþ γ → Bþ 3γ 539 ∼ 540
BþM → B 464 ∼ 467; 469 ∼ 470
BþM → Bþ γ 364 ∼ 371; 376 ∼ 393; 397 ∼ 398; 401

∼405; 462 ∼ 463; 468; 525 ∼ 531
BþM → Bþ 2γ 354 ∼ 363; 372 ∼ 375; 394

∼396; 399 ∼ 400
BþM → BþM 218 ∼ 222; 236 ∼ 243; 259 ∼ 260; 266

∼268; 420 ∼ 461; 507 ∼ 516; 518
∼524; 532 ∼ 537

BþM → BþM þ γ 216 ∼ 217; 228 ∼ 235; 244
∼255; 258; 263 ∼ 265; 269
∼353; 505 ∼ 506; 517

BþM → BþM þ 2γ 211 ∼ 215; 223 ∼ 227; 256
∼257; 261 ∼ 262

BþM → Bþ 2M 125 ∼ 148; 165 ∼ 168; 173
∼184; 193 ∼ 196; 206 ∼ 207; 209
∼210; 488 ∼ 504

BþM → Bþ 2M þ γ 93 ∼ 124; 149 ∼ 164; 169
∼172; 185 ∼ 192; 197 ∼ 205; 208

BþM → Bþ 3M 1 ∼ 92
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V. SUMMARY

In this paper, we present a systematic and mechanized
method for the construction of baryon chiral Lagrangians,
which is suitable for computer realization. In the construc-
tion, only the independent constraint relations for the
chirally invariant monomials are considered, which remark-
ably reduces the computational complexity. We have gotten
the SUð3Þ meson-baryon chiral Lagrangian at the order
Oðp4Þ. Now, all the Lorentz-invariant meson-baryon chiral
Lagrangians for the one-loop calculation are obtained.
Although the number of independent terms is large, only
parts of these terms are needed for a special process in which
one is interested.We hope that the presentwork is helpful for
further studies on the convergence of the chiral expansion,
LEC determinations, model constructions, and so on.
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APPENDIX A: γ MATRIX AND EOM

This Appendix gives a brief introduction to the EOM
constraints on the meson-baryon CL. The types of γ
matrices appearing in the Lagrangian are constrained.
One may find detailed descriptions in Refs. [17,22].
Although the discussions are for the two-flavor case there,
the results are the same as the present case. In this
Appendix, we also introduce several new relations.
The lowest-order EOM from the SUð3Þ meson-baryon

CL is [18]

iDB −M0Bþ F
2
γμγ5½uμ; B�

þD
2
γμγ5

�
fuμ; Bg −

1

3
hfuμ; Bgi

�
¼ 0; ðA1Þ

whereM0 is the octet baryon mass in the chiral limit, F and
D are the axial-vector coupling constants in the Oðp1Þ-
order CL. The equation means that

ðiD −M0ÞB ¼ Oðp1Þ; ðA2Þ
which is similar to the lowest-order EOM from the pion-
nucleon CL in Ref. [17],

ðiD −mÞΨ ¼ Oðp1Þ: ðA3Þ
In other words, we can borrow the relations in Appendix A
of Ref. [17] directly, with the replacements Ψ → B and
m → M0. For convenience, we collect the constraints on the
structure of Θμν��� ¼Γ× ð1 or εαβρτÞ× ð1 or derivativesDÞ
in Eq. (9) from the baryon EOM as follows:

(i) The case Γ ¼ 1 can give a relation D2B ¼ −m2Bþ
Oðp1Þ, which is similar to the Klein-Gordon equa-
tion. From this, one understands that the Lorentz
indices of the covariant derivations acting on the
baryon field B should be completely different. The
existence of the Levi-Civitá tensor εαβρτ is allowed.

(ii) The case Γ ¼ γ5 gives high-order terms, and it
should not exist solely in the Lagrangian.

(iii) In the case Γ ¼ γμ, one can change it to iDμ up to
high-order terms, and it should not appear solely in
the Lagrangian, either. The Levi-Cività tensor is
allowed, but the structure has been implied in the
case Γ ¼ 1.

(iv) The case Γ ¼ σμν is a little complicated. The con-
traction of one or two indices of σμν with those of the
covariant derivations acting on the baryon field B
gives high-order terms or zero. Therefore σμν and the
derivatives should have completely different Lorentz
indices in the allowed monomials. When the Levi-
Cività tensor exists, the structure σμνεμνλρ ¼ 2iγ5σλρ

can be converted to the form of (γ5γλDρ − γ5γ
ρDλ) up

to high-order terms, which is the following case (v).
Because σμνε

νλρτ¼ðigλμγ5σρτ−igρμγ5σλτþigτμγ5σλρÞ
and the structure σμνε

αβρτ can also be converted to
the form (gαμg

β
νγ5γ

τDρ þ � � �) up to high-order terms,
the independent monomials should not contain any
combinations of σμν and εαβρτ.

(v) In the case Γ ¼ γ5γ
μ, the Lorentz index should be

different from that of any covariant derivative acting
on the baryon field B. In addition, up to high-order
terms, the structure γ5γμεμνλρ can be converted to the
form of (σνλDρ þ σνρDλ þ σλρDν) and γ5γ

μϵαβρτ to
(gμασβρDτ þ � � �), which has been incorporated in the
case Γ ¼ σμν. Therefore, any combinations of γ5γμ
and ϵαβρτ should not exist in the minimal Lagrangian,
either.

To summarize, Γ can be only 1, γ5γμ, or σμν, and their
indices should be different from those of covariant deriv-
atives acting on the baryon field B. The Levi-Cività tensor
εμνλρ exists only when Γ ¼ 1. To theOðp4Þ order, Θμν��� has
the forms in Eq. (A.21) of Ref. [17] because the number of
independent Lorentz indices of Θμν��� should be no more
than four. Explicitly, they are

1; Dμ; Dμν; Dμνα; Dμναβ;

εμναβ; εμνατDτ; εμνατDτ
β;

σμν; σμνDα; σμνDαβ;

γ5γμ; γ5γμDν; γ5γμDνα; γ5γμDναβ: ðA4Þ

Other types of structures can be reduced to these
forms. A simple method for the reduction is in the
heavy-baryon formalism. For example, from 1þv

2
γασμν1þv

2
¼

1þv
2
ðvασμν−vμσανþvνσαμ−ivμgανþivνgαμÞ,oneunderstands
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that the structure with Θ ¼ γασμν may be reduced to the
forms like σμνDα and Dμ.
The story is not over yet. When constraining the allowed

structures of Θμν���, we used only the baryon EOM. One
may also combine the EOM with the other relations in
Sec. III B to get new constraints. From the above items (iv)
and (v), we have

ε���B̄A���γ5γ���D���B≐ðB̄A���σ���D���Bþ � � �Þ; ðA5Þ
ε���B̄A���σ���D���B≐ðB̄A���γ5γ���D���Bþ � � �Þ; ðA6Þ

where the Lorentz indices, some constants, and the right-
hand-side terms having similar structure are ignored. By
applying Schouten’s identity to the left-hand-side terms, we
obtain relations for the terms of the γ5γ type and the σ type.
The independent ones are

0≐B̄Aμνλρ
μνσλρDδ

δBþ Pðμ; ν; λ; ρ; δÞ; ðA7Þ

0≐B̄Aμνλρ
μν

δσλρDδBþ Pðμ; ν; λ; ρ; δÞ; ðA8Þ

0≐B̄Aμνλρ
μνλγ5γρDδ

δBþ Pðμ; ν; λ; ρ; δÞ; ðA9Þ

0≐B̄Aμνλρ
μνλ

δγ5γρDδBþ Pðμ; ν; λ; ρ; δÞ: ðA10Þ

Here, P means all permutations of the subscripts behind it.
Note that an odd permutation gives a minus sign. These
relations were not given in Ref. [17]. Fortunately, they only
have effects on terms not lower than Oðp6Þ. By combining
the baryon EOM with the partial integration, one obtains
three relations similar to Eqs. (A.18)–(A.20) of Ref. [17]. In
short, we do not obtain any new relations except for
Eqs. (A7)–(A10).

APPENDIX B: MESON-BARYON CHIRAL LAGRANGIAN AT ORDER Oðp4Þ

TABLE V. Terms in the Oðp4Þ meson-baryon chiral Lagrangian.

n On n On n On

1 hB̄Buμuμuνuνi 181 hB̄uμhνλγ5γρDμνλBuρi þ H:c: 361 ihB̄fμν− γ5γ
λDμBfþνλi

2 hB̄Buμuνuμuνi 182 hB̄uμuνhλργ5γμDνλρBi þ H:c: 362 ihB̄fμνþ f−μλγ5γνDλBi þ H:c:
3 hB̄Buμuνuνuμi 183 hB̄uμuνhλργ5γνDμλρBi þ H:c: 363 ihB̄fμνþ f−μλγ5γλDνBi þ H:c:
4 hB̄uμBuμuνuνi þ H:c: 184 hB̄uμuνhλργ5γλDμνρBi þ H:c: 364 ihB̄γ5γμDνBfþμ

λhνλi þ H:c:
5 hB̄uμBuνuμuνi 185 ϵμνλρhB̄Buμihuνf−λρi 365 ihB̄γ5γμDνBfþν

λhμλi þ H:c:
6 hB̄uμuμBuνuνi 186 ϵμνλρhB̄uμf−νλihuρBi þ H:c: 366 ihB̄fμνþ γ5γμDλBhνλi
7 hB̄uμuνBuμuνi 187 ϵμνλρhB̄f−μνuλihuρBi þ H:c: 367 ihB̄fμνþ γ5γ

λDμBhνλi
8 hB̄uμuνBuνuμi 188 hB̄γ5γμDνBihuμuλf−νλi þ H:c: 368 ihB̄hμνγ5γμDλBfþνλi
9 hB̄uμuμuνBuνi þ H:c: 189 hB̄uμf−μνihuλγ5γλDνBi þ H:c: 369 ihB̄hμνγ5γλDμBfþνλi
10 hB̄uμuνuμBuνi 190 hB̄γ5γμDνBihuνuλf−μλi þ H:c: 370 ihB̄fμνþ hμλγ5γνDλBi þ H:c:
11 hB̄uμuμuνuνBi 191 hB̄uμf−μνihuλγ5γνDλBi þ H:c: 371 ihB̄fμνþ hμλγ5γλDνBi þ H:c:
12 hB̄uμuνuμuνBi 192 hB̄uμfνλ− ihuμγ5γνDλBi þ H:c: 372 iϵμνλρhB̄Dμ

σBfþνλf−ρσi þ H:c:
13 hB̄uμuνuνuμBi 193 hB̄γ5γμDνBihuμuλhνλi þ H:c: 373 iϵμνλρhB̄Dμ

σBfþνσf−λρi þ H:c:
14 ihB̄σμνBuμuνuλuλi þ H:c: 194 hB̄uμhμνihuλγ5γλDνBi þ H:c: 374 iϵμνλρhB̄fþμνf−λσDρσBi þ H:c:
15 ihB̄σμνBuμuλuνuλi þ H:c: 195 hB̄γ5γμDνBihuνuλhμλi þ H:c: 375 iϵμνλρhB̄fþμ

σf−νλDρσBi þ H:c:
16 ihB̄σμνBuμuλuλuνi 196 hB̄uμhμνihuλγ5γνDλBi þ H:c: 376 iϵμνλρhB̄Dμ

σBfþνλhρσi þ H:c:
17 ihB̄σμνBuλuμuνuλi 197 ϵμνλρhB̄Dμ

σBuνihuλf−ρσi 377 iϵμνλρhB̄fþμνhλσDρσBi þ H:c:
18 ihB̄uμσμνBuνuλuλi þ H:c: 198 ϵμνλρhB̄uμf−νσihuλDρσBi þ H:c: 378 ihB̄γ5γμDνλρBfþμνhλρi þ H:c:
19 ihB̄uμσνλBuμuνuλi þ H:c: 199 ϵμνλρhB̄Dμ

σBihuνuσf−λρi þ H:c: 379 ihB̄fμνþ γ5γμDν
λρBhλρi

20 ihB̄uμσνλBuνuμuλi 200 ϵμνλρhB̄Dμ
σBuνihuσf−λρi 380 ihB̄hμνγ5γλDμν

ρBfþλρi
21 ihB̄uμuμσνλBuνuλi 201 ϵμνλρhB̄uσf−μνihuλDρσBi þ H:c: 381 ihB̄fμνþ hλργ5γμDνλρBi þ H:c:
22 ihB̄uμuνσμνBuλuλi 202 ϵμνλρhB̄f−μνihuλuσDρσBi þ H:c: 382 ihB̄γ5γμDνB∇μfþν

λuλi þ H:c:
23 ihB̄uμuνσμλBuνuλi þ H:c: 203 ϵμνλρhB̄uμf−νλihuσDρσBi þ H:c: 383 ihB̄γ5γμDνB∇λfþμλuνi þ H:c:
24 ihB̄uμuνσμλBuλuνi þ H:c: 204 ϵμνλρhB̄f−μνuσihuλDρσBi þ H:c: 384 ihB̄γ5γμDνB∇λfþνλuμi þ H:c:
25 ihB̄uμuμuνσνλBuλi þ H:c: 205 ϵμνλρhB̄f−μσuνihuλDρσBi þ H:c: 385 ihB̄∇μfþμ

νγ5γνDλBuλi
26 ihB̄uμuνuλσμνBuλi þ H:c: 206 ϵμνλρhB̄Dμ

σBuνihuλhρσi 386 ihB̄∇μfþμ
νγ5γ

λDνBuλi
(Table continued)
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TABLE V. (Continued)

n On n On n On

27 ihB̄uμuνuλσμλBuνi 207 ϵμνλρhB̄uμhνσihuλDρσBi þ H:c: 387 ihB̄∇μfνλþ γ5γμDνBuλi
28 ihB̄uμuμuνuλσνλBi þ H:c: 208 hB̄uμfνλ− ihuργ5γνDμλρBi þ H:c: 388 ihB̄uμγ5γμDνB∇λfþνλi
29 ihB̄uμuνuμuλσνλBi þ H:c: 209 hB̄γ5γμDνλρBihuμuνhλρi þ H:c: 389 ihB̄uμγ5γνDμB∇λfþνλi
30 ihB̄uμuνuνuλσμλBi 210 hB̄uμhνλihuργ5γρDμνλBi þ H:c: 390 ihB̄uμγ5γνDλB∇μfþνλi
31 ihB̄uμuνuλuμσνλBi 211 hB̄Bfμν− f−μνi 391 ihB̄∇μfþμ

νuλγ5γνDλBi þ H:c:
32 hB̄DμνBuμuνuλuλi þ H:c: 212 hB̄fμν− Bf−μνi 392 ihB̄∇μfþμ

νuλγ5γλDνBi þ H:c:
33 hB̄DμνBuμuλuνuλi þ H:c: 213 hB̄fμν− f−μνBi 393 ihB̄∇μfνλþuμγ5γνDλBi þ H:c:
34 hB̄DμνBuμuλuλuνi 214 ihB̄σμνBf−μλf−νλi 394 iϵμνλρhB̄f−μνihfþλρBi þ H:c:
35 hB̄DμνBuλuμuνuλi 215 ihB̄fμν− f−μλσνλBi 395 ihB̄γ5γμDνBihfþμ

λf−νλi
36 hB̄uμDμ

νBuνuλuλi þ H:c: 216 ihB̄σμνBf−μλhνλi þ H:c: 396 ihB̄γ5γμDνBihfþν
λf−μλi

37 hB̄uμDμ
νBuλuνuλi 217 ihB̄fμν− hμλσνλBi þ H:c: 397 ihB̄γ5γμDνBihfþμ

λhνλi
38 hB̄uμDνλBuμuνuλi þ H:c: 218 hB̄Bhμνhμνi 398 ihB̄γ5γμDνBihfþν

λhμλi
39 hB̄uμDνλBuνuμuλi 219 hB̄hμνBhμνi 399 iϵμνλρhB̄f−μσihfþνλDρσBi þ H:c:
40 hB̄uμuμDνλBuνuλi 220 hB̄hμνhμνBi 400 iϵμνλρhB̄f−μνihfþλ

σDρσBi þ H:c:
41 hB̄uμuνDμνBuλuλi 221 ihB̄σμνBhμλhνλi 401 iϵμνλρhB̄hμσihfþνλDρσBi þ H:c:
42 hB̄uμuνDμ

λBuνuλi þ H:c: 222 ihB̄hμνhμλσνλBi 402 ihB̄γ5γμDνλρBihfþμνhλρi
43 hB̄uμuνDμ

λBuλuνi þ H:c: 223 hB̄DμνBf−μλf−νλi 403 ihB̄γ5γμDνBih∇μfþν
λuλi

44 hB̄uμuμuνDν
λBuλi þ H:c: 224 hB̄fμν− Dμ

λBf−νλi 404 ihB̄γ5γμDνBih∇λfþμλuνi
45 hB̄uμuνuμDν

λBuλi 225 hB̄fμν− f−μλDνλBi 405 ihB̄γ5γμDνBih∇λfþνλuμi
46 hB̄uμuνuλDμνBuλi þ H:c: 226 ihB̄σμνDλρBf−μλf−νρi 406 hB̄σμνB∇μ∇λfþνλi
47 hB̄uμuνuλDμλBuνi 227 ihB̄fμν− fλρ− σμλDνρBi 407 hB̄∇μ∇μfνλþ σνλBi
48 hB̄uμuμuνuλDνλBi þ H:c: 228 hB̄DμνBf−μλhνλi þ H:c: 408 hB̄Bfμνþ fþμνi
49 hB̄uμuνuμuλDνλBi þ H:c: 229 hB̄fμν− Dμ

λBhνλi 409 hB̄fμνþ Bfþμνi
50 hB̄uμuνuνuλDμλBi 230 hB̄hμνDμ

λBf−νλi 410 hB̄fμνþ fþμνBi
51 hB̄uμuνuλuμDνλBi 231 hB̄fμν− hμλDνλBi þ H:c: 411 ihB̄σμνBfþμ

λfþνλi
52 ihB̄σμνDλρBuμuνuλuρi þ H:c: 232 ihB̄σμνDλρBf−μνhλρi þ H:c: 412 ihB̄fμνþ fþμ

λσνλBi
53 ihB̄σμνDλρBuμuλuνuρi þ H:c: 233 ihB̄σμνDλρBf−μλhνρi þ H:c: 413 hB̄DμνBfþμ

λfþνλi
54 ihB̄σμνDλρBuμuλuρuνi 234 ihB̄fμν− hλρσμνDλρBi þ H:c: 414 hB̄fμνþDμ

λBfþνλi
55 ihB̄σμνDλρBuλuμuνuρi 235 ihB̄fμν− hλρσμλDνρBi þ H:c: 415 hB̄fμνþ fþμ

λDνλBi
56 ihB̄uμσμνDλρBuνuλuρi þ H:c: 236 hB̄DμνBhμλhνλi 416 ihB̄σμνDλρBfþμλfþνρi
57 ihB̄uμσνλDμ

ρBuνuλuρi þ H:c: 237 hB̄hμνDμ
λBhνλi 417 ihB̄fμνþ fλρþ σμλDνρBi

58 ihB̄uμσνλDμ
ρBuνuρuλi 238 hB̄hμνhμλDνλBi 418 ihB̄fμνþ ihfþμ

λσνλBi
59 ihB̄uμuνσμνDλρBuλuρi 239 ihB̄σμνDλρBhμλhνρi 419 ihB̄fμνþ ihfλρþ σμλDνρBi
60 ihB̄uμuνσμλDν

ρBuλuρi þ H:c: 240 ihB̄hμνhλρσμλDνρBi 420 hB̄Buμuμχþi þ H:c:
61 ihB̄uμuνσμλDν

ρBuρuλi þ H:c: 241 hB̄DμνλρBhμνhλρi 421 hB̄Buμχþuμi
62 ihB̄uμuνσλρDμνBuλuρi 242 hB̄hμνDμν

λρBhλρi 422 hB̄uμBuμχþi þ H:c:
63 ihB̄uμuνuλσμνDλ

ρBuρi þ H:c: 243 hB̄hμνhλρDμνλρBi 423 hB̄χþBuμuμi
64 ihB̄uμuνuλσμλDν

ρBuρi 244 hB̄Buμ∇νf−μνi þ H:c: 424 hB̄uμuμBχþi
65 ihB̄uμuνuλσμρDνλBuρi þ H:c: 245 hB̄uμB∇νf−μνi 425 hB̄uμχþBuμi þ H:c:
66 ihB̄uμuνuλuρσμνDλρBi þ H:c: 246 hB̄∇μf−μνBuνi 426 hB̄uμuμχþBi þ H:c:
67 ihB̄uμuνuλuρσμλDνρBi þ H:c: 247 hB̄uμ∇νf−μνBi þ H:c: 427 hB̄uμχþuμBi
68 ihB̄uμuνuλuρσμρDνλBi 248 ihB̄σμνBuμ∇λf−νλi þ H:c: 428 ihB̄σμνBuμuνχþi þ H:c:
69 ihB̄uμuνuλuρσνλDμρBi 249 ihB̄σμνBuλ∇μf−νλi þ H:c: 429 ihB̄σμνBuμχþuνi
70 hB̄DμνλρBuμuνuλuρi 250 ihB̄uμ∇μfνλ− σνλBi þ H:c: 430 ihB̄uμσμνBuνχþi þ H:c:
71 hB̄uμDμ

νλρBuνuλuρi 251 ihB̄uμ∇νf−νλσμλBi þ H:c: 431 ihB̄χþσμνBuμuνi
(Table continued)

MESON-BARYON EFFECTIVE CHIRAL LAGRANGIANS AT … PHYSICAL REVIEW D 95, 014012 (2017)

014012-9



TABLE V. (Continued)

n On n On n On

72 hB̄uμuνDμν
λρBuλuρi 252 hB̄DμνBuμ∇λf−νλi þ H:c: 432 ihB̄uμuνσμνBχþi

73 hB̄uμuνuλDμνλ
ρBuρi 253 hB̄uμDμ

νB∇λf−νλi 433 ihB̄uμχþσμνBuνi þ H:c:
74 hB̄uμuνuλuρDμνλρBi 254 hB̄∇μf−μνDν

λBuλi 434 ihB̄uμuνχþσμνBi þ H:c:
75 hB̄Bihuμuμuνuνi 255 hB̄uμ∇νf−νλDμλBi þ H:c: 435 ihB̄uμχþuνσμνBi
76 hB̄Buμihuμuνuνi 256 hB̄Bihfμν− f−μνi 436 hB̄DμνBuμuνχþi þ H:c:
77 hB̄Buμuμihuνuνi 257 ihB̄fμν− ihf−μλσνλBi 437 hB̄DμνBuμχþuνi
78 hB̄Bihuμuνuμuνi 258 ihB̄hμνihf−μλσνλBi þ H:c: 438 hB̄uμDμ

νBuνχþi þ H:c:
79 ihB̄σμνBihuμuνuλuλi 259 hB̄Bihhμνhμνi 439 hB̄χþDμνBuμuνi
80 ihB̄σμνBuμuνihuλuλi 260 ihB̄hμνihhμλσνλBi 440 hB̄uμuνDμνBχþi
81 ihB̄uμuνuνihuλσμλBi þ H:c: 261 hB̄DμνBihf−μλf−νλi 441 hB̄uμχþDμ

νBuνi þ H:c:
82 hB̄DμνBihuμuνuλuλi 262 ihB̄fμν− ihfλρ− σμλDνρBi 442 hB̄uμuνχþDμνBi þ H:c:
83 hB̄DμνBuμihuνuλuλi 263 hB̄DμνBihf−μλhνλi 443 hB̄uμχþuνDμνBi
84 hB̄DμνBuμuνihuλuλi 264 ihB̄hμνihfλρ− σλρDμνBi þ H:c: 444 hB̄Bihuμuμχþi
85 hB̄uμuμihuνuλDνλBi þ H:c: 265 ihB̄hμνihfλρ− σμλDνρBi þ H:c: 445 hB̄Buμihuμχþi
86 hB̄DμνBihuμuλuνuλi 266 hB̄DμνBihhμλhνλi 446 hB̄Buμuμihχþi
87 hB̄uμuνuμihuλDνλBi þ H:c: 267 ihB̄hμνihhλρσμλDνρBi 447 hB̄uμχþihuμBi þ H:c:
88 ihB̄σμνDλρBihuμuνuλuρi 268 hB̄DμνλρBihhμνhλρi 448 hB̄χþihuμuμBi þ H:c:
89 ihB̄σμνDλρBuμuνihuλuρi 269 hB̄Bihuμ∇νf−μνi 449 hB̄χþuμihuμBi þ H:c:
90 ihB̄uμuνuλihuρσμρDνλBi þ H:c: 270 ihB̄∇μf−μνihuλσνλBi þ H:c: 450 hB̄uμBuμihχþi
91 hB̄DμνλρBihuμuνuλuρi 271 ihB̄∇μfνλ− ihuνσμλBi þ H:c: 451 ihB̄σμνBihuμuνχþi
92 hB̄DμνλρBuμihuνuλuρi 272 hB̄DμνBihuμ∇λf−νλi 452 ihB̄σμνBuμuνihχþi
93 ϵμνλρhB̄Buμuνf−λρi þ H:c: 273 ihB̄Bfμνþ uμuνi þ H:c: 453 ihB̄uμχþihuνσμνBi þ H:c:
94 ϵμνλρhB̄uμBuνf−λρi þ H:c: 274 ihB̄Buμfþμ

νuνi 454 ihB̄χþihuμuνσμνBi þ H:c:
95 ϵμνλρhB̄uμf−νλBuρi þ H:c: 275 ihB̄fμνþ Buμuνi 455 hB̄DμνBihuμuνχþi
96 ϵμνλρhB̄uμuνf−λρBi þ H:c: 276 ihB̄uμBfþμ

νuνi þ H:c: 456 hB̄DμνBuμihuνχþi
97 hB̄γ5γμDνBuμuλf−νλi þ H:c: 277 ihB̄fμνþ uμBuνi þ H:c: 457 hB̄DμνBuμuνihχþi
98 hB̄γ5γμDνBuνuλf−μλi þ H:c: 278 ihB̄uμuνBfþμνi 458 hB̄uμχþihuνDμνBi þ H:c:
99 hB̄γ5γμDνBuλuμf−νλi þ H:c: 279 ihB̄fμνþ uμuνBi þ H:c: 459 hB̄χþihuμuνDμνBi þ H:c:
100 hB̄γ5γμDνBuλuνf−μλi þ H:c: 280 ihB̄uμfþμ

νuνBi 460 hB̄χþuμihuνDμνBi þ H:c:
101 hB̄γ5γμDνBuλuλf−μνi þ H:c: 281 hB̄σμνBfþμνuλuλi þ H:c: 461 hB̄uμDμ

νBuνihχþi
102 hB̄γ5γμDνBuμf−νλuλi þ H:c: 282 hB̄σμνBfþμ

λuνuλi þ H:c: 462 hB̄γ5γμDνBf−μνχþi þ H:c:
103 hB̄γ5γμDνBuνf−μλuλi þ H:c: 283 hB̄σμνBfþμ

λuλuνi þ H:c: 463 hB̄fμν− χþγ5γμDνBi þ H:c:
104 hB̄uμγ5γμDνBuλf−νλi þ H:c: 284 hB̄σμνBuμfþν

λuλi þ H:c: 464 hB̄γ5γμDνBhμνχþi þ H:c:
105 hB̄uμγ5γνDμBuλf−νλi þ H:c: 285 hB̄σμνBuλfþμνuλi 465 hB̄hμνχþγ5γμDνBi þ H:c:
106 hB̄uμγ5γνDλBuμf−νλi þ H:c: 286 hB̄fμνþ σμνBuλuλi 466 hB̄γ5γμDνBuνχþμi þ H:c:
107 hB̄uμγ5γνDλBuνf−μλi þ H:c: 287 hB̄fμνþ σμ

λBuνuλi þ H:c: 467 hB̄uμχνþγ5γνDμBi þ H:c:
108 hB̄uμγ5γνDλBuλf−μνi þ H:c: 288 hB̄uμσμνBfþν

λuλi þ H:c: 468 hB̄χþihfμν− γ5γμDνBi þ H:c:
109 hB̄fμν− γ5γμDλBuνuλi þ H:c: 289 hB̄uμσνλBfþμνuλi þ H:c: 469 hB̄χþihhμνγ5γμDνBi þ H:c:
110 hB̄fμν− γ5γ

λDμBuνuλi þ H:c: 290 hB̄uμσνλBfþνλuμi þ H:c: 470 hB̄χμþihuνγ5γμDνBi þ H:c:
111 hB̄uμuνγ5γμDλBf−νλi þ H:c: 291 hB̄fμνþ uμσνλBuλi þ H:c: 471 hB̄Bχμþμi
112 hB̄uμuνγ5γλDμBf−νλi þ H:c: 292 hB̄fμνþ uλσμνBuλi þ H:c: 472 hB̄χμþμBi
113 hB̄uμf−μνγ5γνDλBuλi þ H:c: 293 hB̄fμνþ uλσμλBuνi þ H:c: 473 hB̄Bihχμþμi
114 hB̄uμf−μνγ5γλDνBuλi þ H:c: 294 hB̄uμuμσνλBfþνλi 474 hB̄σμνBfþμνχþi þ H:c:
115 hB̄uμfνλ− γ5γμDνBuλi þ H:c: 295 hB̄uμuνσμλBfþνλi þ H:c: 475 hB̄fμνþ σμνBχþi
116 hB̄uμfνλ− γ5γνDμBuλi þ H:c: 296 hB̄fμνþ uμuλσνλBi þ H:c: 476 hB̄χþσμνBfþμνi
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TABLE V. (Continued)

n On n On n On

117 hB̄uμfνλ− γ5γνDλBuμi þ H:c: 297 hB̄fμνþ uλuμσνλBi þ H:c: 477 hB̄fμνþ χþσμνBi þ H:c:
118 hB̄uμuμfνλ− γ5γνDλBi þ H:c: 298 hB̄fμνþ uλuλσμνBi þ H:c: 478 hB̄σμνBihfþμνχþi
119 hB̄uμuνf−μλγ5γνDλBi þ H:c: 299 hB̄uμfþμ

νuλσνλBi þ H:c: 479 hB̄σμνBfþμνihχþi
120 hB̄uμuνf−μλγ5γλDνBi þ H:c: 300 hB̄uμfνλþuμσνλBi 480 hB̄χþihfμνþ σμνBi þ H:c:
121 hB̄uμuνf−νλγ5γμDλBi þ H:c: 301 ihB̄DμνBfþμ

λuνuλi þ H:c: 481 hB̄Bχ2þi
122 hB̄uμuνf−νλγ5γλDμBi þ H:c: 302 ihB̄DμνBfþμ

λuλuνi þ H:c: 482 hB̄χþBχþi
123 hB̄uμf−μνuλγ5γνDλBi þ H:c: 303 ihB̄DμνBuμfþν

λuλi þ H:c: 483 hB̄χ2þBi
124 hB̄uμf−μνuλγ5γλDνBi þ H:c: 304 ihB̄fμνþDμ

λBuνuλi þ H:c: 484 hB̄Bihχ2þi
125 hB̄γ5γμDνBuμuλhνλi þ H:c: 305 ihB̄uμDμ

νBfþν
λuλi þ H:c: 485 hB̄Bχþihχþi

126 hB̄γ5γμDνBuνuλhμλi þ H:c: 306 ihB̄uμDνλBfþμνuλi þ H:c: 486 hB̄χþihχþBi
127 hB̄γ5γμDνBuλuμhνλi þ H:c: 307 ihB̄fμνþ uμDν

λBuλi þ H:c: 487 hB̄χþBihχþi
128 hB̄γ5γμDνBuλuνhμλi þ H:c: 308 ihB̄fμνþ uλDμλBuνi þ H:c: 488 ihB̄γ5γμDνBuμuνχ−i þ H:c:
129 hB̄γ5γμDνBuλuλhμνi þ H:c: 309 ihB̄uμuνDμ

λBfþνλi þ H:c: 489 ihB̄γ5γμDνBuνuμχ−i þ H:c:
130 hB̄γ5γμDνBuνhμλuλi þ H:c: 310 ihB̄fμνþ uμuλDνλBi þ H:c: 490 ihB̄γ5γμDνBuμχ−uνi þ H:c:
131 hB̄uμγ5γμDνBuλhνλi þ H:c: 311 ihB̄fμνþ uλuμDνλBi þ H:c: 491 ihB̄uμγ5γμDνBuνχ−i þ H:c:
132 hB̄uμγ5γνDμBuλhνλi þ H:c: 312 ihB̄uμfþμ

νuλDνλBi þ H:c: 492 ihB̄uμγ5γνDμBuνχ−i þ H:c:
133 hB̄uμγ5γνDλBuμhνλi þ H:c: 313 hB̄σμνDλρBfþμνuλuρi þ H:c: 493 ihB̄χ−γ5γμDνBuμuνi þ H:c:
134 hB̄uμγ5γνDλBuνhμλi þ H:c: 314 hB̄σμνDλρBfþμλuνuρi þ H:c: 494 ihB̄uμuνγ5γμDνBχ−i þ H:c:
135 hB̄uμγ5γνDλBuλhμνi þ H:c: 315 hB̄σμνDλρBfþμλuρuνi þ H:c: 495 ihB̄uμχ−γ5γμDνBuνi þ H:c:
136 hB̄hμνγ5γμDλBuνuλi þ H:c: 316 hB̄σμνDλρBuμfþνλuρi þ H:c: 496 ihB̄uμχ−γ5γνDμBuνi þ H:c:
137 hB̄uμuνγ5γμDλBhνλi þ H:c: 317 hB̄σμνDλρBuλfþμνuρi 497 ihB̄uμuνχ−γ5γμDνBi þ H:c:
138 hB̄uμuνγ5γλDμBhνλi þ H:c: 318 hB̄fμνþ σμνDλρBuλuρi 498 ihB̄uμuνχ−γ5γνDμBi þ H:c:
139 hB̄uμhμνγ5γνDλBuλi þ H:c: 319 hB̄fμνþ σμ

λDν
ρBuλuρi þ H:c: 499 ihB̄uμχ−uνγ5γμDνBi þ H:c:

140 hB̄uμhμνγ5γλDνBuλi þ H:c: 320 hB̄uμσμνDλρBfþνλuρi þ H:c: 500 ihB̄γ5γμDνBihuμuνχ−i þ H:c:
141 hB̄uμhνλγ5γμDνBuλi þ H:c: 321 hB̄uμσνλDμ

ρBfþνλuρi þ H:c: 501 ihB̄γ5γμDνBuμuνihχ−i þ H:c:
142 hB̄uμhνλγ5γνDμBuλi þ H:c: 322 hB̄uμσνλDμ

ρBfþνρuλi þ H:c: 502 ihB̄uμχ−ihuνγ5γνDμBi þ H:c:
143 hB̄uμuμhνλγ5γνDλBi þ H:c: 323 hB̄fμνþ uλσμνDλ

ρBuρi þ H:c: 503 ihB̄χ−ihuμuνγ5γμDνBi þ H:c:
144 hB̄uμuνhμλγ5γνDλBi þ H:c: 324 hB̄fμνþ uλσμλDν

ρBuρi þ H:c: 504 ihB̄uμχ−ihuνγ5γμDνBi þ H:c:
145 hB̄uμuνhμλγ5γλDνBi þ H:c: 325 hB̄fμνþ uλσμρDνλBuρi þ H:c: 505 hB̄σμνBf−μνχ−i þ H:c:
146 hB̄uμuνhνλγ5γμDλBi þ H:c: 326 hB̄uμuνσμλDν

ρBfþλρi þ H:c: 506 hB̄fμν− χ−σμνBi þ H:c:
147 hB̄uμuνhνλγ5γλDμBi þ H:c: 327 hB̄uμuνσλρDμνBfþλρi 507 ihB̄DμνBhμνχ−i þ H:c:
148 hB̄uμhμνuλγ5γνDλBi þ H:c: 328 hB̄fμνþ uλuρσμνDλρBi þ H:c: 508 ihB̄hμνDμνBχ−i
149 ϵμνλρhB̄Dμ

σBuνuλf−ρσi þ H:c: 329 hB̄fμνþ uλuρσμλDνρBi þ H:c: 509 ihB̄χ−DμνBhμνi
150 ϵμνλρhB̄Dμ

σBuνuσf−λρi þ H:c: 330 hB̄fμνþ uλuρσμρDνλBi þ H:c: 510 ihB̄hμνχ−DμνBi þ H:c:
151 ϵμνλρhB̄Dμ

σBuσuνf−λρi þ H:c: 331 hB̄uμfνλþuρσμνDλρBi þ H:c: 511 ihB̄Buμχ−μi þ H:c:
152 ϵμνλρhB̄Dμ

σBuνf−λρuσi þ H:c: 332 hB̄uμfνλþuρσνλDμρBi 512 ihB̄uμBχ−μi
153 ϵμνλρhB̄uμDν

σBuλf−ρσi þ H:c: 333 ihB̄Bihfμνþ uμuνi 513 ihB̄χμ−Buμi
154 ϵμνλρhB̄uμDν

σBuσf−λρi þ H:c: 334 hB̄σμνBihfþμνuλuλi 514 ihB̄uμχ−μBi þ H:c:
155 ϵμνλρhB̄uσDμσBuνf−λρi þ H:c: 335 hB̄σμνBfþμνihuλuλi 515 hB̄σμνBuμχ−νi þ H:c:
156 ϵμνλρhB̄f−μνDλ

σBuρuσi þ H:c: 336 hB̄uμuμihfνλþ σνλBi þ H:c: 516 hB̄uμχν−σμνBi þ H:c:
157 ϵμνλρhB̄uμuσDνσBf−λρi þ H:c: 337 hB̄σμνBihfþμ

λuνuλi þ H:c: 517 hB̄χ−ihfμν− σμνBi þ H:c:
158 ϵμνλρhB̄uμf−νλDρ

σBuσi þ H:c: 338 hB̄σμνBfþμ
λihuνuλi 518 ihB̄DμνBihhμνχ−i

159 ϵμνλρhB̄uμf−νσDλσBuρi þ H:c: 339 hB̄uμuνihfþν
λσμλBi þ H:c: 519 ihB̄DμνBhμνihχ−i

160 ϵμνλρhB̄uσf−μνDλσBuρi þ H:c: 340 hB̄uμihfþμ
νuλσνλBi þ H:c: 520 ihB̄χ−ihhμνDμνBi þ H:c:

161 ϵμνλρhB̄uμuνf−λσDρσBi þ H:c: 341 hB̄uμuνihfþμ
λσνλBi þ H:c: 521 ihB̄Bihuμχ−μi
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TABLE V. (Continued)

n On n On n On

162 ϵμνλρhB̄uμuσf−νλDρσBi þ H:c: 342 hB̄fμνþ uμihuλσνλBi þ H:c: 522 ihB̄Buμihχ−μi
163 ϵμνλρhB̄uσuμf−νλDρσBi þ H:c: 343 ihB̄DμνBihfþμ

λuνuλi þ H:c: 523 ihB̄χμ−ihuμBi þ H:c:
164 ϵμνλρhB̄uμf−νλuσDρσBi þ H:c: 344 ihB̄uμuνihfþν

λDμλBi þ H:c: 524 hB̄χμ−ihuνσμνBi þ H:c:
165 ϵμνλρhB̄Dμ

σBuνuλhρσi þ H:c: 345 hB̄σμνDλρBihfþμνuλuρi 525 hB̄γ5γμDνBfþμνχ−i þ H:c:
166 ϵμνλρhB̄uμDν

σBuλhρσi þ H:c: 346 hB̄σμνDλρBfþμνihuλuρi 526 hB̄fμνþ γ5γμDνBχ−i
167 ϵμνλρhB̄uμhνσDλσBuρi þ H:c: 347 hB̄uμuνihfλρþ σλρDμνBi þ H:c: 527 hB̄χ−γ5γμDνBfþμνi
168 ϵμνλρhB̄uμuνhλσDρσBi þ H:c: 348 hB̄σμνDλρBihfþμλuνuρi þ H:c: 528 hB̄fμνþ χ−γ5γμDνBi þ H:c:
169 hB̄γ5γμDνλρBuνuλf−μρi þ H:c: 349 hB̄σμνDλρBfþμλihuνuρi 529 hB̄γ5γμDνBihfþμνχ−i
170 hB̄uμγ5γνDμ

λρBuλf−νρi þ H:c: 350 hB̄uμuνihfλρþ σμλDνρBi þ H:c: 530 hB̄γ5γμDνBfþμνihχ−i
171 hB̄uμfνλ− γ5γνDμλ

ρBuρi þ H:c: 351 hB̄uμihfνλþuρσνρDμλBi þ H:c: 531 hB̄χ−ihfμνþ γ5γμDνBi þ H:c:
172 hB̄uμuνfλρ− γ5γλDμνρBi þ H:c: 352 hB̄uμuνihfλρþ σνλDμρBi þ H:c: 532 hB̄Bχ2−i
173 hB̄γ5γμDνλρBuμuνhλρi þ H:c: 353 hB̄fμνþ uλihuρσμρDνλBi þ H:c: 533 hB̄χ−Bχ−i
174 hB̄γ5γμDνλρBuνuμhλρi þ H:c: 354 iϵμνλρhB̄Bfþμνf−λρi þ H:c: 534 hB̄χ2−Bi
175 hB̄γ5γμDνλρBuνuλhμρi þ H:c: 355 iϵμνλρhB̄fþμνf−λρBi þ H:c: 535 hB̄Bχ−ihχ−i
176 hB̄uμγ5γμDνλρBuνhλρi þ H:c: 356 ihB̄γ5γμDνBfþμ

λf−νλi þ H:c: 536 hB̄χ−ihχ−Bi
177 hB̄uμγ5γνDμ

λρBuνhλρi þ H:c: 357 ihB̄γ5γμDνBfþν
λf−μλi þ H:c: 537 hB̄χ−Bihχ−i

178 hB̄uμγ5γνDμ
λρBuλhνρi þ H:c: 358 ihB̄fμνþ γ5γμDλBf−νλi 538 hB̄Bihχχ†i

179 hB̄uμuνγ5γμDν
λρBhλρi þ H:c: 359 ihB̄fμνþ γ5γ

λDμBf−νλi 539 hB̄BihFμν
R FRμνi þ H:c:

180 hB̄uμhνλγ5γμDνλ
ρBuρi þ H:c: 360 ihB̄fμν− γ5γμDλBfþνλi 540 hB̄DμνBihFRμ

λFRνλi þ H:c:

JIANG, CHEN, and LIU PHYSICAL REVIEW D 95, 014012 (2017)

014012-12

http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1016/0550-3213(88)90108-3
http://dx.doi.org/10.1103/PhysRevD.53.315
http://dx.doi.org/10.1103/PhysRevD.53.315
http://dx.doi.org/10.1088/1126-6708/1999/02/020
http://dx.doi.org/10.1088/1126-6708/1999/02/020
http://arXiv.org/abs/0705.0576
http://dx.doi.org/10.1103/PhysRevD.65.054033
http://dx.doi.org/10.1103/PhysRevD.65.054033
http://dx.doi.org/10.1007/s100520100887
http://dx.doi.org/10.1007/s100520100887
http://dx.doi.org/10.1088/1126-6708/2007/09/078
http://dx.doi.org/10.1016/S0550-3213(97)00260-5
http://dx.doi.org/10.1103/PhysRevD.89.074048
http://dx.doi.org/10.5169/seals-116214
http://dx.doi.org/10.1016/0370-2693(94)90565-7
http://dx.doi.org/10.1016/S0375-9474(98)00452-7
http://dx.doi.org/10.1006/aphy.1999.5919
http://dx.doi.org/10.1006/aphy.2000.6059
http://dx.doi.org/10.1006/aphy.2000.6059
http://dx.doi.org/10.1006/aphy.2001.6134
http://dx.doi.org/10.1006/aphy.2001.6134
http://dx.doi.org/10.1088/1126-6708/2006/09/079
http://dx.doi.org/10.1088/1126-6708/2006/09/079
http://dx.doi.org/10.1140/epja/i2006-10105-x
http://dx.doi.org/10.1016/0550-3213(92)90615-I


[21] G. Ecker and M. Mojžiš, Low-energy expansion of the pion-
nucleon Lagrangian, Phys. Lett. B 365, 312 (1996).

[22] R. Baur and J. Kambor, Generalized heavy baryon chiral
perturbation theory, Eur. Phys. J. C 7, 507 (1999).

[23] Y.-R. Liu and S.-L. Zhu, Meson-baryon scattering lengths in
HB chi PT, Phys. Rev. D 75, 034003 (2007).

[24] P. J. Ellis and H.-B. Tang, Pion nucleon scattering in a new
approach to chiral perturbation theory, Phys. Rev. C 57,
3356 (1998).

[25] T. Becher and H. Leutwyler, Baryon chiral perturbation
theory in manifestly Lorentz invariant form, Eur. Phys. J. C
9, 643 (1999).

[26] T. Fuchs, J. Gegelia, G. Japaridze, and S. Scherer, Renorm-
alization of relativistic baryon chiral perturbation theory and
power counting, Phys. Rev. D 68, 056005 (2003).

[27] B. Kubis and U.-G. Meissner, Low-energy analysis of the
nucleon electromagnetic form-factors, Nucl. Phys. A679,
698 (2001).

[28] B. Kubis and U.-G. Meissner, Baryon form-factors in chiral
perturbation theory, Eur. Phys. J. C 18, 747 (2001).

[29] S.-L. Zhu, S. Puglia, and M. J. Ramsey-Musolf, Recoil
order chiral corrections to baryon octet axial currents, Phys.
Rev. D 63, 034002 (2001).

[30] S.-L. Zhu, G. Sacco, and M. J. Ramsey-Musolf, Recoil
order chiral corrections to baryon octet axial currents and
large N(c) QCD, Phys. Rev. D 66, 034021 (2002).

[31] M. Frink and U.-G. Meißner, Chiral extrapolations of
baryon masses for unquenched three flavor lattice simu-
lations, J. High Energy Phys. 07 (2004) 028.

[32] M. R. Schindler, J. Gegelia, and S. Scherer, Infrared
regularization of baryon chiral perturbation theory reformu-
lated, Phys. Lett. B 586, 258 (2004).

[33] M. R. Schindler, J. Gegelia, and S. Scherer, Electromagnetic
form-factors of the nucleon in chiral perturbation theory
including vector mesons, Eur. Phys. J. A 26, 1 (2005).

[34] L. S. Geng, J. Martin Camalich, L. Alvarez-Ruso, and M. J.
Vicente Vacas, Leading SU(3)-Breaking Corrections to the
Baryon Magnetic Moments in Chiral Perturbation Theory,
Phys. Rev. Lett. 101, 222002 (2008).

[35] J. M. Alarcon, J. Martin Camalich, J. A. Oller, and L.
Alvarez-Ruso, πN scattering in relativistic baryon chiral
perturbation theory revisited, Phys. Rev. C 83, 055205
(2011); Erratum, Phys. Rev. C 87, 059901(E) (2013).

[36] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, The
chiral representation of the πN scattering amplitude and the
pion-nucleon sigma term, Phys. Rev. D 85, 051503 (2012).

[37] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, Improved
description of the πN-scattering phenomenology in
covariant baryon chiral perturbation theory, Ann. Phys.
(Amsterdam) 336, 413 (2013).

[38] Y.-H. Chen, D.-L. Yao, and H. Q. Zheng, Analyses of pion-
nucleon elastic scattering amplitudes up to Oðp4Þ in
extended-on-mass-shell subtraction scheme, Phys. Rev. D
87, 054019 (2013).

[39] Z.-F. Sun and M. J. Vicente Vacas, Masses of doubly
charmed baryons in the extended on-mass-shell renormal-
ization scheme, Phys. Rev. D 93, 094002 (2016).

[40] J. A. McGovern and M. C. Birse, Absence of fifth-order
contributions to the nucleon mass in heavy-baryon chiral
perturbation theory, Phys. Lett. B 446, 300 (1999).

[41] J. A. McGovern and M. C. Birse, Convergence of the chiral
expansion for the nucleon mass, Phys. Rev. D 74, 097501
(2006).

[42] M. R. Schindler, D. Djukanovic, J. Gegelia, and S. Scherer,
Chiral expansion of the nucleon mass to order Oðp6Þ, Phys.
Lett. B 649, 390 (2007).

[43] M. R. Schindler, D. Djukanovic, J. Gegelia, and S. Scherer,
Infrared renormalization of two-loop integrals and the chiral
expansion of the nucleon mass, Nucl. Phys. A803, 68
(2008).

[44] X.-L. Ren, L. S. Geng, J. Martin Camalich, J. Meng, and
H. Toki, Octet baryon masses in next-to-next-to-next-to-
leading order covariant baryon chiral perturbation theory,
J. High Energy Phys. 12 (2012) 073.

[45] B. Kubis and U.-G. Meißner, Baryon form-factors in chiral
perturbation theory, Eur. Phys. J. C 18, 747 (2001).

[46] S.-Z. Jiang, Y. Zhang, C. Li, and Q. Wang, Computation of
the p6 order chiral Lagrangian coefficients, Phys. Rev. D 81,
014001 (2010).

[47] S.-Z. Jiang and Q. Wang, Computation of the coefficients
for p6 order anomalous chiral Lagrangian, Phys. Rev. D 81,
094037 (2010).

[48] S.-Z. Jiang, Y. Zhang, and Q. Wang, Computation of the p6

order low-energy constants with tensor sources, Phys. Rev.
D 87, 094014 (2013).

[49] S.-Z. Jiang, Z.-L. Wei, Q.-S. Chen, and Q. Wang, Compu-
tation of the oðp6Þ order low-energy constants: An update,
Phys. Rev. D 92, 025014 (2015).

[50] V. Bernard, N. Kaiser, and U.-G. Meissner, Aspects of chiral
pion-nucleon physics, Nucl. Phys. A615, 483 (1997).

[51] M. Luo, Y. Wang, and G. Zhu, Unitarity constraints on
effective interaction in pi N scattering, Phys. Lett. B 649,
162 (2007).

[52] J. J. Sanz-Cillero, D.-L. Yao, and H.-Q. Zheng, Positivity
constraints on the low-energy constants of the chiral pion-
nucleon Lagrangian, Eur. Phys. J. C 74, 2763 (2014).

[53] M.-L. Du, F.-K. Guo, U.-G. Meißner, and D.-L.
Yao, Aspects of the low-energy constants in the chiral
Lagrangian for charmed mesons, Phys. Rev. D 94, 094037
(2016).

[54] J. Bijnens, CHIRON: A package for ChPT numerical results
at two loops, Eur. Phys. J. C 75, 27 (2015).

[55] S. Scherer and M. R. Schindler, A Primer for Chiral
Perturbation Theory (Springer-Verlag, Berlin, 2012),
Vol. 830, p. 1.

[56] N. Fettes and U.-G. Meissner, Pion-nucleon scattering in an
effective chiral field theory with explicit spin 3=2 fields,
Nucl. Phys. A679, 629 (2001).

MESON-BARYON EFFECTIVE CHIRAL LAGRANGIANS AT … PHYSICAL REVIEW D 95, 014012 (2017)

014012-13

http://dx.doi.org/10.1016/0370-2693(95)01275-3
http://dx.doi.org/10.1007/s100529801024
http://dx.doi.org/10.1103/PhysRevD.75.034003
http://dx.doi.org/10.1103/PhysRevC.57.3356
http://dx.doi.org/10.1103/PhysRevC.57.3356
http://dx.doi.org/10.1007/PL00021673
http://dx.doi.org/10.1007/PL00021673
http://dx.doi.org/10.1103/PhysRevD.68.056005
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1007/s100520100570
http://dx.doi.org/10.1103/PhysRevD.63.034002
http://dx.doi.org/10.1103/PhysRevD.63.034002
http://dx.doi.org/10.1103/PhysRevD.66.034021
http://dx.doi.org/10.1088/1126-6708/2004/07/028
http://dx.doi.org/10.1016/j.physletb.2004.02.056
http://dx.doi.org/10.1140/epja/i2005-10145-8
http://dx.doi.org/10.1103/PhysRevLett.101.222002
http://dx.doi.org/10.1103/PhysRevC.83.055205
http://dx.doi.org/10.1103/PhysRevC.83.055205
http://dx.doi.org/10.1103/PhysRevC.87.059901
http://dx.doi.org/10.1103/PhysRevD.85.051503
http://dx.doi.org/10.1016/j.aop.2013.06.001
http://dx.doi.org/10.1016/j.aop.2013.06.001
http://dx.doi.org/10.1103/PhysRevD.87.054019
http://dx.doi.org/10.1103/PhysRevD.87.054019
http://dx.doi.org/10.1103/PhysRevD.93.094002
http://dx.doi.org/10.1016/S0370-2693(98)01550-0
http://dx.doi.org/10.1103/PhysRevD.74.097501
http://dx.doi.org/10.1103/PhysRevD.74.097501
http://dx.doi.org/10.1016/j.physletb.2007.04.034
http://dx.doi.org/10.1016/j.physletb.2007.04.034
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.023
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.023
http://dx.doi.org/10.1007/JHEP12(2012)073
http://dx.doi.org/10.1007/s100520100570
http://dx.doi.org/10.1103/PhysRevD.81.014001
http://dx.doi.org/10.1103/PhysRevD.81.014001
http://dx.doi.org/10.1103/PhysRevD.81.094037
http://dx.doi.org/10.1103/PhysRevD.81.094037
http://dx.doi.org/10.1103/PhysRevD.87.094014
http://dx.doi.org/10.1103/PhysRevD.87.094014
http://dx.doi.org/10.1103/PhysRevD.92.025014
http://dx.doi.org/10.1016/S0375-9474(97)00021-3
http://dx.doi.org/10.1016/j.physletb.2007.03.052
http://dx.doi.org/10.1016/j.physletb.2007.03.052
http://dx.doi.org/10.1140/epjc/s10052-014-2763-0
http://dx.doi.org/10.1103/PhysRevD.94.094037
http://dx.doi.org/10.1103/PhysRevD.94.094037
http://dx.doi.org/10.1140/epjc/s10052-014-3249-9
http://dx.doi.org/10.1016/S0375-9474(00)00368-7

