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We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their
flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD)We show that
the inclusion of the higher Fock components jqqqqq̄i has a significant effect on the spin-flip elastic Pauli
form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front
holographic QCD results for the proton and neutron form factors at any momentum transfer range,
including asymptotic predictions, and show that our results agree with the available experimental data with
high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state
of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic
radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters
needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities
of higher Fock states for the spin-flip form factor and a phenomenological parameter r, required to account
for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are
normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure
for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the
correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
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I. INTRODUCTION

The spacelike (SL) electromagnetic form factors of the
proton and neutron obtained in electron-nucleon elastic
scattering are key measures of the fundamental structure
of hadrons. The helicity-conserving and helicity-flip current
matrix elements required to compute the Dirac F1ðQ2Þ and
Pauli F2ðQ2Þ form factors, respectively, have an exact
representation in terms of the overlap of the nonperturbative
hadronic light-front wave functions (LFWFs) [1], the eigen-
solutions of the QCD light-front Hamiltonian—the Drell-
Yan-West formulas [2,3]. The squares of the same hadronic
LFWFs, summed over all Fock states, underly the structure
functions measured in deep inelastic lepton-nucleon scatter-
ing. A central goal of hadron physics is to not only
successfully predict these dynamical observables but to also
accurately account for the spectroscopy of hadrons.
The quest for a detailed quantitative understanding of the

nucleon form factors is an active field in hadronic physics.
A wide variety of models has been proposed to describe
the nucleon form factors. However, in most of these
approaches there has been no attempt to understand the
observed hadron spectroscopy. Furthermore, a consensus
among different phenomenological models and parametri-
zations which describe the nucleon form factors has not yet
been achieved, especially for the neutron Dirac and Pauli

electromagnetic form factors, and the nucleon timelike
(TL) form factors.
Detailed reviews of the experimental results and models

can be found in Refs. [4,5]. It should be noted that
inconsistencies in the extraction of the data appear in the
proton electric to magnetic Sachs form factor (FF) ratio
RpðQ2Þ ¼ μpG

p
EðQ2Þ=Gp

MðQ2Þ, when one compares
double polarization experiments [6–9], in which the ratio
Rp decreases almost linearly for momentum transfer
Q2 > 0.5 GeV2, with the results obtained from the
Rosenbluth separation method [10–21] in which Rp

remains constant in the SL region. Predictions for different
combinations of the neutron FFs are even more puzzling to
explain using phenomenological models. A further limita-
tion is that experimental data for the neutron FFs are not
available in the large Q2 ¼ −q2 regime. Another challenge
is to describe the modulus of the electric to magnetic Sachs
FF ratio jGp

E=G
p
Mj measured by the PS170 experiment at

LEAR [22] and by the BABAR Collaboration in the TL
domain [23] above the physical threshold q2phys ¼ 4m2

p,
where mp is the proton mass, at which proton-antiproton
pairs are produced at rest in their center of mass system, and
where strong threshold effects are also important.
The recent 12 GeVenergy upgrade of Jefferson Lab will

bring a wealth of high precision measurements at largerQ2.
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A measurement of Gp
M in Jefferson Lab’s Hall A is

currently ongoing in the 7 to 17 GeV2 range, with a
precision aimed at less than 2% [24]. Future experiments
approved for running in Hall A include measurements of
RpðQ2Þ up to 15 GeV2 using recoil polarization [25], of
RnðQ2Þ ¼ μnGn

EðQ2Þ=Gn
MðQ2Þ up to 10.2 GeV2 using a

polarized 3He target [26], and of Gn
M up to Q2 ¼ 18 GeV2

using a deuteron target [27]. A similar experiment up to
Q2 ¼ 14 GeV2 will run in Jefferson Lab’s Hall B [28], and
a Gn

E measurement up to Q2 ¼ 7 GeV2 using a deuteron
target and recoil polarization will run in Jefferson Lab’s
Hall C [29]. Finally, in order to provide an unambiguous
value of the proton electric radius from electron scattering,
an experiment was recently completed (April, 2016) which
measured Gp

E down to Q2 ¼ 10−4 GeV2, with a statistical
precision better than 2 × 10−3 and a systematic accuracy of
5 × 10−3 [30].
The spectra of hadrons and their FFs can both be

calculated using a novel nonperturbative approach to
hadron physics called LFHQCD [31–34], which provides
new analytical tools for hadron dynamics within a relativ-
istic frame-independent first approximation to the LF QCD
Hamiltonian. This new approach to hadronic physics
follows from the precise mapping of the Hamiltonian
equations in anti–de Sitter (AdS) space to the relativistic
semiclassical light-front bound-state equations in the usual
Minkowski space [32,33], which is the boundary space of
AdS5. This connection gives an exact relation between the
holographic variable z of AdS space and the invariant
impact LF variable ζ in physical space-time.1 This holo-
graphic connection also implies that the light-front effective
potential U ∼ κ2ζ2 in the LF Hamiltonian corresponds to a
modification of the infrared region of AdS space. The
specific form of the LF potential is determined by super-
conformal quantum mechanics [35–39], which captures the
relevant aspects of color confinement based on a universal
emerging single mass scale κ ¼ ffiffiffi

λ
p

[40]. The modification
is a quadratic dilaton profile in the bosonic AdS5 action
and a Yukawa-like interaction term in the fermionic
action [38,39].
This new approach to hadron physics predicts universal

linear Regge trajectories and slopes in both orbital angular
momentum and radial excitation quantum numbers and the
appearance of a massless pion in the limit of zero-mass
quarks; and it gives remarkable connections between the

light meson and nucleon spectra [39,40]. The supercon-
formal approach has thus the advantage that mesons and
nucleons are treated on the same footing, and the confine-
ment potential is uniquely determined by the formalism.
Remarkably, the meson spectrum and baryon spectrum are
related by a simple shift of the orbital angular momentum
LM ¼ LB þ 1. The QCD running coupling is also consis-
tently described at both small and large Q2 [41–43].
In this paper we calculate the spacelike nucleon electro-

magnetic (EM) form factors within the framework of
LFHQCD [34]. In the modified AdS5 space, which can
be considered as a gravity theory in five dimensions, FFs
are computed from the overlap integral of normalizable
modes, which represent the incoming and outgoing
hadrons, convoluted with a non-normalizable mode which
represents an EM current [44]. The EM current propagates
into the infrared modified AdS space and generates an
infinite number of poles. Thus, the FF in the gravity theory
has the advantage that it generates the nonperturbative pole
structure in the timelike region of the FF [34]. Furthermore,
for nucleons, the specific form of the interaction
Lagrangian terms in the higher-dimensional gravity theory
dictates precise scaling relations for the Dirac and Pauli
FFs, which lead, when mapped to physical Minkowski
space, to unambiguous scaling predictions for different
ratios of nucleon FFs.
When mapping the “dressed” EM current propagating in

a modified AdS space to the LF QCD Drell-Yan-West
expression for the FF, the resulting LFWF incorporates
nonvalence higher Fock states generated by the confined
current [45]. The gauge/gravity duality also incorporates
the connection between the twist-scaling dimension τ of the
QCD boundary interpolating operators with the falloff of
the normalizable modes in AdS near its conformal boun-
dary [46], consistent with leading-twist scaling, i.e., in
agreement with the power-law falloff of the counting rules
for hard scattering dynamics at large Q2 [47,48]. The twist
of a particle τ is defined here as the power behavior of
its light-front wave function near ζ ¼ 0: Φ ∼ ζτ. For
ground-state hadrons the leading twist is the number of
constituents.
When computing nucleon FFs one has to constrain the

asymptotic boundary conditions of the leading falloff of the
FFs to match the twist of the nucleon’s interpolating
operator, i.e. τ ¼ 3, to represent the fact that at high
virtualities the nucleon is essentially a system of three
weakly interacting partons. For a multiquark bound state,
the LF invariant impact variable ζ applies to a system
composed of an active quark plus a spectator “cluster.” For
example, for a three-quark nucleon state, the three-body
problem is reduced to an effective two-body problem where
two of the constituents form a diquark cluster [34]. This
follows from the holographic approach, where one has only
one variable to describe the internal structure of the
nucleon. This means, for example, that for a proton the

1The invariant light-front variable of an N-quark bound state is
ζ ¼ ffiffiffiffiffiffi

x
1−x

p jPN−1
j¼1 xjb⊥j, where x is the longitudinal momentum

fraction of the active quark, xj with j ¼ 1; 2;…; N − 1, the
momentum fractions associated with the N − 1 quarks in the
cluster, and b⊥j are the transverse positions of the spectator
quarks in the cluster relative to the active one [31]. For a two-
constituent bound-state ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp jb⊥j, which is conjugate

to the invariant mass k2⊥
xð1−xÞ.
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bound state behaves like a quark-diquark system, i.e., like a
twist-2 system. However, at large momentum transfer, or at
small distances, where the cluster is resolved into its
individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ� →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG

p
E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.

II. HADRON FORM FACTORS
IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
a hadron mode ΦPðx; zÞ, given by the left-hand side of the
equation

Z
d4xdz

ffiffiffi
g

p
Φ�

P0 ðx; zÞ∂↔MΦPðx; zÞAMðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμðPþ P0ÞμFðq2Þ; ð1Þ

defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
g

p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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local coupling of the quark current Jμ ¼ P
qeqq̄γ

μq to the
constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
�
1

Q2

�
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Γðτ − 1Þ

s
κτ−1zτe−κ

2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2 x

Q2=4κ2e−κ
2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞
n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

�
nþ 1

2

�
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p ¼ 0.548 GeV,
where κ ¼ ffiffiffi

λ
p

is the emerging confinement scale [37].
Substituting (5) and (6) in Eq. (3), and shifting the vector

meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1�
1þ Q2

M2
ρn¼0

��
1þ Q2

M2
ρn¼1

�
� � �

�
1þ Q2

M2
ρn¼τ−2

� ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼ P

NψN=HjNi, where ψN=H represents the N-
component LFWF with normalization

P
N jψN=Hj2 ¼ 1.

Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X
τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X
λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ2Þ ¼ Fi¼2ðQ2ÞFi¼2

�
1

3
Q2

�
� � �Fi¼2

�
1

2i − 1
Q2

�
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ2Þ ¼
Fi¼2ðQ2ÞFi¼2ð13Q2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]Z

d4xdz
ffiffiffi
g

p
Ψ̄P0 ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδMA . The expression on the right-hand side repre-
sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼ P

qeqq̄γ
μq [34].

In the higher-dimensional gravity theory nucleons are
described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ2Þ ¼

X
�
gN�

Z
dz
z4

VðQ2; zÞΨ2
�ðzÞ: ð15Þ

The effective charges g� have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal termZ

d4xdz
ffiffiffi
g

p
Ψ̄P0 ðx;zÞeMA eNB ½ΓA;ΓB�FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼ P

qeqq̄γ
μq [34]. Since (17) represents an effective

interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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functions due to the different scaling behavior of Ψþ and
Ψ−, Eq. (14), with orbital angular momentum L ¼ 0 and
L ¼ 1 respectively. As a result, while the leading scaling
behavior of the Dirac form factor is 1=Q4, the leading
scaling behavior of the Pauli form factor is 1=Q6 because of
the additional z2-factor in (18). Remarkably, the correct
large-Q2 power scaling from hard scattering is incorporated
in the covariant spin structure of the AdS expressions for
the nucleon FFs.

IV. A SIMPLE LIGHT-FRONT HOLOGRAPHIC
MODEL FOR NUCLEON FORM FACTORS

Following Ref. [55] we consider a simplified model
where we only include the first two components in a Fock
expansion of the nucleon LF function with no constituent
dynamical gluons [54],

jNiL¼0 ¼ ψL¼0
qqq=Njqqqiτ¼3 þ ψL¼0

qqqqq̄=N jqqqqq̄iτ¼5

þ � � � ; ð19Þ

jNiL¼1 ¼ ψL¼1
qqq=Njqqqiτ¼4 þ ψL¼1

qqqqq̄=N jqqqqq̄iτ¼6

þ � � � ; ð20Þ

with N ¼ p, n. The additional qq̄ contribution to the
nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
We have performed a systematic evaluation of the

relevance of higher Fock components in the nucleon FFs
by extending the previous results in Ref. [34] for the Dirac
and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp

1 ðQ2Þ ¼ ð1 − αpÞFi¼3ðQ2Þ þ αpFi¼5ðQ2Þ,
where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
spin-nonflip EM transition amplitude. It is found that
Pqqqqq̄=p is very small, of the order of 1%. Likewise, the
contribution of higher Fock components to the Dirac
neutron FF is of the order of 2% and does not change
significantly our previous results [34]. We thus drop the
contribution of the higher Fock components to the spin-
nonflip nucleon FFs in the rest of our analysis; namely, we
take Pα

qqq=p ¼ Pα
qqq=n ¼ 1, which gives us a considerable

simplification. Within this approximation, thus considering
only the effect of higher qq̄ Fock components to the spin-
flip nucleon FFs, we write

Fp
1 ðQ2Þ ¼ Fi¼3ðQ2Þ; ð21Þ

Fp
2 ðQ2Þ ¼ χp½ð1 − γpÞFi¼4ðQ2Þ þ γpFi¼6ðQ2Þ� ð22Þ

for the proton, where χp ¼ μp − 1 ¼ 1.793 is the proton
anomalous moment, and

Fn
1ðQ2Þ ¼ −

1

3
½Fi¼3ðQ2Þ − Fi¼4ðQ2Þ�; ð23Þ

Fn
2ðQ2Þ ¼ χn½ð1 − γnÞFi¼4ðQ2Þ þ γnFi¼6ðQ2Þ� ð24Þ

for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
p
2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
1

3
r; gn− ¼ 1

3
r; ð25Þ

and thus the expression for the neutron Dirac FF

Fn
1ðQ2Þ ¼ −

1

3
r½Fτ¼3ðQ2Þ − Fτ¼4ðQ2Þ�: ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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of the rho vector meson: κ ¼ ffiffiffi
λ

p ¼ mρ=
ffiffiffi
2

p ¼ 0.548 GeV.
We estimate the uncertainties in our predictions from the
uncertainty of the confinement scale κ. The universality of κ
is affected—typically at the 10% level [40]—by the
inherent approximations of the LFHQCD model [34].
We discuss the estimate of the model uncertainties in the
Appendix.
From Figs. 1 and 2, it is evident that the contribution of

an additional qq̄ pair, which embodies the pion cloud in the
nucleon, only plays an important role in reproducing the
experimental data for the spin-flip Pauli FFs. Such an effect
of the pion cloud has been addressed in various calcu-
lations, for example in Ref. [73], to show that the same
light-front model fails to reproduce the neutron electric

Sachs FFGn
E, unless the effect of the pion cloud is included.

An estimate reported in Ref. [74] indicates that the pion
loop effect results in a 6% and 12% increase in proton
charge and magnetic radii, respectively. For the neutron, the
effects are a 65% and a 19% increase in charge and
magnetic radii, respectively. The values of γp and γn show
that the effect of the pion cloud on the Pauli FF is larger for
the neutron. The dotted lines in Figs. 1 and 2 are the
asymptotic results for the nucleon Dirac and Pauli FFs
determined by LFHQCD consistent with the QCD power-
counting rules. The asymptotic value of the FFs can be
easily obtained from (8) and (9). We obtain directly

lim
Q2→∞

ðQ2Þτ−1FτðQ2Þ ¼ M2
n¼0 � � �M2

n¼τ−2

¼ κ2τ−2
Yτ−2
n¼0

ð2þ 4nÞ: ð27Þ

In the large-Q2 domain the power counting rules are
reproduced by the model which also determines its asymp-
totic normalization. For the spin-nonflip EM nucleon FFs
we obtain from (21), (26) and (27) the asymptotic results

lim
Q2→∞

Q4Fp
1 ðQ2Þ ¼ M2

n¼0M
2
n¼1 ¼ 12κ4; ð28Þ

and

lim
Q2→∞

Q4Fn
1ðQ2Þ ¼ −

1

3
rM2

n¼0M
2
n¼1 ¼ −4rκ4; ð29Þ

since the valence probability Pα
qqq=p ≃ Pα

qqq=n ≃ 1. On the
other hand, for the spin-flip EM nucleon FFs we obtain

lim
Q2→∞

Q6FN
2 ðQ2Þ ¼ χNP

γ
qqq=NM

2
n¼0M

2
n¼1M

2
n¼2

¼ 120χNP
γ
qqq=Nκ

6; ð30Þ

where Pγ
qqq=N ¼ ð1 − γNÞ, N ¼ p, n, is the valence prob-

ability for the spin-flip EM transition amplitude. Possible
logarithmic corrections are, of course, not predicted in this
semiclassical model.
Another pair of FFs, called the electric and the magnetic

Sachs FFs, is defined by a combination of Dirac and Pauli
FFs as follows:

GN
E ðQ2Þ ¼ FN

1 ðQ2Þ − Q2

4m2
N
FN
2 ðQ2Þ; ð31Þ

GN
MðQ2Þ ¼ FN

1 ðQ2Þ þ FN
2 ðQ2Þ: ð32Þ

The results of the ratio Rp ¼ μpG
p
E=G

p
M from the

polarization experiments have triggered a revision of
various nucleon models, and for Q2 > 10 GeV2 the ratio
Rp may vanish or become negative. We present in Fig. 3 the

FIG. 2. Polarization measurements and predictions for the
proton and neutron Pauli form factors [71,72]. The blue line is
the proton Pauli FF, Q6Fp

2 ðQ2Þ prediction, with γp ¼ 0.27 in
Eq. (22). The green line is the prediction for the neutron Pauli FF,
Q6Fn

2ðQ2Þ, with γn ¼ 0.38 in Eq. (24) from LFHQCD. The
dotted lines are the asymptotic predictions.

FIG. 1. Polarization measurements and predictions for the
proton and neutron Dirac form factors [71,72]. The blue line
is the prediction of the proton Dirac FF from LFHQCD, Eq. (21)
multiplied by Q4. The orange and the green lines are predictions
for the neutron Dirac FF, Q4Fn

1ðQ2Þ, from Eq. (23) and from
Eq. (26) with the phenomenological factor r ¼ 2.08, respectively.
The dotted lines are the asymptotic predictions. The asymptotic
value of the neutron FF is determined using r ¼ 2.08.
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LFHQCD prediction of Rp up to Q2 ¼ 30 GeV2, and
compare our result with selected world data of unpolarized
cross section and polarization measurement experiments. It
is clearly seen from Fig. 3 that LFHQCD predicts that Gp

E
will decrease more rapidly than Gp

M for Q2 > 1 GeV2, in
agreement with the polarization measurements of Rp. The
asymptotic result for Rp follows from

lim
Q2→∞

RpðQ2Þ ¼ μp

�
1 −

5

2
ðμp − 1ÞPγ

qqq=p

κ2

m2
p

�
; ð33Þ

and has the value Rpð∞Þ ¼ −0.309 as indicated in Fig. (3).
The monotonic decrease of Rp with Q2 demonstrates that
the FFs are not simply the sum of dipolelike contributions
from the up and down quarks. Following the discussion
presented in the Appendix, we have included in Fig. 3 an
estimate of uncertainties in the LFHQCD model. The
uncertainty band has been presented with a smooth
transition between nonperturbative and perturbative esti-
mates near the transition point Q2

0 ≃ 1.5 GeV2.
In contrast to the proton FFs, the neutron FFs are more

difficult to measure because there is no free neutron target.
Experimental data of neutron FFs are available only up to
relatively small values of Q2. Since most nucleon form
factor models such as [70,81–83] cannot reproduce the
experimental data for the ratio Rn ¼ μnGn

E=G
n
M for

Q2 ≥ 2 GeV2, it is desirable that one can parametrize
the ratio Rn according to the available experimental data
and predict its behavior at large Q2. To this end, we
compare in Figs. 4 and 5 the Sachs electric FF and the ratio

Rn, computed in LFHQCD, with selected experimental
data. From these results, one can see that LFHQCD can
properly reproduce Gn

E and Rn in the whole range of
available experimental data. We have also extended our
results for the neutron FFs to higherQ2 in order to compare
with upcoming JLab experiments [26–29]. Here the
asymptotic value depends in a nontrivial way on the
parameter r,

lim
Q2→∞

RnðQ2Þ ¼ μn

�
1þ 15μnP

γ
qqq=n

2r
κ2

m2
n

�
; ð34Þ

and has the value Rnð∞Þ ¼ 0.864 for r ¼ 2.08 as indicated
in Fig. (5).

A. Holographic predictions for nucleon radii

We now compute the magnetic root-mean-square radii of
the nucleons from the definition hr2Mi¼− 6

GMð0Þ
dGMðQ2Þ

dQ2 jQ2¼0

and use hr2Ei ¼ −6 dGEðQ2Þ
dQ2 jQ2¼0 to compute the charge

mean-square radii of the nucleons. The LFHQCD predic-
tions of different radii are compared with the experimental
values in Table I. In determining the charge and magnetic
radii, we include the experimental uncertainty by fitting the
experimental data and also the systematic uncertainties
coming from the LFHQCD model itself. The statistical
uncertainties are related to the uncertainties in the

FIG. 3. LFHQCD prediction and comparison with selected
world data of the ratio Rp ¼ μpG

p
E=G

p
M from unpolarized cross

section measurements from [12,15,16,75] and polarization
measurements from [7,8,76–80]. The LFHQCD prediction (blue
line) from Eqs. (21) and (22) corresponds to the range
0 ≤ Q2 ≤ 30 GeV2. The band represents an estimated theoretical
uncertainty of the model. Our theoretical results agree well with
the polarization data and are incompatible with the experimental
results obtained from Rosenbluth separation. The dotted line is
the asymptotic prediction Rpð∞Þ ¼ −0.309 with an estimated
uncertainty of �0.12.

FIG. 4. Comparison of the neutron electric FF Gn
EðQ2Þ world

data [84–94] with the LFHQCD prediction from Eqs. (23), (24)
and (26).
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probabilities γp;n in the fits of the experimental data with
χ2=d:o:f: ∼ 0.9 for different fits. We calculate the system-
atic uncertainties coming from the inclusion of higher Fock
components and the parameter r (only for the neutron Dirac
FF) in the FF expressions and also the uncertainty coming
form the model as described in the appendix. In all, the radii
computed from the LFHQCD model described here are in
better agreement with the experimental measurements of all
radii where no cancellations of leading terms occur. In
particular, the proton charge radius obtained from
LFHQCD tends to favor the value obtained from muonic
hydrogen Lamb shift experiments (for the most recent
experimental values see Ref. [98]). A recent analysis [99]
of various baryon properties at low Q2 values has been
performed in a LFHQCDmodel where the authors included
quark mass in the LFWFs.

B. Flavor decomposition of nucleon form factors
in light-front holographic QCD

Recent measurements of neutron form factors made it
possible to carry out, for the first time, a flavor separation of
the up and down-quark contributions to the nucleon
electromagnetic FFs up to Q2 ¼ 3.4 GeV2 [101] with
results not well understood by existing models. The initial
flavor-separation results were later expanded in [72,102],
and have been the subject of extensive theoretical analysis
with contrasting results, which often show a tension in
accounting for the down-quark contribution. Therefore,
anticipating the upcoming JLab measurements, we use our
present holographic model to compare with existing data
and extend our predictions to higherQ2 values. To this end,
we compare in Figs. 6 and 7 the flavor decomposition of
various FFs, which follows from the LFHQCD results
discussed here, with the experimental results from
Ref. [72]. In Fig. 7 the results are scaled by χ−1q , the
limiting values of Fq

2 at Q2 ¼ 0, i.e., χu ¼ μu − 2 ¼ 1.67
and χd ¼ μd − 1 ¼ −2.03. The LFHQCD prediction of a
faster increase of the up-quark contribution to Q4Fu

1 for
Q2 > 1 GeV2 compared to Q4Fd

1 is consistent with the
flavor decomposition performed in Ref. [101]. The flavor
decomposed FFs described here are in good agreement
with the flavor decomposition which follows from incor-
porating the Regge contribution into generalized parton
distributions [103]. A faster falloff of the down-quark
contribution with Q2 has been interpreted as a possible
axial-vector diquark contribution in Refs. [104–106].
Although a complete flavor decomposition requires a
contribution from the strange quark and antiquark, a recent
high precision lattice QCD calculation [107] indicates that
the strange quark contribution to the proton EMFFs is quite
small and becomes even smaller at Q2 > 1 GeV2.
Finally, it is important to recall that we have used a

universal value for the confinement scale κ in deriving
Eq. (9), but in fact the value of κ for the nucleon wave
function, which is obtained from the nucleon slope, is

FIG. 5. Selected world data of the ratio Rn ¼ μnGn
E=G

n
M from

double polarization experiments, recoil polarization with deu-
terium target, asymmetry with polarized deuterium target, and
asymmetry with polarized 3He target. The data points are taken
from Refs. [71,84,85,87,91,95–97]. For more data points and
other theoretical predictions, see Ref. [5]. The dotted line is the
asymptotic prediction Rnð∞Þ ¼ 0.864 with an estimated uncer-
tainty of �0.11 for r ¼ 2.08 in Eq. (26).

TABLE I. Comparison between the experimental values of the
nucleon charge and magnetic radii and LFHQCD predictions
from this work. The radii agree with the experimental values
[100]. They also agree with the predictions without contributions
of higher Fock states made in [34].

Nucleon radii Experimental values [100]
LFHQCD
(this work)ffiffiffiffiffiffiffiffiffiffiffi

hrpEi2
p

0.8775(51) fm (ep CODATA) 0.801(54) fmffiffiffiffiffiffiffiffiffiffiffi
hrpEi2

p
0.84087(39) fm
(μp Lamb shift)

0.801(54) fm

ffiffiffiffiffiffiffiffiffiffiffiffi
hrpMi2

p
0.777(16) fm 0.789(79) fm

hðrnEÞ2i −0.1161ð22Þ fm2 −0.073ð30Þ fm2ffiffiffiffiffiffiffiffiffiffiffiffi
hrnMi2

p
0.862(9) fm 0.796(81) fm

FIG. 6. LFHQCD prediction of the up and the down-quark
contributions to the Dirac FF multiplied by Q4. The data are from
Ref. [72].
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slightly smaller than the value of κ in the EM current which
is obtained from the rho mass [40]; it determines the slope
of the vector meson trajectory of radial excitations—the
poles in the EM current. Indeed, as explained in the
Appendix, we have used the difference in the value of
the scale κ, obtained from the average of all meson and all
baryon trajectories to evaluate the theoretical uncertainty of
our holographic model. Since the wave function determines
the low energy bound-state dynamics, we expect that
observables which depend on the nucleon wave function,
such as radii, are more sensitive to the lower value of κ,
whereas at higher energies, where the amplitudes depend
on the structure of the vector meson poles, we would expect
that the data are better described by the slightly higher
value of κ from the rho trajectory of radial excitations. A
simple analysis of the data shows that this is indeed
the case.

V. CONCLUSIONS

We have performed a complete analysis of the nucleon
electromagnetic form factors in the spacelike region in the
framework of light-front holographic QCD. The essential
dynamical element in our approach is the embedding of
superconformal quantum mechanics in AdS space, which
fixes its deformation [38,39]. The covariant spin structure
for theDirac and Pauli electromagnetic nucleon form factors
in the AdS5 semiclassical gravity model encodes the correct
power-law scaling for a given twist, ranging from the
constituents hard scattering with the photon at high momen-
tum transfer to vector dominance at lowQ2. The model also
predicts the asymptotic normalization at Q2 → ∞, which
depends on a product of vector meson masses and the
valence probability (for the spin-flip Pauli form factor it also
depends on the anomalous magnetic moment).
The essential parameter in the model is the confinement

scale κ ¼ ffiffiffi
λ

p
which is universal for the light hadrons and is

determined by hadron spectroscopy. This universality holds
to better than 10% accuracy [40], and has been used to

describe a variety of fairly disconnected measurements,
such as mass spectra of mesons and nucleons [34], form
factors [34] and the infrared behavior of the strong QCD
coupling αg1 [43].
In the present article, we have considered the effects of the

pion cloudwhich give information on the relevance of higher
Fock states. For the spin-flip Pauli form factors, we find an
admixture of a five quark state of about 30% in the proton
and about 40% in the neutron, and essentially no contribu-
tion of the higher Fock components to the spin-nonflipDirac
form factors. This relatively important contribution of the
higher Fock components to the Pauli form factor of the
nucleons is unexpected, and may be related to the fact that
the spin-flip form factor corresponds to a change of light-
front orbital angular momentumL ¼ 0 → L ¼ 1. Likewise,
the spin-conserving transition form factor of the proton to a
Roper resonance, which can be interpreted as a radial
transition from n ¼ 0 → n ¼ 1, also requires higher Fock
components to describe the low energy data [52].
Since the holographic model does not include spin-flavor

structure, we have used the SU(6) symmetry to determine
the effective electromagnetic couplings to the quarks for the
spin-nonflip form factors. This choice, however, is not
precise enough if cancellations of the leading terms are
occurring, as in the case of the neutron Dirac form factor. In
this case an additional parameter r has to be introduced [see
Eq. (26)] which accounts for possible SU(6) spin-flavor
symmetry breaking effects. For the spin-flip form factors
we use the experimental values of the anomalous magnetic
moments as an effective coupling. Note that in order to
obtain agreement with data, one has to apply a constant
shift of the poles predicted by AdS/QCD in the expression
for the dressed current to their physical locations. These
shifted locations are then obtained from the bound-state
equations of the hadrons in this model.
The simple holographic model described here reprodu-

ces quite well the main features of the nucleon form factor
data. Indeed, with the confinement scale fixed by hadron
spectroscopy and the anomalous magnetic moments of
proton and neutron fixed by experiment, we have intro-
duced only three free (adjustable) parameters to describe an
extensive set of data of the nucleon electromagnetic form
factors. Our results for the nucleon form factors and their
flavor decomposition agree very well with existing data and
provide predictions for the various nucleon form factors in
the large momentum transfer regions, which have not been
explored by the experiments yet. The charge and magnetic
radii of the proton and neutron were extracted and found to
agree, within the estimated uncertainty, with their exper-
imental determinations. Our value of the proton charge
radius tends to favor the muon Lamb shift determination. In
general, the approximations from LFHQCD lead to uncer-
tainties of about 10%. Our results should be considered
within this typical accuracy. The new JLab experiments
will provide a valuable test for our light-front holographic

FIG. 7. LFHQCD prediction of the up and the down-quark
contributions to the Pauli FF multiplied by χ−1q Q6. The data are
from Ref. [72].
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framework which explores the nucleon structure with a
minimal number of free parameters.
Since the analytic expression for the form factors (9)

contains a product of timelike poles, it is especially suited
for also describing the nucleon form factors in the timelike
region, as has been done already for the pion form factor in
Refs. [34,55]. The formalism can also be applied to the
nucleon transition form factors.
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APPENDIX: ESTIMATE OF THE
MODEL UNCERTAINTIES

Light-front holographic QCD, constrained by super-
conformal quantum mechanics [39], yields a semiclassical
description to QCD that can be regarded as a first

approximation to full QCD. Therefore, for example,
logarithmic terms due to quantum loops are absent in
the model. Typically the uncertainties in the spectra are less
than 10%. This is reflected by the fact that the fitted values
of the universal confinement scale κ ¼ ffiffiffi

λ
p

differ by about
this percentage for the different trajectories [40]. So we
obtain from the rho trajectory the value κ ¼ 0.537 GeV, for
the nucleon trajectory κ ¼ 0.499 GeV, and from a fit to the
rho mass alone κ ¼ mρ=

ffiffiffi
2

p ¼ 0.548 GeV. Since the rho
pole is dominant for the nucleon FFs, we have taken this
latter value as the default value in all figures.
The uncertainties have been estimated in the following

way: For the low Q2 region, especially for the charge
radii, the form of the nucleon wave function is important;
therefore we estimate the uncertainty in this region from the
difference of the results obtained with the default value of κ
and of the result obtained with κ ¼ 0.499 GeV from the
nucleon trajectory. For large values of Q2 the FFs are
dominated by the product of the rho-meson masses; see
Eq. (27). Therefore we estimate the uncertainty for largeQ2

by the difference of the default value of κ and the value
obtained from a fit to all radial and orbital excitations of the
rho meson. It typically leads to uncertainties for F1 and F2

below 10%.
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