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By considering the 3-3-1 and the left-right symmetric models as low-energy effective theories of the
SU(3)c ® SU(3);, ® SU(3); (for short [SU(3)]?) gauge group, alternative versions of these models are
found. The new neutral gauge bosons of the universal 3-3-1 model and its flipped versions are presented;
also, the left-right symmetric model and its flipped variants are studied. Our analysis shows that there are
two flipped versions of the universal 3-3-1 model, with the particularity that both of them have the same
weak charges. For the left-right symmetric model, we also found two flipped versions; one of them is new
in the literature and, unlike those of the 3-3-1, requires a dedicated study of its electroweak properties. For
all the models analyzed, the couplings of the Z’ bosons to the standard model fermions are reported. The
explicit form of the null space of the vector boson mass matrix for an arbitrary Higgs tensor and gauge
group is also presented. In the general framework of the [SU(3)]* gauge group, and by using the LHC
experimental results and EW precision data, limits on the Z’ mass and the mixing angle between Z and the
new gauge bosons Z’ are obtained. The general results call for very small mixing angles in the range 1073

radians and M, > 2.5 TeV.
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I. INTRODUCTION

The quantization of the electric charge is an indication
that the Standard Model (SM) of the strong, weak, and
electromagnetic interactions based on the local gauge group
SU(3)c ® SU(2), ® U(1), might be embedded into a
larger gauge structure [1,2]. This feature can be explained
by grand unified theories (GUT) which, in general, have a
unified coupling constant for all the interactions at an
energy given by the GUT scale which is around 10'® GeV
for supersymmetric models. One of the most important
results of the GUT is the prediction of the neutrino masses
in the (107-10?) eV range [3,4], which is compatible with
the present constraints on the neutrino masses [5].

In the late 1970s, the unification theories were under
suspicion owing to the prediction of topological defects
which are typical GUT predictions; from these consider-
ations, the cosmological inflation scenario was born [6],
which proved to be quite useful for solving other cosmo-
logical problems, showing in this way that the insight
provided by GUT is in the right direction. In general, the
unification models based on a simple group, in particular
the nonsupersymmetric models, lead to a detectable proton
decay [3]. However, when the group is the product of two
or more simple groups, the structure not necessarily
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contains gauge bosons that mediate proton decay [1,7,8].
In this context, the trinification group based on the semi-
simple group SU(3) ¢ x SU(3), x SU(3)g' [9-12], results
quite convenient from a phenomenological point of view
owing to the fact that the baryon number is conserved by
the gauge interactions [7]. The original SU(3), x SU(3)x
models with a lepton nonet were first considered by Y.
Achiman [10,11]; however, earlier work on the [SU(3)]?
group can be traced back up to the seminal works in
Refs. [13,14]. Besides, this model has been flexible enough
to adjust recent LHC anomalies, for example, the di-photon
excess at 750 GeV [15] and the di-boson excess at
1.9 TeV [16,17].

The different [SU(3)]® models have a rich phenomenol-
ogy in the Higgs and neutrino sectors [9,17,18]; its rank is 6
(equal to Ey), hence the model predicts, in addition to those
already present in the SM, two additional heavy vector
neutral gauge bosons which constitute one of the most
important sources of constraints for the model. In this
paper, we undertake a detailed study of the couplings of
these new gauge bosons to the SM fermions, in order to put
electroweak (EW) and collider constraints on [SU(3)].

In general, intricate models are not appealing. A way to
look for new models with a moderate content of fermions is

'In trinification, the equality of the coupling constants at the
unification scale is assumed, which is equivalent to impose an
additional discrete Z; symmetry (see [9] and references therein).
In the present work, such assumption has not been made.
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to consider flipped versions of the already known models in
the literature [19-26]. An exhaustive account of the
phenomenology of these models has not been done so
far. Our work represents a first step in that direction. The
first alternative model was “Flipped SU(5)” [19,27], which
produces a symmetry breaking for SO(10) GUT down to

U(5) ® U(1), where the U(1) factor contributes to the
electric charge, and as such, its basic predictions for sin’y,
and the proton decay are known to be different from those
of SU(5). In the present work, we study the flipped
versions of the universal 3-3-1 and the left-right symmetric
models in [SU(3)]3. That is equivalent to the study of the
different embeddings of the SM fermions in the multiplets
when the [SU(3)]® gauge group breaks down to the SM. As
a consequence of the reduction in the effective group
symmetry, these models predict new Z' bosons at low
energies. For a given Z' mass, these vector boson reso-
nances have well determined predictions in low-energy
experiments and colliders. For universal models in the Eg
context, a systematic study of its alternative models and
further references can be found in [25].

The heavy vector bosons Z’ are a generic prediction of
the physics Beyond the SM (BSM) with an extended EW
sector [28]. The detection of one of these resonances at the
LHC will shed light on the underlying symmetries of the
BSM physics. For the high-luminosity regime, the LHC
will have sensitivity for Z' masses under 5 TeV [29,30];
thus, a systematic and exhaustive study of the EW
extensions of the SM with a minimal content of exotic
fields is mandatory. By imposing universality on the EW
extensions of the SM (as it happens in the SM), the possible
EW extensions are basically the Eq subgroups [31-33].
[SU(3)]? is one of the four maximal Eg subgroups; so, an
exhaustive study of its neutral current structure is conven-
ient, something done in the present work. As we will show,
the couplings of additional gauge bosons to the SM
fermions are independent of the Higgs sector and just
depend on the [SU(3)]® symmetries. We also present LHC
and EW constraints for these models.

Finally, let us mention that unification is not implicit in
our assumptions; so, nonuniversal gauge coupling strengths
are used in this study.

The paper is organized as follows: in Sec. I, we review
the [SU(3)]* model and its subgroups. In Sec. III, we
calculate the EW couplings for Z’ bosons in the [SU(3)]?
subgroup SU(3) ® SU(3), x U(1) ® U(1). In Sec. 1V,
we calculate the eigenstates of the most general [SU(3)]?
Higgs potential and, for considering different cases, it is
shown that these eigenstates are independent of the Higgs
sector. It is also shown that the null space of the [SU(3)]?
Higgs potential corresponds to the photon. In Sec. V, we
calculate the EW couplings for the left-right model and its
alternative models. In Sec. VI, we impose EW and collider
constraints on the Z-Z' mixing angle and on the mass of the
new neutral Z’ gauge bosons. Section VII summarizes our
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conclusions. Four technical appendixes are presented at the
end of the manuscript, in particular, in Appendix C the null
vector of the EW vector boson mass matrix is built for an
arbitrary Higgs tensor and gauge theory.

IL. THE [SU(3)]* GROUP

The [SU(3)]®* group [9,31,34] SU(3)r ® SU(3), ®
SU(3)z = [SU(3)]® is a maximal subgroup of E4 [35]
with the same rank and fundamental representation. The
three factor groups are identified in the following way: the
first one corresponds to the vectorlike QCD color group
SU(3)¢, the same as in the SM, and the other two can be
identified with the left-right symmetric flavor group

U(3), ® SU(3)x extension of the SU(2), ® SU(2)g,
where SU(2), in the SM is such that SU(2), c SU(3),.
Using 4;,i = 1,2, ..., 8 as the eight Gell-Mann matrices for
SU(3) normalized as Tr(4;4;) = 25;;, the charge operator

for the [SU(3)]® group may be written as

M ML MR . MR
Q:—EB—GB—EB— 1
2V/3 2V/3 )

In this way, each family of fermions is assigned to a 27 as”

27=(3,3.1)® (1.3.3) @ (3.1,3),

where according to (1), the particle content of each term is

(3.3.1) = (wd, D),
(3,1,3) = (u¢,d¢, D)},
N E- e
(1,3.3)= | B+ N o, |,
et s M),

which corresponds to the 27 states in the fundamental
representation of Fjg.

A. 3-3-1 models from [SU(3)]?

Let us now consider the decomposition of the [SU(3)]?
gauge group into a subgroup G which survives at an
intermediate energy scale between the EW scale (245 GeV)
and the unification scale; that is [SU(3)]* D G.

Suppose first that G corresponds to the universal 3-3-1
model [37]:

*Another convention assigns leptons ~(1,3,3), quarks
~(3,3,1) and antiquarks ~(3, 1, 3), in this case the assignments
of the SU(3),. representation of the quarks are interchanged with
respect to the SM. In the present work, we follow the Robinett
and Rosner convention [20,36].

014009-2



FLIPPED VERSIONS OF THE UNIVERSAL 3-3-1 AND ...
G = SU(3)e ® SU(3), ® U(1)y
cSUB3)®SU3), ®U(1),@U(1),. (2

By using that SU(3) — SU(2), ® U(1),, the triplet in each
nonet goes to a doublet with charge b and a singlet with
charge —2b, ie., 3 = 2,4+ 1_,,. Next by breaking the
remaining spin symmetry, i.e., SU(2), — U(1),, the dou-
blet goes to a couple of singlets,ie., 2,4+1_5,—1,,+
1_,p+19_2. Thus, when SU(3); breaks into
U(l), ® U(1),, the following branching rule applies,

3g — (a)(b) + (=a)(b) + (0)(=2), (3)

which implies

(3,3,1) — (3,3,0,0),
(3,1,3) — (3.1,—a,—b) ® (3, 1,a,—b) & (3,1,0,2b),
(1,3,3) — (1,3,a,b) ® (1,3,—a,b) & (1,3,0,-2b).

Since the nonet (3, 3, 1) is simultaneously a color and a
SU(3), triplet, the unique possibility for the fermion
assignment is

(3.3.1) —(3.3,0.0) = (u.d;. Dp)§.

For the nonet (3,1,3), there are three different fermion
assignments in con51stency with the three different SU(2)
spin symmetries® [36], X =1, U and V, i..,

(3,1,3)— (3.1,—a,—b) ®(3.1,a,-b) @(3,1,0,2b)

(dZ)—a.—b@(ui)aﬁ—hQ( oo X=
= (DZ)—a,—b 5] (di)a,_b ® (”2)0 2b
(”i)—a,—b ® (DZ)a.—b ® (di)o 2w X=V.

We label the three possible fermion assignments with
X =1, U, V, which denote weak-/-spin, weak-U-spin
and weak-V-spin, respectively. As can be seen, the
[SU(3)]® gauge group produces three different low-energy
3-3-1 fermion structures: the ordinary one presented in
Ref. [37] and two more new in the literature as far as
we know.

In a corresponding way, there are three different fermion
assignments for the nonet (1,3,3), i.e

*In Appendix A, we briefly review the SU(2) weak-I-spin (or
Isospin), weak-U-spin and weak-V-spin symmetries in SU(3).
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(1,3,3) — (1.3.a.b) @ (1.3.—a.b) @ (1,3.0,-2b)
(EL.NY.ver)as ® (N2 Ef.ep)l,
ea(eZ?VeL’Mg)g,—zb’ X=1

(ersver s M)k, ® (EL. Ny Vo)L,
® (N(L)’Ezr’eL)o o X=U,
(N?. EL, eL)ab ® (eL’yeL’M(L))Za.b
® (EL. N} 7V§L)g,—2b’ X=V.

In correspondence with Eq. (1), the electric charge is now
given by

2dy
V3

1
O=1I;3+ XRrs» (4)

—=11g + cxXp3s +—%=
/3 18t xtr
where X3 and Xgg are the fermion charges under U(1),

and U(1),, respectively, as is shown in Table I, and ¢y and
dy are

C1:1, dlzl/zy
CUIO, dU:_
cy=—1, dy=1/2,

where we have taken b = 1/(21/3) and @ = 1/2 in order to
have the charges properly normalized as in E¢. In Eq. (4),
I;5 and I; ¢ represent the charges of the fermions in the 27,
when these operators act on the triplets; in the nonets the
corresponding tridimensional representation are As; /2 and
Asr. /2, respectively [see Eq. (1)]. In the same vein in Eq. (4)
with X = I, the charges I3 and Izg correspond to As3z/2
and Aggr /2, respectively. The difference between the weak-
U-spin and the alternative 3-3-1 models (the normal and the
flipped one) is the interchange of fermions between the
multiplets, something which does not affect the low-energy
phenomenology for the neutral sector as we will see in the
next section.

B. Left-right symmetric models from [SU(3)]?
A further step is to take G=SU(3),®SU(2),®
U2)x®U(1);®U(1),, which is obtained by using the
branching rule for SU(3), r — SU(2), x ® U(1),, as

3 — 2.+ 1.-2f). 33— (2.9)+

(1,-29),

which produces three different ways to reach the U(1), in
the SM:
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TABLE L.
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Charge assignments for the fundamental representation of the [SU(3)]? group, the same 27 of the Ej
group, under different U(1) symmetries. For the first family, / is the SM lepton doublet, I =

(v,e”) and g =

(u, d)” is the SM quark doublet. The charge conjugated of the corresponding right-handed weak-isospin singlets are
e, 1, u¢ and d¢. The heavy exotic particles are vector under the SM group, the heavy down quark, D (D¢), is an
weak-isospin singlet (charge conjugated of the corresponding right-handed chiral projection) of charge —1/3

(+1/3),L = (N°,E")T and L = (E¢,N°)T

, are additional weak-isospin doublets where L have the same quantum

numbers of the SM lepton doublet, and M° is a singlet under the SM.

U(1) [25] 04 Charges
Ug 2Ugs (eT,d°. L)y +(L.g. D, D, M°)y + (v, u, L),
U; 2Uks (v, D L),y + (L,q.u’, D, e")y + (M°,d°, 1),
Ua 2Vgs (M°,uc, 1),y + (L,q,d°.D.v5)y+ (e*, D, L)_,
Us; 2V/31 (LL,L) 1+ (W, df D)y + (" 6. M®) 5 + 41 + Dy
Usir _2\/§1R8 (et w6, L,L)_y + (g, D)y + (L, MO)+2 + (u¢,d),y + DS,
Uair —24/3Ups (M°,v6, 1, L)y + (q, D)o + (L, e*) 5 + (D, d) 4 us,
Unia —2V3Vg (M, e*,1,L)_y + (g, D)o + (L, v5) 15 + (D, uc) ;4 d<,
U(1)31x Ip (L, L, MO)g + quije + (u€,d)_y 6+ (e 06) 1 jp + Lija + DSy 5+ Doyj3
U()sy, UsL (LL,e")g+ i+ (D, d) _yj6 + (MO 06) 1y yo + Loyyp +uSy 5+ Doyy3
U(1)314 VL (LLve)o + qrrje + (D u)_y g+ (MO €™y o+ Loyyp +dSy 5+ Doyj3
(3,3,1) — (3,2,1,£,0) & (3,1, 1,-21,0), For the lepton sector, we have
(3,1,3) — (3,1,2,0,—9)) & (3,1,1,0,29),
(1,3,3) — (1,2,2,~f.9) ® (1,2, 1, —f, —2g) N B e

@ (1,1,2,2f,9) & (1,1,1,2f, -2g).

The underlying breaking behind these branching rules are

—(3.27.1p) @ (3. 15, 1p).
—(3,10.2_,) ® (3. 1y, 1),
—(1,2_4,2) & (1.2_,1 3,
@ (L.157.2,) & (L 157 1,,).

Now the definition of U(l)gx =U(1),+U(1), for

f = g =1/6 conducts to the alternative left-right symmet-
ric models,

UB)c ® SU2), ® SUR)x ® U(1)pix

with the following particle content for the quark sector:

(3,3,1) =(u.d.D); — (3.2,1,1/6) ® (3.1,1,—1/3)
:(u’d)L ®DL7
(3,1,3) =(u,d*, D), — (3,1,2,-1/6) ® (3,1,1,1/3)

(u¢.d), ®Dj. X=I
(D.d) @ uj. X=U,
(u¢.D), ®dS, X=V.

(1,3.3) = | B+ N o,
et 5 M),
— (1,2,2,0) & (1,2,1,-1/2)
@ (1,1,1,0)

E+ N0 v,
< 0 ) ® ( ;> ® (e". ),
N ET ), e /)L

eM), X=I,

<I/e N°C> €B<E+> ® (M0 05
= e~ E /), N/, Lo¥elr

Det, X=U,

Et v N0
¢ MO, +
<No €_>L®<E_)L®( Le)L
@S, X=V.

@ (1,1,2,1/2)

In the left-right model SU(2), @ SU(2)x ® U(1)y_, C
SU(3); ® SU(3) (in our notation SU(2);, ® SU(2), ®
U(1)g.), the weak-isospin subgroup (X =I) has been
used. That is the correct choice for the left-handed sector,
but not the only choice for the right-handed one as we have
shown already. The weak-V-spin symmetric case is a very
well known example where SU(2), is used instead
of SU(2)g; this model is known as the alternative
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left—right4(ALR), which was found in a different way in
Ref. [22]. The case X = U is a new alternative model.

III. 3-3-1 NEUTRAL CURRENTS

For the [SU(3)]® group, the interaction Lagrangian
—£1 is

LJL3;4AL3 + gLJLSyALS + 9RJR3;/‘R3 + gRJRSyA
= gLJL3;4AL3 + g Ty, B 4 9202, 2" 4 9303, Z"™", (5)

where A7, , Alg,, ARs, and Agg, are the corresponding
vector gauge bosons associated with A7 5, A7 ¢, A%, and A%,
respectively (for a precise definition, see Appendix B). The
neutral currents in (5) are given by

Zfzyu €L
R3;4 Zfﬂ’ﬂ e

where the chiral charges, €y, g, are shown in Table All in
Appendix D 1. Notice in our notation that the bold labels L,
R refer to the left and right chiral projections and L and R
refer to different SU(n) group structures. By means of an
orthogonal matrix we can rotate from the [SU(3)]? basis of
the neutral vector bosons, to a basis where one boson
corresponds to the hypercharge, i.e.,

TRsy = i)Py + ex® (i) PRS- (6)

()Py +eg°(O)Prlfic  (7)

I
AILW AL3/4
B Al
l=or| (8)
Zﬂ ARSﬂ
Zﬂ A%?y
where the orthogonal matrix is
1 0 O 0 1 0 0 0
o 01 O 0 0 cosa —sina O
1o o cosff —sinf 0 sina cosa O
0 O sinf cosp 0 O 0 1
9)

It is important to realize that in order to recover the
particular case X = U, corresponding to the 3-3-1 models,
it is necessary to take cosf = —1. By replacing this
expression in Eq. (5), we obtain

*Or alternate left-right model.

PHYSICAL REVIEW D 95, 014009 (2017)
9B, Jy = B*(g,J]g, €08 @+ grJgg, sinacos

+ grJ Rz, sin asin f); (10)
by equating with

2dy y

‘]Yﬂ = \/g JRS;N

(11)

1 X
JLS[I + CXJR3;4

1
V3
we get the following three equations:

2dy

g = g cosa, \/§ —=¢ = ggsinacosp, (12)

8-

cxd = ggsinasinf. (13)

From these equations, we have

Nq cos q
= —_ s a pry s
Ik F \/§QL
2dy
cos i = —= = dy, 14
ﬂ \/7\7 X ( )

where N = (3¢ +4d%) =4 and F =3—(¢/g,)% It is
worth noticing that in the three cases considered, i.e., for
any value of X,

2ng, - ZgL Sinew
V39 — g% \/4cos?0

9r = (15)

From Eqgs. (5) and (8), it is possible to get expressions for
the neutral currents associated with the Z’ and Z” bosons,
respectively,

92J2u == gl g, sina + ggJyg, cOsacos f
+ grJ s, COS asin f,
Gz =— gRJiggﬂ sin f + gRJ§3ﬂ cos fi. (16)

From these relations and from Table AII, we can obtain the
explicit expressions of the vector and axial charges for the
7' and Z" gauge bosons; these charges are shown in
Tables AIV and AV, respectively. The collider and EW
constraints are shown in Table II and Fig. 1. A detailed
analysis of these constraints is presented in Sec. VI. Finally,
we can make use of the defining condition of the orthogo-
nal matrices, O~! = O, and use the matrix (8) to rotate
from the [SU(3)]? basis for the neutral vector bosons to the
SM basis, i.e.,
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TABLE II.  95% C.L. lower mass limits on extra Z’ bosons for
various models from EW precision data and constraints on
sinfz,. For comparison, we show in the second column the
95% LHC constraints [39] which have been calculated according
to Ref. [29]. In the following columns, we give, respectively, the
central value and the 95% C.L. lower and upper limits for sin 6.

MZ/ [GCV] sin HZZ’
7 LHC EW sin @, sin 63 sin 055
Zyig 2925 958  —0.00007  —0.0012  0.0009
Zm 2492 1134 0.0003 —0.0006 0.0013
Z; 2525 1,204 0.0003 —0.0005  0.0012
zZm 2693 1182 —0.0004 —0.0015  0.0006
Zig 2682 998  —0.0004 —0.0013 0.0006
Ziry  2.588 935  -0.00001  -0.0011  0.0008
ZM. 2532 447 —0.0004  —0.0014  0.0007
1
Ay AL3;4
Z Al
I T L8y
2 | =V ax
H R8u
1"
Z/‘ A%?w
1
sinfy cosfy 0 O ALy
_ | cos Oy —sinfy 0 0 or Alg,
0 0 1 0 AXe "
0 0 0 1 AX 3
(17)

where WV and Oy, are the Weinberg matrix and the Weinberg
angle, respectively.

IV. EIGENSTATES OF THE VECTOR BOSON
MASS MATRIX IN [SU(3)]?

In the last section, we saw that it is possible to obtain the
SM fields A, and Z, and the extra neutral vector bosons Z),
and Zj, by rotating the [SU(3)]? basis for the vector fields.
By making use of some viable cases for the Higgs potential
in the present section, we will show that, independent of the
Higgs sector, the null space of the vector boson mass matrix
corresponds to the photon, i.e., by rotating the photon
component (A,,0,0,0)” in the SM basis to the [SU(3)]?
basis, we obtain the null space of the vector boson mass
matrix. This is a particular example of a more general
theorem which is shown in Appendix C. In that sense, the
present section is useful to provide a context for this
demonstration. The same is not true for the eigenvalues of
the vector mass matrix which strongly depend on the Higgs
sector. In the fundamental representation of the [SU(3)J?
group, the neutral components are in the leptonic sector

PHYSICAL REVIEW D 95, 014009 (2017)

(1,3,3); if we put the Higgs field & in the same
representation the corresponding transformation properties
are

' = U ®U,,  Upg=exp(=i0"(x)A x/2).  (18)

Requiring gauge invariance, the covariant derivative is
i
D,®=0,® - 2 (gL/I"A/‘jLCD — grPAALR), (19)
which transforms in the same way as the Higgs fields, i.e.,
(D,®) = U,D,®Uy, (20)

as it is required to build the gauge invariant kinetic term.
The Higgs sector of the [SU(3)]* model contains two
complex scalar field nonets, ®; and ®,. The most general
vacuum expectation value (VEV) for these fields are [18]

(1 0 0 Uy 0 0
(@)=|[0 by 0 |, (P)=|0 by by |,
0O 0 M, 0 Mp M,
(21)

where @, is diagonal in view of the fact that it is always
possible to bring one Higgs VEV into its diagonal form by
using the SU(3), x SU(3)z symmetry. The vector boson
masses came from

Ly = +ZTr[DM(I)i(Dﬂ(bi)T]|‘1’i:<‘1)i>’ (22)
i=1.2

which is invariant under the already mentioned gauge
transformations [Eqgs. (18) and (20)]. We can get rid of
the kinetic mixing term Tr[D,®,(D*®,)"] by redefining
the scalar fields in order to cast the Lagrangian into the
canonical form. By a rotation in the adjoint representation,
we obtain the simplified expression

Li({P1), (D)) = ((QLALg,, + grAkg,) b3

gRAR&u + gLALS/,{)ZM R

+(
+(

ILAL s, — IrARs,) (BT + b3)
+ (gLALSy y)z(Mz + Mz)
+ (9LALs, — 9 Rsﬂ)z(% +03)), (23)
whereA(LR)gﬂ (A(LRSﬂ \/_ALR )/2 andALRgﬂ

(A(L Ry T V3A! (L.R)3 )/2 By writing the kinetic part in
terms of Afeg,t and A%, ,.» the Higgs covariant derivative can
be written as

:%AT‘M A, (24)
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where A = (A];,Alg,Akg,Aks,) > and M is the gauge
boson mass matrix whose elements are given by

My = %g%(b% R4 B 40t ),

Mis = (b + B3+ b= i =),
My = %gm(b% %263 1%~ 13),
My = _ngLgR(b% + b5 + 7+ v3),

My, = Lhz/gngR(b% + b3 = 2M% — v — v3),
May = (B} + B3+ M = v} = o),

My = %gi(b% + b3 + b3 + 4M3 + AM}
+4M% + v + v3),

My, = 12—291%(19% + b3 + 4b3 + 4M3 + AM?
+ M% 4 13 4 13),

Moy = 22 0, 0u(B3 + b3 ~ 203 + 4M3 + 413
—2M% + v} + v3),

2
May = 7 (D} + b3 + M + 0] + 03).

The null space of the mass matrix M is

Aﬁull - N(i ) \/%.(]L ) \/%gR ) i)A” (x)y (25)

where A#(x) is an arbitrary vector field which, as we will
see later, corresponds to the photon, and N is an arbitrary
normalization. We can obtain a similar expression for the
null eigenvector by inverting Eq. (17),

Aﬂ gL
1
0
R o | =9 sin Oy ﬁlg" A,
\/§9R
0 1
9r
cot’ Oy
0 gL
1
Z Sinzew - V3 L
R ()M =g —cos 7 ly ZM’ (26)
v - \/ggR
0 1

9r
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where R = (W - OT)T. In order to get this result, it was
necessary to impose ¢ = g;, tan @y, which is also satisfied
in the SM. This shows that the null vector corresponds to
the photon as we previously said. By proceeding in a
similar way for Zj, and Zj, we find

0 0
: -
R :g—LtanQW ]\gR zZ,,
Z/ 2 H
H \/591‘
0 1
9L
0 0
%= ° |z (27)
o | -=v3r2|™"
Z, 1/2

These eigenvectors are the same for any Higgs sector; we
verify this for some particular cases which are easy to tackle
analytically. By taking v, = v,, by = b3, b, =0, M; =
My and M5 = 0, there are two limits M; — oo or b3 — o,
which do not correspond to a realistic potential; however,
they serve us to check that in both cases we obtain the
eigenvectors in Eq. (26) and Eq. (27). It is possible to build
Higgs tensors in the 3; x 3, and 3 x 3, representations,
these terms give masses to AY; = —(Al, —+/3A1;)/2 and
AY, = —(Aky — V/3Akg)/2, respectively; however, their
contribution to the vector boson mass matrix do not change
the present results.

V. ALTERNATIVE LEFT-RIGHT MODELS

As we already saw in Sec. II, by choosing other SU(2)
spin symmetries, it is possible to find alternative models to
the left-right symmetric model which have been studied
extensively [1,40—43]. The gauge group of the low-energy
effective theory is G = SU(3), ® SU(2);, ® SU(2)y ®
U(1)g x- In the literature, the spin symmetry SU(2),
corresponds to SU(2),’ and U(1)g; corresponds to
U(1)g_;. The resulting model by choosing X =V is
known as the alternative left-right model [22] as we already
mentioned in Sec. II. The case X = U is a new model
where U(1)g; corresponds to the Eg lephophobic model
(modulo a normalization which is important for the
phenomenology). In this section, we study these models
as low-energy effective field theories for [SU(3)] [18,44].
The neutral current Lagrangians for these models are

I X X
—Lxc =90 13, A1+ IrI 1, ARS + 981 B, AL
=g AL+ 9Ty, B 4+ 9200, 2 X =1V, (28)

>We do not use the label R for this symmetry because the
alternative spin symmetries also are subgroups of SU(3)g.
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I U U
—Lne = 91J IL3,4AL’§ + grJ gsﬂARg + 9517 gLﬂABZ

= gLJ£3;4AIL”3 + g Ty, B 4 9205, 2% X = U. (29)

For X = U, the weak-U-spin operator Up; does not
contribute to the charge operator Q; so, it is not mandatory
to take into account the corresponding current in the
Lagrangian; however, Upg is necessary in order to repro-
duce the electromagnetic charges of the 27. For X = I and
X =V, from the [SU(3)]* charges we obtain

Q:IL3+C)(XR3 +XBL! X:I,V, (30)

2 1
Q=1 +ﬁ<du—§>XR8 + Xpr» X=U, (31)

where

1 1
BL = 7§IL8 +%XR85
The Xp;x charges are not Eg normalized and, as can be
verified in Table I, for X = I these charges correspond to
the (B — L)/2 ones, i.e., I3, = (B — L)/2. By means of an
orthogonal matrix we can rotate from the left-right basis of
the NC vector bosons to the (B, Z') basis, i.e.,

X X=LUV. (32

1A%

B AR3
<27> :(OELV)T< ’-Vﬂ>’

H ALBM
(5)-ewr(y) @
Zjl o ALUBﬂ ’

where the orthogonal matrices are

cos sin cosd  sind
o (7 ) e (302
siny —cosy sind —cosod
By replacing this expression in Eq. (28), we obtain
gBJy = B”(gRJ}fSﬂ cosy + gf,fLJf,fLﬂ siny), (34)
9By = B*(grJ g, €056 + g Jip, sinb),  (35)

for X =1, V and X = U, respectively. By equating the
hypercharge current with

Ty = ex Ty + Tip e X=1V, (36)
2 1
JY,u :7§<dU_§>J}R58/4+J}BgLﬂ’ X = U, (37)

we get the equations

PHYSICAL REVIEW D 95, 014009 (2017)

grecosy =dcx, gy siny=¢, X=1V,

2 1
gRC085:g/7§<dU—§>, gﬁLSin5:g/, X=U.

From these equations, we get

cos ! ! +C§ 1,V
YZC ] e ) G = 1, .
X gx 9* (g5 gk
1 1 3
COS(s:—\/gi, —/2:—2+—2, X=U
9dr g (QgL) gk

Because cy = 1 for X = 1, V the right gauge coupling must
satisfy the inequality gr > ¢ = 0.357, which is met in
[SU(3)]?. For X = U, the last equation implies gz > /3¢ =
0.619, which automatically excludes the [SU(3)]® value of
the right gauge coupling, i.e., g = 0.435; however, the
typical left-right gauge coupling g; = ggr = 0.652 is still
possible. From Egs. (28) and (33), it is possible to get
expressions for the neutral current associated with the Z’

g2‘]2/,t = _g)BgLJiR(LM cosy + gRJ%?)ﬂ sin 4

X
cxJ BLu

= thal‘lW (aXJ%?,# - ), X = I, V,

ax
Doy = _g)tgLJgLy cosé + gR"%Sﬂ sin &
V3I%
= g, tanyy (aUJngﬂ i BLM)’ X=U, (38)
ay
where
2 NENE
ay = <g—R> cot’ Oy, — c§([ S
gL
1
X=1V,

X —7
\/4cos?Oy — 1

2
ay = \/ (gR> o0y -3,  X=U. (39
g

From these expressions, we can obtain the explicit expres-
sions for the vector and axial charges. For X = I'and g = g;,
these charges correspond to those of the left-right model
reported in Ref. [28]. In the present work, g is determined by
the [SU(3)]? symmetry; thus, by replacing gg from Eq. (15)in
the expression above, we obtain (for X =1, V) the rhs
expression of Eq. (39). For sin’dy, = 3/8, we recover the
unification matching condition g; = g for any X. However,
in the present work, we make use of the MS value for the weak
mixing angle, sin @y, = 0.231, as we will explain below.
From these relations and from Table AIl, we can obtain the
explicit expressions for the vector and axial charges for the Z’
gauge boson, corresponding to the g,J,, current. For X = 1,
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V, U, these charges are shown in Tables AVI, AVII, and AVIII,
respectively. The collider and EW constraints are shown in
Table II and Figs. 2 and 3. A detailed analysis of these
constraints will be presented in the next section.

VI. ELECTROWEAK AND COLLIDER
CONSTRAINTS

We analyze the previously considered neutral gauge
bosons and impose limits on the Z-Z' mixing angle, 8,_,,
and on the masses of the neutral Z' bosons, M. In order to
obtain the EW precision data (EWPD) constraints, we
make use of the special purpose FORTRAN package GAPP
(Global Analysis of Particle Properties) [45]. Details of the
analysis can be found in Ref. [38,46—48].6

In the third column of Table II, the EW constraints are
shown. The quantum numbers of the model Z33,; corre-
spond to those of U(1),,; in Table I. We do not put the
superscript Tri on the 3-3-1 model because the charges and
the coupling strength of this model are the same as the very
well-known universal 3-3-1 model [33,37,49] or the so-
called G model in Refs. [29,50]. The vector and axial
charges for this model are shown in Table AIV.

The quantum numbers of Z[™ correspond to those of U,
in Table I. This model is known as the inert model which
does not couple to up-type quarks [20], and corresponds to
the second neutral vector boson or Z” in the [SU(3)]?
group. From Eq. (16) for X = U we can see that the
coupling strength of ZT™ is g, = gg = 0.435. To get this
number in Eq. (15) we use for the weak mixing angle the
value sinfy = 0.231, which corresponds to the MS
renormalization scheme at the Z-pole scale. This value is
different of the traditional E¢ coupling strength,

9o =
the Eg coupling strength correspond to those of Z; in
Table II. The inequality of the couplings is reflected in the
EW and LHC constraints. The axial and vector couplings of
this model are shown in Table AV.

In Table II, we also distinguish between Z;r, which
assume the equality between the left and right gauge
couplings, i.e., g = g, = 0.652, and Z1% for which the
right coupling strength is dictated by [SU(3)]?, i.e.,
gr = 0.435. This inequality between the left and right
couplings makes the chiral charges different which is the
reason of the disparity in the constraints in Table II.

We observe that for the alternative left-right model
(ALR) the EW constraints are weak compared to other
typical Eg models in the literature (except the Z,, which
only has axial couplings to the SM particles and the
leptophobic model Z,), which is a well known feature
of this model [51].

\/ggL tan @y, = 0.4615. The constraints by using

®An update of Ref. [38] will be presented soon.
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As we already saw in Sec. V, there is another alternative
model for Ip; = (B — L)/2, the Ug,;, which, to the best of
our knowledge, has not been studied before. This model is
U-spin symmetric [i.e., SU(2),], and it has as the main
feature that it is leptophobic in the limit gz — 0.6197. In
the aforementioned limit, a;; — O and the lepton couplings
are proportional to a;; however, because in this limit the
quarks couplings go as ~1/ay;, in many observables these
effects compensate each other in such a way that the EW
constraints are not trivial for this model.

In Figs. 1 and 2, the 90% exclusion contours for the
universal 3-3-1 model Z33,¢, its corresponding Z" = Z}™
in the [SU(3)]® model, in the left-right symmetric model
Z and in its alternative version the Z1 , are shown. The
plots for ZT% and the inert model Z" are comparable with
Z;r and Z; in Ref. [38]. Because g > 0.619 as we already
saw in Sec. V, it is not possible to have the Z; gy coming
from a low-energy [SU(3)]? effective model; however, by
choosing gr = g; = 0.652 this model is feasible. The
corresponding EW and LHC constraints are shown in
Table II and Fig. 3.

In Ref [39], the ATLAS detector data on dilepton
production was used to search for high-mass resonances
decaying to dielectron or dimuon final states. The experi-
ment analyze proton-proton collisions at a center of mass
energy of 8 TeV and an integrated luminosity of 20.3 fb™!
in the dielectron channel, and 20.5 fb~! in the dimuon
channel. From this data they report 95% CL upper limits on
the total cross section of Z° decaying to dilepton final
states. From these results, and following our earlier analysis
[29], we obtain the 95% C.L. lower mass limits for all the
models mentioned above. These limits are shown in the
second column in Table II and they correspond to the red
dashed line in Figs. 1 and 2.

VII. CONCLUSIONS

In this work, we analyzed all the possible embeddings of
the 3-3-1 and 3-2-2-1 models present in the [SU(3)]? gauge
group. By considering the weak-U-spin and weak-V-spin
symmetries in SU(3), besides the usual weak-/-spin
symmetry [best known as SU(2)g] we found two flipped
versions of the 3-3-1 model, with the particularity that the
7' axial and vector charges are identical for the three spin
symmetries; hence, they are not a new source of phenom-
enological results. In Appendix B, we showed that the
reason behind these results is that, just for these models, the
corresponding neutral current Lagrangians are related each
other by unitary transformations. For the left-right sym-
metric model, we also found two flipped versions one of
them not reported in the literature as far as we know. This
new model is denoted as Zz;y and it corresponds to a
second alternative model of the left-right model Z; , (the
first alternative model is Z,; g which is well known in the
literature [22]). In several respects, the Zjry model is
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different of Z; p and Z 1 r; for example, it is not viable as a
low-energy effective theory, unless we make it left-right
symmetric, which is a typical assumption of the Z;  and
Z a g models. This model has as the main feature that it is
leptophobic in the limit gz — 0.619". In the aforemen-
tioned limit, a;; — 0 and the lepton couplings are propor-
tional to a;; however, because in this limit the quarks
couplings go as ~1/ay, in many observables these effects
compensate each other in such a way that the EW
constraints are not trivial.

We also calculated the eigenstates of the [SU(3)]® Higgs
potential and, by considering different cases, it was shown
that these eigenstates are independent of the Higgs sector. It
was also shown that the null space of the [SU(3)]? vector
boson mass matrix corresponds to the photon. As a
generalization of these results, we gave the explicit form
of the null vector of the EW vector boson mass matrix for
an arbitrary Higgs tensor and an arbitrary gauge group.

By using the LHC experimental results and EW pre-
cision data, new limits on the Z' mass M, and the mixing
angle 8;_, are imposed. From this analysis we found lower
limits on M of the order of 2.5 TeV, while the mixing
angle was found to be constrained to values of the order of
1073 radians.

The scope of the present work is not limited to the
[SU(3)]® group. In Ref. [25], the full set of alternatives
breakings in Es was shown, the next step is to extend our
analysis to Eg, which has as subgroups the most promising
and best-known electroweak extensions of the standard
model.

— 95%C.L.LEWPD
— - LHC Lower Bound |

M,.[TeV]

-0,

[=]

04 -0,003 -0,002 -0,001 0
sin 0.

FIG. 1.

0,001 0,002 0,003 0,004
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APPENDIX A: THE WEAK-I, WEAK-U AND
WEAK-V SPIN SYMMETRIES

The SU(3) algebra is invariant under any unitary trans-
formation, i.e.,

[10/2’ ﬂ'b/z] - ifabc/?'c/z - [)“/a/z’ %y/z] - ifabcl/c/z’

where A/, = UA,U". By requiring that 15 and 13 be mapped
to diagonal matrices a form of the unitary matrices is (there
are several ways to choose U and V)

0 0 1 010
u=1|1 0 0], V=10 0 1
010 1 00

Additionally, these matrices satisfy U? = U, and
V2 = VT, from these relations and unitarity we obtain
U3 = V3 = 1. The operators corresponding to 13 and Ag
Gell-Mann generators for the weak-/-spin (or Isospin),
weak-U-spin and weak-V-spin are

6 prrerr e prrrrr prrerrrrpr e e preererry

— 95% C.L.LEWPD |}
— - LHC Lower Bound |

M,[TeV]

Fvi [ Lo Lo [T [T [ Lo
0
-0.004 -0.003 -0.002 -0.001 O  0.001 0.002 0.003 0.004

sin 6,

The continuous blue line represents the 90% C.L. exclusion contour in M, vs sin 6, for the universal 3-3-1 model which has

charges and coupling strength according to Eq. (16) with X = I. The axial and vector charges for this model are shown in Table AIV.
The inert model Z" has the same charges as the E¢ motivated Z;, but with the coupling strength dictated by [SU(3)]® according to
Eq. (16) for X = U, i.e., g3 = gr = 0.435.The axial and vector charges for this model are shown in Table AV. The corresponding plot for
the Eg motivated Z; is shown in Ref. [38]. The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS data [39].
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— 95% C.L. EWPD
— - LHC Lower Bound

M,.[TeV]
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sin 0.

(=]

FIG.2. The continuous blue line represents the 90% C.L. exclusion contour in M vs sin 6, for the left-right symmetric model ZT%,
and the alternative left-right Model Z1! . with the right coupling strength dictated by [SU(3)]3, i.e., gz = 0.435 for sin 0y, = 0.231 (see
Eq. (38) for X = I and X = V, respectively). The axial and vector charges for the left-right and the ALR model are shown in Table AVI
and Table AVII. The corresponding plot for the left-right symmetric model with g = ¢g; = 0.652 is shown in Ref. [38]. The red dashed
line is the 95% C.L. lower mass limit obtained from ATLAS data [39].

o B

— 95% C.L. EWPD

LRU — - LHC Lower Bound

M, [TeV]
[TTTTTTrrTprrTTT

-0,002 0 0,002
sin g,

(=]

'
o
=]
=3
S
o
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=]
sy

FIG. 3. The continuous blue line represents the 90% C.L.
exclusion contour in My vs sin@,, for the LRU model Z[%
with gp = g; = 0.652 for sinfy, = 0.231 (See Eq. (38) for
X = U). The axial and vector charges for the left-right and
the LRU model are shown in Table AVI and Table AVII. The red
dashed line is the 95% C.L. lower mass limit obtained from
ATLAS data [39].

1 0 0
=1, = -1 0|,
0 0
00 0
ﬂé’:U/13UT:—%(A3—\/§/18): 01 0|,
0 0 -1
-1 0 0
zY:vx3V"':—%(/13+\/§zg): 0 0 o],
0 0 1

and

TABLE AL The SU(3) algebra is invariant under a unitary
transformation. By requiring that A3 and Ag be mapped to diagonal
matrices there are two possible choices, U and V = U . Addi-
tionally, these matrices satisfy U?> = U', and V? = V'; from
these relations and unitarity we obtain U> = V3 = 1. The latter
identity allows us to verify the Table entries.

UsUT =Y ViV =2)
WO W AU W W A W
de A A —hy A —ds A —ds As —d M h
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| 1 0 0
M=jg=—10 1 0 |,
8 8 \/§
00 -2
1 ] -2 0 0
W=UU' == +V323)=—2=| 0 1 0],
2 V3
0 0 1
| | 1 0 0
W=VigVi=——(2—=V3)=—42|0 -2 0
2 V3 0 0

Upon the unitary transformations U and V, the SU(3) Gell-
Mann matrices 4; are mapped to A¥ and 4! as it is shown in
Table Al These alternative representations for the SU(3)
algebra are relevant only for SU(3) in the [SU(3)]? group.
The representation of the Gell-Mann matrices in SU(3), is
fixed by the phenomenology of the SM.

APPENDIX B: U AND V IN THE ADJOINT

REPRESENTATION

The eight gauge bosons associated with the SU(3), are
written by convenience as

Sl = AL U,
1 1
= B (UabA{m)(Uacﬂg) = EAzlzjﬂ/lzlz],

where the bar in U stands for complex conjugation.
Because U isreal U,* = U,”. In the adjoint representation,
U is a 8 x 8 matrix; however, it is reducible to a couple of
3 x 3 matrices and one 2 x 2 matrix. The three-dimensional
matrices mix the generators associated with the charged
bosons while the two-dimensional one mix the diagonal
generators associated with the neutral ones

A i Ae
w3l =l
s WU Ay
A Ay A
A |5 | =] -4
e pIY s

The diagonal generators are mapped to

</13>U</1§]> 1</13—\/§/18>

- = —— .

Ag 2y 2\ A + V344

We want to make use of this symmetry to rewrite the neutral
current

JLAL =T}, 0T, U AL =T, VTPV AL

cpr

(B1)
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by defining

U, 1 \% 1
AV =y Al A =V Al

Jo =03, 0", = UL, 75

— gl yTb __ byl
i A=J0 VT, =V,

bu’
where we take into account that U is a real matrix. By
replacing these results in (B1) we obtain

JLAY =JU AN =10, AL (B2)

With these expressions it is possible to build the Lagrangian
term —L; = gRJ}fgﬂAﬁ’g . It is important to stress that for the

3-3-1-1 models in [SU(3)]? the neutral current Lagrangians
of the alternative models are related each other by a unitary
transformation; however, in general, that is not true for
alternative models.

APPENDIX C: THE NULL SPACE OF THE
VECTOR BOSON MASS MATRIX FOR AN
ARBITRARY HIGGS REPRESENTATION AND
GAUGE GROUP

In this section, we will show that for any Higgs potential
there is a null vector for the mass matrix M“® of the neutral
gauge vector bosons. The explicit form of the vector is’
Al = ‘?A(x) .» Where the ¢ are the coefficients of the
group generators in the charge operator, i.e., Q = ¢“T“, the
g“ is the coupling strength associated with the Ay vector
field and A(x), must be identified with the photon field. For
a simple group, all the ¢g* are identical; however, they may
be different for semisimple groups.

1. Rank 1 tensors

For arank 1 tensor, we can obtain the vector mass matrix
from the Higgs covariant derivative

. . 1

Lk = Tr((Dﬂ¢’)7Dﬂ¢’)|¢f:M = EAzM"”Ab”, (C1)
where v are the components of the vacuum expectation
value vector. This vector satisfies Q.v = 0 since the charge
operator must annihilate the vacuum. By taking the

components of the vector boson as A% =S A(x),, the

ga n

covariant derivative becomes zero
i _ sapaarapi|l o
DI4¢ |¢i:U1 = —lg A”T ¢ |¢1:1)z

= —i(g“;—aT“A(x)ﬂ> v =—-A(x),Q;v" =0,
ji

where A(x), is an arbitrary vector function of x, which can
be identified with the photon field. From Eq. (C1) we get

7 . .
Modulo a normalization.
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ASMab AP = 0, (C2)

showing that A} = ¢“A(x), is a null space vector of M“".

2. Rank 2 tensors

For a rank 2 tensor, the analysis is quite similar. The
gauge transformation of a rank two tensor under the gauge
group is

& il j’q)i/'
—Uin 7,

where the gauge group transformation U!(@(x)) is a
function of the local coordinate x. This allows us to define
the covariant derivative as

D,V = 8,0V — ig!(T*A%). &Y — ig"(T*A%)] .

For the SU(3) gauge group, T¢ =4, ¢ =g, U(0) =
exp(—i#“T“) and the gauge transformation of the vector
field is

A, =T*Af = U(O)TALU(0)" +-U(0)0,U"(6).
We do not lose generality by assuming that the VEV of the
Higgs rank 2 tensor is the product of two Higgs scalars in
the fundamental representation,” ie., ®V =&/, In a
similar way as we did for the rank 1 tensors, we also
build the null vector as Af = ;—ZA(x) 4> thus, the covariant
derivative is
D, @Yo 0) =

a(TaAa) (151 lgu(TaAz){;)(ifa,

= — iA(x), (Q "¢ + Qux'e").

=—iA(x),(¢x'¢ + a/x'&)

= l.A()C)ﬂ(qi + qj))(léj7
where in the last step we take into account that the charge
operator is diagonal, i.e., Q.y* = gy’ and Q4E* = ¢/¢/. In
these expressions, the g; are the charges of the components
of a vector in the fundamental representation. If the

component (®/) correspond to the VEV of a Higgs field
then ¢’ + ¢/ = 0 and the kinetic Lagrangian becomes zero,

. . 1
L= Tr((Dﬂ@‘l)’DﬂCID’/)|®:<@> = EA,“,M“bAb” =0.
This shows that, as we already demonstrated for the rank 1
tensor, Ay = ;—f,lA(x) . is @ null vector of the mass matrix

M. The procedure is similar for an arbitrary tensor.

8Any component of a matrix can always be written as the
tensorial product of two vectors.
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APPENDIX D: Z' COUPLINGS

For the SM extended by a U(1)’ extra factor, the neutral
current interactions of the fermions are described by the
Hamiltonian,

2
Hye =Y 025> Fri(ef
= 7

where Z{, and Zj), are the weak basis states such that Z{), is
identified with the neutral gauge boson of the SM, Z, and Zgﬂ

with the Z'; the index f runs over all the SM fermions in the
low-energy neutral current (NC) effective Hamiltonian Hyc,
and Py, = (1 —ys)/2and Pg = (1 + y5)/2.Ttis convenient
to write Eq. (D1) in terms of the vector and axial charges,

2
> gz Zfr”(G
i=1

F)PL + €@ (f)Pr)f, (D1)

Gy (F)rs)f.  (D2)

| —

Hye =

where the chiral couplings eg) (f) and eﬁ) (f) are linear
combinations of the vector GE,") (f) and axial GX) (f) charges
given by ¢ (f) =[GV (f) + Gy (/)]/2 and e (f) =
[Gg,l) (f) - Gg)(f)]/z The mass eigenstates Z;, and Z,,
are given by

Zy, =23, c080 + 73,
Zy = =73, sin6 + 73 cos .

sin 6,

For the numerical calculations, we use the expressions for
the vector and axial charges shown in the Appendices D 1
and D 2, where most of the values in the Tables are being
presented for the first time in the literature. We have also
used sin® @y, = 0.231 and g, = g/ cos @y, = 0.743.

1. The 3-3-1 charges and coupling strength
For X = U, cosff = dy = —1 and Eq. (16) reduces to

92 == gid 1, sina — grJigg, cosa, (D3)
where
Tis, = Zfﬂ’ﬂ ()P + e (D) PRl S,
JzLels,l Zfﬂ/,, URX ()P +GURR( )PRlf .
In this way,
922 = Zf,y,, gr sinalgy* (i) = g3 (D)r]

_chosa[gilj (i) = 92" (D) f s
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TABLE AIl.  The chiral charges for the SM particles under the
additional U(1) symmetries embedded in the [SU(3)]* group. [
stands for the left-handed doublet (v, er)" and g for the quark
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TABLE AIV. Couplings for Zs g — ff. Here #33 =

93316/ V/ 4cos?Oy — 1 and g3316 = g1 = g1/ cos Oy

left-handed doublet (u; ,d; ). For low-energy constraints, only 9331667 (f) 93316GY'(f)
the Z’ charges of the SM fermions are involved in the calculation. [ 1 w2
4 (3 — sin*Oy )n33 (3 = sin*Oy )n33
Chiral charges e 3(% — sin? Oy )33, (sin? @y, — %)11331
I er q ug dp [ er g ur dr u (% sin” Oy, — %)'7331 - %’1331
1 in2 i ) 1
I 1 1 1 -2 -1 1 1 zsin” Oy — 5 sin® Oy, — 5
el 0 -1 0 +1 =1 elns 55 ik 0 2+_\/”_5 ;W (3 w 2)7]331 ( w 2)’7331
U 1 1 U 1 2 -2 1
e A L v S v R
e’ 45 45 0 =1 0 €' ﬁg % 0 #g % TABLE AV. Vector and axial couplings Z" — ff (X =U
1 1 1 1 1 1 1 L1 case). Here = gg-
elBL -5 -3 +E +§ _A'_g elLs _m _7§ 35 0 0 ) NN 9r
eVss 0 0 + % — % + é e 0 - % % % - % f anGY (f) ginGE (f)nw
v - % N - %HIN
e - % NN - %’711\/
where u 0 0
X X X d : MmN -1 MmN
(LR)8 [\ __ (L.R)8 [+ (L.R)8 [ + 2 2
9v A (l) = €y (l) teg (l) (D4)

Reordering, we have
9331G6 . . .
9l = TZfin(G%?IG(z) =G0 s
where the vector and axial charges are

. N A Us (+
933166 (i) = —gp sinagy’y (i) — gr cos agy'x (7).

In the differential cross section, the product gs3;6G31¢

always appears, where the G;?,°

charges in Eq. (D2) and ¢33 1s the corresponding coupling

are the vector and axial

TABLE AIIl.  The vector and axial charges for the SM particles
under the additional U(1) symmetries embedded in the [SU(3)]?
group. For low-energy constraints, only the Z’ charges of the SM
fermions are involved in the calculation.

Vector and axial charges

u d e u d v e
k3 1 _1 _1 Irs 1 1 =2 =3
9y 2 2 2 9y 23 23 23 23
I3 _1 1 1 Irs =1 =1 =2 =1
9a 2 2 2 9a 23 23 23 23
Ugs 0 1 1 _1 Uks =2 1 1 3
9y 2 2 2 Yy 23 2V3 23 23
Urs 0 1 _1 _1 Ugg 2 =L 1 =1
9a 2 2 2 Ya 23 23 23 23
Vi3 1 0 1 1 Vs =2 1 0
% 2 2 9y 23 23 23
Ve Lo L Veg =L 2 1 2
9a 2 2 9a 23 23 23 23
IpL 1 1 1 —1 I1s 1 1 =1 =3
gy 3 3 2 gy 23 23 23 23
0 0 —1 0 Ly 1 1 -1 1
9a 2 9a 23 23 23 23
UsL _1 1 VL 1 _1 _1
Gy s t3 0 0 g 3 Y 2
UsL 1 VL 1 1
9a +3 0 0 9a 0 2 0 2

strength. For this reason, it is not necessary to know them
separately. Now, given that

ZgL sin QW
g = g tanOy, IR =—F———>
v/ 4cos Oy — 1
cosa = —— = —tan by,

\/§9L \/5

we take the positive sign of sina in agreement with
Eq. (12). The expressions for the vector and axial couplings
can be cast as

—9L
V3 cos Oy 1/ 4cos20y, — 1
x ((4sin®0y, — 3)g{ﬁ§\(i)
+ 25in?0y, gy % (i)

9331GG%/3,}AG(1') =

(D5)

From Table I, we obtain the chiral charges in Table AIl and
their corresponding axial and vector expressions in
Table AIV. By replacing these expressions in Eq. (D5),
we obtain the axial and vector charges as they are shown in

TABLE AVI. Vector and axial couplings for Z} — ff (The

X =1 case). Here 5, = g, tan 0y, /+/4cos’6y, — 1.

f gLRG\L/R (f) QLRG/%R(f)

v — 1 (1-4cos?Oy g — 1 (1-4cos?Oy )k
€ (4cos? Oy — %)WLR %'ILR

u 15— 4cos® Oy g — Nk

d — 13+ 4cos? Oy )Lk IR
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TABLE AVII. Vector and axial couplings for ZX’Ii‘R - ff

(X = V case). Here 5,z = g, tan @y, /+/4cos’y, — 1.

f gALRG\éLR (f) YALR GAA HR(f )

v %’YLR %’/ILR

e (3 —2cos? Oy )nLr 1 (4cos? Oy — D)npp
u L (4cos? Oy —3)nrr SNLR

d —&(4cos? Oy — e 3 (4cos? Oy — D)npp

Table AIV. By defining g33;5 = g1/ cos Oy, as usual for
3-3-1 models, we recover the vector and axial couplings
to the Z' boson in the G model [29]. From Eq. (16), for
X =U and X =V, we obtain exactly the same expres-
sion for the axial and vector couplings as the one for the
I case in Table AIV. The reason behind this coincidence
is that the EW Langrangians —LX= gRJ§3ﬂA§’3’ +
gRJ;fgﬂA;f’g [see Eq. (5)] are related to each other by
unitary transformations for the different values of X =1,
U, V, as it is shown in Appendix B. The same is not true
for the left-right symmetric model and its alternative
models as we will see in the next section. The vector and
axial charges of the Z” current, ¢,J3, are obtained
directly from Eq. (16),

9202 =AY Fir (G (i) = G (D)) f. - (D6)

Here we use IN instead of I to denote the inert model
Zm i 1n spite of the latter is a more frequent label for this
model.’

2. Couplings for the left-right symmetric model
and its alternative versions

From Eq. (38) the neutral current coupled to the Z’' boson
is given by

That is in order to avoid confusion with the label I for the
weak-/-spin symmetry.

PHYSICAL REVIEW D 95, 014009 (2017)

TABLE AVIIL. Vector and axial couplings for Z gy — ff
(X =U case) Couplings Z' — ff for X =U. Here 5=
qar tanew/\/g and Ay = \/(gR/gL)ZCOtZGW - 3.

f gLRUGIVRU (f) 9LRU GIARU (f)
Va %"IGU %ﬂau

€y %’WU - %’7(11/
Uy —n(ay + gau) nay + 2, 2a,,
da —3n(ay +@) —3nay

_ X CXJ%L# _
92y = gr tan Oy | axJps, — " . X=1LV,
X
V3Ig,
9212/4 = gL tan9W ((ZU‘]%S” U ﬂ), X = U

(D7)

which encompasses the three different X values.
From Eq. (D7) we get for X =1, V, U the vector and
axial charges for the left-right, ALR and inert models,
respectively,

Gy = (i)VS)fi,

A)LR(U
Zf,,l MO (i) = g

where the index (A)LR(U) stands for the three models, i.e.,
LR, ALR and LRU.

0 X
g LRGVA ( ) = d<—_CX ngl%( ))
ax
Uks

GLruGHRY (i) = gJ(g“( D+ Vaygln (i >>, (D8)

where, ¢ = g, tan @y, and a; = ay, = 1/+/(4cos?0y, — 1).
From Table AIIl and Egs. (D8), we get the vector and axial-
vector couplings to the Z' boson, which are shown in
Tables AVII and AVIII.

[1] J.C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974).

[2] H. Georgi and S.L. Glashow, Unity of All Elementary
Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

[3] P. Langacker, Grand unified theories and proton decay,
Phys. Rep. 72, 185 (1981).

[4] J. Sayre, S. Wiesenfeldt, and S. Willenbrock, Minimal
trinification, Phys. Rev. D 73, 035013 (2006).

[5] K. Olive et al. (Particle Data Group), Review of particle
physics, Chin. Phys. C 38, 090001 (2014).

[6] A.H. Guth, The inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23,347 (1981).

014009-15


http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevLett.32.438
http://dx.doi.org/10.1016/0370-1573(81)90059-4
http://dx.doi.org/10.1103/PhysRevD.73.035013
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.23.347

RODRIGUEZ, BENAVIDES, PONCE, and ROJAS

[7] S. Willenbrock, Triplicated trinification, Phys. Lett. B 561,
130 (2003).

[8] W. A. Ponce, A. Zepeda, and J. B. Florez, Mass scales and
stability of the proton in [SU(6)]*> x Zs, Phys. Rev. D 49,
4958 (1994).

[9] K. S. Babu, X.-G. He, and S. Pakvasa, Neutrino masses and
proton decay modes in SU(3) x SU(3) x SU(3) trinifica-
tion, Phys. Rev. D 33, 763 (1986).

[10] Y. Achiman, Leptonic Nonet in SU; (3) — SU(3), Phys.
Lett. 70B, 187 (1977).

[11] Y. Achiman and B. Stech, Quark lepton symmetry and mass
scales in an E6 unified gauge model, Phys. Lett. 77B, 389
(1978).

[12] S.L. Glashow, Report No. Print-84-0577, 1984.

[13] A. Salam and J.C. Ward, Electromagnetic and weak
interactions, Phys. Lett. 13, 168 (1964).

[14] S. Weinberg, Mixing angle in renormalizable theories of
weak and electromagnetic interactions, Phys. Rev. D 5,
1962 (1972).

[15] ATLAS-Collaboration, Report No. ATLAS-CONF-2015-
081.

[16] F. Dias, S. Gadatsch, M. Gouzevich, C. Leonidopoulos, S.
Novaes, A. Oliveira, M. Pierini, and T. Tomei, Combination
of Run-1 exotic searches in diboson final states at the LHC,
J. High Energy Phys. 04 (2016) 155.

[17] G. M. Pelaggi, A. Strumia, and E. Vigiani, Trinification can
explain the di-photon and di-boson LHC anomalies, J. High
Energy Phys. 03 (2016) 025.

[18] J. Hetzel and B. Stech, Low-energy phenomenology of
trinification: an effective left-right-symmetric model, Phys.
Rev. D 91, 055026 (2015).

[19] S.M. Barr, A new symmetry breaking pattern for SO(10)
and proton decay, Phys. Lett. 112B, 219 (1982).

[20] R. Robinett and J. L. Rosner, Mass scales in grand unified
theories, Phys. Rev. D 26, 2396 (1982).

[21] E. Witten, Symmetry breaking patterns in superstring
models, Nucl. Phys. B258, 75 (1985).

[22] E. Ma, Particle dichotomy and left-right decomposition of
E¢ superstring models, Phys. Rev. D 36, 274 (1987).

[23] E. Ma, Neutrino masses in an extended gauge model with
E¢ particle content, Phys. Lett. B 380, 286 (1996).

[24] R. Martinez, W. A. Ponce, and L. A. Sanchez, SU(3),. ®
SU(3), @ U(l)y as an SU(6) ® U(1)y subgroup, Phys.
Rev. D 65, 055013 (2002).

[25] E. Rojas and J. Erler, Alternative Z' bosons in Eg, J. High
Energy Phys. 10 (2015) 063.

[26] S.F. Mantilla, R. Martinez, F. Ochoa, and C.F. Sierra,
Diphoton decay for a 750 GeV scalar boson in a SU(6) ®
U(1)y model, Nucl. Phys. B911, 338 (2016).

[27] J. P. Derendinger, J. E. Kim, and D. V. Nanopoulos, Anti-SU
(5), Phys. Lett. 139B, 170 (1984).

[28] P. Langacker, The physics of heavy Z’ gauge bosons, Rev.
Mod. Phys. 81, 1199 (2009).

[29] C. Salazar, R. H. Benavides, W. A. Ponce, and E. Rojas,
LHC constraints on 3-3-1 models, J. High Energy Phys. 07
(2015) 096.

[30] S. Godfrey and T. Martin, Z’ Discovery Reach at Future
Hadron Colliders: A Snowmass White Paper, arXiv:
1309.1688.

PHYSICAL REVIEW D 95, 014009 (2017)

[31] R. Slansky, Group theory for unified model building, Phys.
Rep. 79, 1 (1981).

[32] M. S. Carena, A. Daleo, B. A. Dobrescu, and T. M. Tait, Z’
gauge bosons at the Tevatron, Phys. Rev. D 70, 093009
(2004).

[33] J. Erler, P. Langacker, S. Munir, and E. Rojas, Z' bosons at
colliders: A Bayesian viewpoint, J. High Energy Phys. 11
(2011) 076.

[34] A. de Rujula, S.L. Georgi, and H. Glashow, in Fifth
Workshop on Grand Unification, edited by K. Kang, H.
Fried, and P. Frampton (World Scientific, Singapore, 1984),
p. 88.

[35] F. Gursey, P. Ramond, and P. Sikivie, A universal gauge
theory model based on Eg, Phys. Lett. B 60, 177 (1976).

[36] D. London and J. L. Rosner, Extra gauge bosons in E¢ Phys.
Rev. D 34, 1530 (1986).

[37] L. A. Sanchez, W. A. Ponce, and R. Martinez, SU(3),. ®
SU(3), ® U(1)y as an Eg subgroup, Phys. Rev. D 64,
075013 (2001).

[38] J. Erler, P. Langacker, S. Munir, and E. Rojas, Improved
constraints on Z’ bosons from electroweak precision data, J.
High Energy Phys. 08 (2009) 017.

[39] G. Aad et al. (ATLAS Collaboration), Search for high-mass
dilepton resonances in pp collisions at /s = 8 TeV with
the ATLAS detector, Phys. Rev. D 90, 052005 (2014).

[40] R. N. Mohapatra and J. C. Pati, Left-right gauge symmetry
and an isoconjugate model of CP Vlolation, Phys. Rev. D
11, 566 (1975).

[41] R. Mohapatra and J. C. Pati, A natural left-right symmetry,
Phys. Rev. D 11, 2558 (1975).

[42] G. Senjanovic and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[43] R.N. Mohapatra and G. Senjanovic, Neutrino Mass and
Spontaneous Parity Violation, Phys. Rev. Lett. 44, 912
(1980).

[44] J. Hetzel, Ph.D. thesis, Inst. Appl. Math., Heidelberg,
2015, https://inspirehep.net/record/1364898/files/arXiv:
1504.06739.pdf.

[45] J. Erler, in QCD and weak boson physics in Run II
Proceedings, Batavia, USA, 1999 (1999), http://alice.cern
.ch/format/showfull?sysnb=2186949.

[46] J. Erler, P. Langacker, S. Munir, and E. Rojas, Constraints
on the mass and mixing of Z’ bosons, AIP Conf. Proc. 1200,
790 (2010).

[47] J. Erler, P. Langacker, S. Munir, and E. Rojas, Z' Searches:
From Tevatron to LHC, arXiv:1010.3097.

[48] J. Erler, P. Langacker, S. Munir, and E. Rojas, Z' Bosons
from Eg4: Collider and Electroweak Constraints, arXiv:
1108.0685.

[49] M. Singer, J. Valle, and J. Schechter, Canonical neutral
current predictions from the weak electromagnetic gauge
group SU(3) x U(1), Phys. Rev. D 22, 738 (1980).

[50] W. A. Ponce, J. B. Florez, and L. A. Sanchez, Analysis of
SU(3), x SU(3), x U(1)y local gauge theory, Int. J. Mod.
Phys. A 17, 643 (2002).

[51] J. Erler and P. Langacker, Indications for an Extra Neutral
Gauge Boson in Electroweak Precision Data, Phys. Rev.
Lett. 84, 212 (2000).

014009-16


http://dx.doi.org/10.1016/S0370-2693(03)00419-2
http://dx.doi.org/10.1016/S0370-2693(03)00419-2
http://dx.doi.org/10.1103/PhysRevD.49.4958
http://dx.doi.org/10.1103/PhysRevD.49.4958
http://dx.doi.org/10.1103/PhysRevD.33.763
http://dx.doi.org/10.1016/0370-2693(77)90517-2
http://dx.doi.org/10.1016/0370-2693(77)90517-2
http://dx.doi.org/10.1016/0370-2693(78)90584-1
http://dx.doi.org/10.1016/0370-2693(78)90584-1
http://dx.doi.org/10.1016/0031-9163(64)90711-5
http://dx.doi.org/10.1103/PhysRevD.5.1962
http://dx.doi.org/10.1103/PhysRevD.5.1962
http://dx.doi.org/10.1007/JHEP04(2016)155
http://dx.doi.org/10.1007/JHEP03(2016)025
http://dx.doi.org/10.1007/JHEP03(2016)025
http://dx.doi.org/10.1103/PhysRevD.91.055026
http://dx.doi.org/10.1103/PhysRevD.91.055026
http://dx.doi.org/10.1016/0370-2693(82)90966-2
http://dx.doi.org/10.1103/PhysRevD.26.2396
http://dx.doi.org/10.1016/0550-3213(85)90603-0
http://dx.doi.org/10.1103/PhysRevD.36.274
http://dx.doi.org/10.1016/0370-2693(96)00524-2
http://dx.doi.org/10.1103/PhysRevD.65.055013
http://dx.doi.org/10.1103/PhysRevD.65.055013
http://dx.doi.org/10.1007/JHEP10(2015)063
http://dx.doi.org/10.1007/JHEP10(2015)063
http://dx.doi.org/10.1016/j.nuclphysb.2016.08.014
http://dx.doi.org/10.1016/0370-2693(84)91238-3
http://dx.doi.org/10.1103/RevModPhys.81.1199
http://dx.doi.org/10.1103/RevModPhys.81.1199
http://dx.doi.org/10.1007/JHEP07(2015)096
http://dx.doi.org/10.1007/JHEP07(2015)096
http://arXiv.org/abs/1309.1688
http://arXiv.org/abs/1309.1688
http://dx.doi.org/10.1016/0370-1573(81)90092-2
http://dx.doi.org/10.1016/0370-1573(81)90092-2
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://dx.doi.org/10.1007/JHEP11(2011)076
http://dx.doi.org/10.1007/JHEP11(2011)076
http://dx.doi.org/10.1016/0370-2693(76)90417-2
http://dx.doi.org/10.1103/PhysRevD.34.1530
http://dx.doi.org/10.1103/PhysRevD.34.1530
http://dx.doi.org/10.1103/PhysRevD.64.075013
http://dx.doi.org/10.1103/PhysRevD.64.075013
http://dx.doi.org/10.1088/1126-6708/2009/08/017
http://dx.doi.org/10.1088/1126-6708/2009/08/017
http://dx.doi.org/10.1103/PhysRevD.90.052005
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.11.2558
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/https://inspirehep.net/record/1364898/files/arXiv:1504.06739.pdf
http://dx.doi.org/https://inspirehep.net/record/1364898/files/arXiv:1504.06739.pdf
http://dx.doi.org/https://inspirehep.net/record/1364898/files/arXiv:1504.06739.pdf
http://dx.doi.org/https://inspirehep.net/record/1364898/files/arXiv:1504.06739.pdf
http://dx.doi.org/https://inspirehep.net/record/1364898/files/arXiv:1504.06739.pdf
http://dx.doi.org/http://alice.cern.ch/format/showfull?sysnb=2186949
http://dx.doi.org/http://alice.cern.ch/format/showfull?sysnb=2186949
http://dx.doi.org/http://alice.cern.ch/format/showfull?sysnb=2186949
http://dx.doi.org/10.1063/1.3327731
http://dx.doi.org/10.1063/1.3327731
http://arXiv.org/abs/1010.3097
http://arXiv.org/abs/1108.0685
http://arXiv.org/abs/1108.0685
http://dx.doi.org/10.1103/PhysRevD.22.738
http://dx.doi.org/10.1142/S0217751X02005815
http://dx.doi.org/10.1142/S0217751X02005815
http://dx.doi.org/10.1103/PhysRevLett.84.212
http://dx.doi.org/10.1103/PhysRevLett.84.212

