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By considering the 3-3-1 and the left-right symmetric models as low-energy effective theories of the
SUð3ÞC ⊗ SUð3ÞL ⊗ SUð3ÞR (for short ½SUð3Þ�3) gauge group, alternative versions of these models are
found. The new neutral gauge bosons of the universal 3-3-1 model and its flipped versions are presented;
also, the left-right symmetric model and its flipped variants are studied. Our analysis shows that there are
two flipped versions of the universal 3-3-1 model, with the particularity that both of them have the same
weak charges. For the left-right symmetric model, we also found two flipped versions; one of them is new
in the literature and, unlike those of the 3-3-1, requires a dedicated study of its electroweak properties. For
all the models analyzed, the couplings of the Z0 bosons to the standard model fermions are reported. The
explicit form of the null space of the vector boson mass matrix for an arbitrary Higgs tensor and gauge
group is also presented. In the general framework of the ½SUð3Þ�3 gauge group, and by using the LHC
experimental results and EW precision data, limits on the Z0 mass and the mixing angle between Z and the
new gauge bosons Z0 are obtained. The general results call for very small mixing angles in the range 10−3

radians and MZ0 > 2.5 TeV.

DOI: 10.1103/PhysRevD.95.014009

I. INTRODUCTION

The quantization of the electric charge is an indication
that the Standard Model (SM) of the strong, weak, and
electromagnetic interactions based on the local gauge group
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY might be embedded into a
larger gauge structure [1,2]. This feature can be explained
by grand unified theories (GUT) which, in general, have a
unified coupling constant for all the interactions at an
energy given by the GUT scale which is around 1016 GeV
for supersymmetric models. One of the most important
results of the GUT is the prediction of the neutrino masses
in the ð10−5–102Þ eV range [3,4], which is compatible with
the present constraints on the neutrino masses [5].
In the late 1970s, the unification theories were under

suspicion owing to the prediction of topological defects
which are typical GUT predictions; from these consider-
ations, the cosmological inflation scenario was born [6],
which proved to be quite useful for solving other cosmo-
logical problems, showing in this way that the insight
provided by GUT is in the right direction. In general, the
unification models based on a simple group, in particular
the nonsupersymmetric models, lead to a detectable proton
decay [3]. However, when the group is the product of two
or more simple groups, the structure not necessarily

contains gauge bosons that mediate proton decay [1,7,8].
In this context, the trinification group based on the semi-
simple group SUð3ÞC × SUð3ÞL × SUð3ÞR1 [9–12], results
quite convenient from a phenomenological point of view
owing to the fact that the baryon number is conserved by
the gauge interactions [7]. The original SUð3ÞL × SUð3ÞR
models with a lepton nonet were first considered by Y.
Achiman [10,11]; however, earlier work on the ½SUð3Þ�3
group can be traced back up to the seminal works in
Refs. [13,14]. Besides, this model has been flexible enough
to adjust recent LHC anomalies, for example, the di-photon
excess at 750 GeV [15] and the di-boson excess at
1.9 TeV [16,17].
The different ½SUð3Þ�3 models have a rich phenomenol-

ogy in the Higgs and neutrino sectors [9,17,18]; its rank is 6
(equal to E6), hence the model predicts, in addition to those
already present in the SM, two additional heavy vector
neutral gauge bosons which constitute one of the most
important sources of constraints for the model. In this
paper, we undertake a detailed study of the couplings of
these new gauge bosons to the SM fermions, in order to put
electroweak (EW) and collider constraints on ½SUð3Þ�3.
In general, intricate models are not appealing. A way to

look for new models with a moderate content of fermions is
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1In trinification, the equality of the coupling constants at the
unification scale is assumed, which is equivalent to impose an
additional discrete Z3 symmetry (see [9] and references therein).
In the present work, such assumption has not been made.
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to consider flipped versions of the already known models in
the literature [19–26]. An exhaustive account of the
phenomenology of these models has not been done so
far. Our work represents a first step in that direction. The
first alternative model was “Flipped SUð5Þ” [19,27], which
produces a symmetry breaking for SOð10Þ GUT down to
SUð5Þ ⊗ Uð1Þ, where the Uð1Þ factor contributes to the
electric charge, and as such, its basic predictions for sin2θW
and the proton decay are known to be different from those
of SUð5Þ. In the present work, we study the flipped
versions of the universal 3-3-1 and the left-right symmetric
models in ½SUð3Þ�3. That is equivalent to the study of the
different embeddings of the SM fermions in the multiplets
when the ½SUð3Þ�3 gauge group breaks down to the SM. As
a consequence of the reduction in the effective group
symmetry, these models predict new Z0 bosons at low
energies. For a given Z0 mass, these vector boson reso-
nances have well determined predictions in low-energy
experiments and colliders. For universal models in the E6

context, a systematic study of its alternative models and
further references can be found in [25].
The heavy vector bosons Z0 are a generic prediction of

the physics Beyond the SM (BSM) with an extended EW
sector [28]. The detection of one of these resonances at the
LHC will shed light on the underlying symmetries of the
BSM physics. For the high-luminosity regime, the LHC
will have sensitivity for Z0 masses under 5 TeV [29,30];
thus, a systematic and exhaustive study of the EW
extensions of the SM with a minimal content of exotic
fields is mandatory. By imposing universality on the EW
extensions of the SM (as it happens in the SM), the possible
EW extensions are basically the E6 subgroups [31–33].
½SUð3Þ�3 is one of the four maximal E6 subgroups; so, an
exhaustive study of its neutral current structure is conven-
ient, something done in the present work. As we will show,
the couplings of additional gauge bosons to the SM
fermions are independent of the Higgs sector and just
depend on the ½SUð3Þ�3 symmetries. We also present LHC
and EW constraints for these models.
Finally, let us mention that unification is not implicit in

our assumptions; so, nonuniversal gauge coupling strengths
are used in this study.
The paper is organized as follows: in Sec. II, we review

the ½SUð3Þ�3 model and its subgroups. In Sec. III, we
calculate the EW couplings for Z0 bosons in the ½SUð3Þ�3
subgroup SUð3ÞC ⊗ SUð3ÞL ×Uð1Þ ⊗ Uð1Þ0. In Sec. IV,
we calculate the eigenstates of the most general ½SUð3Þ�3
Higgs potential and, for considering different cases, it is
shown that these eigenstates are independent of the Higgs
sector. It is also shown that the null space of the ½SUð3Þ�3
Higgs potential corresponds to the photon. In Sec. V, we
calculate the EW couplings for the left-right model and its
alternative models. In Sec. VI, we impose EW and collider
constraints on the Z-Z0 mixing angle and on the mass of the
new neutral Z0 gauge bosons. Section VII summarizes our

conclusions. Four technical appendixes are presented at the
end of the manuscript, in particular, in Appendix C the null
vector of the EW vector boson mass matrix is built for an
arbitrary Higgs tensor and gauge theory.

II. THE ½SUð3Þ�3 GROUP

The ½SUð3Þ�3 group [9,31,34] SUð3ÞC ⊗ SUð3ÞL ⊗
SUð3ÞR ≡ ½SUð3Þ�3 is a maximal subgroup of E6 [35]
with the same rank and fundamental representation. The
three factor groups are identified in the following way: the
first one corresponds to the vectorlike QCD color group
SUð3ÞC, the same as in the SM, and the other two can be
identified with the left-right symmetric flavor group
SUð3ÞL ⊗ SUð3ÞR extension of the SUð2ÞL ⊗ SUð2ÞR,
where SUð2ÞL in the SM is such that SUð2ÞL ⊂ SUð3ÞL.
Using λi; i ¼ 1; 2;…; 8 as the eight Gell-Mann matrices for
SUð3Þ normalized as TrðλiλjÞ ¼ 2δij, the charge operator
for the ½SUð3Þ�3 group may be written as

Q ¼ λ3L
2

⊕
λ8L
2

ffiffiffi
3

p ⊕
λ3R
2

⊕
λ8R
2

ffiffiffi
3

p : ð1Þ

In this way, each family of fermions is assigned to a 27 as2

27 ¼ ð3; 3; 1Þ ⊕ ð1; 3̄; 3Þ ⊕ ð3̄; 1; 3̄Þ;

where according to (1), the particle content of each term is

ð3; 3; 1Þ ¼ ðu; d;DÞTL;
ð3̄; 1; 3̄Þ ¼ ðuc; dc;DcÞTL;

ð1; 3̄; 3Þ ¼

0
B@

N0 E− e−

Eþ N0c νe

eþ νce M0

1
CA

L

;

which corresponds to the 27 states in the fundamental
representation of E6.

A. 3-3-1 models from ½SUð3Þ�3
Let us now consider the decomposition of the ½SUð3Þ�3

gauge group into a subgroup G which survives at an
intermediate energy scale between the EW scale (245 GeV)
and the unification scale; that is ½SUð3Þ�3 ⊃ G.
Suppose first that G corresponds to the universal 3-3-1

model [37]:

2Another convention assigns leptons ∼ð1; 3̄; 3Þ, quarks
∼ð3̄; 3; 1Þ and antiquarks ∼ð3; 1; 3̄Þ, in this case the assignments
of the SUð3ÞC representation of the quarks are interchanged with
respect to the SM. In the present work, we follow the Robinett
and Rosner convention [20,36].
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G ¼ SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX
⊂ SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1Þa ⊗ Uð1Þb: ð2Þ

By using that SUð3Þ → SUð2Þa ⊗ Uð1Þb the triplet in each
nonet goes to a doublet with charge b and a singlet with
charge −2b, i.e., 3 → 2b þ 1−2b. Next by breaking the
remaining spin symmetry, i.e., SUð2Þa → Uð1Þa, the dou-
blet goes to a couple of singlets,i.e., 2bþ1−2b→1a;bþ
1−a;bþ10;−2b. Thus, when SUð3ÞR breaks into
Uð1Þa ⊗ Uð1Þb, the following branching rule applies,

3R ⟶ ðaÞðbÞ þ ð−aÞðbÞ þ ð0Þð−2bÞ; ð3Þ

which implies

ð3; 3; 1Þ ⟶ ð3; 3; 0; 0Þ;
ð3̄; 1; 3̄Þ ⟶ ð3̄; 1;−a;−bÞ ⊕ ð3̄; 1; a;−bÞ ⊕ ð3̄; 1; 0; 2bÞ;
ð1; 3̄; 3Þ ⟶ ð1; 3̄; a; bÞ ⊕ ð1; 3̄;−a; bÞ ⊕ ð1; 3̄; 0;−2bÞ:

Since the nonet (3, 3, 1) is simultaneously a color and a
SUð3ÞL triplet, the unique possibility for the fermion
assignment is

ð3; 3; 1Þ ⟶ð3; 3; 0; 0Þ ¼ ðuL; dL;DLÞT0 :

For the nonet ð3̄; 1; 3̄Þ, there are three different fermion
assignments in consistency with the three different SUð2ÞX
spin symmetries3 [36], X ¼ I, U and V, i.e.,

ð3̄;1; 3̄Þ⟶ ð3̄;1;−a;−bÞ⊕ ð3̄;1;a;−bÞ⊕ ð3̄;1;0;2bÞ

¼

8>><
>>:
ðdcLÞ−a;−b⊕ ðucLÞa;−b⊕ ðDc

LÞ0;2b; X¼ I;

ðDc
LÞ−a;−b⊕ ðdcLÞa;−b⊕ ðucLÞ0;2b; X¼U;

ðucLÞ−a;−b⊕ ðDc
LÞa;−b⊕ ðdcLÞ0;2b; X¼V:

We label the three possible fermion assignments with
X ¼ I, U, V, which denote weak-I-spin, weak-U-spin
and weak-V-spin, respectively. As can be seen, the
½SUð3Þ�3 gauge group produces three different low-energy
3-3-1 fermion structures: the ordinary one presented in
Ref. [37] and two more new in the literature as far as
we know.
In a corresponding way, there are three different fermion

assignments for the nonet ð1; 3̄; 3Þ, i.e.,

ð1; 3̄; 3Þ ⟶ ð1; 3̄; a; bÞ ⊕ ð1; 3̄;−a; bÞ ⊕ ð1; 3̄; 0;−2bÞ

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ðE−
L; N

0c
L ; νceLÞTa;b ⊕ ðN0

L; E
þ
L ; e

þ
L ÞT−a;b

⊕ ðe−L; νeL;M0
LÞT0;−2b; X ¼ I;

ðe−L; νeL;M0
LÞTa;b ⊕ ðE−

L; N
0c
L ; νceLÞT−a;b

⊕ ðN0
L; E

þ
L ; e

þ
L ÞT0;−2b; X ¼ U;

ðN0
L; E

þ
L ; e

þ
L ÞTa;b ⊕ ðe−L; νeL;M0

LÞT−a;b
⊕ ðE−

L; N
0c
L ; νceLÞT0;−2b; X ¼ V:

In correspondence with Eq. (1), the electric charge is now
given by

Q ¼ IL3 þ
1ffiffiffi
3

p IL8 þ cXXR3 þ
2dXffiffiffi
3

p XR8; ð4Þ

where XR3 and XR8 are the fermion charges under Uð1Þa
and Uð1Þb, respectively, as is shown in Table I, and cX and
dX are

cI ¼ 1; dI ¼ 1=2;

cU ¼ 0; dU ¼ −1;

cV ¼ −1; dV ¼ 1=2;

where we have taken b ¼ 1=ð2 ffiffiffi
3

p Þ and a ¼ 1=2 in order to
have the charges properly normalized as in E6. In Eq. (4),
IL3 and IL8 represent the charges of the fermions in the 27,
when these operators act on the triplets; in the nonets the
corresponding tridimensional representation are λ3L=2 and
λ8L=2, respectively [see Eq. (1)]. In the same vein in Eq. (4)
with X ¼ I, the charges IR3 and IR8 correspond to λ3R=2
and λ8R=2, respectively. The difference between the weak-
U-spin and the alternative 3-3-1 models (the normal and the
flipped one) is the interchange of fermions between the
multiplets, something which does not affect the low-energy
phenomenology for the neutral sector as we will see in the
next section.

B. Left-right symmetric models from ½SUð3Þ�3
A further step is to take G¼SUð3ÞC⊗SUð2ÞL⊗

SUð2ÞX⊗Uð1Þf⊗Uð1Þg, which is obtained by using the
branching rule for SUð3ÞL;R ⟶ SUð2ÞL;X ⊗ Uð1Þf;g as

3L ⟶ ð2; fÞ þ ð1;−2fÞ; 3R ⟶ ð2; gÞ þ ð1;−2gÞ;

which produces three different ways to reach the Uð1ÞY in
the SM:

3In Appendix A, we briefly review the SUð2Þ weak-I-spin (or
Isospin), weak-U-spin and weak-V-spin symmetries in SUð3Þ.
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ð3; 3; 1Þ ⟶ ð3; 2; 1; f; 0Þ ⊕ ð3; 1; 1;−2f; 0Þ;
ð3̄; 1; 3̄Þ ⟶ ð3̄; 1; 2̄; 0;−gÞÞ ⊕ ð3̄; 1; 1; 0; 2gÞ;
ð1; 3̄; 3Þ ⟶ ð1; 2̄; 2;−f; gÞ ⊕ ð1; 2̄; 1;−f;−2gÞ

⊕ ð1; 1; 2; 2f; gÞ ⊕ ð1; 1; 1; 2f;−2gÞ:

The underlying breaking behind these branching rules are

ð3; 3; 1Þ ⟶ð3; 2f; 10Þ ⊕ ð3; 1−2f; 10Þ;
ð3̄; 1; 3̄Þ ⟶ð3̄; 10; 2̄−gÞ ⊕ ð3̄; 10; 12gÞ;
ð1; 3̄; 3Þ ⟶ð1; 2̄−f; 2gÞ ⊕ ð1; 2̄−f; 1−2gÞ

⊕ ð1; 12f; 2gÞ ⊕ ð1; 1−2f; 12gÞ:

Now the definition of Uð1ÞBLX ≡Uð1Þf þUð1Þg for
f ¼ g ¼ 1=6 conducts to the alternative left-right symmet-
ric models,

SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞX ⊗ Uð1ÞBLX;

with the following particle content for the quark sector:

ð3; 3; 1Þ ¼ðu; d;DÞL ⟶ ð3; 2; 1; 1=6Þ ⊕ ð3; 1; 1;−1=3Þ
¼ðu; dÞL ⊕ DL;

ð3̄; 1; 3̄Þ ¼ðuc; dc;DcÞL ⟶ ð3̄; 1; 2̄;−1=6Þ⊕ ð3̄; 1;1; 1=3Þ

¼

8><
>:

ðuc; dcÞL ⊕ Dc
L; X ¼ I;

ðDc; dcÞL ⊕ ucL; X ¼ U;

ðuc;DcÞL ⊕ dcL; X ¼ V:

For the lepton sector, we have

ð1; 3̄; 3Þ ¼

0
B@

N0 E− e−

Eþ N0c νe

eþ νce M0

1
CA

L

⟶ ð1; 2̄; 2; 0Þ ⊕ ð1; 2̄; 1;−1=2Þ ⊕ ð1; 1; 2; 1=2Þ
⊕ ð1; 1; 1; 0Þ

¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�
Eþ N0c

N0 E−

�
L

⊕
�
νe

e−

�
L

⊕ ðeþ; νceÞL
⊕ M0

L; X ¼ I;�
νe N0c

e− E−

�
L

⊕
�
Eþ

N0

�
L

⊕ ðM0
L; ν

c
eÞL

⊕ eþ; X ¼ U;�
Eþ νe

N0 e−

�
L

⊕
�
N0c

E−

�
L

⊕ ðM0
L; e

þÞL
⊕ νce; X ¼ V:

In the left-right model SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L ⊂
SUð3ÞL ⊗ SUð3ÞR (in our notation SUð2ÞL ⊗ SUð2ÞI ⊗
Uð1ÞBLI), the weak-isospin subgroup (X ¼ I) has been
used. That is the correct choice for the left-handed sector,
but not the only choice for the right-handed one as we have
shown already. The weak-V-spin symmetric case is a very
well known example where SUð2ÞV is used instead
of SUð2ÞR; this model is known as the alternative

TABLE I. Charge assignments for the fundamental representation of the ½SUð3Þ�3 group, the same 27 of the E6

group, under different Uð1Þ symmetries. For the first family, l is the SM lepton doublet, lT ¼ ðν; e−Þ and q ¼
ðu; dÞT is the SM quark doublet. The charge conjugated of the corresponding right-handed weak-isospin singlets are
ec, νc, uc and dc. The heavy exotic particles are vector under the SM group, the heavy down quark, D (Dc), is an
weak-isospin singlet (charge conjugated of the corresponding right-handed chiral projection) of charge −1=3
(þ1=3), L ¼ ðN0; E−ÞT and L ¼ ðEc; N0cÞT , are additional weak-isospin doublets where L have the same quantum
numbers of the SM lepton doublet, and M0 is a singlet under the SM.

Uð1Þ0 [25] Q0 Charges

UR 2IR3 ðeþ; dc; L̄Þþ1 þ ðl; q; D;Dc;M0Þ0 þ ðνce; uc; LÞ−1
UI 2UR3 ðνce; Dc; LÞþ1 þ ðL̄; q; uc; D; eþÞ0 þ ðM0; dc; lÞ−1
UA 2VR3 ðM0; uc; lÞþ1 þ ðL; q; dc;D; νceÞ0 þ ðeþ; Dc; L̄Þ−1
U33 2

ffiffiffi
3

p
IL8 ðl; L̄; LÞ−1 þ ðuc; dc; DcÞ0 þ ðeþ; νce;M0Þþ2 þ qþ1 þD−2

U21R̄ −2
ffiffiffi
3

p
IR8 ðeþ; νce; L̄; LÞ−1 þ ðq;DÞ0 þ ðl;M0Þþ2 þ ðuc; dcÞþ1 þDc

−2

U21Ī −2
ffiffiffi
3

p
UR8 ðM0; νce; l; LÞ−1 þ ðq;DÞ0 þ ðL̄; eþÞþ2 þ ðDc; dcÞþ1 þ uc−2

U21Ā −2
ffiffiffi
3

p
VR8 ðM0; eþ; l; L̄Þ−1 þ ðq;DÞ0 þ ðL; νceÞþ2 þ ðDc; ucÞþ1 þ dc−2

Uð1Þ31R IBL ðL̄; L;M0Þ0 þ qþ1=6 þ ðuc; dcÞ−1=6 þ ðeþ; νceÞþ1=2 þ l−1=2 þDc
þ1=3 þD−1=3

Uð1Þ31I UBL ðl; L; eþÞ0 þ qþ1=6 þ ðDc; dcÞ−1=6 þ ðM0; νceÞþ1=2 þ L̄−1=2 þ ucþ1=3 þD−1=3

Uð1Þ31A VBL ðl; L̄; νceÞ0 þ qþ1=6 þ ðDc; ucÞ−1=6 þ ðM0; eþÞþ1=2 þ L−1=2 þ dcþ1=3 þD−1=3
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left-right4(ALR), which was found in a different way in
Ref. [22]. The case X ¼ U is a new alternative model.

III. 3-3-1 NEUTRAL CURRENTS

For the ½SUð3Þ�3 group, the interaction Lagrangian
−LI is

gLJIL3μA
Iμ
L3 þ gLJIL8μA

Iμ
L8 þ gRJXR3μA

Xμ
R3 þ gRJXR8μA

Xμ
R8

¼ gLJIL3μA
Iμ
L3 þ g0JYμBμ þ g2J2μZ0μ þ g3J3μZ00μ; ð5Þ

where AI
L3μ, A

I
L8μ, A

X
R3μ and AX

R8μ are the corresponding
vector gauge bosons associated with λIL3, λ

I
L8, λ

X
R3 and λXR8,

respectively (for a precise definition, see Appendix B). The
neutral currents in (5) are given by

JXR8μ ¼
X
i

f̄iγμ½ϵXR8
L ðiÞPL þ ϵXR8

R ðiÞPR�fi; ð6Þ

JXR3μ ¼
X
i

f̄iγμ½ϵXR3
L ðiÞPL þ ϵXR3

R ðiÞPR�fi; ð7Þ

where the chiral charges, ϵL;R, are shown in Table AII in
Appendix D 1. Notice in our notation that the bold labelsL,
R refer to the left and right chiral projections and L and R
refer to different SUðnÞ group structures. By means of an
orthogonal matrix we can rotate from the ½SUð3Þ�3 basis of
the neutral vector bosons, to a basis where one boson
corresponds to the hypercharge, i.e.,

0
BBBBB@

AI
L3μ

Bμ

Z0
μ

Z″
μ

1
CCCCCA ¼ OT

0
BBBBB@

AI
L3μ

AI
L8μ

AX
R8μ

AX
R3μ

1
CCCCCA; ð8Þ

where the orthogonal matrix is

O ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 cosβ − sinβ

0 0 sin β cosβ

1
CCCA
0
BBB@

1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

1
CCCA:

ð9Þ

It is important to realize that in order to recover the
particular case X ¼ U, corresponding to the 3-3-1 models,
it is necessary to take cos β ¼ −1. By replacing this
expression in Eq. (5), we obtain

g0BμJ
μ
Y ¼ BμðgLJIL8μ cos αþ gRJXR8μ sin α cos β

þ gRJXR3μ sin α sin βÞ; ð10Þ

by equating with

JYμ ¼
1ffiffiffi
3

p JIL8μ þ cXJXR3μ þ
2dXffiffiffi
3

p JXR8μ; ð11Þ

we get the following three equations:

1ffiffiffi
3

p g0 ¼ gL cos α;
2dXffiffiffi
3

p g0 ¼ gR sin α cos β; ð12Þ

cXg0 ¼ gR sin α sin β: ð13Þ

From these equations, we have

gR ¼
ffiffiffiffi
N
F

r
g0; cos α ¼ g0ffiffiffi

3
p

gL
;

cos β ¼ 2dXffiffiffiffi
N

p ¼ dX; ð14Þ

where N ¼ ð3c2X þ 4d2XÞ ¼ 4 and F ¼ 3 − ðg0=gLÞ2. It is
worth noticing that in the three cases considered, i.e., for
any value of X,

gR ¼ 2gLg0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2L − g02

p ¼ 2gL sin θWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cos2θW − 1

p : ð15Þ

From Eqs. (5) and (8), it is possible to get expressions for
the neutral currents associated with the Z0 and Z00 bosons,
respectively,

g2J2μ ¼ − gLJIL8μ sin αþ gRJXR8μ cos α cos β

þ gRJXR3μ cos α sin β;

g3J3μ ¼ − gRJXR8μ sin β þ gRJXR3μ cos β: ð16Þ

From these relations and from Table AII, we can obtain the
explicit expressions of the vector and axial charges for the
Z0 and Z00 gauge bosons; these charges are shown in
Tables AIV and AV, respectively. The collider and EW
constraints are shown in Table II and Fig. 1. A detailed
analysis of these constraints is presented in Sec. VI. Finally,
we can make use of the defining condition of the orthogo-
nal matrices, O−1 ¼ OT , and use the matrix (8) to rotate
from the ½SUð3Þ�3 basis for the neutral vector bosons to the
SM basis, i.e.,4Or alternate left-right model.
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0
BBB@

Aμ

Zμ

Z0
μ

Z00
μ

1
CCCA ¼ W ·OT

0
BBBBB@

AI
L3μ

AI
L8μ

AX
R8μ

AX
R3μ

1
CCCCCA

¼

0
BBB@

sin θW cos θW 0 0

cos θW − sin θW 0 0

0 0 1 0

0 0 0 1

1
CCCAOT

0
BBBBB@

AI
L3μ

AI
L8μ

AX
R8μ

AX
R3μ

1
CCCCCA;

ð17Þ

whereW and θW are theWeinberg matrix and theWeinberg
angle, respectively.

IV. EIGENSTATES OF THE VECTOR BOSON
MASS MATRIX IN ½SUð3Þ�3

In the last section, we saw that it is possible to obtain the
SM fields Aμ and Zμ and the extra neutral vector bosons Z0

μ

and Z00
μ by rotating the ½SUð3Þ�3 basis for the vector fields.

By making use of some viable cases for the Higgs potential
in the present section, we will show that, independent of the
Higgs sector, the null space of the vector boson mass matrix
corresponds to the photon, i.e., by rotating the photon
component ðAμ; 0; 0; 0ÞT in the SM basis to the ½SUð3Þ�3
basis, we obtain the null space of the vector boson mass
matrix. This is a particular example of a more general
theorem which is shown in Appendix C. In that sense, the
present section is useful to provide a context for this
demonstration. The same is not true for the eigenvalues of
the vector mass matrix which strongly depend on the Higgs
sector. In the fundamental representation of the ½SUð3Þ�3
group, the neutral components are in the leptonic sector

ð1; 3̄; 3Þ; if we put the Higgs field Φ in the same
representation the corresponding transformation properties
are

Φ0 ¼ ULΦU
†
R; UL;R ¼ exp ð−iθaðxÞλaL;R=2Þ: ð18Þ

Requiring gauge invariance, the covariant derivative is

DμΦ ¼ ∂μΦ −
i
2
ðgLλaAa

μLΦ − gRΦλaAa
μRÞ; ð19Þ

which transforms in the same way as the Higgs fields, i.e.,

ðDμΦÞ0 ¼ ULDμΦU
†
R; ð20Þ

as it is required to build the gauge invariant kinetic term.
The Higgs sector of the ½SUð3Þ�3 model contains two
complex scalar field nonets, Φ1 and Φ2. The most general
vacuum expectation value (VEV) for these fields are [18]

hΦ1i ¼

0
B@

v1 0 0

0 b1 0

0 0 MI

1
CA; hΦ2i ¼

0
B@

v2 0 0

0 b2 b3
0 MR M3

1
CA;

ð21Þ
where Φ1 is diagonal in view of the fact that it is always
possible to bring one Higgs VEV into its diagonal form by
using the SUð3ÞL × SUð3ÞR symmetry. The vector boson
masses came from

LK ¼ þ
X
i¼1;2

Tr½DμΦiðDμΦiÞ†�jΦi¼hΦii; ð22Þ

which is invariant under the already mentioned gauge
transformations [Eqs. (18) and (20)]. We can get rid of
the kinetic mixing term Tr½DμΦ1ðDμΦ2Þ†� by redefining
the scalar fields in order to cast the Lagrangian into the
canonical form. By a rotation in the adjoint representation,
we obtain the simplified expression

LKðhΦ1i; hΦ2iÞ ¼
1

3
ððgLAV

L8μ þ gRAI
R8μÞ2b23

þ ðgRAV
R8μ þ gLAI

L8μÞ2M2
R

þ ðgLAV
L8μ − gRAV

R8μÞ2ðb21 þ b22Þ
þ ðgLAI

L8μ − gRAI
R8μÞ2ðM2

3 þM2
I Þ

þ ðgLAU
L8μ − gRAU

R8μÞ2ðv21 þ v22ÞÞ; ð23Þ

where AV
ðL;RÞ8μ¼−ðAI

ðL;RÞ8μ−
ffiffiffi
3

p
AI
ðL;RÞ3μÞ=2 and AU

ðL;RÞ8μ ¼
−ðAI

ðL;RÞ8μ þ
ffiffiffi
3

p
AI
ðL;RÞ3μÞ=2. By writing the kinetic part in

terms of AI
R8μ and AI

R3μ, the Higgs covariant derivative can
be written as

LK ¼ 1

2
AT ·M ·A; ð24Þ

TABLE II. 95% C.L. lower mass limits on extra Z0 bosons for
various models from EW precision data and constraints on
sin θZZ0 . For comparison, we show in the second column the
95% LHC constraints [39] which have been calculated according
to Ref. [29]. In the following columns, we give, respectively, the
central value and the 95% C.L. lower and upper limits for sin θZZ0.

MZ0 [GeV] sin θZZ0

Z0 LHC EW sin θZZ0 sin θmin
ZZ0 sin θmax

ZZ0

Z331G 2925 958 −0.00007 −0.0012 0.0009

ZTri
I 2492 1134 0.0003 −0.0006 0.0013

ZI 2525 1,204 0.0003 −0.0005 0.0012

ZTri
LR 2693 1182 −0.0004 −0.0015 0.0006

ZLR 2682 998 −0.0004 −0.0013 0.0006
ZLRU 2.588 935 −0.00001 −0.0011 0.0008

ZTri
ALR 2532 447 −0.0004 −0.0014 0.0007
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where A ¼ ðAI
L3μA

I
L8μA

I
R8μA

I
R3μÞT , and M is the gauge

boson mass matrix whose elements are given by

M11 ¼
2

4
g2Lðb21 þ b22 þ b23 þ v21 þ v22Þ;

M12 ¼
−2
4

ffiffiffi
3

p g2Lðb21 þ b22 þ b23 − v21 − v22Þ;

M13 ¼
2

4
ffiffiffi
3

p gLgRðb21 þ b22 − 2b23 − v21 − v22Þ;

M14 ¼
−2
4

gLgRðb21 þ b22 þ v21 þ v22Þ;

M24 ¼
2

4
ffiffiffi
3

p gLgRðb21 þ b22 − 2M2
R − v21 − v22Þ;

M34 ¼
−2
4

ffiffiffi
3

p g2Rðb21 þ b22 þM2
R − v21 − v22Þ;

M22 ¼
2

12
g2Lðb21 þ b22 þ b23 þ 4M2

3 þ 4M2
I

þ 4M2
R þ v21 þ v22Þ;

M33 ¼
2

12
g2Rðb21 þ b22 þ 4b23 þ 4M2

3 þ 4M2
I

þM2
R þ v21 þ v22Þ;

M23 ¼
−2
12

gLgRðb21 þ b22 − 2b23 þ 4M2
3 þ 4M2

I

− 2M2
R þ v21 þ v22Þ;

M44 ¼
2

4
g2Rðb21 þ b22 þM2

R þ v21 þ v22Þ:

The null space of the mass matrix M is

Aμ
null ¼ N

�
1
gL
; 1ffiffi

3
p

gL
; 1ffiffi

3
p

gR
; 1

gR

�
AμðxÞ; ð25Þ

where AμðxÞ is an arbitrary vector field which, as we will
see later, corresponds to the photon, and N is an arbitrary
normalization. We can obtain a similar expression for the
null eigenvector by inverting Eq. (17),

R

0
BBB@

Aμ

0

0

0

1
CCCA ¼ gL sin θW

0
BBBBBB@

1
gL
1ffiffi
3

p
gL
1ffiffi
3

p
gR
1
gR

1
CCCCCCA
Aμ;

R

0
BBB@

0

Zμ

0

0

1
CCCA ¼ gL

sin2θW
cos θW

0
BBBBBB@

cot2θW
gL

− 1ffiffi
3

p
gL

− 1ffiffi
3

p
gR

− 1
gR

1
CCCCCCA
Zμ; ð26Þ

where R ¼ ðW ·OTÞT . In order to get this result, it was
necessary to impose g0 ¼ gL tan θW , which is also satisfied
in the SM. This shows that the null vector corresponds to
the photon as we previously said. By proceeding in a
similar way for Z0

μ and Z00
μ, we find

R

0
BBBBB@

0

0

Z0
μ

0

1
CCCCCA ¼ gL

2
tan θW

0
BBBBB@

0

− 4ffiffi
3

p
gR

1ffiffi
3

p
gL
1
gL

1
CCCCCAZ0

μ;

R

0
BBBBB@

0

0

0

Z00
μ

1
CCCCCA ¼

0
BBBBB@

0

0

−
ffiffiffi
3

p
=2

1=2

1
CCCCCAZ00

μ: ð27Þ

These eigenvectors are the same for any Higgs sector; we
verify this for some particular cases which are easy to tackle
analytically. By taking v1 ¼ v2, b1 ¼ b3, b2 ¼ 0, MI ¼
MR andM3 ¼ 0, there are two limitsMI → ∞ or b3 → ∞,
which do not correspond to a realistic potential; however,
they serve us to check that in both cases we obtain the
eigenvectors in Eq. (26) and Eq. (27). It is possible to build
Higgs tensors in the 3̄L × 3L and 3̄R × 3R representations,
these terms give masses to AU

L3 ¼ −ðAI
L3 −

ffiffiffi
3

p
AI
L8Þ=2 and

AU
R3 ¼ −ðAI

R3 −
ffiffiffi
3

p
AI
R8Þ=2, respectively; however, their

contribution to the vector boson mass matrix do not change
the present results.

V. ALTERNATIVE LEFT-RIGHT MODELS

As we already saw in Sec. II, by choosing other SUð2Þ
spin symmetries, it is possible to find alternative models to
the left-right symmetric model which have been studied
extensively [1,40–43]. The gauge group of the low-energy
effective theory is G ¼ SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞX ⊗
Uð1ÞBLX. In the literature, the spin symmetry SUð2ÞI
corresponds to SUð2ÞR5 and Uð1ÞBLI corresponds to
Uð1ÞB−L. The resulting model by choosing X ¼ V is
known as the alternative left-right model [22] as we already
mentioned in Sec. II. The case X ¼ U is a new model
where Uð1ÞBLU corresponds to the E6 lephophobic model
(modulo a normalization which is important for the
phenomenology). In this section, we study these models
as low-energy effective field theories for ½SUð3Þ�3 [18,44].
The neutral current Lagrangians for these models are

−LNC¼gLJIL3μA
Iμ
L3þgRJXR3μA

Xμ
R3þgXBLJ

X
BLμA

Xμ
BL

¼gLJIL3μA
Iμ
L3þg0JYμBμþg2J2μZ0μ;X¼I;V; ð28Þ

5We do not use the label R for this symmetry because the
alternative spin symmetries also are subgroups of SUð3ÞR.

FLIPPED VERSIONS OF THE UNIVERSAL 3-3-1 AND … PHYSICAL REVIEW D 95, 014009 (2017)

014009-7



−LNC ¼ gLJIL3μA
Iμ
L3 þ gRJUR8μA

Uμ
R8 þ gUBLJ

U
BLμA

Uμ
BL

¼ gLJIL3μA
Iμ
L3 þ g0JYμBμ þ g2J2μZ0μ; X ¼ U: ð29Þ

For X ¼ U, the weak-U-spin operator UR3 does not
contribute to the charge operator Q; so, it is not mandatory
to take into account the corresponding current in the
Lagrangian; however, UR8 is necessary in order to repro-
duce the electromagnetic charges of the 27. For X ¼ I and
X ¼ V, from the ½SUð3Þ�3 charges we obtain

Q ¼ IL3 þ cXXR3 þ XBL; X ¼ I; V; ð30Þ

Q ¼ IL3 þ
2ffiffiffi
3

p
�
dU −

1

2

�
XR8 þ XBL; X ¼ U; ð31Þ

where

XBL ¼ 1ffiffiffi
3

p IL8 þ
1ffiffiffi
3

p XR8; X ¼ I; U; V: ð32Þ

The XBLX charges are not E6 normalized and, as can be
verified in Table I, for X ¼ I these charges correspond to
the ðB − LÞ=2 ones, i.e., IBL ¼ ðB − LÞ=2. By means of an
orthogonal matrix we can rotate from the left-right basis of
the NC vector bosons to the ðB; Z0Þ basis, i.e.,

�
Bμ

Z0
μ

�
¼ ðOI;V

BLÞT
� AI;V

R3μ

AI;V
LBμ

�
;

�
Bμ

Z0
μ

�
¼ ðOU

BLÞT
� AU

R8μ

AU
LBμ

�
; ð33Þ

where the orthogonal matrices are

OI;V
BL ¼

�
cos γ sin γ

sin γ − cos γ

�
; OU

BL ¼
�
cos δ sin δ

sin δ − cos δ

�
:

By replacing this expression in Eq. (28), we obtain

g0BμJ
μ
Y ¼ BμðgRJXR3μ cos γ þ gXBLJ

X
BLμ sin γÞ; ð34Þ

g0BμJ
μ
Y ¼ BμðgRJXR8μ cos δþ gXBLJ

X
BLμ sin δÞ; ð35Þ

for X ¼ I, V and X ¼ U, respectively. By equating the
hypercharge current with

JYμ ¼ cXJXR3μ þ JXBLμ; X ¼ I; V; ð36Þ

JYμ ¼
2ffiffiffi
3

p
�
dU −

1

2

�
JXR8μ þ JXBLμ; X ¼ U; ð37Þ

we get the equations

gR cos γ ¼ g0cX; gXBL sin γ ¼ g0; X ¼ I; V;

gR cos δ ¼ g0
2ffiffiffi
3

p
�
dU −

1

2

�
; gXBL sin δ ¼ g0; X ¼ U:

From these equations, we get

cos γ ¼ cX
g0

gR
;

1

g02
¼ 1

ðgXBLÞ2
þ c2X

g2R
; X ¼ I; V:

cos δ ¼ −
ffiffiffi
3

p g0

gR
;

1

g02
¼ 1

ðgXBLÞ2
þ 3

g2R
; X ¼ U:

Because cX ¼ 1 for X ¼ I, V the right gauge coupling must
satisfy the inequality gR > g0 ¼ 0.357, which is met in
½SUð3Þ�3. ForX ¼ U, the last equation implies gR >

ffiffiffi
3

p
g0 ¼

0.619, which automatically excludes the ½SUð3Þ�3 value of
the right gauge coupling, i.e., gR ¼ 0.435; however, the
typical left-right gauge coupling gL ¼ gR ¼ 0.652 is still
possible. From Eqs. (28) and (33), it is possible to get
expressions for the neutral current associated with the Z0

g2J2μ ¼ −gXBLJXBLμ cos γ þ gRJXR3μ sin γ

¼ gLtanW

�
αXJXR3μ −

cXJXBLμ
αX

�
; X ¼ I; V;

g2J2μ ¼ −gXBLJXBLμ cos δþ gRJXR8μ sin δ

¼ gLtanW

�
αUJXR8μ þ

ffiffiffi
3

p
JXBLμ
αU

�
; X ¼ U; ð38Þ

where

αX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gR
gL

�
2

cot2θW − c2X

s
⟶

½SUð3Þ�3

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cos2θW − 1
p ; X ¼ I; V;

αU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gR
gL

�
2

cot2θW − 3

s
; X ¼ U: ð39Þ

From these expressions, we can obtain the explicit expres-
sions for thevector andaxial charges. ForX ¼ I andgR ¼ gL,
these charges correspond to those of the left-right model
reported in Ref. [28]. In the presentwork, gR is determined by
the ½SUð3Þ�3 symmetry; thus, by replacinggR fromEq. (15) in
the expression above, we obtain (for X ¼ I, V) the rhs
expression of Eq. (39). For sin2θW ¼ 3=8, we recover the
unification matching condition gL ¼ gR for any X. However,
in the presentwork,wemake use of the M̄Svalue for theweak
mixing angle, sin θW ¼ 0.231, as we will explain below.
From these relations and from Table AII, we can obtain the
explicit expressions for the vector and axial charges for theZ0
gauge boson, corresponding to the g2J2μ current. For X ¼ I,
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V,U, these charges are shown inTablesAVI,AVII, andAVIII,
respectively. The collider and EW constraints are shown in
Table II and Figs. 2 and 3. A detailed analysis of these
constraints will be presented in the next section.

VI. ELECTROWEAK AND COLLIDER
CONSTRAINTS

We analyze the previously considered neutral gauge
bosons and impose limits on the Z-Z0 mixing angle, θZ−Z0 ,
and on the masses of the neutral Z0 bosons,MZ0 . In order to
obtain the EW precision data (EWPD) constraints, we
make use of the special purpose FORTRAN package GAPP

(Global Analysis of Particle Properties) [45]. Details of the
analysis can be found in Ref. [38,46–48].6
In the third column of Table II, the EW constraints are

shown. The quantum numbers of the model Z331G corre-
spond to those of Uð1Þ21Ī in Table I. We do not put the
superscript Tri on the 3-3-1 model because the charges and
the coupling strength of this model are the same as the very
well-known universal 3-3-1 model [33,37,49] or the so-
called G model in Refs. [29,50]. The vector and axial
charges for this model are shown in Table AIV.
The quantum numbers of ZTri

I correspond to those of UI
in Table I. This model is known as the inert model which
does not couple to up-type quarks [20], and corresponds to
the second neutral vector boson or Z00 in the ½SUð3Þ�3
group. From Eq. (16) for X ¼ U we can see that the
coupling strength of ZTri

I is g2 ¼ gR ¼ 0.435. To get this
number in Eq. (15) we use for the weak mixing angle the
value sin θW ¼ 0.231, which corresponds to the M̄S
renormalization scheme at the Z-pole scale. This value is
different of the traditional E6 coupling strength,

g2 ¼
ffiffi
5
3

q
gL tan θW ¼ 0.4615. The constraints by using

the E6 coupling strength correspond to those of ZI in
Table II. The inequality of the couplings is reflected in the
EWand LHC constraints. The axial and vector couplings of
this model are shown in Table AV.
In Table II, we also distinguish between ZLR, which

assume the equality between the left and right gauge
couplings, i.e., gR ¼ gL ¼ 0.652, and ZTri

LR for which the
right coupling strength is dictated by ½SUð3Þ�3, i.e.,
gR ¼ 0.435. This inequality between the left and right
couplings makes the chiral charges different which is the
reason of the disparity in the constraints in Table II.
We observe that for the alternative left-right model

(ALR) the EW constraints are weak compared to other
typical E6 models in the literature (except the Zψ which
only has axial couplings to the SM particles and the
leptophobic model ZL), which is a well known feature
of this model [51].

As we already saw in Sec. V, there is another alternative
model for IBL ¼ ðB − LÞ=2, the UBL, which, to the best of
our knowledge, has not been studied before. This model is
U-spin symmetric [i.e., SUð2ÞU], and it has as the main
feature that it is leptophobic in the limit gR → 0.619þ. In
the aforementioned limit, αU → 0 and the lepton couplings
are proportional to αU; however, because in this limit the
quarks couplings go as ∼1=αU, in many observables these
effects compensate each other in such a way that the EW
constraints are not trivial for this model.
In Figs. 1 and 2, the 90% exclusion contours for the

universal 3-3-1 model Z331G, its corresponding Z00 ¼ ZTri
I

in the ½SUð3Þ�3 model, in the left-right symmetric model
ZTri
LR, and in its alternative version the ZTri

ALR are shown. The
plots for ZTri

LR and the inert model ZTri
I are comparable with

ZLR and ZI in Ref. [38]. Because gR > 0.619 as we already
saw in Sec. V, it is not possible to have the ZLRU coming
from a low-energy ½SUð3Þ�3 effective model; however, by
choosing gR ¼ gL ¼ 0.652 this model is feasible. The
corresponding EW and LHC constraints are shown in
Table II and Fig. 3.
In Ref [39], the ATLAS detector data on dilepton

production was used to search for high-mass resonances
decaying to dielectron or dimuon final states. The experi-
ment analyze proton-proton collisions at a center of mass
energy of 8 TeV and an integrated luminosity of 20.3 fb−1

in the dielectron channel, and 20.5 fb−1 in the dimuon
channel. From this data they report 95% CL upper limits on
the total cross section of Z0 decaying to dilepton final
states. From these results, and following our earlier analysis
[29], we obtain the 95% C.L. lower mass limits for all the
models mentioned above. These limits are shown in the
second column in Table II and they correspond to the red
dashed line in Figs. 1 and 2.

VII. CONCLUSIONS

In this work, we analyzed all the possible embeddings of
the 3-3-1 and 3-2-2-1 models present in the ½SUð3Þ�3 gauge
group. By considering the weak-U-spin and weak-V-spin
symmetries in SUð3ÞR besides the usual weak-I-spin
symmetry [best known as SUð2ÞR] we found two flipped
versions of the 3-3-1 model, with the particularity that the
Z0 axial and vector charges are identical for the three spin
symmetries; hence, they are not a new source of phenom-
enological results. In Appendix B, we showed that the
reason behind these results is that, just for these models, the
corresponding neutral current Lagrangians are related each
other by unitary transformations. For the left-right sym-
metric model, we also found two flipped versions one of
them not reported in the literature as far as we know. This
new model is denoted as ZRLU and it corresponds to a
second alternative model of the left-right model ZLR (the
first alternative model is ZALR which is well known in the
literature [22]). In several respects, the ZLRU model is6An update of Ref. [38] will be presented soon.
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different of ZLR and ZALR; for example, it is not viable as a
low-energy effective theory, unless we make it left-right
symmetric, which is a typical assumption of the ZLR and
ZALR models. This model has as the main feature that it is
leptophobic in the limit gR → 0.619þ. In the aforemen-
tioned limit, αU → 0 and the lepton couplings are propor-
tional to αU; however, because in this limit the quarks
couplings go as ∼1=αU, in many observables these effects
compensate each other in such a way that the EW
constraints are not trivial.
We also calculated the eigenstates of the ½SUð3Þ�3 Higgs

potential and, by considering different cases, it was shown
that these eigenstates are independent of the Higgs sector. It
was also shown that the null space of the ½SUð3Þ�3 vector
boson mass matrix corresponds to the photon. As a
generalization of these results, we gave the explicit form
of the null vector of the EW vector boson mass matrix for
an arbitrary Higgs tensor and an arbitrary gauge group.
By using the LHC experimental results and EW pre-

cision data, new limits on the Z0 mass MZ0 and the mixing
angle θZ−Z0 are imposed. From this analysis we found lower
limits on MZ0 of the order of 2.5 TeV, while the mixing
angle was found to be constrained to values of the order of
10−3 radians.
The scope of the present work is not limited to the

½SUð3Þ�3 group. In Ref. [25], the full set of alternatives
breakings in E6 was shown, the next step is to extend our
analysis to E6, which has as subgroups the most promising
and best-known electroweak extensions of the standard
model.
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APPENDIX A: THE WEAK-I, WEAK-U AND
WEAK-V SPIN SYMMETRIES

The SUð3Þ algebra is invariant under any unitary trans-
formation, i.e.,

½λa=2; λb=2� ¼ ifabcλc=2 → ½λ0a=2; λ0b=2� ¼ ifabcλ0c=2;

where λ0a ¼ UλaU†. By requiring that λ3 and λ8 be mapped
to diagonal matrices a form of the unitary matrices is (there
are several ways to choose U and V)

U ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; V ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA:

Additionally, these matrices satisfy U2 ¼ U†, and
V2 ¼ V†; from these relations and unitarity we obtain
U3 ¼ V3 ¼ 1. The operators corresponding to λ3 and λ8
Gell-Mann generators for the weak-I-spin (or Isospin),
weak-U-spin and weak-V-spin are
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FIG. 1. The continuous blue line represents the 90% C.L. exclusion contour inMZ0 vs sin θZZ0 for the universal 3-3-1 model which has
charges and coupling strength according to Eq. (16) with X ¼ I. The axial and vector charges for this model are shown in Table AIV.
The inert model ZTri

I has the same charges as the E6 motivated ZI , but with the coupling strength dictated by ½SUð3Þ�3 according to
Eq. (16) for X ¼ U, i.e., g3 ¼ gR ¼ 0.435.The axial and vector charges for this model are shown in Table AV. The corresponding plot for
the E6 motivated ZI is shown in Ref. [38]. The red dashed line is the 95% C.L. lower mass limit obtained from ATLAS data [39].

RODRÍGUEZ, BENAVIDES, PONCE, and ROJAS PHYSICAL REVIEW D 95, 014009 (2017)

014009-10



λI3 ¼ λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λU3 ¼ Uλ3U† ¼ −
1

2
ðλ3 −

ffiffiffi
3

p
λ8Þ ¼

0
B@

0 0 0

0 1 0

0 0 −1

1
CA;

λV3 ¼ Vλ3V† ¼ −
1

2
ðλ3 þ

ffiffiffi
3

p
λ8Þ ¼

0
B@

−1 0 0

0 0 0

0 0 1

1
CA;

and
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FIG. 2. The continuous blue line represents the 90% C.L. exclusion contour inMZ0 vs sin θZZ0 for the left-right symmetric model ZTr
LR

and the alternative left-right Model ZTr
ALR with the right coupling strength dictated by ½SUð3Þ�3, i.e., gR ¼ 0.435 for sin θW ¼ 0.231 (see

Eq. (38) for X ¼ I and X ¼ V, respectively). The axial and vector charges for the left-right and the ALR model are shown in Table AVI
and Table AVII. The corresponding plot for the left-right symmetric model with gR ¼ gL ¼ 0.652 is shown in Ref. [38]. The red dashed
line is the 95% C.L. lower mass limit obtained from ATLAS data [39].
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FIG. 3. The continuous blue line represents the 90% C.L.
exclusion contour in MZ0 vs sin θZZ0 for the LRU model ZTr

LRU
with gR ¼ gL ¼ 0.652 for sin θW ¼ 0.231 (See Eq. (38) for
X ¼ U). The axial and vector charges for the left-right and
the LRU model are shown in Table AVI and Table AVII. The red
dashed line is the 95% C.L. lower mass limit obtained from
ATLAS data [39].

TABLE AI. The SUð3Þ algebra is invariant under a unitary
transformation. By requiring that λ3 and λ8 be mapped to diagonal
matrices there are two possible choices, U and V ¼ U†. Addi-
tionally, these matrices satisfy U2 ¼ U†, and V2 ¼ V†; from
these relations and unitarity we obtain U3 ¼ V3 ¼ 1. The latter
identity allows us to verify the Table entries.

UλiU† ¼ λUi VλiV† ¼ λVi

λU1 λU2 λU4 λU5 λU6 λU7 λV1 λV2 λV4 λV5 λV6 λV7
λ6 λ7 λ1 −λ2 λ4 −λ5 λ4 −λ5 λ6 −λ7 λ1 λ2
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λI8 ¼ λ8 ¼
1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA;

λU8 ¼ Uλ8U† ¼ −
1

2
ðλ8 þ

ffiffiffi
3

p
λ3Þ ¼

1ffiffiffi
3

p

0
B@

−2 0 0

0 1 0

0 0 1

1
CA;

λV8 ¼ Vλ8V† ¼ −
1

2
ðλ8 −

ffiffiffi
3

p
λ3Þ ¼

1ffiffiffi
3

p

0
B@

1 0 0

0 −2 0

0 0 1

1
CA:

Upon the unitary transformationsU and V, the SUð3Þ Gell-
Mann matrices λi are mapped to λUi and λVi as it is shown in
Table AI. These alternative representations for the SUð3Þ
algebra are relevant only for SUð3ÞR in the ½SUð3Þ�3 group.
The representation of the Gell-Mann matrices in SUð3ÞL is
fixed by the phenomenology of the SM.

APPENDIX B: U AND V IN THE ADJOINT
REPRESENTATION

The eight gauge bosons associated with the SUð3ÞR are
written by convenience as

1

2
AI
aμλ

I
a ¼

1

2
AI
bμŪ

Tb
aUa

cλIc

¼ 1

2
ðUa

bAI
bμÞðUa

cλIcÞ≡ 1

2
AU
aμλ

U
a ;

where the bar in Ū stands for complex conjugation.
BecauseU is realUa

b ¼ Ūa
b. In the adjoint representation,

U is a 8 × 8 matrix; however, it is reducible to a couple of
3 × 3matrices and one 2 × 2matrix. The three-dimensional
matrices mix the generators associated with the charged
bosons while the two-dimensional one mix the diagonal
generators associated with the neutral ones0

B@
λ1

λ4

λ6

1
CA→

U

0
B@

λU1
λU4
λU6

1
CA ¼

0
B@

λ6

λ1

λ4

1
CA;

0
B@

λ2

λ5

λ7

1
CA→

U

0
B@

λU2
λU5
λU7

1
CA ¼

0
B@

λ7

−λ2
−λ5

1
CA:

The diagonal generators are mapped to�
λ3

λ8

�
→
U
�
λU3
λU8

�
¼ −

1

2

�
λ3 −

ffiffiffi
3

p
λ8

λ8 þ
ffiffiffi
3

p
λ3

�
:

Wewant to make use of this symmetry to rewrite the neutral
current

JIaμA
Iμ
a ¼ JIbμŪ

Tb
aUa

cAIμ
c ¼ JIbμV̄

Tb
aVa

cAI
cμ; ðB1Þ

by defining

AUμ
a ≡Ua

cAIμ
c ; AVμ

a ≡ Va
cAIμ

c ;

JUaμ ≡ JIbμŪ
Tb

a ¼ Ua
bJIbμ; JAaμ ≡ JIbμV̄

Tb
a ¼ Va

bJIbμ;

where we take into account that U is a real matrix. By
replacing these results in (B1) we obtain

JIaμA
Iμ
a ¼ JUaμA

Uμ
a ¼ JVaμA

Vμ
a : ðB2Þ

With these expressions it is possible to build the Lagrangian
term −LI ¼ gRJXR8μA

Xμ
R8 . It is important to stress that for the

3-3-1-1 models in ½SUð3Þ�3 the neutral current Lagrangians
of the alternative models are related each other by a unitary
transformation; however, in general, that is not true for
alternative models.

APPENDIX C: THE NULL SPACE OF THE
VECTOR BOSON MASS MATRIX FOR AN

ARBITRARY HIGGS REPRESENTATION AND
GAUGE GROUP

In this section, we will show that for any Higgs potential
there is a null vector for the mass matrixMab of the neutral
gauge vector bosons. The explicit form of the vector is7

Aa
μ ¼ ca

ga AðxÞμ, where the ca are the coefficients of the
group generators in the charge operator, i.e.,Q ¼ caTa, the
ga is the coupling strength associated with the Aa

μ vector
field and AðxÞμ must be identified with the photon field. For
a simple group, all the ga are identical; however, they may
be different for semisimple groups.

1. Rank 1 tensors

For a rank 1 tensor, we can obtain the vector mass matrix
from the Higgs covariant derivative

LK ¼ TrððDμϕ
iÞ†Dμϕ

iÞjϕi¼vi ¼
1

2
Aa
μMabAbμ; ðC1Þ

where vi are the components of the vacuum expectation
value vector. This vector satisfies Q:v ¼ 0 since the charge
operator must annihilate the vacuum. By taking the
components of the vector boson as Aa

μ ¼ ca
ga AðxÞμ, the

covariant derivative becomes zero

Dμϕ
ijϕi¼vi ¼ −igaAa

μTaϕijϕi¼vi

¼ −i
�
ga

ca

ga
TaAðxÞμ

�
ji
vi ¼ −AðxÞμQjivi ¼ 0;

where AðxÞμ is an arbitrary vector function of x, which can
be identified with the photon field. From Eq. (C1) we get

7Modulo a normalization.
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Aa
μMabAbμ ¼ 0; ðC2Þ

showing that Aa
μ ¼ caAðxÞμ is a null space vector of Mab.

2. Rank 2 tensors

For a rank 2 tensor, the analysis is quite similar. The
gauge transformation of a rank two tensor under the gauge
group is

Φi0j0 ¼ Ui0
i U

j0
j Φ

ij;

where the gauge group transformation Ui0
i ðθðxÞÞ is a

function of the local coordinate x. This allows us to define
the covariant derivative as

DμΦij ¼ ∂μΦij − igaðTaAa
μÞiαΦαj − igaðTaAa

μÞjαΦiα:

For the SUð3Þ gauge group, Ta ¼ λa

2
, ga ¼ g, UðθÞ ¼

expð−iθaTaÞ and the gauge transformation of the vector
field is

A0
μ ¼ TaA0a

μ ¼ UðθÞTaAa
μUðθÞ† þ i

g
UðθÞ∂μU†ðθÞ:

We do not lose generality by assuming that the VEVof the
Higgs rank 2 tensor is the product of two Higgs scalars in
the fundamental representation,8 i.e., Φij ¼ χiξj. In a
similar way as we did for the rank 1 tensors, we also
build the null vector as Aa

μ ¼ ca
ga AðxÞμ; thus, the covariant

derivative is

DμΦijjΦ¼hΦi ¼ − igaðTaAa
μÞiαχαξj − igaðTaAa

μÞjαχiξα;
¼ − iAðxÞμðQi

αχ
αξj þQj

αχiξαÞ;
¼ − iAðxÞμðqiχiξj þ qjχiξjÞ
¼ − iAðxÞμðqi þ qjÞχiξj;

where in the last step we take into account that the charge
operator is diagonal, i.e., Qi

αχ
α ¼ qiχi and Qj

αξα ¼ qjξj. In
these expressions, the qi are the charges of the components
of a vector in the fundamental representation. If the
component hΦiji correspond to the VEV of a Higgs field
then qi þ qj ¼ 0 and the kinetic Lagrangian becomes zero,

L ¼ TrððDμΦijÞ†DμΦijÞjΦ¼hΦi ¼
1

2
Aa
μMabAbμ ¼ 0:

This shows that, as we already demonstrated for the rank 1
tensor, Aa

μ ¼ ca
ga AðxÞμ is a null vector of the mass matrix

Mab. The procedure is similar for an arbitrary tensor.

APPENDIX D: Z0 COUPLINGS

For the SM extended by a Uð1Þ0 extra factor, the neutral
current interactions of the fermions are described by the
Hamiltonian,

HNC ¼
X2
i¼1

giZ0
iμ

X
f

f̄ γμðϵðiÞL ðfÞPL þ ϵðiÞR ðfÞPRÞf; ðD1Þ

where Z0
1μ and Z

0
2μ are the weak basis states such that Z

0
1μ is

identifiedwith the neutral gauge bosonof the SM,Z, andZ0
2μ

with the Z0; the index f runs over all the SM fermions in the
low-energy neutral current (NC) effectiveHamiltonianHNC,
andPL ¼ ð1 − γ5Þ=2 andPR ¼ ð1þ γ5Þ=2. It is convenient
to write Eq. (D1) in terms of the vector and axial charges,

HNC ¼ 1

2

X2
i¼1

giZ0
iμ

X
f

f̄ γμðGðiÞ
V ðfÞ −GðiÞ

A ðfÞγ5Þf; ðD2Þ

where the chiral couplings ϵðiÞL ðfÞ and ϵðiÞR ðfÞ are linear

combinations of the vectorGðiÞ
V ðfÞ and axialGðiÞ

A ðfÞ charges
given by ϵðiÞL ðfÞ ¼ ½GðiÞ

V ðfÞ þ GðiÞ
A ðfÞ�=2 and ϵðiÞR ðfÞ ¼

½GðiÞ
V ðfÞ − GðiÞ

A ðfÞ�=2. The mass eigenstates Z1μ and Z1μ

are given by

Z1μ ¼ Z0
1μ cos θ þ Z0

2μ sin θ;

Z2μ ¼ −Z0
1μ sin θ þ Z0

2μ cos θ:

For the numerical calculations, we use the expressions for
the vector and axial charges shown in the Appendices D 1
and D 2, where most of the values in the Tables are being
presented for the first time in the literature. We have also
used sin2 θW ¼ 0.231 and g1 ≡ g= cos θW ¼ 0.743.

1. The 3-3-1 charges and coupling strength

For X ¼ U, cos β ¼ dU ¼ −1 and Eq. (16) reduces to

g2Jμ2 ¼ − gLJIL8μ sin α − gRJUR8μ cos α; ðD3Þ

where

JIL8μ ¼
X
i

f̄iγμ½ϵIL8L ðiÞPL þ ϵIL8R ðiÞPR�fi;

JUR8μ ¼
X
i

f̄iγμ½ϵUR8
L ðiÞPL þ ϵUR8

R ðiÞPR�fi:

In this way,

g2Jμ2 ¼
1

2

X
i

f̄iγμð−gL sin α½gIL8V ðiÞ − gIL8A ðiÞγ5�

− gR cos α½gUR8
V ðiÞ − gUR8

A ðiÞγ5�Þfi;
8Any component of a matrix can always be written as the

tensorial product of two vectors.
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where

g
XðL;RÞ8
V;A ðiÞ ¼ ϵ

XðL;RÞ8
L ðiÞ � ϵ

XðL;RÞ8
R ðiÞ: ðD4Þ

Reordering, we have

g2Jμ2 ¼
g331G
2

X
i

f̄iγμðG331G
V ðiÞ − G331G

A ðiÞγ5Þfi;

where the vector and axial charges are

g331GG331G
V;A ðiÞ ¼ −gL sin αg

IL8
V;AðiÞ − gR cos αg

UR8
V;AðiÞ:

In the differential cross section, the product g331GG331G
V;A

always appears, where the G331G
V;A are the vector and axial

charges in Eq. (D2) and g331G is the corresponding coupling

strength. For this reason, it is not necessary to know them
separately. Now, given that

g0 ¼ gL tan θW; gR ¼ 2gL sin θWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cos2θW − 1

p ;

cos α ¼ g0ffiffiffi
3

p
gL

¼ 1ffiffiffi
3

p tan θW;

we take the positive sign of sin α in agreement with
Eq. (12). The expressions for the vector and axial couplings
can be cast as

g331GG331G
V;A ðiÞ ¼ −gLffiffiffi

3
p

cos θW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cos2θW − 1

p
× ðð4sin2θW − 3ÞgIL8V;AðiÞ
þ 2sin2θWg

UR8
V;AðiÞÞ: ðD5Þ

From Table I, we obtain the chiral charges in Table AII and
their corresponding axial and vector expressions in
Table AIV. By replacing these expressions in Eq. (D5),
we obtain the axial and vector charges as they are shown in

TABLE AV. Vector and axial couplings ZTri
I → f̄f (X ¼ U

case). Here ηIN ¼ gR.

f gINGIN
V ðfÞ gINGIN

A ðfÞηIN
ν − 1

2
ηIN − 1

2
ηIN

e − 1
2
ηIN − 1

2
ηIN

u 0 0
d 1

2
ηIN − 1

2
ηIN

TABLE AII. The chiral charges for the SM particles under the
additional Uð1Þ symmetries embedded in the ½SUð3Þ�3 group. l
stands for the left-handed doublet ðνL; e−LÞT and q for the quark
left-handed doublet ðuL; dLÞT . For low-energy constraints, only
the Z0 charges of the SM fermions are involved in the calculation.

Chiral charges

l eR q uR dR l eR q uR dR

ϵIR3 0 − 1
2

0 þ 1
2

− 1
2

ϵIR8 −2
2
ffiffi
3

p −1
2
ffiffi
3

p 0 þ1

2
ffiffi
3

p þ1

2
ffiffi
3

p

ϵUR3 − 1
2

0 0 0 þ 1
2

ϵUR8 1
2
ffiffi
3

p 2
2
ffiffi
3

p 0 −2
2
ffiffi
3

p 1
2
ffiffi
3

p

ϵVR3 þ 1
2

þ 1
2

0 − 1
2

0 ϵVR8 1

2
ffiffi
3

p −1
2
ffiffi
3

p 0 1

2
ffiffi
3

p −2
2
ffiffi
3

p

ϵIBL − 1
2

− 1
2

þ 1
6

þ 1
6

þ 1
6

ϵIL8 − 1

2
ffiffi
3

p − 1ffiffi
3

p 1

2
ffiffi
3

p 0 0

ϵUBL 0 0 þ 1
6

− 1
3

þ 1
6

ϵVBL 0 − 1
2

1
6

1
6

− 1
3

TABLE AIII. The vector and axial charges for the SM particles
under the additional Uð1Þ symmetries embedded in the ½SUð3Þ�3
group. For low-energy constraints, only the Z0 charges of the SM
fermions are involved in the calculation.

Vector and axial charges

u d ν e u d ν e

gIR3V
1
2

− 1
2

0 − 1
2 gIR8V

1

2
ffiffi
3

p 1

2
ffiffi
3

p −2
2
ffiffi
3

p −3
2
ffiffi
3

p

gIR3A
− 1

2
1
2

0 1
2 gIR8A

−1
2
ffiffi
3

p −1
2
ffiffi
3

p −2
2
ffiffi
3

p −1
2
ffiffi
3

p

gUR3
V

0 1
2

− 1
2

− 1
2 gUR8

V
−2
2
ffiffi
3

p 1
2
ffiffi
3

p 1
2
ffiffi
3

p 3
2
ffiffi
3

p

gUR3
A

0 − 1
2

− 1
2

− 1
2 gUR8

A
2

2
ffiffi
3

p −1
2
ffiffi
3

p 1

2
ffiffi
3

p −1
2
ffiffi
3

p

gVR3
V − 1

2
0 1

2
1 gVR8

V
1

2
ffiffi
3

p −2
2
ffiffi
3

p 1

2
ffiffi
3

p 0

gVR3
A

1
2

0 1
2

0 gVR8
A

−1
2
ffiffi
3

p 2

2
ffiffi
3

p 1

2
ffiffi
3

p 2

2
ffiffi
3

p

gIBLV
1
3

1
3

− 1
2

−1 gIL8V
1

2
ffiffi
3

p 1
2
ffiffi
3

p −1
2
ffiffi
3

p −3
2
ffiffi
3

p

gIBLA
0 0 − 1

2
0 gIL8A

1

2
ffiffi
3

p 1

2
ffiffi
3

p −1
2
ffiffi
3

p 1

2
ffiffi
3

p

gUBL
V − 1

6
þ 1

3
0 0 gVBL

V
1
3

− 1
6

0 − 1
2

gUBL
A þ 1

2
0 0 0 gVBL

A
0 1

2
0 1

2

TABLE AVI. Vector and axial couplings for ZTri
LR → f̄f (The

X ¼ I case). Here ηLR ¼ gL tan θW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cos2θW − 1

p
.

f gLRGLR
V ðfÞ gLRGLR

A ðfÞ
ν − 1

2
ð1–4cos2θWÞηLR − 1

2
ð1–4cos2θWÞηLR

e ð4cos2θW − 3
2
ÞηLR 1

2
ηLR

u 1
3
ð5
2
− 4cos2θWÞηLR − 1

2
ηLR

d − 1
3
ð1
2
þ 4 cos2 θWÞηLR 1

2
ηLR

TABLE AIV. Couplings for Z331G → f̄f. Here η331 ¼
g331G=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cos2θW − 1

p
and g331G ¼ g1 ¼ gL= cos θW

f g331GG331G
V ðfÞ g331GG331G

A ðfÞ
ν ð1

2
− sin2θWÞη331 ð1

2
− sin2θWÞη331

e 3ð1
2
− sin2 θWÞη331 ðsin2 θW − 1

2
Þη331

u ð4
3
sin2 θW − 1

2
Þη331 − 1

2
η331

d ð1
3
sin2 θW − 1

2
Þη331 ðsin2 θW − 1

2
Þη331
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Table AIV. By defining g331G ¼ gL= cos θW , as usual for
3-3-1 models, we recover the vector and axial couplings
to the Z0 boson in the G model [29]. From Eq. (16), for
X ¼ U and X ¼ V, we obtain exactly the same expres-
sion for the axial and vector couplings as the one for the
I case in Table AIV. The reason behind this coincidence
is that the EW Langrangians −LX¼gRJXR3μA

Xμ
R3þ

gRJXR8μA
Xμ
R8 [see Eq. (5)] are related to each other by

unitary transformations for the different values of X ¼ I,
U, V, as it is shown in Appendix B. The same is not true
for the left-right symmetric model and its alternative
models as we will see in the next section. The vector and
axial charges of the Z00 current, g2J3, are obtained
directly from Eq. (16),

g2J2 ¼
gIN
2

X
i

f̄iγμðGIN
V ðiÞ −GIN

A ðiÞγ5Þfi: ðD6Þ

Here we use IN instead of I to denote the inert model
ZTri
I , in spite of the latter is a more frequent label for this

model.9

2. Couplings for the left-right symmetric model
and its alternative versions

From Eq. (38) the neutral current coupled to the Z0 boson
is given by

g2J2μ ¼ gL tan θW

�
αXJXR3μ −

cXJXBLμ
αX

�
; X ¼ I; V;

g2J2μ ¼ gL tan θW

�
αUJUR8μ þ

ffiffiffi
3

p
JUBLμ
αU

�
; X ¼ U

ðD7Þ
which encompasses the three different X values.
From Eq. (D7) we get for X ¼ I, V, U the vector and
axial charges for the left-right, ALR and inert models,
respectively,

g2J2 ¼
gðAÞLRðUÞ

2

X
i

f̄iγμðGðAÞLRðUÞ
V ðiÞ −GðAÞLRðUÞ

A ðiÞγ5Þfi;

where the index ðAÞLRðUÞ stands for the three models, i.e.,
LR, ALR and LRU.

gðAÞLRG
ðAÞLR
V;A ðiÞ ¼ g0

�
gXR3
V;AðiÞ
αX

− cXαXg
XBL
V;AðiÞ

�
;

gLRUGLRU
V;A ðiÞ ¼ g0

�
gUR8
V;AðiÞ
αU

þ
ffiffiffi
3

p
αUg

UBL
V;A ðiÞ

�
; ðD8Þ

where, g0 ¼ gL tan θW and αI ¼ αV ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4cos2θW − 1Þ

p
.

From Table AIII and Eqs. (D8), we get the vector and axial-
vector couplings to the Z0 boson, which are shown in
Tables AVII and AVIII.
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