
ϕϕ and J=ψϕ mass spectra in decay B0
s → J=ψϕϕ

A. A. Kozhevnikov*

Laboratory of Theoretical Physics, S. L. Sobolev Institute for Mathematics,
Novosibirsk, Russian Federation

Novosibirsk State University, Novosibirsk, Russian Federation
(Received 26 October 2016; published 6 January 2017)

The mass spectra of the ϕϕ and J=ψϕ states in the decay B0
s → J=ψϕϕ recently observed by LHCb are

calculated in the model which takes into account the JP ¼ 0þ; 0−; 2þ intermediate resonances R1, R2 in the
ϕϕ channel and the JP ¼ 1þ ones, X1, X2, in the J=ψϕ channel. When obtaining the expressions for the
effective amplitudes and mass spectra, the approximate threshold kinematics of the decay is used
essentially. The R1 − R2 and X1 − X2 mixings arising due to the common decay modes ϕϕ and J=ψϕ,
respectively, are also taken into account. The obtained expressions for the mass spectra are applied for
extracting the information about masses and coupling constants of the resonances in the ϕϕ and J=ψϕ final
states.
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I. INTRODUCTION

Recently, the LHCb collaboration has reported the
observation of the decay B0

s → J=ψϕϕ [1]. The interest
in this decay is related to the possible existence of the exotic
glueball state decaying into the ϕϕ pair [2–5]. The spin-
parity quantum numbers of the resonance states decaying
into ϕϕ are reported to be JP ¼ 0þ; 0−, and 2þ [6,7].
The LHCb collaboration has also reported the observa-

tion of four resonance structures in the decay
Bþ → J=ψϕKþ, in the mass range 4140–4700 MeV,
decaying into J=ψϕ [8,9]. This group of resonances is
widely discussed because of their possible exotic nature
[10–12], side by side with the explanations based on the
dynamical rescattering effects [13]. Two of them, Xð4140Þ
and Xð4274Þ, have masses in the range 4100–4350 MeV
attained in the J=ψϕ mass spectrum in the decay B0

s →
J=ψϕϕ [1]. The preferable spin-parity quantum numbers of
these resonances are JP ¼ 1þ [8].
The data of Ref. [1] were plotted against the phase space

distribution which was shown to be inadequate because the
resonance bumps were seen in both the ϕϕ and J=ψϕ mass
spectra [1]. The aim of the present work is to write down the
amplitudes and the mass spectra of the above final states in
the decay B0

s → J=ψϕϕ upon taking into account possible
intermediate resonance states in the ϕϕ and J=ψϕ chan-
nels, irrespective of the model assumptions about their
nature.
The task of obtaining the effective amplitudes is greatly

simplified when one takes into account the near-threshold
kinematics of the decay B0

s → J=ψϕϕ. Then one can
neglect the higher partial waves in the decay amplitudes.
The expressions for the ϕϕ and J=ψϕ mass spectra
obtained under such an approximation upon taking into

account the intermediate resonances R1;2 → ϕϕ and X1;2 →
J=ψϕ are used to extract from the fits the masses and
coupling constants of these resonances. It should be
emphasized that the presentation of the results in terms
of coupling constants is more informative than the popular
representation in terms of the partial widths.
The paper is organized as follows. Section II contains the

expressions for the lowest momenta effective vertices of the
B0
s → R1;2J=ψ , B0

s → X1;2ϕ, R1;2 → ϕϕ, and X1;2 → J=ψϕ
transitions assuming JP ¼ 0þ; 0−; 2þ for the R1;2 resonan-
ces and JP ¼ 1þ for the X1;2 ones. The partial decay widths
R1;2 → ϕϕ and X1;2 → j=ψ are given there. Section III is
devoted to the derivation of the B0

s → J=ψϕϕ decay
amplitudes upon taking into account the R1 − R2 mixing
due to the common ϕϕ decay channel, and X1 − X2 mixing
due to the J=ψϕ one. The modulus squared of the B0

s →
J=ψϕϕ decay amplitude and the expressions for the ϕϕ and
J=ψϕ mass spectra are calculated in Sec. IV. In Sec. V,
these expression are applied to the description of the LHCb
data [1]. Section VI contains the brief discussion of the
obtained results. Section VII serves as a conclusion. Some
details used in the derivation of expressions in the main text
are given in the Appendices.

II. EFFECTIVE VERTICES AND PARTIAL
DECAY WIDTHS

We assume the existence of the resonances at mϕϕ ¼
2.07 and 2.2 GeV in the ϕϕ mass spectrum which will be
called R1;2, and the resonances Xð4140Þ and Xð4274Þ with
masses in the range 4100–4350 MeV, in the J=ψϕ mass
spectrum [14,15] which will be called X1;2. One needs the
effective vertices B0

s → J=ψR, R → ϕϕ, B0
s → ϕX,

X → J=ψϕ. See Fig. 1. Since all particles in the final state
of the decay B0

s → J=ψϕϕ have unit spin, the number of*kozhev@math.nsc.ru
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effective contributions to the decay amplitude is fright-
eningly large, especially when taking into account the fact
that space parity is not conserved because the B0

s meson
decays due to the weak interactions, so that only the angular
momentum conservation, not the space parity, restricts the
number of possible Lorenz structures in the effective decay
amplitudes. The couplings of R with ϕϕ and X with J=ψϕ
are considered to be due to the strong interactions, hence
they conserve parity, but again the unit spin admits many
independent effective contributions. The situation can be
greatly simplified if one takes into account the fact that the
kinematics of the decay,

B0
sðQÞ → J=ψðqÞ þ ϕðk1Þ þ ϕðk2Þ; ð2:1Þ

is such that all particles in the final state have relatively low
momenta. Indeed, the invariant mass of the ϕϕ pair varies
in the range

2mϕ ≤ mϕϕ ≤ mB0
s
−mJ=ψ ; ð2:2Þ

that is, 2.04 ≤ mϕϕ ≤ 2.27 GeV. The maximum momen-
tum of the ϕ is reached when the final J=ψ meson is at rest
while two ϕ mesons move in opposite directions, and this
gives jk1jmax=mϕ ¼ 0.5. Analogously, the invariant mass of
the J=ψϕ state varies in the range

mϕ þmJ=ψ ≤ mJ=ψϕ ≤ mB0
s
−mϕ; ð2:3Þ

that is, 4.12 ≤ mJ=ψϕ ≤ 4.35 GeV. The maximum momen-
tum of the J=ψ meson is reached when one of the ϕmesons
is at rest, while the other moves oppositely to J=ψ resulting
in jqjmax=mJ=ψ ¼ 0.2. However, these relatively small
ratios are not in fact reached because the above kinematic
situations taking place at the border of phase space are
suppressed by the final state phase space factors. See
Eqs. (4.7) and (4.9) below. This permits one to take into
account only the effective decay vertices with the lowest
nonvanishing powers of momenta.
Let us start with the parity-conserving effective vertices

of R → ϕϕ and X → J=ψϕ. The required lowest momenta
R → ϕϕ vertices for various quantum numbers are

MRð0þÞ→ϕϕ ¼ gRϕϕðϵðϕ1Þ · ϵðϕ2ÞÞ;
MRð0−Þ→ϕϕ ¼ gRϕϕεμνλσk1μϵ

ðϕ1Þ
ν k2λϵ

ðϕ2Þ
σ ;

MRð2þÞ→ϕϕ ¼ gRϕϕTμνϵ
ðϕ1Þ
μ ϵðϕ2Þ

ν ; ð2:4Þ

where Tμν is the polarization tensor of the spin two
resonance, ϵðϕ1;2Þ and k1;2 stand for the polarization four-
vector and four-momentum of the ϕ1;2 meson, and εμνλσ is
the totally antisymmetric unit Levi-Cività tensor.
The quantum numbers of the Xð4140Þ and Xð4274Þ

resonances are now established: JPC ¼ 1þþ [8,9]. Then the
effective lowest momentum X → J=ψϕ vertex looks like

MXð1þÞ→J=ψϕ ¼ gXJψϕεμνλσpμϵ
ðXÞ
ν ϵðJ=ψÞλ ϵðϕÞσ : ð2:5Þ

In the above expressions, ϵðXÞ, ϵðJ=ψÞ stand for the polari-
zation four-vectors of the X, J=ψ mesons, respectively,
and pμ is the four-momentum of the X resonance. The
justification of this expression is given in Appendix A. All
effective vertices are assumed to be real, and the possible
dependence on the momentum squared is neglected.
Let us give the effective amplitudes for the weak decays

of the B0
s meson. The lowest momenta amplitudes of the

transitions B0
s → J=ψR for different quantum numbers of

the resonance R are

MB0
s→J=ψRð0�Þ ¼ 2gB0

sJ=ψRðϵðJ=ψÞ · kÞ;
MB0

s→J=ψRð2þÞ ¼ gB0
sJ=ψRTμαϵ

ðJ=ψÞ
μ qα; ð2:6Þ

where k ¼ k1 þ k2. Note that, in the first expression in
Eq. (2.6), the amplitude conserves (breaks) the space parity
in the case of R with JP ¼ 0− (JP ¼ 0þ), respectively. The
expression of the decay amplitude to the tensor resonance
in the second line of Eq. (2.6) breaks parity. The parity-

conserving amplitude is ∝ Tμαεμνλσqαϵ
ðJ=ψÞ
ν kλqσ, hence it

has the D wave form to be neglected side by side with the
parity-breaking D wave expression ∝ TμαqμqαðϵðJ=ψÞ · kÞ.
The lowest momentum B0

s → ϕX transition amplitude,

MB0
s→ϕXð1þÞ ¼ gB0

sXϕðϵðϕÞ · ϵðXÞÞ; ð2:7Þ

breaks space parity.
Our goal here is to take into account the energy depend-

ence of the partial widths of the resonances involved, as well
as their mixing due to the common decay modes (if any).
The Particle Data Group (PDG) gives the ϕϕ, KK̄ decay
modes for the tensor f2ð2010Þ, f2ð2300Þ, and f2ð2340Þ
resonances and the ηη one for the f2ð2340Þ resonance [6].
Again, because of the low statistics of the available data we
will take into account only the ϕϕ decay mode relevant in
the context of the data presented in Ref. [1]. The same
assumption will be adopted for the scalar and pseudoscalar
ones observed by the BESIII collaboration [7].
The standard calculation gives the partial decay widths

for the resonances with the given quantum numbers. Taking
into account only the lowest nonvanishing momenta, one
gets, using the effective vertices Eq. (2.4), the following
expressions:

ΓRð0þÞ→ϕϕðm2Þ ¼
3g2Rð0þÞϕϕ
32πm3

λ1=2ðm2; m2
ϕ; m

2
ϕÞ

ΓRð0−Þ→ϕϕðm2Þ ¼
g2Rð0−Þϕϕ
64πm3

λ3=2ðm2; m2
ϕ; m

2
ϕÞ

ΓRð2þÞ→ϕϕðm2Þ ¼
g2Rð2þÞϕϕ
32πm3

λ1=2ðm2; m2
ϕ; m

2
ϕÞ: ð2:8Þ
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Hereafter,

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz ð2:9Þ

is the standard Källén function. Correspondingly, the
Xð1þÞ → J=ψϕ partial width calculated from Eq. (2.5) is

ΓX→J=ψϕðm2Þ ¼ g2XJ=ψϕ
8πm

λ1=2ðm2; m2
J=ψ ; m

2
ϕÞ: ð2:10Þ

In what follows, the B0
s → J=ψϕϕ decay amplitudes to be

derived below will include only the resonance contribution
with specific JP. By this reason, all resonances R with
different quantum numbers will be labeled by the single
letter R in the coupling constants, without pointing to the
JP quantum numbers.

III. AMPLITUDES OF THE DECAY B0
s → J=ψϕϕ

According to the diagrams shown in Fig. 1, let us
represent the B0

s → J=ψϕϕ decay amplitude as the sum
of the R and X resonance contributions,

M ¼ MR þMX:

The LHCb data [1] visibly demonstrate the appearance of
two enhancements in the ϕϕ and J=ψϕ mass spectra. So, it
will be assumed in what follows that there are two
resonances R1, R2 with the spin zero and (or) spin two
in the ϕϕ system mass range from 2.0 to 2.4 GeV [6,7] and
two resonances X1, X2 with JP ¼ 1þ in the J=ψϕ system
mass range from 4.14 to 4.35 GeV [8,9]. Their masses are
close, and the resonances have common decay modes like
ϕϕ in the case of R1;2 or J=ψϕ in the case of X1;2. They can
mix inside each group. Using Refs. [16,17] we take into
account the R1 − R2 and X1 − X2 mixing by introducing

the nondiagonal polarization operators ΠðRÞ
12 and ΠðXÞ

12 ,
respectively. Then the simplest Breit-Wigner resonance
contribution in the case of, say, R1;2,

BW ∝
gB0

sJ=ψRgRϕϕ
m2

R −m2 − imRΓR
; ð3:1Þ

should be generalized to include the effects of energy
dependent widths and mixing by means of introducing the

amplitude GðRÞ
12 with amputated kinematic factors (to be

included below). Taking into account the effect of

resonance mixing in general case is outlined in
Appendix B by Eq. (B1). In the case of two mixed
resonances Eq. (B1) reduces to

GðRÞ
12 ≡GðRÞ

12 ðm2Þ

¼ ð gB0
sJ=ψR1

; gB0
sJ=ψR2

Þ
 

DR2
ΠðRÞ

12

ΠðRÞ
12 DR1

!�
gR1ϕϕ

gR2ϕϕ

�

×
1

DR1
DR2

− ΠðRÞ2
12

: ð3:2Þ

Here,

DRi
≡DRi

ðm2Þ ¼ m2
Ri
−m2 − imΓRi→ϕϕðm2Þ; ð3:3Þ

with i ¼ 1, 2 where ΓRi→ϕϕðm2Þ for different quantum
numbers of the R1;2 resonances are given by Eq. (2.8), and
the nondiagonal polarization operator which includes the
common ϕϕ mode is

ΠðRÞ
12 ≡ ΠðRÞ

12 ðm2Þ
¼ ReΠðRÞ

12 ðm2Þ þ imΓR1→ϕϕðm2Þ gR2ϕϕ

gR1ϕϕ
: ð3:4Þ

Analogously, the mixing of X resonances is taken into
account by introducing the amplitude with amputated
kinematical factors:

GðXÞ
12 ≡GðXÞ

12 ðm2Þ

¼ ð gB0
sϕX1

; gB0
sϕX2

Þ
 

DX2
ΠðXÞ

12

ΠðXÞ
12 DX1

!�
gX1J=ψϕ

gX2J=ψϕ

�

×
1

DX1
DX2

− ΠðXÞ2
12

: ð3:5Þ

The inverse propagator of the Xi resonances (i ¼ 1, 2)
that appears in Eq. (3.5) is

DXi
≡DXi

ðm2Þ ¼ m2
Xi
−m2 − imΓXi→J=ψϕðm2Þ; ð3:6Þ

where mXi
is the mass of the Xi resonance. The non-

diagonal polarization operator responsible for X1 − X2

mixing is written analogously to Eq. (3.4):

ΠðXÞ
12 ≡ ΠðXÞ

12 ðm2Þ
¼ ReΠðXÞ

12 ðm2Þ þ imΓX1→J=ψϕðm2Þ gX2J=ψϕ

gX1J=ψϕ
: ð3:7Þ

The partial width of the Xi decay to J=ψϕ is given by
Eq. (2.10). Equations (3.2) and (3.5) reduce to the simple
sum of two Breit-Wigner contributions in the case of

vanishing mixing ΠðR;XÞ
12 → 0. The explicit alternativeFIG. 1. The diagrams of the decay B0

s → J=ψϕϕ.
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expression for the mixing amplitude valid in the case of the
two resonances mixed via the single common decay
channel is given by Eq. (B2) in Appendix B.
As for Eqs. (3.3) and (3.4), their imaginary parts

originated from the ϕϕ loop contribution are fixed by
the unitarity relation. The real parts are divergent when
calculated from the dispersion relation upon neglecting the
vertex form factors,

ΠðRÞ
12 ðsÞ ¼

gR2ϕϕ

πgR1ϕϕ

Z
∞

4m2
ϕ

ffiffiffiffi
s0

p
ΓR1→ϕϕðs0Þ

s0 − s − i0
ds0: ð3:8Þ

In the case of JP ¼ 0þ and 2þ, when restricting to the S-
wave approximation, the divergence is logarithmic and can
be regularized by the subtraction at the resonance mass.
However, there is the D wave contribution neglected in
Eq. (2.8) which makes the divergence much stronger, and
there are no model independent ways to fix the subtraction
constants. The same holds for the P wave decay of the
JP ¼ 0− resonance. Alternatively, one may insert the vertex
form factors to make the loop integrations finite, but this
again requires the fixing of additional free parameters
characterizing the above form factors. The same refers to
the X resonances whose decay width contains the D-wave
contribution essential in the dispersion integral at large
momenta.
In practice, one can adopt the following way of action. In

the present case, there are no sharp energy dependencies of
the loop effects like those observed in the case of the
difference of the KþK− and K0K̄0 loop contributions
[18,19]. The decay kinematics is such that it involves
relatively narrow intervals of the invariant masses of the ϕϕ
and J=ψϕ states. See Eqs. (2.2) and (2.3). Hence, one can
ignore the possible dependence on energy of the really
incalculable smooth real parts of the loop contributions and
take them as constants. In the case of the diagonal
polarization operators, the constants are absorbed in the
masses of the resonances mR1;2

, while in the nondiagonal

one, ΠðR;XÞ
12 , it is included as the free parameter

aðR;XÞ12 ≡ ReΠðR;XÞ
12 , all these to be determined from the fit.

After these remarks, one can write the contribution of the
mixed resonances in the ϕϕ state.
(a) R1;2 ¼ 0þ.

MR ¼ 2GðRÞ
12 ðϵðJ=ψÞ · kÞðϵðϕ1Þ · ϵðϕ2ÞÞ; ð3:9Þ

which is odd under the parity inversion. Here-
after k ¼ k1 þ k2.

(b) R1;2 ¼ 0−.

MR ¼ 2GðRÞ
12 ðϵðJ=ψÞ · kÞεμνλσk1μϵðϕ1Þ

ν k2λϵ
ðϕ2Þ
σ ; ð3:10Þ

which is even under the parity inversion.

(c) R1;2 ¼ 2þ.

MR ¼ 2GðRÞ
12 Pμν;λσϵ

ðJ=ψÞ
μ qνϵ

ðϕ1Þ
λ ϵðϕ2Þ

σ ; ð3:11Þ

where

Pμν;λσ ¼
1

2
ðPμλPνσ þ PμσPνλÞ −

1

3
PμνPλσ; ð3:12Þ

with

Pμν ≡ PμνðkÞ ¼ −ημν þ
kμkν
k2

ð3:13Þ

stands for the result of summation over the polar-
izations of the intermediate tensor resonance;
ημν ¼ diagð1;−1;−1;−1Þ. When calculating mass
spectra, it is useful to do this in the rest reference
frame of the ϕϕ pair, k ¼ ðm12; 0; 0; 0Þ, where

m2
12 ¼ ðk1 þ k2Þ2 ð3:14Þ

is the invariant mass squared of the ϕϕ state. In this
frame, Pμν;λσ reduces to the three-dimensional form
expressed through the Kronecker delta:

Pmn;ls ¼
1

2
ðδmlδns þ δmsδnlÞ −

1

3
δmnδls: ð3:15Þ

The second necessary ingredient for obtaining the ϕϕ
and J=ψϕ mass spectra in the decay B0

s → J=ψϕϕ is the
contribution of the X exchange schematically depicted as
the second and third Feynman diagrams in Fig. 1. It looks
like

MX ¼ εμνλσϵ
ðϕ1Þ
ν ϵðJ=ψÞλ ϵðϕ2Þ

σ

× ½GðXÞ
12 ðm2

13Þðqþ k1Þμ − GðXÞ
12 ðm2

23Þðqþ k2Þμ�;
ð3:16Þ

where

m2
13 ¼ ðqþ k1Þ2 ð3:17Þ

and

m2
23 ¼ ðqþ k2Þ2 ð3:18Þ

stand for the invariant mass squared of the J=ψϕ1;2 states,
respectively. Note that the amplitude (3.16) is even under
parity reflection and symmetric under permutation of two ϕ
mesons. Equation (3.16) can be simplified when taking into
account the small momenta of final particles. It is composed
as the difference of two Lorenz-invariant expressions each
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of which can be evaluated in its respective rest reference
frame:

MX ¼ m13G
ðXÞ
12 ðm2

13Þð½ϵ1 × ϵ2� · ϵðJ=ψÞÞ13
−m23G

ðXÞ
12 ðm2

23Þð½ϵ1 × ϵ2� · ϵðJ=ψÞÞ23; ð3:19Þ
where indices 13 or 23 at the vector structures point to the
rest reference frame of the state J=ψϕ1 or J=ψϕ2. Now, the
three-dimensional polarization vector ϵ of the vector meson
with the four-momentum ðE; pÞ is expressed through its
counterpart ξ in the rest frame:

ϵ ¼ ξ þ pðξ · pÞ
mðEþmÞ : ð3:20Þ

Hence, both three-dimensional polarization structures in
Eq. (3.19) can be represented in the form which includes
only the polarization three-vectors in the rest frame,

½ϵ1 × ϵ2� · ϵðJ=ψÞ ≈ ½ξ1 × ξ2� · ξðJ=ψÞ;

because they differ by the terms squared in momenta which
can be neglected in the considered case. Under this
approximation the amplitude of X exchange looks like

MX ≈ ½GðXÞ
12 ðm2

13Þm13 −GðXÞ
12 ðm2

23Þm23�
× ½ξ1 × ξ2� · ξðJ=ψÞ: ð3:21Þ

The expressions for the ϕϕ and J=ψϕ mass spectra in the
decay B0

s → J=ψϕϕ are given in the next section.

IV. AMPLITUDES SQUARED AND MASS
SPECTRA IN THE DECAY B0

s → J=ψϕϕ

When calculating the modulus squared of the relevant
amplitude, jMj2 ≡ jMðm2

12; m
2
13; m

2
23Þj2, where the invari-

ant masses squared in Eqs. (3.14), (3.17), and (3.18) are
subjected to the constraint

m2
12 þm2

13 þm2
23 ¼ m2

B0
s
þm2

J=ψ þ 2m2
ϕ ≡ Σ; ð4:1Þ

one should take into account the approximately nonrela-
tivistic character of the problem and keep only the lowest
powers of the final particle momenta. In this case, the four-
dimensional scalar product of two four-momenta is

p1 · p2 ≈m1m2 þ
1

2

�
p1
m1

−
p2
m2

�
2

≈m1m2 þO

�
p2

m2
1;2

�
: ð4:2Þ

Then one obtains the required expressions for the specific
quantum numbers of the resonance in the ϕϕ state. They
are the following.

(a) R1;2 ¼ 0þ. In this case MR is odd while MX is even
under the space parity reflection hence they do not
interfere. The modulus squared of the decay amplitude
looks like

jMj2 ≈ 3jGðRÞ
12 ðm2

12Þj2
λðm2

B0
s
; m2

J=ψ ; m
2
12Þ

m2
J=ψ

þ jMXj2: ð4:3Þ

(b) R1;2 ¼ 0−. Here both R and X contributions are even
under parity reflection, hence the interference is non-
zero. The expression for the modulus squared of the
decay amplitude looks like

jMj2≈ jGðRÞ
12 ðm2

12Þj2
2m2

J=ψ

×λðm2
B0
s
;m2

J=ψ ;m
2
12Þλðm2

12;m
2
ϕ;m

2
ϕÞ

þjMXj2þ
2m2

12

mJ=ψ
ðm2

13−m2
23Þ

×RefGðRÞ�
12 ðm2

12Þ½GðXÞ
12 ðm2

13Þm13

−GðXÞ
12 ðm2

23Þm23�g: ð4:4Þ

Note also that the lowest order even parity R
contribution results in the ϕ mesons in P wave, and
by this reason it contains additional factor
λðm2

12; m
2
ϕ; m

2
ϕÞ proportional to the momentum

squared of the final ϕ meson.
(c) R1;2 ¼ 2þ. Similar to case (a) above, here R and X

contributions do not interfere because they have
opposite space parity. The modulus squared of the
decay amplitude is

jMj2 ≈ 5jGðRÞ
12 ðm2

12Þj2
3m2

J=ψ

× λðm2
B0
s
; m2

J=ψ ; m
2
12Þ

þ jMXj2: ð4:5Þ

In the above expressions,

jMXj2 ≡ jMXj2ðm2
13; m

2
23Þ

≈ 6jGðXÞ
12 ðm2

13Þm13 −GðXÞ
12 ðm2

23Þm23j2 ð4:6Þ

stands for the contribution of the intermediate X
resonance with quantum numbers JP ¼ 1þ. It should
be emphasized once again that only the lowest non-
vanishing powers of the particle momenta are taken
into account in Eqs. (4.3), (4.4), (4.5), and (4.6).

The spectra of interest in the decay B0
s → J=ψϕϕ are

given by the following expressions. The ϕϕ spectrum is

ϕϕ AND J=ψϕ MASS SPECTRA IN DECAY … PHYSICAL REVIEW D 95, 014005 (2017)

014005-5



dΓ
dm12

¼
λ1=2ðm2

B0
s
; m2

J=ψ ; m
2
12Þλ1=2ðm2

12; m
2
ϕ; m

2
ϕÞ

ð2πÞ3 × 64m3
B0
s
m12

×
Z

1

−1
jMðm2

12; m
2
13; m

2
23Þj2dx; ð4:7Þ

where the explicit expression for m2
13 to be inserted into

Eq. (4.7), in the rest frame of the ϕϕ pair, is

m2
13 ¼

1

2
ðΣ −m2

12Þ −
x

2m2
12

λ1=2ðm2
B0
s
; m2

J=ψ ; m
2
12Þ

× λ1=2ðm2
12; m

2
ϕ; m

2
ϕÞ: ð4:8Þ

Here, x is the cosine of the angle between the directions of
one of the ϕmesons, say ϕ1, and the J=ψ meson, in the rest
frame of the ϕϕ pair. The expression for m2

23 is obtained
from Eq. (4.8) by inverting the sign of x.
The expression for the J=ψϕ mass spectrum is given by

the expression

dΓ
dm23

¼
λ1=2ðm2

B0
s
; m2

ϕ; m
2
23Þλ1=2ðm2

23; m
2
J=ψ ; m

2
ϕÞ

ð2πÞ3 × 64m3
B0
s
m23

×
Z

1

−1
jMðm2

12; m
2
13; m

2
23Þj2dx�; ð4:9Þ

where one should insert

m2
12 ¼ 2ðm2

ϕ þ E1E2 − jk1jjk2jx�Þ; ð4:10Þ

with

E1 ¼
m2

B0
s
−m2

ϕ −m2
23

2m23

; jk1j ¼
λ1=2ðm2

B0
s
; m2

ϕ; m
2
23Þ

2m23

;

E2 ¼
m2

23 þm2
ϕ −m2

J=ψ

2m23

; jk2j ¼
λ1=2ðm2

23; m
2
ϕ; m

2
J=ψÞ

2m23

ð4:11Þ

being the energy and momentum of the ϕmesons in the rest
reference frame of the J=ψϕ system; x� is the cosine of the
angle between the momenta of the ϕ mesons in this frame.
The direct numerical evaluation shows that the integrations
of Eqs. (4.7) and (4.9) over the invariant mass intervals
Eqs. (2.2) and (2.3), respectively, give coincident results.

V. APPLICATION

Let us apply the theoretical spectra obtained in the
previous section to the description of available data [1].
As it is pointed out in the Introduction, the presentation of
results in terms of masses and coupling constants of
resonances with different channels is more informative
than that in terms of masses and partial widths. In principle,
the model includes 14 free parameters which are mR1

,

gB0
sJ=ψR1

, gR1ϕϕ, mR2
, gB0

sJ=ψR2
, gR2ϕϕ, a

ðRÞ
12 , mX1

, gB0
sϕX1

,

gX1J=ψϕ, mX2
, gB0

sϕX2
, gX1J=ψϕ, aðXÞ12 , where aðR;XÞ12 ¼

ReΠðR;XÞ
12 are taken to be constant, as explained earlier in

this paper. However, the experimental ϕϕ and J=ψϕ mass
spectra are not normalized so that the magnitudes of
gB0

sJ=ψR1
, gB0

sJ=ψR2
, gB0

sϕX1
, and gB0

sϕX2
have no absolute

values. Hence one can obtain only the ratios of all except
one to, say, gB0

sJ=ψR1
. Here we fix the normalization of the

LHCb data in such a way that for each spectrum, ϕϕ or
J=ψϕ, the plotted is the quantity

fexptlðmÞ ¼ nbinðmÞP
binsnbinðmÞΔm ; ð5:1Þ

where nbinðmÞΔm is proportional to the number of events
in the bin. Correspondingly, we plot the quantities

ftheorðmϕϕÞ ¼ Γ−1
tot

dΓ
dmϕϕ

ð5:2Þ

and

ftheorðmJ=ψÞ ¼ Γ−1
tot

dΓ
dmJ=ψϕ

; ð5:3Þ

where

Γtot ¼
Z

mB0s
−mJ=ψ

2mϕ

dΓ
dmϕϕ

dmϕϕ

¼
Z

mB0s
−mϕ

mϕþmJ=ψ

dΓ
dmJ=ψϕ

dmJ=ψϕ; ð5:4Þ

against the renormalized LHCb data. Notice that Γtot is
proportional to the B0

s → J=ψϕϕ decay width. As
compared to the notations adopted in Eqs. (4.7) and (4.9),
here and in the figures one has mϕϕ ≡m12 and
mJ=ψϕ ≡m23.
The results of fitting the normalized data [1] are

represented in Table I. When fitting, we first take into
account the real parts of the polarization operators of the

mixing aðRÞ12 ≡ ReΠðRÞ
12 and aðXÞ12 ≡ ReΠðXÞ

12 as free parame-
ters. However, the fit chooses zero values of them, and their
inclusion does not result in the lowering of χ2, hence they
are set to zero. The corresponding curves are shown in
Figs. 2 and 3 in the case of the scalar resonances R1;2 ¼ 0þ,
in Figs. 4 and 5 in the case of the pseudoscalar resonances
R1;2 ¼ 0−, and in Figs. 6 and 7 in the case of the tensor
resonances R1;2 ¼ 2þ. Figures 8 and 9 demonstrate the
comparison of the curves obtained in the framework of the
above three models with the LHCb data [1]. In all these
cases, the X resonance in the J=ψϕ mass spectrum is
considered to have the quantum numbers JP ¼ 1þ [8].
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When fitting experimental data, the so-called back-
ground contribution is sometimes included. Its form is
arbitrary. In the present work we have attempted to include
such background by adding the pointlike amplitude with
the lowest power of momenta. It looks like

TABLE I. The resonance parameters found from fitting the data
on the ϕϕ and J=ψϕ mass spectra of the decay B0

s→J=ψϕϕ [1].

Parameter/
model R1;2¼0þ R1;2¼0− R1;2¼2þ

mR1
[GeV] 2.089�0.004 2.088�0.003 2.081�0.001

gR1ϕϕ 3.6�0.4GeV −10.5�0.6GeV−1 −6.1�0.9GeV
mR2

[GeV] 2.191�0.006 2.209�0.003 2.211�0.001
gB0s J=ψR2
gB0s J=ψR1

1.1�0.2 0.6�0.2 1.5�0.2

gR2ϕϕ 2.1�0.5GeV 3.3�0.5GeV−1 3.7�0.2GeV
mX1

[GeV] 4.146�0.004 4.151�0.002 4.151�0.001
gB0sϕX1
gB0s J=ψR1

[GeV] 0.9�0.2 0.8�0.1 1.5�0.3

gX1J=ψϕ −1.1�0.2 −0.7�0.2 −0.6�0.4
mX2

[GeV] 4.247�0.002 4.248�0.001 4.247�0.001
gB0sϕX2
gB0s J=ψR1

[GeV] 0.9�0.2 0.9�0.2 1.6�0.3

gX2J=ψϕ 0.20�0.10 0.37�0.15 0.20�0.11
χ2=ndof 19=21 16=21 14=21
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1 ]
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FIG. 2. The ϕϕmass spectrum in the decay B0
s → J=ψϕϕ in the

model with the R1;2 resonance quantum numbers JP ¼ 0þ (solid
curve). The contributions of the R1;2 and X1;2 resonances are
shown with dashed and dotted lines, respectively. LHCb data [1]
are normalized to the unity in accord with Eq. (5.1).
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FIG. 3. The J=ψϕ mass spectrum in the decay B0
s → J=ψϕϕ

obtained in the model with the R1;2 resonance quantum numbers
JP ¼ 0þ. The designations of curves are the same as in Fig. 2.
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FIG. 4. The same as in Fig. 2, but in the model with the R1;2

resonance quantum numbers JP ¼ 0−. Also shown (dot-dashed
line) is the contribution of the interference term Eq. (4.4).
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FIG. 5. The same as in Fig. 3 but in the model with the R1;2

resonance quantum numbers JP ¼ 0−.

2.05 2.10 2.15 2.20 2.25
0

2

4

6

8

10

12

 LHCb normalized
 R

1,2
(2 +)+X

1,2

 R
1,2

(2 +)

 X
1,2

dΓ
/Γ

to
td

m
φφ

 [G
eV

 -
1 ]

mφφ [GeV]

FIG. 6. The same as in Fig. 2, but in the model with the R1;2

resonance quantum numbers JP ¼ 2þ.
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FIG. 7. The same as in Fig. 3 but in the model with the R1;2

resonance quantum numbers JP ¼ 2þ.
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FIG. 8. The comparison of descriptions of the ϕϕ mass
spectrum in the models of the R1;2 resonances with JP ¼ 0þ

(solid line), 0− (dashed line), and 2þ (dotted line).
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Mpoint ¼ c1εμνλσϵ
J=ψ
μ ϵ1μϵ2λðk1 − k2Þσ þ c2½ðϵJ=ψ · ϵ1Þðϵ2qÞ

þ ðϵJ=ψ · ϵ2Þðϵ1 · qÞ� þ c3½ðϵJ=ψ · ϵ1Þðϵ2 · k1Þ
þ ðϵJ=ψ · ϵ2Þðϵ1 · k2Þ�
þ c4ðϵJ=ψ · kÞðϵ1 · ϵ2Þ; ð5:5Þ

where the term with c1 is even under the space reflection
while those with c2;3;4 are odd. We try to include this
contribution (upon neglecting the term ∝ c1 because it
contains additional power of momentum as compared with
the terms ∝ c2;3;4). However, the obtained fitting appears
unsatisfactory. The reason for this, in the present case,
seems to be the fact that, as one may observe in Figs. 2–7,
the R1;2 → ϕϕ decay process in Fig. 1 serves as the
background for the J=ψϕ mass spectrum very much like
the X1;2 → J=ψϕ decay plays the same role in the ϕϕ mass
spectrum.

VI. DISCUSSION

Using the coupling constants found in fits one can
calculate the central values of the partial decay widths of
the resonances R1;2 → ϕϕ and X1;2 → J=ψϕ. They are the
following.
(A) R1;2 ¼ 0þ.

ΓR1→ϕϕ ¼ 40 MeV; ΓR2→ϕϕ ¼ 22 MeV;

ΓX1→J=ψϕ ¼ 21 MeV; ΓX2→J=ψϕ ¼ 9 MeV: ð6:1Þ

(B) R1;2 ¼ 0−.

ΓR1→ϕϕ ¼ 50 MeV; ΓR2→ϕϕ ¼ 33 MeV;

ΓX1→J=ψϕ ¼ 9 MeV; ΓX2→J=ψϕ ¼ 6 MeV: ð6:2Þ

(C) R1;2 ¼ 2þ.

ΓR1→ϕϕ ¼ 36 MeV; ΓR2→ϕϕ ¼ 13 MeV;

ΓX1→J=ψϕ ¼ 7 MeV; ΓX2→J=ψϕ ¼ 3 MeV: ð6:3Þ

The accuracy of the R1;2 width evaluation is about 50
percent. As for the X1;2 resonances, their evaluated
widths spread from 7 to 21 MeV in the case of X1 and
from 3 to 9 MeV in the case of X2. Such wide intervals
are obtained upon evaluation with the parameters
extracted from the fits with different assumptions
about spin parity of the R1;2 resonances. In some
sense such a large spread in ΓX1;2

can be interpreted as
the model uncertainty so that the X1;2 width evaluation
is valid up to the factor of 3.

One can observe in Figs. 4 and 5 that in the variant of
R1;2 with JP ¼ 0− the contribution of the R − X interfer-
ence term is relatively small. This is natural due to the
different quantum numbers of the R1;2 and X1;2 resonances:
in the limit of their vanishing widths they do not interfere
at all.
A few words about spectroscopic identification of the

R1;2 and X1;2 resonances considered in the present work.
The masses of the R1 and R2 resonances obtained from the
fits fall close to the masses of the ηð2100Þ and ηð2225Þ
resonances observed by the BESIII collaboration [7] in the
decay J=ψ → γϕϕ but the central values of the calculated
widths are lower than those given in Ref. [7]. We attribute
this to the oversimplified assumption of the single ϕϕ
decay mode of the R1;2 resonance made in the course of
the present work. Also, one should have in mind a rather
large uncertainty of the widths in Ref. [7]. The same refers
to the cases of 0þ and 2þ with the possible identification
R1 ≡ f0ð2100Þ (but without R2), and R1 ≡ f2ð2010Þ and
R2 ≡ f2ð2300Þ, respectively.
As for the X1 and X2 resonances in the J=ψϕ channel,

their masses obtained here from the fits fall close to the
masses of the Xð4140Þ and Xð4274Þ resonances cited in
Ref. [8]. The central values of the evaluated widths are also
lower than those given in [8]. However, taking into account
the large model uncertainty up to the factor of 3 of the
evaluated widths, it seems that their values are not in
contradiction with the results of Ref. [8].
The current theoretical interpretations of the Xð4140Þ

and Xð4274Þ resonances as the exotic states [10–12] rely
mainly on the masses and spin-parity assignments. Further
information on their nature could be obtained from
the model predictions for the coupling constants of the
considered resonances to the pertinent final states to be
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FIG. 9. The same as in Fig. 8 but for the J=ψϕ mass spectrum.
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compared, in turn, with their magnitudes obtained from the
data fits presented here.

VII. CONCLUSION

In the present work, the attempt is made to describe the
LHCb data [1] on the ϕϕ and J=ψϕ mass spectra of the
decay B0

s → J=ψϕϕ in the resonance model which takes
into account the R1;2 resonances with JP ¼ 0þ; 0−, or 2þ in
the ϕϕ state and ones X1;2, with JP ¼ 1þ, in the J=ψϕ
state, irrespective of their nature. Taken into account are the
energy dependence of the partial widths and the mixing
inside each sector arising due to the common decay modes.
Note that the popular parametrizations of the amplitudes
neglect this kind of mixing. However, we believe that the
mixing due to the common decay channels being the
manifestation of the loop contribution should be taken
into account because this effect is dictated by unitarity and
should exist in any effective theory. The near-threshold
kinematics has permitted one to restrict the large number of
independent Lorenz structures by a few, with the lowest
powers of momenta. The data are still not precise enough to
make firm statements about the spectroscopy of the
resonances R1;2 → ϕϕ and X1;2 → J=ψϕ. For example,
as compared with the fits shown in Fig. 3, 5, 7, and 9, in
which the peak in the J=ψϕ mass spectrum is located at
mJ=ψϕ ≈ 4.25 GeV, there are fits with the peak located at
mJ=ψϕ ≈ 4.26 GeV, with equally good χ2 values. The lower
experimental point located between the higher points at the
above masses does not exclude the case of two narrow
resonances while it does not permit one to attribute the
higher points to the different resonances or to the different
shoulders of a single wider resonance. Nevertheless, the
masses of the R1 and R2 resonances in the ϕϕ mass
spectrum found from the fits are close to the values cited in
the literature [6,7]. The same refers to the resonances X1

and X2 in the J=ψϕmass spectrum whose extracted masses
are close to the masses of the Xð4140Þ and Xð4274Þ
resonances reported in Refs. [8,9]. More precise data on
the decay B0

s → J=ψϕϕ when (and if) appeared, together
with the data on the decay Bþ → J=ψϕKþ [8,9], could
resolve the issue. The comparison of descriptions in the
models with different spin parity of the R1;2 resonances
presented in Figs. 8 and 9 shows no essential difference,
however, the χ2 value is lower in the case of JP ¼ 2þ.
Having in mind the restricted statistics of the LHCb data
[1], the inclusion of the sum of the contributions of the
R1;2 resonances with all possible spin-parity assignments
JP ¼ 0þ; 0−; 2þ seems to be premature.

APPENDIX A: EFFECTIVE LOW MOMENTUM
X → J=ψϕ VERTEX

Let us justify the expression (2.5) for effective low
momentum vertex Xð1þÞ → J=ψð1−Þϕð1−Þ. There are

three possibilities to get JP ¼ 1þ for the X resonance,
ðS; LÞ ¼ ð1; 0Þ; ð1; 2Þ, and (2,2), from the final state
quantum numbers of spin S and angular momentum L.
Hence, there should be three independent Lorenz structures
in the effective Lagrangian:

Leff ¼
1

2
εμνλσ½g1FðJ=ψÞ

μν FðϕÞ
λα FðXÞ

ασ þ g2F
ðϕÞ
μν F

ðXÞ
λα FðJ=ψÞ

ασ

þ g3F
ðXÞ
μν F

ðJ=ψÞ
λα FðϕÞ

ασ �; ðA1Þ

where FðAÞ
μν ¼ ∂μV

ðAÞ
ν − ∂νV

ðAÞ
μ stands for the field strength

of the vector field VðAÞ
μ corresponding to the vector meson

A. Doing this in the usual way, one can obtain effective
vertex from the Lagrangian (A1). Neglecting the D waves,
one finds in the X rest frame that

MX→J=ψϕ ¼ mX

4

�
m4

X − ðm2
J=ψ −m2

ϕÞ2
m2

X
ðg1 þ g2Þ

− g3ðm2
X −m2

J=ψ −m2
ϕÞ
�

× ðξðXÞ · ½ξðJ=ψÞ × ξðϕÞ�Þ; ðA2Þ

where mA and ξðAÞ are the mass and the rest frame
polarization three-vector of the meson A, respectively.
One can denote the factors in front of the polarization
structure as gXJ=ψϕ and use the expression

MX→J=ψϕ ¼ gXJ=ψϕεμνλσpμϵ
ðXÞ
ν ϵJ=ψλ ϵðϕÞσ ðA3Þ

as the effective vertex of the X → J=ψϕ decay in the
low momentum approximation adopted throughout the
paper.

APPENDIX B: MIXING OF RESONANCES

Let us make some remarks concerning the above
expressions. As for Eqs. (3.2) and (3.5), one can include
more than two mixed resonances and more than one decay
channel [16]. This can be done by generalizing either
Eq. (3.2) or (3.5) to the expression

G ¼ ð gb1; gb2; gb3; � � � Þ

×

0
BBB@

D1 −Π12 −Π13 � � �
−Π12 D2 Π23 � � �
−Π13 −Π23 D3 � � �
� � � � � � � � � � � �

1
CCCA

−10BBB@
g1a
g2a
g3a
� � �

1
CCCA ðB1Þ

for the a → b transition amplitude through the mixed
resonances 1; 2; 3;…; N where N is the number of
mixed resonances, each with the inverse propagator of
the specific resonance like Eq. (3.3) or (3.6), and with
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polarization operator of mixing Πij ≡ Πijðm2Þ ¼
Reij þ im

P
agaigajWi→aðm2Þ, where Wi→aðm2Þ enters

the partial decay width of the resonance i in the form
Γi→aðm2Þ ¼ g2aiWi→aðm2Þ.

The particular case is one with two resonances mixed
via the single decay mode whose partial width is
Γ1;2→bðm2Þ ¼ g2b1;2Wðm2Þ. One can find that Eq. (B1)
reduces to

Gðm2Þ ¼ ðm2
1 −m2Þg2agb2 þ ðm2

2 −m2Þg1agb1 þ ðg1agf2 þ g2agf1ÞReΠ12

ðm2
1 −m2Þðm2

2 −m2Þ − ðReΠ12Þ2 − imWðm2Þ½ðm2
1 −m2Þg2b2 þ ðm2

2 −m2Þg2b1 þ 2gb1gb2ReΠ12Þ�
: ðB2Þ

In fact, it is this form that is used in the present work. One may observe that if ReΠ12 → 0 then in the vicinity ofm ¼ m1

(m ¼ m2) Eq. (B2) reduces to the simple Breit-Wigner form Eq. (3.1) for the resonance 1 (2).
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