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The covariant spectator quark model, tested before in a variety of electromagnetic baryon excitations, is
applied here to the γ�N → N�ð1520Þ reaction in the timelike regime. The transition form factors are first
parametrized in the spacelike region in terms of a valence quark core model together with a parametrization
of the meson cloud contribution. The form factor behavior in the timelike region is then predicted, as well
as the N�ð1520Þ → γN decay width and the N�ð1520Þ Dalitz decay, N�ð1520Þ → eþe−N. Our results may
help in the interpretation of dielectron production from elementary pp collisions and from the new
generation of HADES results using a pion beam. In the q2 ¼ 0–1 GeV2 range, we conclude that the QED
approximation (a q2 independent form factor model) underestimates the electromagnetic coupling of the
N�ð1520Þ from 1 up to 2 orders of magnitude. We conclude also that the N�ð1520Þ and Δð1232Þ Dalitz
decay widths are comparable.
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I. INTRODUCTION

Measurements of dielectron production in elementary
pp collisions [1–7] expand to the timelike region (q2 > 0,
where q is the momentum transfer) the extraordinarily
precise results obtained with the electron scattering CLAS
N� program at Jefferson Lab [1,8,9], describing the
electromagnetic structure of baryonic transitions in a
spacelike or q2 < 0 region (a program to be extended
down to −12 GeV2, as well as up to −0.05 GeV2).
Although different, both experiments, with strong and
electromagnetic probes, complement each other [1].
In the last years, pp and quasifree pn reactions were

combined for the determination of different medium
effects, difficult to disentangle [10–12]. The dominance
of the Δð1232Þ Dalitz decay for dielectron emission above
the π0 mass was confirmed by HADES, by the simulta-
neous measurement of one pion-production channels [3,4].
However, an excess of production with respect to the
baryon and meson cocktail simulations was observed, an
effect pointing to the contribution of low-lying resonances,
as the N�ð1520Þ [3,13,14]. The important role of this state
in dilepton decay reactions, as the γ�N → eþe−N, in the
timelike region was also discussed in Refs. [2,15–17].
To focus on this contribution, very recently, the High

Acceptance Di-Electron Spectrometer (HADES) at GSI
was combined with a pion beam for perfect and unique cold
matter studies [3–5]. The first pion beam results from
HADES experiments [13,14] also show in the dielectron
emission channel a large peak in the number of events in a
missing mass range of 0.9–1.04 GeV2, which is expected
to be due to N�ð1520Þ decay. The new experiments with
HADES and a pion beam are an extraordinary opportunity

to shed light on the behavior of the second and third
resonance region, and the resonance form factors in the
timelike region [3,13,14]. This motivates calculations, as
the one reported here, for the extraction of different
contributions to eþe− emission, as well as to revisit, in
the electromagnetic couplings of baryons, the extensively
applied vector meson dominance principle and its validity.
To understand the structure of hadrons from first principles
the nonperturbative character of QCD at low energies and
chiral symmetry have to be combined [8]. In the two
extreme regimes of QCD—the low-energy regime where
the energies are (much) smaller than a typical strong
interaction scale and the high-energy regime where the
energies are much higher than that scale—well-established
theoretical methods, chiral perturbation theory and pertur-
bative QCD, respectively, apply [8]. However, in the
intermediate-energy regime, some degree of modeling is
still required.
Promising tools are Dyson-Schwinger-Faddeev func-

tional methods and lattice QCD. Although progress in
these fronts continues, they are developed in Euclidean
space and, so far, are limited to the region below the
ρ-meson pole [18]. At this stage, we take here a more
phenomenological approach, based on the covariant spec-
tator quark model. This model is based on the covariant
spectator theory [19]. In a relatively successful and unify-
ing way, our approach pictures a large variety of baryons
as a superposition of a core of three valence quarks and
meson cloud components [6–8,20–33]. After a series of
applications of the model to the electromagnetic excitation
of baryons in the spacelike regime, we analyzed also
the impact of the Δð1232Þ resonance in the timelike
reactions [6,7].
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In this work we start with the quark model described in
Ref. [20] for the N�ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ�N → N�ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N�ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N�ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ�N →
N�ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N�ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ�N → N�ð1520Þ form factors. The results for
the form factors in the timelike region and the N�ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N�ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ�N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N�ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N�ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N�ð1520Þ DALITZ DECAY

The N�ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2
. The N�ð1520Þ Dalitz decay into the nucleon can be

expressed in terms of the decay width [39]

Γγ�Nðq;WÞ¼ 3α

16

ðW−MÞ2
M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y� ¼ ðW �MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole
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form factors, which are complex functions in the region
q2 > 0.
The dilepton decay rate is obtained from the relation

(3.1). Using the compact notation Γ≡ Γeþe−N , one can
calculate the dilepton decay rate [39,40] as

Γ0
eþe−Nðq;WÞ≡ dΓ

dq
ðq;WÞ

¼ 2α

3πq3
ð2μ2 þ q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4μ2

q2

s
Γγ�Nðq;WÞ;

ð3:4Þ

where μ is the electron mass.
TheDalitz decaywidth is thendeterminedby the integral of

Γ0
eþe−Nðq;WÞ in the kinematic region 4μ2 ≤ q2 ≤ ðW−MÞ2:

Γeþe−NðWÞ ¼
Z

W−M

2μ
Γ0
eþe−Nðq;WÞdq: ð3:5Þ

IV. COVARIANT SPECTATOR QUARK MODEL

In the covariant spectator quark model, the baryon wave
functions are specified by the flavor, spin, orbital angular
momentum, and radial excitations of the quark-diquark
states that are consistent with the baryon quantum number
[8,21,26,36]. The nucleon wave function ΨN was obtained
in Ref. [21] and the wave function ΨR of the resonance
N�ð1520Þ in Ref. [20]. Those wave functions describe only
the valence quark content of those baryons.
The constituent quark electromagnetic current is written

as the sum of a Dirac and a Pauli component,

jμqðqÞ ¼
�
1

6
f1þ þ 1

2
f1−τ3

�
γμ

þ
�
1

6
f2þ þ 1

2
f2−τ3

�
iσμνqν
2M

; ð4:1Þ

where τ3 is the Pauli matrix that acts on the (initial and
final) baryon isospin states, M is the nucleon mass, and
fi�ðq2Þ are the quark isoscalar/isovector form factors.
Those form factors will be parametrized with a form
consistent with the vector meson dominance (VMD)
mechanism.
For inelastic reactions, we replace γμ → γμ − qqμ

q2 in order
to ensure the conservation of the transition current. This is
equivalent to the Landau prescription [41–43]. The extra
term restores current conservation but does not affect the
results of the observables [41].
Once we know the wave functions for the nucleon

ΨNðP−; kÞ and the resonance ΨRðPþ; kÞ, with momenta
P− and Pþ, respectively, and the diquark momentum k, we
can calculate the transition current in a relativistic impulse
approximation [21,25,26]

Jμ ¼ 3
X
Γ

Z
k
Ψ̄RðPþ; kÞjμqΨNðP−; kÞ; ð4:2Þ

where Γ represents the intermediate diquark polarizations,
and the integration symbol represents the covariant inte-
gration over the diquark on-shell momentum. The factor 3
takes into account the contributions of all of the quark pairs.
The polarization indices are suppressed in the wave
functions just for simplicity. The current associated with
the meson cloud will be parametrized separately and more
phenomenologically, as discussed later. The two compo-
nents of the current are conserved individually.
The definition (4.2) for the electromagnetic current is

valid for the spacelike and timelike regions. In the rest
frame of the resonance (mass W), we may write

P− ¼ ðEN;−qÞ; Pþ ¼ ðW; 0Þ; ð4:3Þ

where q is the photon three-momentum. In that case, the
magnitude of the three-vector q corresponding to a photon
of the four-momentum q and the squared momentum q2 is
given by

jqj2 ¼ yþy−
4W2

; ð4:4Þ

where y� is defined in Eq. (3.2). In the case of a
timelike photon (q2 > 0), the last condition implies that
physical photons (with jqj2 ≥ 0) are defined only for
0 ≤ q2 ≤ ðW −MÞ2, or q2 ≥ ðW þMÞ2. As we are inter-
ested in resonance decay, the region near q2 ¼ 0 is the one
upon which we will focus, and we will skip the discussion
of the last case. In conclusion, because both the nucleon
and the resonance are taken on their mass shell, the
transition form factors for a transition between a nucleon
of mass M and a resonance of mass W are kinematically
restricted to the region q2 ≤ ðW −MÞ2 in the timelike
region. As the resonance massW grows larger, the spanned
momentum region increases.

A. Quark form factors

The valence quark form factors, included in the effective
electromagnetic quark current (4.1) have a parametrization
inspired in the VMD mechanism that reads [21,34,35]

f1�ðq2Þ ¼ λq þ ð1 − λqÞ
m2

v�
m2

v� − q2
− c�

M2
hq

2

ðM2
h − q2Þ2 ;

f2�ðq2Þ ¼ κ�

�
d�

m2
v�

m2
v� − q2

þ ð1 − d�Þ
M2

h

M2
h − q2

�
: ð4:5Þ

Here, mv� represents light vector meson masses, Mh is an
effective heavy vector meson, κ� indicates the quark
anomalous magnetic moment, c�; d� are mixture coeffi-
cients, and λq is a high-energy parameter related to the
quark density number in the deep inelastic limit [21]. For
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the isoscalar functions, one has mvþ ¼ mω (the ω mass)
and, for the isovector functions, one uses mv− ¼ mρ (the ρ
mass). The term in Mh ¼ 2M simulates the effects of the
heavier mesons and, therefore, all short-range physics.
Specifically, we used the quark current parametrization

of model II from Ref. [21]: λq ¼ 1.21, cþ ¼ 4.16, c−¼ 1.16,
dþ ¼ d− ¼ −0.686, κþ ¼ 1.639, and κ− ¼ 1.833. The
values were adjusted in order to describe the nucleon
elastic form factor data in the spacelike region. (The radial
wave functions are described later.) Its behavior in that
region was tested by taking it to the lattice QCD regime
[34,35], and also to the nuclear medium [38], both
implemented with success.
However, some discussion is necessary for the timelike

situation q2 > 0. As seen from Eq. (4.5), singularities will
appear when q2 ¼ m2

v�. Physically, they correspond to the
ρ and ω poles. Another singularity appears from the pole at
q2 ¼ M2

h, but only for very large q2’s (≃3.5 GeV2). The
Mh pole was introduced for phenomenological reasons to
parametrize the short-range physics in the spacelike region
[21]. For calculations with large W’s (large q2’s) the Mh
pole has to be regularized as discussed in the Appendix.
The spacelike parametrization of the quark current in

terms of the ω and ρ poles assumes that those particles
are stable particles with zero decay width Γv ¼ 0. In the
extension of the quark form factors to the timelike regime
we give them a width and use instead the substitution

m2
v

m2
v − q2

→
m2

v

m2
v − q2 − imvΓvðq2Þ

; ð4:6Þ

where the index v is used for either ρ or ω as before. On the
rhs, Γv denotes the vector meson decay width function in
terms of q2.
In the application to the Δð1232Þ Dalitz decay [7], only

the ρ pole was taken because, in the γ�N → Δ transition,
only the isovector components contribute (given by the
functions fi−).
The function Γρðq2Þ represents the ρ → 2π decay width

for a virtual ρ with a momentum q2 [44,45],

Γρðq2Þ ¼ Γ0
ρ
m2

ρ

q2

�
q2 − 4m2

π

m2
ρ − 4m2

π

�3
2

θðq2 − 4m2
πÞ; ð4:7Þ

where Γ0
ρ ¼ 0.149 GeV.

For the application in this paper, however, we also have
to include the ω pole. To this end, the function Γωðq2Þ will
include the decays ω → 2π (function Γ2π) and ω → 3π
(function Γ3π). The case ω → 3π can be interpreted as the
process ω → ρπ → 3π, and therefore we decomposed
Γωðq2Þ into [44]

Γωðq2Þ ¼ Γ2πðq2Þ þ Γ3πðq2Þ: ð4:8Þ

The function Γ2π can be represented as [44,46]

Γ2πðq2Þ ¼ Γ0
2π

m2
ω

q2

�
q2 − 4m2

π

m2
ω − 4m2

π

�3
2

θðq2 − 4m2
πÞ; ð4:9Þ

where Γ0
2π ¼ 1.428 × 10−4 GeV. Note that Γ2π is similar to

the function Γρ except for the constant Γ0
2π (about 103

smaller) and the mass. For the function Γ3π , we use the
result from Ref. [44],

Γ3πðq2Þ ¼
Z ðq−mπÞ2

9m2
π

dsAρðsÞΓ̄ω→ρπðq2; sÞ; ð4:10Þ

where q ¼
ffiffiffiffiffi
q2

p
, s the mass of the virtual ρmeson, Γ̄ω→ρπ is

the decay width of ω to a π and a virtual ρ, and Aρ is the
ρ-spectral function. The functions Γ̄ω→ρπ and Aρ are [44]

Γ̄ω→ρπðq2; sÞ ¼
3

4π

�
g0

mπ

�
2
�ðq2 − s −m2

πÞ2 − 4sm2
π

4q2

�5
2

× θðq2 − 9m2
πÞ; ð4:11Þ

with g0 ¼ 10.63 MeV and

AρðsÞ ¼
ffiffiffi
s

p
π

ΓρðsÞ
ðs −m2

ρÞ2 þ sΓ2
ρðsÞ

: ð4:12Þ

With this parametrization, we obtain Γωðm2
ωÞ≃

Γ3πðm2
ωÞ ¼ 7.6 MeV, which is consistent with the data.

Note that the total width of the ω comprises the decays into
γπ; 2π, and 3π and is 8.4 MeV. The remaining contribution
to the ω decay width comes from the decay ω → γπ0. The
3π decay corresponds to a branching ratio of about 90%.
The result of the calculation of Γω as a function of q is

shown in Fig. 1. Note in this figure the dominance of the 3π
channel for q > 0.55 GeV.

0.2 0.4 0.6 0.8 1
q (GeV)

0.001

0.01

0.1

1

10

100

Γ(
M

eV
)

2π 3 π

FIG. 1. Γω as a function of q. The 2π, 3π channels are indicated
by the long-dashed and dotted-dashed lines, respectively. The
solid line represents the sum of the two channels. The short-
dashed vertical and horizontal lines indicate the ωmass point and
the ω-physical width (8.4 MeV).
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V. FORM FACTORS

Although the γ�N → N�ð1520Þ transition is character-
ized by the three independent form factor functions GM,
GE, and GC, in the study of the reaction in the spacelike
regime [20], we concluded that it is convenient to define an
auxiliary form factor,

~G4 ¼ GE þGM; ð5:1Þ

because the valence quark contributions for ~G4 are zero and
a direct extraction of the pure meson cloud contribution
from the data therefore arises naturally (in the context of
the covariant spectator quark model). The valence quark
contributions for the transition form factors are discussed
next.
Separating the valence quark contribution, represented in

Fig. 2(a), from the meson cloud contribution, represented in
Fig. 2(b), one can decompose each of the three form factors
as in Ref. [20],

GMðq2;WÞ ¼ GB
Mðq2;WÞ þGπ

Mðq2Þ; ð5:2Þ

GEðq2;WÞ ¼ −GB
Mðq2;WÞ − Gπ

Mðq2Þ þ ~Gπ
4ðq2Þ; ð5:3Þ

GCðq2;WÞ ¼ GB
Cðq2;WÞ þGπ

Cðq2Þ; ð5:4Þ

where GB
Xðq2;WÞ, X ¼ M, E, C give the valence quark

core contributions and Gπ
M; ~G

π
4 , and Gπ

C stand for the
matching meson cloud contributions. The label π is used
instead of MC (meson cloud) because we describe those
contributions in terms of the pion electromagnetic form
factor (following what was done for the γ�N → Δ tran-
sition [7,20]). The formulas for the valence quark core and
meson cloud contributions will be given in the next
sections.
Once the transition form factors are known, the helicity

amplitudes can be calculated using

A1=2 ¼
1

F
GM þ 1

4F
~G4; ð5:5Þ

A3=2 ¼
ffiffiffi
3

p

4F
~G4; ð5:6Þ

S1=2 ¼
1ffiffiffi
2

p
F

jqj
2W

GC; ð5:7Þ

where F ¼ 1
e
W
jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK
W

y−
ðW−MÞ2

q
, with K ¼ W2−M2

2W .

A. Valence quark form factors

The contributions of the valence quark core to the form
factors can be calculated and seen to have the general final
form [9,47]

GB
M ¼ −R½ðW −MÞ2 − q2�G1

W
; ð5:8Þ

GB
E ¼ −R

�
4G4 − ½ðW −MÞ2 − q2�G1

W

�
; ð5:9Þ

GB
C ¼ −R½4WG1 þ ð3W2 þM2 − q2ÞG2

þ 2ðW2 −M2 þ q2ÞG3�; ð5:10Þ

where Gi (i ¼ 1, 2, 3) represents three independent form
factors and R ¼ 1ffiffi

6
p M

W−M. The function G4 was introduced

for convenience. Because of current conservation, G4 is
given in terms of three independent Gi’s (i ¼ 1, 2, 3)
as [20]

G4 ¼ ðW −MÞG1 þ
1

2
ðW2 −M2ÞG2 þ q2G3: ð5:11Þ

By combining the results for GE and GM, one concludes
that the valence quark core contribution for ~G4 is
~GB
4 ¼ GB

E þ GB
M ¼ −4RG4.

The explicit calculation of the form factors requires the
determination of the coefficients of the antisymmetric (A)
and symmetric (S) components of the wave functions, in
terms of the quark form factors

jAi ¼ 1

6
fiþ þ 1

2
fi−τ3; ð5:12Þ

jSi ¼
1

6
fiþ −

1

6
fi−τ3: ð5:13Þ

See Refs. [20,36] for more details.
Then, the functions Gi can be computed from the

nucleon and resonance wave functions. The results
are [20]

G1 ¼ −
3

2
ffiffiffi
2

p jqj

��
jA1 þ 1

3
jS1

�
þW þM

2M

�
jA2 þ 1

3
jS2

��
I ;

ð5:14Þ

FIG. 2. Electromagnetic interaction (a) with the quark core and
(b) with the meson cloud. The intermediate N� is a octet baryon
member (spin 1=2) or a decuplet baryon member (spin 3=2).
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G2 ¼
3

2
ffiffiffi
2

p
Mjqj

�
jA2 þ 1

3

1 − 3τ

1þ τ
jS2 þ

4

3

2M
W þM

1

1þ τ
jS1

�
I ;

ð5:15Þ

G3 ¼
3

2
ffiffiffi
2

p jqj
W−M
q2

�
jA1 þ

1

3

τ−3

1þ τ
jS1þ

4

3

WþM
2M

τ

1þ τ
jS2

�
I ;

ð5:16Þ

where τ ¼ − q2

ðWþMÞ2, and

I ¼ −
Z
k

ðε0Pþ · ~kÞffiffiffiffiffiffiffiffi
−~k2

p ψRðPþ; kÞψNðP−; kÞ: ð5:17Þ

The functions ψN and ψR in the formulas above are the
nucleon and resonance radial wave functions, respectively;
ε0Pþ is the spin-1 polarization vector and ~k ¼ k − Pþ·k

W2 Pþ
[20]. The previous integral is calculated in the resonance
rest frame using the conditions given by Eq. (4.3).
From Eq. (5.11) one concludes, as mentioned before,

that G4 ≡ 0, implying that GB
E ¼ −GB

M and motivating the
use of ~G4 to extract direct information on the meson cloud
since it, alone, contributes to ~G4.
The consequence of the gauge invariant correction to

Eq. (4.1) is that in the Dirac part of the current, G3, is
determined from G1 and G2, and G3 becomes nonzero at
q2 ¼ 0 [20]. Importantly, the Dirac contribution for G3 is
responsible for the nonvanishing value of GC at q2 ¼ 0.
This is similar to the Δð1232Þ case addressed in Ref. [23].
The radial wave functions ψN and ψR are parametrized

phenomenologically as in Ref. [20] for the N�ð1520Þ
resonance, and as in Ref. [21] for the nucleon. Those
functions depend on P · k, where P is the momentum of the
baryon. More specifically, those functions can be expressed
as functions of the dimensionless variable χ which, in the
nonrelativistic limit, becomes proportional to k2 [26] and is
defined as

χB ¼ ðMB −mDÞ2 − ðP − kÞ2
MBmD

; ð5:18Þ

where MB is the mass of the baryon.
The nucleon radial wave function is represented as [21]

ψNðP; kÞ ¼
N0

mDðβ1 þ χNÞðβ2 þ χNÞ
; ð5:19Þ

where β1 and β2 are two momentum range parameters and
N0 is the normalization constant. We choose β2 > β1;
therefore, β2 regulates the long-range behavior in the
configuration space. In the numerical calculations, we used
β1 ¼ 0.049 and β2 ¼ 0.717 [21].

For the N�ð1520Þ state, we used [20]

ψRðP; kÞ ¼
N1

mDðβ2 þ χRÞ
�

1

ðβ1 þ χRÞ
−

λR
ðβ3 þ χRÞ

�
;

ð5:20Þ

where N1 is the normalization constant, β3 is a new
(short-range) parameter, and λR is a parameter determined
by an orthogonality condition between the nucleon and the
N�ð1520Þ wave functions. As in Ref. [20], we use here
β3 ¼ 0.257. The orthogonality condition for wave func-
tions of the nucleon and its excitation is given by Ið0Þ ¼ 0,
where IðQ2Þ is defined by Eq. (5.17) [20].
The parameters of the nucleon radial wave function were

determined by the direct fit to the nucleon form factor data,
in a model with no meson cloud [21]. The parameters of the
N�ð1520Þ radial wave function were determined by the fit
to the γ�N → N�ð1520Þ data for Q2 ¼ −q2 > 1.5 GeV2, a
region where the meson cloud effects are expected to be
very small [20].
The radial wave functions ψN and ψR are normalized, by

imposing the conditions (B ¼ N, R)Z
k
jψBðP̄; kÞj2 ¼ 1; ð5:21Þ

where P̄ ¼ ðMB; 0; 0; 0Þ is the baryon momentum in the
rest frame (MN represents the nucleon mass).
Equation (5.21) ensures the right charge for each of the
baryons B, obtained from the operator 1

2
ð1þ τ3Þ [20,21].

B. Meson cloud form factors

The meson cloud form factors can be represented as in
Ref. [20],

~Gπ
4ðq2Þ ¼ λð4Þπ

�
Λ2
4

Λ2
4 − q2

�
3

Fπðq2Þτ3; ð5:22Þ

Gπ
Mðq2Þ ¼ ð1 − aMq2ÞλMπ

�
Λ2
M

Λ2
M − q2

�
3

Fπðq2Þτ3; ð5:23Þ

Gπ
Cðq2Þ ¼ λCπ

�
Λ2
C

Λ2
C − q2

�
3

Fπðq2Þτ3; ð5:24Þ

where Fπðq2Þ is a parametrization of the pion electromag-
netic form factors determined in Ref. [7]. Specifically, we
use the form

Fπðq2Þ ¼
α

α − q2 − 1
π βq

2 log q2

m2
π
þ iβq2

; ð5:25Þ

where α ¼ 0.696 GeV2, β ¼ 0.178, and mπ is the
pion mass.
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In our first work in Ref. [20] the meson cloud was
different than the one that we are using here. The reason is
that the meson model associated with Fig. 2(b) was,
meanwhile, reparametrized in Ref. [7] to fix the incorrect
position of the rho mass pole given by our first model, as
well as by other popular parametrizations [7]. In addition,
we notice that, in this new parametrization, the γ�N → Δ
transition pion cloud is directly connected to the pion
electromagnetic form factor Fπðq2Þ, which is well estab-
lished experimentally in the timelike region [7].
The parameters used in the formulas (5.22)–(5.24) were

determined by their fit to the γ�N → N�ð1520Þ spacelike

form factors, giving aM ¼ 5.531 GeV−2, λð4Þπ ¼ −1.019,
λMπ ¼ −0.323, λCπ ¼ −1.678, Λ2

4 ¼ 10.2 GeV2, Λ2
M ¼

1.241 GeV2, and Λ2
C ¼ 1.263 GeV2. The results are pre-

sented in Fig. 3 as a function of Q2 ¼ −q2 and compared
with the spacelike data [48–50]. Check Ref. [20] for a more
detailed discussion of the data. In the figure we also show
the valence quark contributions (the dashed line) and the
meson cloud contributions (the dashed-dotted line) based
on the parametrizations described above.
In the Appendix, we discuss the technical aspects of

the regularization of the singularities appearing in the
multipoles of Eqs. (5.22)–(5.24).

VI. RESULTS

We present in this section our predictions for the
γ�N → N�ð1520Þ transition form factors in the timelike
region. Using these results, we also calculate the γN and
eþe−N decay widths.

A. Form factors

The predictions for the absolute values of the form
factorsGM,GE, andGC in the timelike region are presented
in Fig. 4 for the cases W ¼ 1.52, 1.8, and 2.1 GeV. The
valence quark core contributions are given by the thin lines.
They stand very near the horizontal axis and vanish in the
upper limit, q2 ¼ ðW −MÞ2, by kinematic constraints. The
same result was observed in the quadrupole form factors of
the γ�N → Δð1232Þ transition for the physical case, when
W ¼ MΔ ≃ 1.232 GeV [51].
Figure 4 shows that the meson cloud contribution largely

dominates. Only near the ω pole (q2 ≃ 0.6 GeV2) is there a
significant contribution from the quark core for the absolute
value of the form factors GM and GE. This effect is very
concentrated near q2 ≃m2

ω as a consequence of the small ω
width, Γωðm2

ωÞ.
InGC the effect of the ω pole is not observed. This is due

to the cancellation of the isoscalar contributions to the form
factorGC. This cancellation is obtained analytically and can
be confirmed by substituting the form factors G1, G2, G3

given by Eqs. (5.14)–(5.16) into the formula of Eq. (5.10)
for GC. One concludes that only the quark isovector form
factors, f1− and f2−, contribute to GC.
From Fig. 4, one concludes that a fairly good description

of the γ�N → N�ð1520Þ transition can be obtained without
the valence quark core contributions, which are very small.
The almost perfect coincidence, both forGM andGE, of the
lines corresponding to different values of W is also a
consequence of the dominance of the meson cloud com-
ponent since only the valence part depends on W. Only for
GC can one distinguish a slight W dependence, and this is
evident because the valence quark contributions are non-
zero when q2 ¼ 0. The main role of the mass dependence
W in the behavior of the form factors is then to constrain
them for q2 ≤ ðW −MÞ2.

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

G
M

Bare
Meson cloud
Total

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

G
E

Bare
Meson cloud
Total

0 1 2 3 4 5

Q
2
 (GeV

2
)

−0.8

−0.4

0

G
C

Bare
Meson cloud
Total

FIG. 3. Valence quark core plus meson cloud contributions to
the spacelike form factors as a function of Q2 ¼ −q2. Data come
from Ref. [48] (the full circles), Ref. [49] (the empty circles), and
PDG [50] (the square).
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Qualitatively, one can say that the form factors are
enhanced around the origin up to a certain maximum value
of q2. ForW ¼ 2.1 GeV, the magnitude of the form factors
starts to decrease after q2 ≈ 1 GeV2. This effect is a
consequence of the meson cloud parametrization by
Eqs. (5.22)–(5.24), which includes a cutoff for q2 around
1.2 GeV2. For larger values of W, the falloff of the form
factors can also be observed.

The impact of the transition form factors in the time-
like reactions is determined by the absolute value of
jGTðq2;WÞj given by Eq. (3.3). The results for
jGTðq2;WÞj for W ¼ 1.52, 1.8, and 2.1 GeV are presented
in Fig. 5. There is an increase of jGTðq2;WÞj relative to its
value at the origin up to q2 ≃ 0.9 GeV2, forW > 1.8 GeV.
Above q2 ¼ 0.9 GeV2, one gets a first glance at the
expected falloff for the form factors mentioned previously.
The function jGTðq2;WÞj, particularly how it evolves

away from q2 ¼ 0, has important consequences for the
N�ð1520Þ → γ�N transition. In general, the N� → γ�N
reactions are often studied under the assumption that the
transition form factors in the timelike region can be
approximated by the experimental value of the form factors
at the photon point (q2 ¼ 0), which implies that W is fixed
by the physical mass of the resonance—and therefore there
is no W dependence. In the literature, this approximation
(no q2 dependence of the electromagnetic coupling and
W ¼ MR) is known as the QED approximation, and it
represents the form factor of a pointlike particle. We also
refer to this approximation as the constant form factor
model. By construction, the constant form factor model is
not constrained by the form factor GC because, at q2 ¼ 0,
GC does not contribute to jGT j2, according to Eq. (3.3). For
a finite q2, however, GC contributes to jGT j2 with the term
q2

2W2 jGCj2.
In Fig. 5, one can see that the value of jGT j at q2 ¼ 0 is

close to 1, which is consistent with the experimental value.
Therefore, in the constant form factor model, jGT j≡ 1.048
underestimates the results from Fig. 5. Taking, for instance,
q2 ¼ 0.9 GeV, where jGT j≃ 9, one concludes that, in
the constant form factor model, jGT j is about an order
of magnitude too low. Since the impact of jGT j in the
decay widths is proportional to jGT j2, in the range
q2 ¼ 0–1 GeV2, the constant form factor model may
underestimate the decay widths in 1 or 2 orders of
magnitude. For larger values of q2, however, the discussion
is different since, in our model, jGT j2 goes down with q2
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FIG. 4. Absolute values of the form factors for W ¼ 1.520,
1.800, and 2.100 GeV. In the calculations we use the new
parametrization and the width Γωðq2Þ given by Eq. (4.8). The thin
lines represent the contribution from the core. For the total result
(the thick lines), the lines for W ¼ 1.520 GeV coincide with the
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due to the multipole parametrizations of the meson cloud
component.
The meson cloud dominance can be physically under-

stood in terms of the decay mechanisms of the resonances
N�ð1520Þ and Δð1232Þ. The Δð1232Þ decays almost
exclusively into πN, but the N�ð1520Þ can decay into
πN (40%) and into ππN (60%) [50]. From the ππN decays,
one can expect then a stronger contribution from the meson
cloud effects for the transition form factors for the
N�ð1520Þ than for the Δð1232Þ. The strength of these
ππN decays is encoded in the form factor data that we use
in our fit to the physical spacelike form factor data. In the
γ�N → Δð1232Þ transition, the leading form factor is the
magnetic form factor, and in ours and other calculations, it
is dominated by the valence quark contributions at low q2’s
[6,7,22,23]. There is, therefore, a smaller impact from the
pion cloud. By contrast, for the γ�N → N�ð1520Þ transi-
tion, the electric and the magnetic form factors are both
relevant at low q2’s. It is the different structure of form
factors for the γ�N → N�ð1520Þ and γ�N → Δð1232Þ
transition that implies a dominance of the meson cloud
effects, in the first case.

B. Calculation of the decay width ΓγNðWÞ
Using the formalism in Sec. III, we calculate the

N�ð1520Þ → γN decay width as a function of W. The
γN decay width (ΓγN) is determined by the function
Γγ�Nðq;WÞ, given by Eq. (3.1) in the limit q2 ¼ 0. This
width is then proportional to the function jGTð0;WÞj2.
Our results for ΓγNðWÞ are presented in Fig. 6 (the thick

solid line). Since, as observed for the form factors, the
dependence of jGT j on W is weak, the shape of ΓγNðWÞ is
determined mainly by the kinematic factor multiplying
jGT j2 in Eq. (3.1). The results are also compared with the
constant form factor model (the dashed line). In the figure,
the results from the constant form factor for ΓγNðWÞ are
close to the q2 dependent results, but we note that a
logarithmic representation is used. The deviation for large
W’s is about 30%. The similarity between the two results
comes from the small dependence of our model onW in the
limit q2 → 0. We expect that, for observables depending on
q2, the results will differ much more. This is indeed the
case, as confirmed in the next section.
To close this section, we compare ΓγNðWÞ with the

Δð1232Þ → γN decay width calculated in Ref. [7], which is
also within the covariant spectator quark model framework
(the thin solid line). It is interesting that the Δ decay width
is larger for small values of W, but the N�ð1520Þ decay
width is larger when W > 2.5 GeV.

C. N�ð1520Þ Dalitz decay

We show now the results for the N�ð1520Þ Dalitz decay,
N�ð1520Þ → eþe−N. The Dalitz decay width is determined
by the function Γγ�Nðq;WÞ, given by Eq. (3.1) for the case

where q2 is the photon momentum transfer for the dilepton
decay γ� → eþe−.
In Fig. 7, we present the results of Γγ�Nðq;WÞ for

W ¼ 1.52, 1.8, and 2.1 GeV. The dependence of Γγ�N

on both variables, q2 and W, is clear from the figure.
Finally, we show the dilepton decay rate dΓ

dq ðq;WÞ, where,
as before, we use the notation Γðq;WÞ≡ Γeþe−Nðq;WÞ. The
results for dΓ

dq for the three values of W discussed previously
are presented in Fig. 8. The results are compared with the
constant form factor model. The covariant spectator quark
model differs significantly from the constant form factor
model for q2 > 0.1 GeV2. This effect is caused by themeson
cloud contributions included in our model.
The function Γeþe−NðWÞ can now be evaluated by

integrating q according to Eq. (3.5). The results are
presented in Fig. 9, which also shows a comparison to
the results obtained with the constant form factor model.
From the figure, we can conclude that the effect
of the q2 dependence is diluted when we integrate q for
W < 1.6 GeV. One concludes then that the q2 dependence
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FIG. 6. Decay width ΓγN as function of W. The current model
(Valence þmeson cloud) is compared with the constant form
factor model and with the results obtained for the Δð1232Þ
(see Ref. [7]).
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on jGT j2 is important when we look for the function
Γeþe−Nðq;WÞ, or for Γeþe−NðWÞ at a large W.
In Fig. 10 we present the results of Γeþe−NðWÞ in

comparison to the electromagnetic decay width ΓγNðWÞ.

In the same figure, we also compare our results for
Γeþe−NðWÞ, ΓγNðWÞ from the N�ð1520Þ resonance to the
corresponding ones from the Δð1232Þ decays [7]. In both
cases, one includes the combination of the valence quark
and meson cloud contributions.
The results from Fig. 10 imply that the two resonances

are almost equally relevant for a large W, suggesting that
the N�ð1520Þ may play an important role in dilepton decay
reactions.

VII. OUTLOOK AND CONCLUSIONS

We apply to the N�ð1520Þ → γN transition a model
which adds a covariant valence quark core contribution
with a meson cloud term. The meson cloud term is related
to the pion electromagnetic form factor, which is well
established in the timelike region, and the transition form
factors are first fixed in the spacelike region. The form
factor behavior in the timelike region is then predicted, as is
the N�ð1520Þ → γN decay width and the N�ð1520Þ Dalitz
decay, N�ð1520Þ → eþe−N. The timelike N�ð1520Þ tran-
sition form factors are dominated by the meson cloud
contributions.
In the range q2 ¼ 0–1 GeV2, the constant form factor

model, or QED approximation, that is usually taken in
the literature underestimates the electromagnetic coupling
of the N�ð1520Þ up to 2 orders of magnitude. This has a
large effect on q2 dependent observables as the N�ð1520Þ
Dalitz decay. The q2 dependence effect may be diluted in
Γeþe−NðWÞ, which is obtained by integrating over q2, but it
can be clearly observed if we look at the differential Dalitz
decay width dΓ

dq ðq;WÞ.
In line with the HADES results [3,13,14], the N�ð1520Þ

and Δð1232Þ decays compete, and at large energies the
former is certainly important.
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APPENDIX: REGULARIZATION OF
HIGH MOMENTUM POLES

As discussed in the main text, for a givenW, the squared
momentum q2 is limited by the condition q2 ≤ ðW −MÞ2.
Then, if one has a singularity for q2 ¼ Λ2, that singularity
will appear for values of W, such that Λ2 ≤ ðW −MÞ2,
or W ≥ M þ Λ.

1 1.5 2 2.5 3 3.5 4

W (GeV)

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Γ e+
e−

N
(W

) 
[G

eV
]

Valence + meson cloud
Constant FF
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To avoid a singularity at q2 ¼ Λ2, where Λ2 is one of the
cutoffs introduced in our meson cloud parametrizations and
in the quark current (the pole at q2 ¼ Mh) we will use a
simple procedure. We start with

Λ2

Λ2 − q2
→

Λ2

Λ2 − q2 − iΛΓXðq2Þ
; ðA1Þ

where

ΓXðq2Þ ¼ 4Γ0
X

�
q2

q2 þ Λ2

�
2

θðq2Þ: ðA2Þ

In the last equation, Γ0
X is a constant given

by Γ0
X ¼ 4Γ0

ρ ≃ 0.6 GeV.
The function ΓXðq2Þ defined by Eq. (A2) is ΓXðq2Þ ¼ 0

when q2 < 0 and is continuously extended for q2 > 0.
Therefore, the results in the spacelike region (where there
are no singularities) are kept unchanged. The factor 4Γ0

X
was chosen in order to obtain ΓX ¼ Γ0

X for q2 ¼ Λ2, and
ΓX ≃ 4Γ0

X for very large q2’s. Finally the value of Γ0
X was

chosen to avoid very narrow peaks around Λ2.
Unlike the width Γρðq2Þ associated with the ρ-meson

pole in the quark current, which has nonzero values only

when q2 > 4m2
π , one also has nonzero values for ΓXðq2Þ in

the interval 4m2
π > q2 > 0. However, the function ΓXðq2Þ

varies smoothly in that interval, and its values are very
small when compared to Γ0

X.
The procedure given by Eqs. (A1) and (A2) was used

already in applications of the model from Ref. [6] in the
calculation of the γ�N → Δ form factors in the timelike
regime [7,17]. With this procedure, the emerging singu-
larities for W > 2.17 GeV are avoided and the results
are almost identical to the results for W < 2.17 GeV,
without regularization. The singularity that appears for
W ≃ 2.17 GeV is due to the pion cloud parametrization
of GM [6].
As in most cases, the high momentum effects and the

high q2 contributions are suppressed, and the details of the
regularization procedure are not important as far as remov-
ing the spurious singularities is concerned.
For the tripole factors associated with the functions

(5.22)–(5.24), we use

�
Λ2

Λ2 − q2

�
3

→

�
Λ4

ðΛ2 − q2Þ2 þ Λ2½ΓXðq2Þ�2
�

3=2

; ðA3Þ

where ΓXðq2Þ is obtained by Eq. (A2).
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