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Coupled Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations involving singlet quark and gluon
distributions are explored by a Taylor expansion at small x as two first-order partial differential equations

in two variables: Bjorken x and t (t ¼ ln Q2

Λ2). The system of equations are then solved by Lagrange’s

method and the method of characteristics. We obtain the proton structure function FP
2 ðx; tÞ by combining

the corresponding nonsinglet and singlet structure functions with both methods. Analytical solutions for
FP
2 ðx; tÞ thus obtained are compared with the recent data published by the H1 and ZEUS Collaborations as

well as with NNPDF3.0 parametrization, and their compatibility is checked. Comparative analysis favors
the analytical solution by Lagrange’s method; the plausible reasons behind that are also discussed.
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I. INTRODUCTION

In QCD, structure functions are defined as convolution
of the universal parton momentum distributions inside the
proton and coefficient functions, which contain information
about the boson-parton interaction. At large momentum
transfers Q2 and not too small x, where x is the fraction of
proton momentum carried by the parton, QCD allows the
perturbative calculation of the coefficient functions and
predicts a logarithmic dependence (evolution) of the proton
structure functions with Q2 to higher orders in αS. Thus,
measurements of structure functions allow perturbative
QCD to be precisely tested. Traditionally the standard
and basic tools for the theoretical investigation of Deep
Inelastic Scattering structure functions are the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) [1–4] evolution
equations.
The solutions of the DGLAP equation for the QCD

evolution of parton distribution functions have been dis-
cussed considerably over the past years. The standard
program to study the Q2 evolution of these quark and
gluon densities consists of the numerical solutions of the
DGLAP equations. Methods used to solve DGLAP evo-
lution equation include Mellin moment space [5,6] with
subsequent inversion, the brute force method [7,8], the
Laguerre method [9], the matrix method [10] etc. However,
a few shortcomings were determined to be common to such
approaches, e.g., the computing time required and decreas-
ing accuracy for x → 0.
Understanding the behavior of quarks and gluons carrying

a very small fraction of the proton’s momentum, i.e., the so-
called small-x kinematic region, is also interesting both
theoretically and phenomenologically. As an alternative to

the numerical solution, there exists an alternative simpler
analysis exclusively for the small-x region, yielding analyti-
cal solutions of the DGLAP equations. Some approximated
analytical solutions of DGLAP evolution equations suitable
at small x have been well discussed in the recent past with
considerable phenomenological success [11–24]. The appli-
cation of a Taylor approximation valid at small x allows one
to convert the integro-differential DGLAP evolution equa-
tion into a partial differential equation (PDE). Although the
conventional knowledge on DGLAP evolution does not
favor such an approach, such a possibility was reported
sometime previously, in Ref. [15]. An approximate solution
of the DGLAP equation by using a Taylor expansion is
presented and the x distribution of the deuteron structure
function is calculated at small x in [15]. The main reason for
using this approach [16–20,22,25] is that, the DGLAP
equation is converted into a first-order differential equation
in two variables, and later can be solved by adopting either
Lagrange’s method [26] or the method of characteristics
[27,28]. The DGLAP predictions obtained by both these
methods yield outcomes for both t and x evolution. Although
these methods are theoretically sound, a relative study of
them by comparing with the exact solution of the evolution
equation and with experimental data is of significant impor-
tance, and we can understand their exact region of compat-
ibility in x and Q2.
In this paper, we present a comparative study of the

above-mentioned analytical methods in the context of the
proton structure function FP

2 ðx; tÞ. We solve the integro-
differential equation for the quark and gluon distribution
functions in leading order (LO) and derive the analytical
solutions for proton structure function FP

2 ðx; tÞ as the
sum of a flavor nonsinglet FNS

2 and a flavor singlet FS
2

distribution. The analytical predictions for FP
2 ðx; tÞ are

compared with experimental data [29,30] and recent*nishi_indr@yahoo.co.in
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NNPDF3.0 parametrization [31] to find out their relative
merits as well as the validity in particular ðx;Q2Þ regions.
This paper is organized as follows. In Sec. II we describe

the application and the main features of the analytical
methods and thus obtain the results for FS

2ðx; tÞ. In Sec. III
we discuss our notation relating the gluon and singlet
structure function. In Sec. IV we give a detailed comparison
of our results for FP

2 ðx; tÞ with data as well as with the
numerical parametrization. Finally, Sec. V contains our
conclusions.

II. FORMALISM

A. Singlet coupled DGLAP equations
in Taylor-approximated form

The coupled DGLAP equations for quark singlet
½Σðx;Q2Þ� and gluon ½Gðx;Q2Þ� densities in the standard
form are [1–4]

∂
∂ lnQ2

�
Σðx;Q2Þ
Gðx;Q2Þ

�
¼ αsðQ2Þ

2π

�
Pqq Pqg

Pgq Pgg

�

⊗
�
Σðx;Q2Þ
Gðx;Q2Þ

�
; ð1Þ

where αsðQ2Þ is the strong coupling constant, Pqq, Pqg,
Pgq, and Pgg are the splitting functions, the symbol ⊗
stands for the usual Mellin convolution, and the notation is
defined as

aðxÞ ⊗ fðxÞ ¼
Z

1

x

dy
y
aðyÞf

�
x
y

�
: ð2Þ

Introducing the variable t ¼ ln Q2

Λ2 and using the explicit
forms of the splitting functions in LO [32], the evolution
equation for singlet distribution can be written as

∂FS
2ðx; tÞ
∂t −

Af

t
½f3þ 4 lnð1 − xÞgFS

2ðx; tÞ
þ IS1ðx; tÞ þ IG1 ðx; tÞ� ¼ 0; ð3Þ

where

IS1ðx; tÞ ¼ 2

Z
1

x

dz
1 − z

�
ð1þ z2ÞFS

2

�
x
z
; t

�
− 2FS

2ðx; tÞ
�

ð4Þ

IG1 ðx; tÞ ¼
3

2
nf

Z
1

x
dz½z2 þ ð1 − zÞ2�G

�
x
z
; t

�
: ð5Þ

Here Af ¼ 4
3β0

, β0 ¼ 11 − 2
3
nf, nf being the number of

flavors considered, and αsðtÞ ¼ 4π
β0t
. FS

2ðx; tÞ is the singlet
structure function of the proton. To carry out the integrations

in Eqs. (4) and (5), we introduce the variable u defined as
u ¼ 1 − z and expand the argument x

z as a series,

x
z
¼ x

1 − u
¼ x

X∞
k¼0

uk ¼ xþ x
X∞
k¼1

uk: ð6Þ

Since x < z < 1, so 0 < u < 1 − x; hence, the series is
convergent for juj < 1 and we can use a Taylor expansion of
FS
2ðxz ; tÞ and Gðxz ; tÞ in an approximated form. As x is small

in our region of discussion, the terms containing x2 and
higher powers of x can be neglected as those terms are still
smaller. Thus, we can rewrite,

FS
2

�
x
z
; t

�
≈ FS

2ðx; tÞ þ x
X∞
k¼1

uk
∂FS

2ðx; tÞ
∂x ð7Þ

G
�
x
z
; t
�
≈Gðx; tÞ þ x

X∞
k¼1

uk
∂Gðx; tÞ

∂x : ð8Þ

Using the above Eqs. (7) and (8), we carry out the
integrations in z in Eqs. (4) and (5). Neglecting terms
Oðx2Þ, which is justified at small x, we get

IS1ðx; tÞ ≈ ð2x − 3ÞFS
2ðx; tÞ þ

�
xþ 2x ln

1

x

� ∂FS
2ðx; tÞ
∂x ;

ð9Þ

IG1 ðx; tÞ ≈ nf

�
1 −

3

2
x

�
Gðx; tÞ

−
nf
2

�
5x − 3x ln

1

x

� ∂Gðx; tÞ
∂x : ð10Þ

The exact relation between the gluon distribution Gðx; tÞ ¼
xgðx; tÞ and singlet quark distribution FS

2ðx; tÞ ¼
x
P

ie
2
i fqiðx; tÞ þ qiðx; tÞg is not derivable in QCD even

in LO. However, simple forms of such a relation are
available in the literature to facilitate the analytical solution
of coupled DGLAP equations. In Ref. [33], it was assumed
thatQ2 dependence of both the distributions are identical. In
Ref. [15], on the other hand, the following simple relation
was assumed:

Gðx;Q2Þ ¼ k:FS
2ðx;Q2Þ; ð11Þ

where parameter k has to be determined from experiments.
Again, because the input singlet and gluon parametriza-

tion taken from global analysis of parton distribution
functions, which incorporate different high-precision data,
are also functions of x at fixed Q2, the relation between
singlet structure function and gluon parton densities may,
hence, be expressed as a function of x [22].
However, a more rigorous analysis by Lopez and

Yndurain [34] investigated the behavior of the singlet
FS
2ðx;Q2Þ and gluonGðx;Q2Þ as x → 0. They observed that
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FS
2ðx;Q2Þx→0 ¼ BSðQ2Þx−λS ð12Þ

Gðx;Q2Þx→0 ¼ BGðQ2Þx−λG; ð13Þ

where BS and BG are Q2 dependent as λG ¼ λS and λS is
strictly positive. Thus,

Gðx;Q2Þ
Fðx;Q2Þx→0

≃ fðQ2Þ: ð14Þ

This suggests a more general form [35] following

Gðx;Q2Þ ¼ KðQ2ÞFS
2ðx;Q2Þ ð15Þ

rather than Eq. (11).
Now, using Eqs. (9) and (10) and the above relation

given by Eq. (15), we can express Eq. (3) in a more precise
form as

∂FS
2ðx; tÞ
∂t −

Af

t

�
f3þ 4 lnð1 − xÞ þ ð2x − 3ÞgFS

2ðx; tÞ

þ nf

�
1 −

3

2
x

�
KðQ2ÞFS

2ðx; tÞ
�

−
Af

t

�
xþ 2x ln

1

x
−
nf
2

�
5x − 3x ln

1

x

�
KðQ2Þ

�

×
∂FS

2ðx; tÞ
∂x ¼ 0; ð16Þ

which is a partial differential equation for the singlet
structure function FS

2ðx; tÞ with respect to the variables x
and t. We solve this PDE [Eq. (16)] with the two
formalisms described here, Lagrange’s method and the
method of characteristics.

B. Solution by Lagrange’s auxiliary method

To solve Eq. (16) by Lagrange’s auxiliary method [26],
we write the equation in the form

Qðx; tÞ ∂F
S
2ðx; tÞ
∂t þ Pðx; tÞ ∂F

S
2ðx; tÞ
∂x ¼ Rðx; tÞFS

2ðx; tÞ;
ð17Þ

where

Qðx; tÞ ¼ t ð18Þ

Pðx; tÞ ¼ −
4

3β0

�
xþ 2x ln

1

x
−
nf
2

�
5x − 3x ln

1

x

�
KðQ2Þ

�

ð19Þ

Rðx; tÞ ¼ 4

3β0

�
3þ 4 lnð1 − xÞ þ ð2x − 3Þ

þ nf

�
1 −

3

2
x

�
KðQ2Þ

�
: ð20Þ

The general solution of Eq. (17) is obtained by solving
the following auxiliary system of ordinary differential
equations:

dx
Pðx; tÞ ¼

dt
Qðx; tÞ ¼

dFS
2ðx; tÞ

Rðx; tÞFS
2ðx; tÞ

: ð21Þ

If uðx; t; FS
2Þ ¼ C1 and vðx; t; FS

2Þ ¼ C2 are the two inde-
pendent solutions of Eq. (17), then, in general, the solution
of Eq. (17) is

Fðu; vÞ ¼ 0; ð22Þ

where F is an arbitrary function of u and v.
In this approach we try to find a specific solution that

satisfies some physical conditions on the structure function.
Such a solution can be extracted from the combination of u
and v linear in FS

2 , the simplest possibility being

uþ αv ¼ β; ð23Þ

where α and β are two quantities to be determined from the
boundary conditions on FS

2 . Solving Eq. (21), we obtain

uðx; t; FS
2Þ ¼ tXSðxÞ ð24Þ

vðx; t; FS
2Þ ¼ FS

2ðx; tÞYSðxÞ: ð25Þ

The functions XSðxÞ and YSðxÞ are defined as

XSðxÞ ¼ exp

�
−
Z

dx
Pðx; tÞ

�
ð26Þ

YSðxÞ ¼ exp

�
−
Z

Rðx; tÞ
Pðx; tÞ dx

�
: ð27Þ

The explicit analytical form of XSðxÞ under the approxi-
mation [at very-small-x region logð1xÞ ≫ x logð1xÞ ≫ x]
comes out to be

XSðxÞ ¼ exp

�
6β0

4ð4þ 3nfKðQ2Þ log½log x�
�
: ð28Þ

Using the physically plausible boundary conditions for
structure functions, i.e.,

FS
2ðx; tÞ ¼ FS

2ðx; t0Þ; for t ¼ t0 ð29Þ

FS
2ð1; tÞ ¼ 0 for any t; ð30Þ

and putting the values of u and v in Eq. (23), we obtain the
solution for Eq. (17) as
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FS
2ðx; tÞ ¼ FS

2ðx; t0Þ
�
t
t0

� ½XSðxÞ − XSð1Þ�
½XSðxÞ − ð tt0ÞXSð1Þ� : ð31Þ

Equation (28) gives us

XSð1Þ ¼ 0 ð32Þ

which yields

FS
2ðx; tÞ ¼ FS

2ðx; t0Þ
�
t
t0

�
: ð33Þ

Equation (33) gives the Q2 evolutions of singlet structure
function at LO and is the solution for FS

2 by Lagrange’s
method.

C. Solution by the method of characteristics

The method of characteristics is an alternative technique
for solving initial value problems of first-order PDEs. To
solve the PDE Eq. (16) by the method of characteristics
[27,28], we express it in terms of a new set of coordinates
ðs; τÞ, such that Eq. (16) becomes an ordinary differential
equation with respect to one of the new variables. We know
that most of the important properties of the solution of
Eq. (16) depends on the principal part of the equation, i.e.,
the left-hand side in Eq. (17). This part is actually a total
derivative along the solution of the characteristic equation,

dx
dt

¼ Pðx; tÞ
t

; ð34Þ

which gives the characteristic curves of Eq. (16). That is,
along the characteristic curve, the partial differential
equation becomes an ordinary differential equation.
The characteristic equation, Eq. (34), can be written as

dx
dt

¼ dx
ds

ds
dt

; ð35Þ

with

dt
ds

¼ t ð36Þ

dx
ds

¼ Pðx; tÞ: ð37Þ

Using Eq. (34) in Eq. (16), the left-hand side becomes an
ordinary derivative with respect to s and the equation
becomes an ordinary differential equation,

dFS
2ðs; τÞ
ds

þ cSðs; τÞFS
2ðs; τÞ ¼ 0; ð38Þ

where

cSðs; τÞ ¼ −Rðx; tÞ: ð39Þ

Integrating Eq. (38) along the characteristic curve, we
obtain the solution for FS

2ðx; tÞ in ðs; τÞ space as

FS
2ðs; τÞ ¼ FS

2ðτÞð
t
t0
Þnðx;tÞ; ð40Þ

where

nðx; tÞ ¼ −
4

3β0
ðξ1Þ ð41Þ

with

ξ1 ¼ 4 log

�
1 − τ exp

�
−
�
t
t0

� 1
α1

��

þ 2τ exp

�
−
�
t
t0

� 1
α1

�

þ nf

�
1 −

3

2
τ exp

�
−
�
t
t0

� 1
α1

��
KðQ2Þ ð42Þ

and

α1 ¼
3β0

4f2þ KðQ2Þ 9
2
g : ð43Þ

As per the initial conditions, at xðs ¼ 0Þ ¼ τ and
tðs ¼ 0Þ ¼ t0, we get the input function FS

2ðτÞ ¼
FS
2ðx; t0Þ. This leads us back to the ðx; tÞ space from the

ðs; τÞ space, and we can express Eq. (40) in a more precise
form as

FS
2ðx; tÞ ¼ FS

2ðx; t0Þ
�
t
t0

�
nðx;tÞ

: ð44Þ

Equation (44) is the analytical solution for the singlet
structure function within the present formalism and it gives
the Q2 evolution.
We observe that Eq. (44) is sensitive to gluon distribution

as well as KðQ2Þ, which is absent in the case of Eq. (33). In
case of Lagrange’s method, the nonsinglet structure func-
tion FNS

2 [25] and the singlet structure function FS
2 have

identical evolution for the least approximated level. This is
possible only when the gluon effect is negligible. This
feature has already been well observed [15,21]; the only
new observation is that it is true even when k ¼ KðQ2Þ, i.e.,
Q2 dependent in Eq. (11).
Using our results derived in this section, we will

calculate the proton structure function FP
2 ðx; tÞ using the

relation

FP
2 ¼ 3

18
FNS
2 þ 5

18
FS
2; ð45Þ

considering the corresponding analytical predictions for t
evolution of the nonsinglet structure function FNS

2 ðx; tÞ by
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the respective analytical methods at small x from
Ref. [25]. We discuss in the next section the phenom-
enological consequences of our results derived in this
section.

III. FORM OF KðQ2Þ
Let us now discuss the plausible forms of KðQ2Þ as

defined in Eq. (15) above and discuss the related constraints
on the parameters k and σ. The Q2 dependence of KðQ2Þ is
not given by the current methods under study but is based
on physically plausible reasons.

A. Choice of the form of KðQ2Þ
The important characteristics of perturbative Quantum

Chromo-Dynamics (pQCD) is the logQ2 dependence, as
can be seen from the definition of the running coupling
constant, as well as any Q2 evolution of structure
function. A plausible theoretical form for KðQ2Þ com-
patible with perturbative QCD expectation is

KðQ2Þ ¼ k

�
log

Q2

Λ2

�
σ

¼ ktσ; ð46Þ

where k and σ are two parameters to be fixed. In the specific
case of σ → 0, one can always recover the earlier work [33].
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FIG. 1. Proton structure function FP
2 ðx; tÞ as a function ofQ2 for different fixed x values by Lagrange’s method with H1 data. Here the

dashed line represents our analytical model.
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B. Reality constraint on the parameters k and σ

The essential condition for our analytical solution for FS
2,

Eq. (44)—obtained by the method of characteristics—to be
real is that the exponent nðx; tÞ has to be real. This imposes
a reality condition on ξ1 which qualitatively leads us to the
condition that

0 < τ exp

�
−
�
t
t0

� 1
α1

�
< 1: ð47Þ

The new variable τ is dependent on both k and σ, as
defined in α1. The inversely proportionate feature of α1
on both k and σ gives the realization that k and σ cannot
be too large. So, for any value of x and Q2, the choice
of our parameters k and σ is bounded by the above
reality condition, and they cannot be treated as free
parameters.

IV. RESULTS AND DISCUSSION

The recent HERA Collaboration [29,30] data allows
us to explore a wide range of Q2 evolution, i.e. 1.5 ≤
Q2 ≤ 800 GeV2 for FP

2 ðx; tÞ. Hence, given the two
parameters k and σ, we fix them for this entire region
of Q2. The reality condition allows an effective range of
values for both k and σ for the considered Q2 region,
the best fitted range for k and σ being 0.001 < k < 1.45
and 0.001 < σ < 0.055, respectively. It suggests that k
is not far away from unity and σ is not far away from
zero.
In this work we have calculated the Q2 evolution for

singlet structure functions using two analytical
approaches, Lagrange’s method and method of character-
istics. We have used the relation defined by Eq. (45) to
derive the proton structure function FP

2 ðx; tÞ. In order to
perform a qualitative analysis of small-x behavior of these
analytical predictions in context of the proton structure
function FP

2 ðx; tÞ, we have considered very recent exper-
imental data published by H1 [29] and ZEUS [30]
Collaborations and recent NNPDF3.0 [31] parametriza-
tion. Remarkable progress in data precision has made it
possible to carry out the study in small-enough x, where
our methods are approximated to be valid. We have used
the LO Martin-Stirling-Thorne-Watt (MSTW) 2008 para-
metrization [36] at Q2

0 ¼ 1 GeV2 to evolve our solutions.
In Fig. 1 we display the Q2 evolution of our analytical

solution by Lagrange’s method at certain fixed x values
with the small-x H1 [29] data within the range 10−5 ≤ x ≤
10−2 and 3.5 ≤ Q2 ≤ 500 GeV2. We have observed very
good agreement between the experimental data and our
analytical approach for a broad range of small-x values
(10−5 ≤ x ≤ 10−3) and Q2 ≤ 60 GeV2.
ZEUS [30] has published FP

2 data for very few different
kinematic bins of ðx;Q2Þ, within the range 0.00025 ≤ x ≤
0.00493 and 9 ≤ Q2 ≤ 110 GeV2. Figure 2 demonstrates

the comparison of our analytical solution by Lagrange’s
method with the ZEUS data. However, because of very
few data points, it is not possible to analyze the Q2

evolution at some fixed x value. To that end, we evolved
our analytical solution at two extreme x values of the
experimental data (uppermost x ¼ 0.00025 and lowermost
x ¼ 0.00493) for the entire Q2 range and checked if the
experimental data for different bins are well within
theoretical bound. Here the shaded area describes the
evolution of our theoretical solution for each x bin for the
entire Q2 range of 9 ≤ Q2 ≤ 110 GeV2. It can be seen that
our analytical solution for FP

2 well describes the data up
to Q2 ¼ 80 GeV2.
In Fig. 3 we show the Q2 evolution of our analytical

solution for FP
2 ðx; tÞ by the method of characteristics,

along with the small-x H1 experimental data within the
range 10−4 ≤ x ≤ 10−3 and 3.5 ≤ Q2 ≤ 60 GeV2. As can
be seen, the evolution of the analytical solution by the
method of characteristics for FP

2 ðx; tÞ is not compatible
with data; further, we observe that structure function is
decreasing with increasing Q2. This behavior has been
observed to be true for other regions of small-x too, as
well as for ZEUS data; hence, it is not included in the
text here.
Figure 4 shows theQ2 evolution of the analytical models

with the very recent NNPDF3.0 [31] parametrization based
on the HERA-II data, for different fixed values of x.
We have confined our comparative study within the region
0.00025 ≤ x ≤ 0.0039 and 3 ≤ Q2 ≤ 85 GeV2. Here the
vertical error bars represent uncertainties given by the
standard deviations and are computed by the added-in
quadrature method in our work. We note that our analytical
solution for FP

2 ðx; tÞ by Lagrange’s method is close to the
NNPDF3.0 parametrization for the considered small-x
range up to Q2 ≤ 20 GeV2. However, the respective

x 0.00025

x 0.00493

20 40 60 80 100 120
0.5

1.0

1.5

2.0

2.5

Q2 GeV2

F
2P

FIG. 2. Proton structure function FP
2 ðx; tÞ as function of Q2 by

Lagrange’s method with ZEUS data. Each experimental data
point is considered for different bins of x and Q2. Here the lines
represents our analytical model at x ¼ 0.00025 and x ¼ 0.00493.
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analytical solution by the method of characteristics for
FP
2 ðx; tÞ has not followed the general growth of evolution.
Let us discuss the possible reasons behind the failure of

the method of characteristics over Lagrange’s method, i.e.,
whether it is the method of characteristics itself, the choice
of the function KðQ2Þ, or anything else. The difference
between Lagrange’s method and the method of character-
istics is that while Lagrange’s method has undetermined

parameters α and β, as defined in Eq. (23), the method of
characteristics has none. Hence Lagrange’s method is more
flexible to accommodate data.
From the algebraic structure of the solution of the

method of characteristics, given by Eq. (44), the exponent
is invariably negative; this is true regardless of the
numerical value of k and σ, defined in Eq. (46), so long
as KðQ2Þ is positive. It itself does not qualitatively conform
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FIG. 4. Proton structure function FP
2 ðx; tÞ as a function of Q2 for different fixed x values by Lagrange’s method and the method of

characteristics with NNPDF3.0 parametrization with standard deviation. Here the dashed and dotted lines represent our analytical model
by Lagrange’s method and the method of characteristics, respectively.
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to theoretical expectation as well as data and parametriza-
tion. As per pQCD, the prediction structure function should
rise with Q2 in small x [11,37,38] and should fall at high x,
a feature absent in the solution by the method of character-
istics. In such a situation, the absence of any adjustable
parameter from data in the method can itself be considered
as theoretical limitation.
One important difference between Lagrange’s method

and the method of characteristics is that while in the
former both singlet FS

2 and nonsinglet FNS
2 structure

function evolve identically, in the method of character-
istics it is not so. Because the effects of k and σ do not
appear in the solution by Lagrange’s method, it implies
that quarks and antiquarks have identical Q2 evolution, at
least in the experimentally accessible region of ðx;Q2Þ
under study. For not-so-large Q2, it appears to be a
reasonable feature of QCD, as the success of Lagrange’s
method shows. This particular aspect is absent in the
method of characteristics.

V. CONCLUSION

In part of the relevant parameter space, the solution to
the differential equation governing the proton structure
function may be found by analytical means. The corre-
sponding parameter space of the structure function is the
x vs Q2 parameter space. The present paper aims to
compare the merits of two such methods: Lagrange’s
method and the method of characteristics. From our
analysis we have observed that method of characteristics
does not represent the measured features of proton
structure function at small x, for which the DGLAP
equations were framed. It is therefore important to find
which aspect of the computation is to be blamed for the
failure of method of characteristics: is it the method itself
or the choice of the additional assumptions assumed
during the process of derivation, like a choice of the
function KðQ2Þ [Eq. (15)]? From our phenomenological

analysis we found that the form ofQ2-dependent function
KðQ2Þ does not seem to play crucial role in the overall
qualitative behavior to change the undesirable features of
the solution by the method of characteristics, as long as
KðQ2Þ is positive. From our phenomenological study we
also observe that the numerical value of σ, the exponent
of ð tt0Þjt0¼1 GeV2 , is not very far away from zero, suggesting

that the earlier assumption—i.e., KðQ2Þ is a constant, as
used in several works [15]—is a reasonable assumption
for the Q2 range under study.
A comparative study of the two methods indicates that

Lagrange’s method is more flexible, having at least two
quantities α and β to be determined by the boundary
conditions. Such flexibility does not exist in the case of the
method of characteristics. Hence, though the method of
characteristics looks theoretically appealing, being param-
eter free, it is too rigid to accommodate experimentally
known features of the structure functions.
As mentioned above, to derive the analytical solutions

by Lagrange’s method we had to use further assumptions
like ½logð1xÞ ≫ 1�,½logð1xÞ ≫ x logð1xÞ ≫ x�, in addition to
special conditions like Eq. (28) curtailing the allowed
parameter space. Despite all such additional assumptions,
we have observed a simple physical picture that has
emerged in the solution of unpolarized singlet and non-
singlet structure functions; i.e., both evolve with Q2

identically. This can be physically realized if quark
and antiquark of any flavor evolve identically. The
agreement with data suggests that it perhaps approxi-
mately represents the behavior of structure functions in
the low-x range under study. From the point of view of
DGLAP equations, it implies that the effect of the
splitting function Pqg is negligible compared to Pqq.
This makes the formalism effectively much simpler. It
will be interesting to see whether such effectively simpler
formalism emerges at the next-to-LO and next-to-next-to-
LO levels as well. Such study is under progress.
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