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Radiative corrections to elastic electron proton scattering are analyzed in effective field theory. A new
factorization formula identifies all sources of large logarithms in the limit of large momentum transfer,
Q? > m?2. Explicit matching calculations are performed through two-loop order. A renormalization
analysis in soft-collinear effective theory is performed to systematically compute and resum large
logarithms. Implications for the extraction of charge radii and other observables from scattering data are
discussed. The formalism may be applied to other lepton-nucleon scattering and e*e~ annihilation

processes.
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I. INTRODUCTION

The 2010 measurement of the muonic hydrogen Lamb
shift by the CREMA Collaboration [1] determined a value
of the proton electric charge radius, rg, in serious (~70)
conflict with determinations from electronic hydrogen [2]
and electron proton scattering [3-5]. This “proton radius
puzzle” has far reaching implications across particle,
nuclear, and atomic physics. Taken at face value, in the
absence of explanations beyond the Standard Model, the
muonic hydrogen measurement necessitates a = 5¢ revision
of the fundamental Rydberg constant, in addition to
discarding or revising the predictions from a large body
of previous results in both electron proton scattering and
hydrogen spectroscopy. Sources of systematic error that
could be impacting electron proton scattering measure-
ments, such as incorrect form factor shape assumptions and
inaccurate radiative corrections, are also at a numerically
important level to impact neutrino-nucleus scattering, and
hence the extraction of fundamental neutrino parameters, at
current and future experiments.

A recent analysis of global electron proton scattering
data by the author with Lee and Arrington [6] obtained
rg = 0.895(20) fm from the high statistics 2010 Mainz A1
data set [7], and rz = 0.916(24) fm from other world data.
A naive average of these results gives ry = 0.904(15) fm,
significantly larger than the muonic hydrogen determina-
tion ry(uH) = 0.84087(39) fm. The analysis of Ref. [6]
included a critical examination of experimental systematic
errors and a rigorous treatment of theoretical uncertainty
associated with form factor shape [8,9]. When applied to
the entire Q2 range of the Mainz data set, this treatment
reinforces the anomaly with muonic hydrogen. However,
the analysis also revealed a significant dependence of the
extracted radius on the Q? range of data considered. As
noted in this reference, standard models for radiative
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corrections were applied. These models use a phenomeno-
logical ansatz for treating logarithmically enhanced terms,
~a"log?"(Q?*/m?2), where log(Q?*/m?) ~ 15 for Q> ~GeV>.
As shown here, such prescriptions fail to capture sublead-
ing logarithms beginning at order a?log’(Q?/m?2).

More generally, a variety of conflicting conventions and
implicit scheme choices are present in the literature for
Born form factors, charge radii, and radiative corrections.
In this paper, the quantum field theoretical foundation for
unambiguously defining these observables and quantify-
ing uncertainties due to radiative corrections is con-
structed. A new factorization formula is derived that
identifies all sources of large logarithms. The relation
between conflicting definitions of the charge radius and
related observables in the literature is clarified. The
formalism may be applied to a range of problems in
lepton-hadron scattering and e*e™ annihilation. The
effective theory analysis simplifies and extends diagram-
matic arguments for the cancellation and exponentiation
of infrared singularities in QED [10].

The remainder of the paper is structured as follows.
Section II analyzes the scattering problem when particle
energies and masses are of comparable size. This analysis
introduces the soft function that will apply identically to the
more complicated relativistic case. Section III considers the
relativistic case where new large logarithms appear. This
analysis proceeds in stages, considering first the static limit
of infinite target mass, and then successively including
recoil, structure, and nuclear charge corrections. The
concluding Sec. IV summarizes the main results, discusses
applications, and indicates directions for future work.
Appendix A lists renormalization constants and conven-
tions employed in the paper. Appendix B compares our
preferred Born form factor convention to others in the
literature. Appendix C lists relevant phase space integrals.

© 2017 American Physical Society
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FIG. 1. Scattering of proton from electromagnetic source.

Appendix D gives details of the computation of two-loop
mixed real-virtual corrections in the static source limit.
Appendix E presents the same computation using momen-
tum regions analysis.

II. HEAVY PARTICLE

Consider the scattering of a fermion of mass M from a
gauge source, in the regime of energy and momentum
transfer £~ Q ~ M, and including the effects of soft
radiation of energy AE < M. We will develop formalism
that applies equally well to composite and elementary
particles. For definiteness in the discussion we refer to the
heavy particle as a “proton.”1

The effective field theory separates physics at the hard
scale, with particle virtualities p> ~ M?, from physics at the
soft scale, p?> ~ (AE)?, and enables the resummation of
large logarithms, log(M/AE) > 1 using renormalization
group methods. We give a field-theoretic justification for
the conventional separation between on-shell and Born
form factors [6]. At the same time, we introduce formalism
and notation that will carry over to the more complicated
case of relativistic electron scattering (i.e., Q%> m?)
considered later.

A. Effective theory

For the process depicted in Fig. 1, introduce timelike unit
vectors v* and v* via
Pt = Mo+, Pt = Muv'*. (1)
At factorization scale y ~ M, hard momentum modes are
integrated out, leaving a low energy effective theory
consisting of heavy particle source fields interacting with
soft photons. The QED current is matched to an expansion
in effective operators,

= 1/77/”1// - zci(/"’ v- Ul)}_lv’r‘lilhv’ (2)
i

'To orient the reader: for the application to electron proton
scattering, the analysis of Sec. II can be viewed as describing the
“lower vertex” (i.e., the proton) in the single photon exchange
approximation. Section III describes the “upper vertex” (i.e., the
electron), before assembling both pieces and accounting for
multiple photon exchange.
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where h,, h, denote heavy fermion fields satisfying
vh, = hv.2 The heavy fermion fields interact with soft
photons, as described by the effective theory Lagrangian

Legg = —~(F™)* + h,(iv- 0+ Zev - A)h,

1
4
+ hy(iv' -0+ Zev' - A)hy + O(1/M), (3)

where Z = +1 for the proton, A* is the electromagnetic
field, and F,, = 0,A, — 0,A,.

B. One-loop matching
An explicit basis of operator structures in Eq. (2)
respecting the discrete symmetries of the electromagnetic
current is
=y, I =o' + o' (4)
For an elementary particle, the matching may be performed

perturbatively. In the MS scheme at renormalization scale
u, the matching coefficients are [15]

€1 (w) = 1 =22 (s 0w) = 1) log = Fw) .
i) = =22 (), (5

where w = v - v/,

1
flw) = ﬁlog(wg,
2

~log(yv. ) og[2(w + 1)] + 3 log(w.)

+2 100 -2 (©

and for a general quantity a > 1 we define

aiEa:I:\/az——l. (7)

The quantity @ denotes the running coupling in the MS
scheme, @ = a(u).

The eikonal, v - A, nature of the photon coupling in
Eq. (3) implies that the soft photon matrix element is
universal to the different operator structures I'; in Eq. (2).
This universality becomes manifest with a Wilson line field
redefinition,

*For reviews of heavy particle effective theories in the context
of QCD and heavy quarks, see Refs. [11,12]. Nonrelativistic
QED (NRQED) was introduced in Ref. [13]. For a discussion of
general heavy particle effective theories see Ref. [14].
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0
h, = S,h,, S,(x) =exp {iZe/ dsv-A(x + sv)], (8)

that isolates all photon dynamics in a soft-photon Wilson loop, S'L,SU. The contribution of soft photons to the
amplitude for the process depicted in Fig. 1 is independent of whether the particle is composite or elementary. We
define the universal soft form factor to include appropriate wave function renormalization. Through one-loop order

this function reads

\f \% SR TR S

where 4 is an infinitesimal photon mass acting as IR
regulator, and Z,, is the on-shell wave function renormal-
ization constant computed from the Lagrangian (3)
(cf. Appendix A). The complete (on-shell, renormalized)
amplitude for the process in Fig. 1 is conventionally
expressed as

~ ~
<Jﬂ> = Uy F”/ﬂ + FZEUIW(UL - vu) Uy, (10)

where u, = u(p) is a Dirac spinor and the on-shell Dirac
and Pauli form factors are

Fi(q?) = [c1(w. p) + 2co(w, )| Fs(w, 1),
Fy(q?) = =2¢5(w, p)Fs(w. p), (11)

with ¢*> = —2M?*(w—1). For a strongly interacting
composite particle like the proton, perturbative matching
is not possible. In this case, the Wilson coefficients c;(w, u)
in Eq. (11) are identified as infrared finite “Born” form
factors, to be extracted experimentally,

Fi(¢*)P" = Fi(q*)F5' (w.pu = M), (12)

where the choice y = M is part of the Born convention. For
a discussion of Born form factor extraction from exper-
imental data, see Ref. [6]. A comparison to other con-
ventions in the literature for Born form factors is given in
Appendix B

C. Resummation

To define an infrared finite observable, consider the
process depicted in Fig. 1: scattering of a proton from an
electromagnetic source, allowing radiation of energy
AE <« M. Suppressing a kinematic prefactor, the cross
section is governed by the factorization formula,

M AE
daocH(—,v-v’)S(—,v-v’,vO,v’()). (13)
p I

The hard function is

H=2 c(wecj(n)

It 144
Tr(r, 2R 222 (14
)

The soft function may be expanded according to photon
number,

S =So, + S, + 8o+, (15)

and for each contribution we may expand as a series in a,

= i <%>i5,(j}. (16)

Neglecting real photon emission,

Soy = S(AE = 0) = |Fs

2, (17)
where Fg is the universal soft form factor, whose one-loop

expansion is given in Eq. (9). From the Feynman rules of
the Lagrangian (3), the first order real photon correction is

3 / 2
) ) ae 1 o v
Sly ( 4 ) /KOSAE (2”)3 2/0 vl v-f

= 422{210g (MTE> wf(w) = 1] + G(w, 2°, v’o)},
(18)

where #° = \/72 + 12, and
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G(w, 00, 2) log 9.

1)0
VT

0

Vw? =1

1)/0
S —
/(U/O)Z —1

+Liz(1—1}7+(w+vo—
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w
log v + ot |:10g2(1jg_) —log?(v"?)
w —_—

’°)> +Li (1 - \/% (w0 — v'°)>

1]10 U/O
—Li, (1 - 27+1 (0 — w_v’°)> —Li, (1 - 2—_1 (10— w_v’”))] . (19)
w* — we—
|
The quantities v%, v'?, w.. are defined by Eq. (7). The total ~ Expanding in a,
first order correction is thus
® o\ n+1
2AE . 1 cusp
st = 22{810}% (—) wf(w) = 1] 4+ 4G(w, 17, 1/0)}. Leusp(w) = Z% <47r> w (W), (22)
H n=
(20) : :
where the leading terms are (cf. Appendix A)
When AE <« M, large logarithms are present regardless of
the choice for factorization scale u in Eq. (13). This is seen cusp cusp 20 cusp
explicitly in the one-loop corrections for the hard function Lo (W) = 4[wf(w) = 1], I w) = - 9 nsTo
in Eqgs. (5) and (14) and for the soft function in Eq. (20). (23)

The following renormalization analysis systematically
resums large logarithms to all orders in perturbation
theory.

The anomalous dimension of the effective operators (2)
relates the renormalization of the hard function to the cusp
anomalous dimension for QED [16,17] (cf. Appendix A),

dl:g PR (#) = 2Weusp (W) H (n)- (21)
|
H(MH) _ S(//’L)
H(p)  S(pp)

4r " pp
20, g,
——log'u—lzi +O(a®)| ¢,
9 Hi

where the result in the last line is expressed in terms of the
low energy, on-shell, fine structure constant a.

To connect with observables such as the Born form
factors (12) defined at y~ M, we may expand soft
functions in perturbation theory at the scale pu; ~
AE ~m, where no large logarithms appear, as in
Eq. (20). We may then use Eq. (24) to evaluate the soft

tis straightforward to include perturbative corrections due to
the muon.

2/2 2 4 2
i) (— logzlﬁ + —log'u—gllog ad
4 Hi

Here n, denotes the number of light fermions in the
effective theory. In this example, we take the muon
mass, proton mass, and other hadronic scales as large
compared to AE, and we work with ny =1 in the
regime with formal power counting m =m,~
AE < E~m, ~m, =M. The solution of Eq. (21) then
yields

(i o

o =21 (o) = )+ }

0
2

3°° 23 m?

(24)

|
function appearing in Eq. (12) at uy ~ M, systematically
controlling large logarithms.

We remark that a simple exponentiation ansatz,

(25)

S = exp L%S(l)],
3

fails to capture logarithmically enhanced terms beginning
at order a? log?[M?/(AE)?]. Such terms are below typical
experimental accuracies for w = O(1). However, at
large recoil, w> 1, additional factors involving large
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FIG. 2. First order radiative corrections to electron scattering from static source.

logarithms, log(w), appear. We turn now to this case, where
control of logarithmically enhanced corrections beyond
first order in « is essential.

III. RELATIVISTIC PARTICLE

When particle velocities satisfy v - v’ > 1, new large
logarithms appear in perturbation theory which are not
resummed by the renormalization analysis in the heavy
particle effective theory of the previous section. For
example, ¢;(u, v - v') in Eq. (5) contains large logarithms,
log(v - v'), regardless of the choice for factorization scale .
In order to isolate and resum these additional large
logarithms, we must extend the effective theory to include
collinear degrees of freedom [18-25]. Before turning to the
effective theory description, let us examine the explicit two-
loop calculation for relativistic electron proton scattering in
the static source limit. We will then perform the effective
theory analysis in this limit before including arbitrary recoil
corrections and radiative corrections involving the proton.

A. Two-loop corrections in static limit

To isolate the essential points, let us consider the
problem of relativistic unpolarized electron proton scatter-
ing in the static-source limit of large proton mass:
m < E < M, where m and M denote the electron and
proton masses and E is the electron energy. Neglecting
power corrections in m/E, and working to first order in
nuclear charge (i.e., single photon exchange), the cross
section may be written

da:ﬁ%%%%ﬁu+@+ﬁw+mw+~d
(do)pou
[1-11(g*)?

(1+5). (26)

Here (do/dQ)y., = a*cos?(8/2)/[4E?sin*(0/2)] is the
tree-level, Mott, cross section in terms of the angle 6
between initial and final electron directions in the
lab frame, I1(g®) is the photon vacuum polarization
function, and & is the total radiative correction. For
numerical evaluations we employ the on-shell coupling,
a = 1/137.036. Each term &y in Eq. (26) corresponds to
different numbers of final state photons and is expanded
according to oy = » 2 ()" g(").

Consider radiative corrections at first order in «;

cf. Fig. 2. Regulating infrared divergences with an

infinitesimal photon mass A, corrections with just an
electron in the final state are

L+8 = [Fi(@m> 2P Fr=1+3 <%> F.
n=1
(27)

where F; is the Dirac form factor of the electron. At large
spacelike momentum transfer Q> = —g? > m?, the limit of
Eq. (11), using Egs. (5) and (9), yields [L = log(Q?/m?)]

yi 2
ﬂ”:4mg—@—1y47+3L—4+%. (28)
m

Real radiation corrections are given by the limit of Eq. (18),
1 E A
52,,) =-8 (logﬁ + log Z) (L-1)+2L?

4 2
+ 4Li, <0052 g) - %, (29)

where a cut 7% < AE < E is placed on photon energy. The
total first order correction, s = 521) —1—52,1,), is infrared
finite.

Second order corrections containing two-photon final
states (“double bremsstrahlung”) are

QZ m2 m2
p-fp’-f_(P'f)z_(P’-fV)

| [ dedr
s2 1 (

eyy — -0
"2 Jap 20

y Q2 _ m2 _ m2
p-c'p - (p-£)? (p-¢)
1o 1622

(L-1)% (30)

where a cut #° + #° < AE is placed on photon energy.
Contributions to second order mixed real-virtual correc-
tions are displayed in Fig. 3. The computation of these
contributions is described in Appendix D. After renorm-
alization, and neglecting power suppressed contributions,
the result takes the simple form

52 = sVsll), (31)

where 5&1) = 2F(ll) in Eq. (28) and 52;) is given in Eq. (29).

Finally, second order virtual corrections, 622), are given by

013001-5



RICHARD J. HILL

PHYSICAL REVIEW D 95, 013001 (2017)

Y T

FIG. 3.
initial state electron are not shown.
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FIG. 4. Radiative correction ¢ from Eq. (26), in static source
limit for £ =1 GeV, AE =5 MeV, computed at first (bottom,
blue curve) and second (top, red curve) in a.

expanding Eq. (27) [26-28]. The complete second order
correction may be written

1 8 76 167>
@ _ Lis2_%73 AT 2
60 =S 6P -5 L +(9 3>L
979 52« 4252 31x?
— +48¢(3) | L + —+ —
(27+9+C())+27+3
647"

— 162%log2 — 72{(3) — (32)

45 -
Figure 4 displays the total correction ¢ in Eq. (26) at first
and second orders in perturbation theory, for illustrative
values £ =1 GeV, AE =5 MeV, and physical electron
mass. Recall that these results are in the formal static
source limit, £ <« M. Logarithmically enhanced correc-
tions beginning at order a’L? are not captured by a simple

2

4

P 2,6 141 +1 21
2 7d T3 T2\ 2 2 4

7541

2 3 14
——6——2—8+C2+e<—16+ﬂ—+—§3

1151 17
)1

Second order radiative corrections to electron scattering from static source. Diagrams involving photon emission from the

exponentiation ansatz, § — exp[;% 8(V]. In the next section
we derive the effective theory that allows identification and
resummation of large logarithms.

B. Effective theory: Matching

To determine the origin of the different contributions
in Eq. (32), and to systematically resum large logarithms
in perturbation theory, let us construct an effective theory
to separate the physics at different energy scales. We focus
on the formal counting m ~AE and Q ~E>m (ie.,
v-v' > 1). Appendix E outlines an effective operator
analysis analogous to Egs. (2) and (3). In place of
Eq. (13), the new factorization formula, valid up to
O(m?/Q?) corrections and verified explicitly through
two-loop order (cf. Appendixes D and E), reads

Q2 2
eGP 2)

AE EE
xs< R 2”, ) (33)
u m’ m

The explicit matching with QED is most easily performed
using dimensional regularization, where dimensionful but
scaleless integrals vanish. The (bare, unrenormalized) hard
function is then [47ayy, = €2, (47)°e7E]

A/ Hbare

Fpre = Fi(g*.m* = 0,2* = 0)
=2e\ i
=1+ Z (“b‘“Q ) Py, (34)

where results for F;(g*,0,0) through two-loop order are

[29,301*

272 47
2 3
< -32+ 3 +7§3+720n>+0(6 )

o+ (2= 58— 133

14, 2643

+2n L+14+ B3 ) P,
71363 7 9¢2 54 3 324

. 9} + O(e). (35)

*“There is a transcription error in the O(e2) coefficient in Eq. (15) of Ref. [30]: —47z*/2880 should be replaced by +47z*/2880, in

accordance with Eq. (17) of the same reference [31].
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In the MS scheme, we define (at n; = 1)
F(u) = ZyFy®, (36)

with the renormalization constant,

a2 1 0? a\2[2 1 0?
zy=1+ =[G+t (e 2+3)} (@) 2+t (g% s

1 0> 22 Q7 200 Q* 179 4;;2
2lo 2——— “log= - ——— 412 O(a?). 37
+3 ( og 3l s +18 + R T i & )| +0(@) (37)

The explicit renormalized hard function is

P 2 2 2
FH(,u):1+4 { long +310gQ——8+7;}

a \2[1 2 31 2 301 2 2
+ <£> [—log4Q———l g3Q + (——ﬂ—>log2Q—2
i

az) 2% 279 86
2051 3572 Q% 235> 26605 36995 83z
log = - - o), 38
< 5418 >°g TS5 "9 T eas 3e0] O (38)

where @ = a(u) is the MS QED coupling with n ¢ = 1 atrenormalization scale u (for a summary of renormalization constants
and conventions see Appendix A).

The soft function in Eq. (33) is the same function of its arguments as the soft function in Eq. (13). For virtual
corrections this function’ becomes trivial (S = 1) in dimensional regularization at 4 =0 (the relevant integrals are
dimensionful but scaleless). The product of the (bare, unrenormalized) jet and remainder functions (defined separately
below) is thus

F(qz,m 22 =0) = ab m—e\
JR bare __ dere _ 1 are derg’ 39

where results for F,(g*, m?, 0) through two-loop order are given in Refs. [32,33]. These results imply [34] (now at n =1

2 1 71'2 71'2 2C3 53 2
dere__ 4+ 49 -z _ == _ 2 3
M=ttt +e(8+12 3>+ (6 3+80+3>+O(e),

poae _ 2 4 1 (145 +n2 1405 112>  32{3\ 58957 39772° 62(;
TRt T3¢t 2 \18 0 3 108 9 3 648 108 9
7774 Q2 4 20 112 27°
—87°log2 ———+log= -5 +——— — O(e). 40
mlog2 = ey tlog (=32 g, 737 g ) T O (40)
The product FyF;; represents the matching coefficient @ 2 0?
onto the soft operator after integrating out the electron Zg=1+~~ (‘ IOgW"" 1)
mass scale. In the MS scheme for the n; =0 theory, N2 9 0? s
. %o
we write + <E> 2 (- logW + 1) +0(@),  (42)
Fg(u) = Z5' Foee, (41)
From the divergent terms in FyF; we may read off with @, = ay(u) the MS coupling with n =0 (in

d =4 dimensions, &, reduces to the on-shell a). The

>The (infrared-divergent) soft function including only virtual pITOdUCt of renormalized jet and remainder functions is
corrections is S(AE = 0) = |Fg|?; cf. Eq. (44). given by
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)

1 m2 40 m* 112 n 11 m2
_ PR — —_—— 0 —_—
,u 9 & ,uz 27 2 u?
5 m? 2 /53 49
——log +10g2m —+ —I——”—24Cg
9 18
767r2 16374 58(:3 39949
— 87 log2 - 43
O T T 360 648 (43)
I
The remaining (bare, unrenormalized) soft function for  are collinear to one of the external particles. The

virtual corrections with nonvanishing A is

1(‘127 m?, /12)

Fbare — ,
Fi(q?.m?. 12 =0)

S(AE = 0)Pe = (44)

where results for F, (g%, m?, 2?) through two-loop order are
given in Refs. [27,28]. The renormalized soft function is
given by Eq. (41), or equivalently,

_ Fi(q*,m*, 2%)
Fs) = () o)

2 2
_1—1—4—{2105;/12 <logQ ﬂ
a /12 Q2 2
() e ()] o

(45)

C. Factorization of jet and remainder function

Inspection of the explicit matching results in
Egs. (38), (43), and (45) reveals a pattern of large
logarithms. H(u) is free of large logarithms provided
u~ Q. S(u) contains large logarithms irrespective of the
choice of u, but in an exponentiated form. The product
(JR)(u) is free of large logarithms through one-loop
order provided p ~ m, but contains large logarithms at
two-loop order.

Note that the combinations H, JR, and S are given
by the simple momentum regions analysis encoded by
the form factor combinations in Egs. (34), (39), and
(44), respectively. In particular, the hard function H is
given by hard loop momenta with all components of
order the hard scale Q. The soft function § is given by
soft loop momenta with all components of order 4 (i.e.,
small compared to other scales). The product JR,
whose decomposition we now discuss, arises from
the remaining momentum regions where loop momenta

nontrivial overlap of soft and collinear regions (and
the associated subtractions; cf. Appendix E) manifests
itself as residual, nonfactorized, large logarithms;
cf. Eq. (43). Such large logarithms have been studied
in a variety of frameworks for applications involving
massless fermions [35—37].6 The presence of a fermion
mass m provides a physical cutoff in the collinear
integrals, and we proceed as follows to isolate the large
logarithms and provide an operator definition of sep-
arate “‘jet” (J) and “remainder” (R) functions. This
factorization of the JR function is obtained by con-
sidering an intermediate theory in which the electron is
dynamical inside closed loops, but where the valence
electron is treated as a heavy particle field. The R
function is then given by matching the soft operator
defined in a theory with a dynamical fermion of mass
m to the soft operator defined in a theory without
dynamical fermion.” We find

A /Rbare Fbare _ <abﬂrem_2€>2
4x
.t 02/ 4 +2o 112 2x2
oe 2 [t 4= 2
En\ 7329 27 " 9
2 8 2 32 3
= — 4= 4
+t 373 +3+9]+O(a), (46)

where the result includes the two-loop vertex correction
with closed fermion loop [34], as well as a contribution
from wave function renormalization in the massive
fermion theory [38].8 After renormalization,

®Reference [35] considers the massive fermion case through
ong- -loop order.

"Recall [see Eq. (8)] that the soft operator is defined in terms of
the Wilson loop of soft photons, /S = (S S,).

¥This operator definition of Fy differs from the quantity 6S in
Ref. [34] by the inclusion of on-shell renormalization factors. The
jet function F; in Eq. (48) correspondingly differs from the
quantity Z; in Ref. [34].
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7 2 2/ 4 2 40 2112 8 216 2 252
:1+<a]_(u)> []og%(——logz%——logm—z— >+—10g2’:—2+—10g%+ﬂ—+— +0(a).  (47)

4 3

9 T

27

3 3 9 9

Having factored out R(u), the remaining J(u) is given by

VI () = Fy(u)

6

= 2 2 2 =
—1 +“1—(”>(10g2m—2—1ogm—2+4+”—> + (al(”)
4r u u 4z

37  497°

+102m—2 i+7T—2 + lo m —— 4+ ——— =243 ) — 822 log2 + +
g2 \187 6 82\ 7547 g 3)TOTOEST T 360 T 9 648

Although the impact of R(yx) is numerically small, it is
interesting from a formal perspective to understand the all
orders structure of large logarithms appearing in this
function. The operator definition identifying R(u) as a
ratio of Wilson loop matrix elements in ny = 1 and ny = 0
can be used to show that log R(u) contains only a single
power of the large logarithm, log(Q?/m?), to all orders in
perturbation theory [16].° This ensures that high powers of
large logarithms do not upset the power counting of the
resummed perturbative expansion.

D. Soft-collinear factorization for real radiation

Factorization of the soft function in Eq. (33) from the
remaining process is nontrivial. It can be shown
[cf. Eq. (D8)] that multiple low-energy regions contribute
to the physical matrix element. This complicates a simple
eikonal decoupling argument like Eq. (8) that applies in
the heavy-particle case. Through two-loop order, factori-
zation is equivalent to the vanishing of additional con-
tributions on the right hand side of Eq. (31). Direct
evaluation of such contributions is performed in the full
theory in Appendix D, and in the effective theory in
Appendix E.

E. Two-loop soft function

Having derived the functions H(u), J(i), and R(u),
and having demonstrated soft-collinear factorization for
real radiation, let us specify the remaining soft function
through two-loop order. The complete soft function
including real radiation, S(AE) in Eq. (33), is obtained
from Feynman diagrams with only soft photons; cf. Figs. 8
and 9 below. Our definition ensures that this function
is identical to the soft function appearing in Eq. (13),

°In particular, dlogR(u)/dlogu is given by the difference
of cusp anomalous dimensions with n; =1 and n;=0;
cf. Egs. (21), (22), and (23).

2N 2 5 2
>[—log4m —log3m

2° 29 2

7372 B 1637 5843 36205

+0(&%).

(48)

extended to general v - v’ 3> 1."° Using the explicit results
(45) and (30), and the soft contribution to Eq. (31), the
complete corrections at one- and two-loop orders are''

2 2
s = —4(10g2 41 L—1)+2L2
ogmz—l— Og(AE)Z ( )+
0 472
4Li 27
+ 4L1, <cos 2) 3
1 1672
S =[S - 3” (L—1) (49)

F. Effective theory: Resummation

After renormalization in the MS scheme at scale u, the
hard function is free of large logarithms provided that the
matching scale satisfies uy ~ Q. Evolution to low scales
ur ~m is governed by (cf. Appendix A)

dlog H 2
0g :2{ycusp<a>1ogf—2+y<a>. (50)

dlogpu

The cusp anomalous dimension for massless QED (n; = 1)
reads

= a\ "t u us| u 80
7cusp:z;<a) 7/(;1 sp’ }/8 p:4, }’(1: sp:_j‘ (51)

The regular anomalous dimension y may be similarly
expanded,

© a \ntl
V= Z <E> Yns Yo = —6. (52)

n=0

Using these expansions, the solution of Eq. (50) to any
order is straightforward. Expressed in terms of the running
coupling,

Note that with this definition, closed electron loop correc-
tions are defined to be contained in R.
""The term 167%(L — 1)2/3 in S@ has been noted in Ref. [39].
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H(m))__@ %y
k’g(H(ﬂH) =g, logr T =

Y0 Po

where r = a(u;)/a(uy), and the first and second curly
braces correspond to the terms y(a) and y(a) in
Eq. (50), respectively.

We are interested in applications involving large
logarithms such that alog?(u%/u?)~ 1. In this power
counting, terms involving y, scale as a'/?, and neglected
terms involving y(a) scale as 2. The leading terms
involving the cusp anomalous dimension scale as o,
|

H
log( WL)) 4”[ 210g2’uH 4logﬂH log =

H(pp) /4L ﬂL

a\2[ 8 Uz 8
] |-zlog ™2~ 11
“(5) o3

a 176 U
) |2 10e? ”
* <4n> [27 8Tzt ] +

With the result (54), we have control over large
logarithms and a complete solution through true order
a (i.e., all neglected terms are parametrically small
compared to order @, accounting for logarithmic enhance-
ments). Setting y; ~ m, inspection of S(y; ) shows that the
nonexponentiating term in S is of order o’L* ~a'.

I JE—
© ~0.25 ——— =
03
_035 ‘”"“ SIS NN SO S NN S
0 02 04 06 08 1

Q? (GeV?)

FIG.5. Radiative correction factor § from Eq. (26) in resummed
perturbation theory for the static source limit of electron proton
scattering, with £ = 1 GeV, AE = 5 MeV. The bands represent
the impact of varying min(Q?, E?)/2 < u2 < 2max(Q?, E?) and
min(m?, AE?)/2 < y? < 2max(m?, AE?), using leading log
resummation (blue horizontal stripes), next-to-leading log re-
summation (red vertical stripes), and complete next-to-leading
order resummation (black solid band).

0 1[ 4z (1
{log_l"g”/fo[( )(T

cusp
+ (y(lzusp ﬂl)( logr+r—1) —2ﬂ_10g r}

Q2
H

2 2 76
2 M (logQ logmz) —I——logzﬂH +-
HL
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1+1ogr)
} (53)
|

terms involving 7" and B, scale as a', and the
remaining neglected terms scale as @>. When combined
with one-loop matching computations, the terms retained
in Eq. (53) are thus sufficient to ensure accuracy through
order a', accounting for logarithmic enhancements. The
result (53) may readily be expressed in terms of the on-
shell coupling. Retaining terms through O(a) in the
above counting,

2
+ 610gﬂ121]
HL

L H 9 ML

(54)

|
J(p; ) contains no large logarithms and may be truncated
at one-loop order. R(u, ) is nontrivial only at order a’/?
and may be neglected. Similarly, setting uy ~ M, the
matching coefficient H(uy) is free of large logarithms and
may be truncated at one-loop order. Figure 5 compares
successive inclusion of terms at order oY, a%, and o' in
resummed perturbation theory. The figure demonstrates
the necessity to control both leading and subleading
logarithms in the perturbative expansion.

G. Nuclear recoil and structure corrections

The preceding discussion gives a complete solution
including subleading log resummation for the idealized
problem of scattering from a static source. Let us include
the effects of nuclear recoil and structure. The “Born” cross
section (denoted with subscript 0) is [6]

€G3 +7Gy,

(do-)() = (da)Mott €(1 + T)

. (55)

where the Mott cross section is now (do/dQ)yy =
a*cos?(0/2)/[4nE?sin*(6/2)], with

Q2

_ 0
n:E/E/, T:W’ 1:1—|—2(1+1)tan2§,

(56)
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and @ is the electron scattering angle in the lab frame. To
begin, we work to first order in nuclear charge, i.e.,
neglect radiative corrections involving the proton. The
experimentally measured cross section is

:W(l+5e+5ey+5eyy+"')

(df>o
[1-11(¢*)]?

The virtual corrections as a function of ¢ are identical to
the static case,

(1+6). (57)

5, = IF,(¢* 2. ) = 1. (58)

The first order real corrections are now [40]

1 (nAE)? 2
52},) = 4<logﬁ—log— (L-1)

! m2
2 2
0 77) _4n* (59)

212 — 2]og? 4Li, | 1 —=— .

In terms of this result, second order real corrections are

2 1 N2 1672
527)7 = 21 [ 27)} - T(L - 1)2- (60)
Assuming soft-collinear factorization [cf. the discussion
around Eq. (31) and Appendix D], the mixed real-virtual
contribution at second order is given in terms of the result
(59) by

68 = sMsll). (61)

+Z[u-v, umi0)+u’~1/f(u’-1/i0)+u~v’f(u'v’)—|—u’-vf(u'~v)]}log/;2,

=1- gRe{ [u-u'flu-u')—1] + Z°[v- V' fv-0)) — 1]
(

PHYSICAL REVIEW D 95, 013001 (2017)

The results (58), (59), (60), and (61) imply that Eq. (32)
remains valid when recoil effects are included. These
results are valid at first order in nuclear charge, and in
the regime m < E, but with the restriction E < M
removed.

H. Two-photon exchange

The complete result at first order in nuclear charge is
simplified by the factorization theorem which implies that
recoil effects are confined to soft function contributions
involving real emission. Beyond first order in the nuclear
charge, radiative corrections introduce new operators at the
hard scale and sensitivity to nuclear structure beyond form
factors. Let us briefly discuss the inclusion of such
corrections in the formalism.

The factorization formula including second (and higher)
order corrections in nuclear charge takes the same form as
Eq. (33). The function J(u) is unchanged. The function
R(1) may be taken as unity at the relevant order [recall
R ~a?’L = O(a*?), in our counting aL?> = O(1)]. Let us
focus on the hard and soft functions. In particular, let us
consider the extraction of proton structure information from
scattering data. Our goal is to isolate H(u = M), which is
built from conventionally defined Born form factors, as in
Eq. (12), and analogous hard coefficient functions arising
from two-photon exchange. In the absence of sufficient
data [41] to simultaneously extract the Born form factors
and the two-photon exchange contributions to H(u = M),
hadronic models are employed for the latter [42,43].

The soft function (as well as the remainder function R
and jet function J) is universal to all of the underlying
amplitudes. In place of the static-source limit of Eq. (9), we
have now

2
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where u#, u'# are timelike vectors proportional to initial and ~ The kinematic constraints,
final electron momentum, and v, v’* similarly correspond

to the momenta of the initial and final state proton. The vVeou=v-u, vV =v-u, (64)
function f(w) was introduced for w > 1 in Eq. (6), and the
explicit evaluation of the Feynman integrals yields may be used to reduce the number of terms appearing in
Eq. (62). Real radiation contributions to the soft function
. in are computed using the integrals of Appendix C. After
—-w—i0) = — — 63 L .
fl=w = i0) flw)+ w2 —1 (63) simplification, the complete soft function reads

AEZ 2 2 4 2
S:1+4ﬁ{4<10g(’7 ) —1og”—)(L—1)+2L2—2log2n+4L12(1—@>—i
T

EE' m? 4E? 3

an? 1 2
+8Z{lognlogL+Li2<l—i) —Li2<1——> + lognlog a 2}
Wy Wy . (AE)

gﬁﬂ—%{logzm—logm +Liz<1—w%) H} (65)

In order to extract the hard function at scale 4 = M, we write the process as

H(u)
H(M)

+47? [(wf(w) —1)lo

do < H(M) x x (JRS)(1) = HM)(1 + 5), (66)

where 6 is the total radiative correction. Evaluating J, R, and S at the soft scale, we thus require the
ratio H(u)/H(M), with control over large logarithms in perturbation theory. The renormalization of the hard function
is now governed by (cf. Appendix A)

dlogH _ [ 0? v-p' @) (67)

legﬂ }/cusp( ) IOg M_Q + ycusp(” ' U,7 a) + 2ycusp(a) log 10

The cusp function y,,(@) has been introduced above in Eq. (50), yeusp(w. @) is given in Eq. (A7), and the regular
anomalous dimension y (&) is

°° a \ntl

The solution to Eq. (67), analogous to Eq. (53), is

H 1 2 E
log ) = {yo—l- <1()ng +wf(w) +2log—— > CUQP] log r

H(uy) ﬂo E—i0
A 4 (1_ ) <y?‘“" m) N }
7 {a(,uy) - 1+logr |+ Y (—logr+r—1) 7 log?r + . (69)

Expressed in terms of on-shell coupling,

H 2
log (k) { { —2log* = Hi 4log'uH log < ]
H(py) |4n 773 ML Hp

a\2[ 8 uz, 8 Hy 0? m? 40 uy
+ (=) |-clog® =2 - —log?~ (log=- —log— | + —log? =2 +
(4,[) [ O T wp 3T\ Twy o wi) 9 T
176 ., u? E'
- 1o 4 M . .. —10+4 81
+(47;) [27 og /4%+ ] + }—i— [ +4wf(w) + Og—E—iO}

2 2
a KFu a 2/4H
Ll 1oeH et I el |
X {47:{ ogﬂ%] + <4ﬂ) { 3 og + } + } (70)
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FIG. 6. Same as Fig. 5, but including recoil and nuclear charge
corrections (i.e., two-photon exchange and proton vertex correc-
tions). The total radiative correction & is given by Eq. (66).

where terms through a' are retained, in the counting
alog?(Q?/m?) ~ 1. The impact of successive terms in
the resummed perturbative expansion is displayed in
Fig. 6.

IV. DISCUSSION

The precision of electron proton scattering experiments
has reached a level demanding systematic analysis of
subleading radiative corrections at two-loop order and
beyond. We have presented the general framework that
separates physical scales in the scattering process, allowing
a systematic merger of fixed order perturbation theory with
large log resummation.

The quantum field theory analysis reveals implicit con-
ventions and assumptions that often differ between appli-
cations, such as between scattering and bound state
problems. The definition of the proton charge and magnetic
radii in the presence of electromagnetic radiative corrections
is naturally defined in Eq. (12). A comparison to other
definitions in the literature is presented in Appendix B. The
separation of soft and hard scales in two-photon exchange is
similarly ambiguous in standard treatments. The common
Maximon-Tjon convention [40] implicitly takes momen-
tum-dependent factorization scale y> = Q for two-photon
exchange, in conflict with the Q?-independent choice > =
M? that is closest to the implicit convention for vertex
corrections.

The exponentiation and cancellation of infrared singu-
larities [10] in physical processes have often been used to
motivate a simple exponentiation of first order corrections
in order to resum logarithmically enhanced radiative
corrections at second and higher order in perturbation
theory [7,44]. This procedure fails to capture subleading
logarithms, beginning at order a?L® = O(az), in our
counting al? = O(1); cf. Eq. (32). These large logarithms
are automatically generated in the renormalization analysis
that the effective theory makes possible. The convergence
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FIG. 7. Comparison of complete next-to-leading order re-
summed correction (solid black band) to naive exponentiations
using different factorization scales for the two-photon exchange
correction: u> = M? (dotted red line) and u> = Q? (dashed blue
line). See text for details.

of resummed perturbation theory is illustrated, for the
complete problem including proton structure and recoil,
in Fig. 6. A comparison of the resummed prediction to the
naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to different
scale choices implicit in different two-photon exchange
corrections.'” These ansatzes differ at the percent level in
the considered kinematic range and fall well outside the
error band represented by the complete next-to-leading
order resummed prediction.

Special attention has been paid to the effects of real
emission beyond tree level. Soft-photon factorization and
exponentiation is readily proven [10] for the case AE < m.
In practical experiments, the opposite limit, m < AE,
obtains. It is readily seen (cf. Appendix D) that multiple
low-energy momentum regions appear, invalidating a simple
factorization argument. Nevertheless, an explicit computa-
tion of the two-loop mixed real-virtual correction demon-
strates factorization for the simplest elastic scattering
observable under consideration. It is interesting to consider
extensions to other observables, including the possibility of
hard photon emission.

Discrepancies at the 0.5%—-1% level exist between
the complete resummed prediction (70) and phenomeno-
logical approximations employed in the analysis of Al
Collaboration electron proton scattering data [7], as illus-
trated in Fig. 7. It is interesting to consider the impact of
these corrections on the proton radius puzzle. These
discrepancies are in tension with the 0.2%—0.5% systematic

For example, the so-called McKinley-Feshbach correction
[45] represents the large-M limit of the hard-coefficient contri-
bution to two-photon exchange, and it is independent of factori-
zation scale y. Using this correction [7] results in an irreducible
factorization-scale uncertainty, uncanceled between matrix
element and coefficient.
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errors assumed in the extraction of proton electric and
magnetic charge radii [7], but will be partially absorbed
by floating normalization parameters in fits to indepen-
dent data sets [6,7]. A careful accounting of correlated
shape variations induced by radiative corrections must
also be accounted for when fitting the inferred radiative
tail for the signal process together with background
processes [7,46]. The complete implementation of
improved corrections in the analysis of electron proton
scattering data, for charge radius and form factor extrac-
tions, is outside the scope of this paper [47]. It is
straightforward to include these improvements in event
generators [44,48-50]. It is interesting to perform a
systematic analysis of power corrections, particularly of
relevance to very low 0? and/or high AE [51,52].13

Many other lepton-hadron processes are being probed
at the percent and permille levels, and are critical to next
generation experiments probing fundamental physics in
and beyond the standard model. Examples include
neutrino-nucleus scattering for neutrino oscillations
[53], eTe™ — hadrons for input to (g—2), [54], and
parity violating scattering observables [55-57]. The
effective field theory analysis may readily be applied
to systematically compute radiative corrections involving
large logarithms in these and other applications.
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APPENDIX A: RENORMALIZATION
CONSTANTS

We collect here standard renormalization constants and
conventions used in the paper. Working in d =4 —2e¢
dimensions, the bare QED coupling ey, and fine structure
constant a,,. are defined and related to the MS fine
structure constant @ = a(u) by

PFirst order power corrections in the static source limit are
obtained from the integrals in Sec. C. These are small in the
kinematics of the A1 Collaboration data [7].
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2

ez B n+1
2;;1;6 (4”)66 T = Apare = |:1 + Zzn( ) :|a

Zy=—. Al
=5 (A1)
The QED beta function is defined as
Togn™ Zﬂ ( ) ’
4
Po = —gnf, b= —4”f- (A2)

The relation between on-shell and MS couplings with
ny =1 light flavors of mass m is (in d = 4)

- (2)]

8
20 :§log%,

64
Z; = —log2ﬁ+ 810gﬁ+ 15.
9 m m

(A3)

The on-shell wave function renormalization constants for
massive relativistic (QED) and nonrelativistic (NRQED)
fermions are

Consider the renormalization of Wilson coefficients for
operators representing the soft and collinear matrix ele-
ments for physical amplitudes specified by external
momenta of a given collection of massless and massive
fermions. Let the massless () and massive (&) fermions be
labeled by lowercase indices i and uppercase indices I,
respectively. In general [58-61],

dlog C oo
= .0 1
dlog u gj:}QzQﬂ/cusp (0() 0g —sy;
- Z QI Qlycusp < &>
! MM,
+ ZQI Qﬂ/cusp ) IOg —l,u
{13} el

(AS)

+D @)+ @),

where sums {i, j} run over sets of distinct particle indices.
Here Q; denotes the electric charge (in units of the proton
charge) of the fermion, with all lines in a Feynman diagram

013001-14



EFFECTIVE FIELD THEORY FOR LARGE LOGARITHMS ...

viewed as ingoing (so, e.g., Q; = —1 for an incoming
electron, Q; =+1 for an outgoing electron). Also,
sij =2p; - pj +i0, where all momenta are viewed as
incoming.

Here the massless cusp function is

The massive cusp function is

Veusp(@wf (W),

with f(w) as in Eq. (6) and ys,(@) as in Eq. (A6). The one-
particle terms for massless fermions are

Yeusp(W. @) = (A7)

°° a \ !
reY (@) = e
n=0
while for massive fermions
© ~ \ n+1 40
h a h h h
= —_ s = —2, = — .
y ; ( 47[) Y =g
(A9)

With these general results, we obtain the anomalous
dimensions for hard functions in Egs. (21), (50), and
(67). In particular, in Eq. (21) we identify [y, (w, @) =
Yeusp(W, @) + 2y"(@). In Eq. (50) we identify y = 2y¥, and
in Eq. (67) we identify y = 2p¥ + 2y".

APPENDIX B: BORN CONVENTIONS

A number of conflicting conventions exist in the electron
proton scattering literature for defining infrared finite Born
form factors. These must all be of the form

2 2

PP = Fia) {1 = 5 o) - )10y

+AK] +O(a2)}, (B1)

as derived in the effective theory analysis. Here F; denotes
the on-shell form factor, and F®™(0) = F;(0). Several
conventions are listed here for the finite term AK. The
natural convention based on the factorization formulas
discussed in this paper is

PHYSICAL REVIEW D 95, 013001 (2017)
AKTe =0, (B2)

The convention adopted in Ref. [6] is essentially that of
Maximon and Tjon [40], but neglecting an additional

5(1) in

model-dependent correction (referred to as J

Ref. [40]),

-1
AKLAH — \/% |:10g wi 10g[2(W + 1)] - 2Ll2 (W_>
+
7 1
- — log?
6 28 W*]
q2 4
=-2 B
2+ 0(0%), (83)

where in the last line, the result is expanded around
Q% =2M*(w—1) - 0.

There are also several conventions in the atomic physics
literature for AK, or equivalently for the proton electron
and magnetic radii. Let us define

1, 1 dGpom
2 :
6 GE 0) dq 42:0
F,(0)  Z’a [21 %2

= — M?AK' (0
a2 2R |3 08 0)}-

(B4)

The case AK'(0) =0, as for AK™ in Eq. (B2), corre-
sponds to the convention used in Ref. [62]; in this
convention, the charge radius of a point particle vanishes
including O(a) radiative corrections. With the convention
(B3), we have instead

Z%a

LAH _
( E) 27[M2 :

= (rp)ie -

(B5)

Several other conventions have been used; e.g., Pachucki’s
definition in Ref. [63] implies

572a
2\P _ (2 \fac. _
(rE> (”E) M2

(B6)

Formula (B4) may be used to translate the radius used in
other conventions.

APPENDIX C: PHASE SPACE INTEGRALS

We list here expressions for phase space integrals used in
the paper. In terms of arbitrary timelike unit vectors v and
v [64],
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a¢ 1 1 2AE
= 21 log =—— + logZ(v%) — log?(v"°
[wsu 2r)26% (v- ) (V' - €)  8a2Vw? — 1 [ 08() log == log(12,) ~ log"(v)
UO 7}0
+Li 1—7+wv0—v’0>—|—Li <1——_wvo—v’0>
e () R (e T
. v’ 0 0 : v 0 0
—L12 1—271(71 — W_UV ) —L12 1—2—1(1) — W_0V ) . (Cl)
W — —
In the limit v’ = v, Eq. (C1) becomes
/ ¢ 1 I [10g 2AE 0 tog 10 + /(102 — 1 ()
T S [¢) —_ (0] v v - .
pear Q)20 (v € A | % A WP -1 °

In the analysis of power corrections (in AE/E), we encounter integrals with the replacement p’ — p’#, where p* is

defined with energy E' = E' — ¢° (recall E' = E for the static limit) and spatial momentum in the direction identical to p'#.

The first class of integrals is unchanged,

/ &>t m? / &t m? 1 o o (3)
= —_ [ —
pzar QP20 (007 Joear @200 (0 2p 422 [0 E T )
where the arrow indicates the large energy limit, v° = E/m — oo. For the second class of integrals,
&t 2p-p 1 AE A 0 27 AE
— |4 log— —log— | L + L* + 2Li 2o ) - = (-8L+4)+---|,
|wamte fia a (s E g ) 1 2t (o) - B s v+
(C4)

where the first order power correction is displayed.

APPENDIX D: TWO-LOOP MIXED
REAL-VIRTUAL CORRECTION:
FULL THEORY

Here we give details on the explicit evaluation of the two-
loop matching calculation for electron proton scattering
involving mixed real-virtual corrections in the static source
limit. Recall the tree-level squared matrix element for the
process without photon emission,

Y Mo = &Tr[(p" +m)y°(p + m)y]. (D1

The squared matrix element for the process with photon
emission is

D Ml =) [Mo2e
X{Zp-p’ N
pep'-¢ (p-o)PF (p-¢)P)
(D2)

where terms yielding power suppressed contributions after
photon phase space integration have been dropped.

In the analysis of the phase space integrals for loop
corrections to Eq. (D2), we encounter integrals of the

form

s m? ¢ m?
[ - L= [%2 "™
1 / f() (pf)Qf(a), 2 / f() (p/f)zg( )7

¢ 2p-p
Iy = | ——————h(a,b), D3
o= [ e (D3)
where we introduce the shorthand a = —p’ - £/m? — 0,

b = p - ¢/m?. Introduce the small parameter k = m/E. For
simplicity in this description, consider the case of backward
scattering where p’ = —p. Introduce a light-cone basis for
the photon momentum,

= (n-tn-¢,0), (D4)
where n and 71 are lightlike vectors in the direction of p
and p’, with n> = > =0, n-ii = 2. For I,, the leading
contribution is readily found to arise from momenta
scaling as

K~ E(k, 3, k%) I, ~ f(k) = £(0), (D5)
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i.e., from photons that are both soft and collinear to the final
state electron. Contributions from other regions involve
power suppression, e.g.,

kKt~ E(k,x, k) I ~ 2 f(k71),

K~ E(k*, k%, k) 1 ~ k2 f(K0). (D6)
Similarly, for /,, the leading contribution is from photons
that are both soft and collinear to the initial state electron,

K~ E(3, Kk, k%) I, ~ g(k) = g(0). (D7)

Finally, for 75, multiple regions potentially contribute,

K~ E(k,x,k): Iy ~h(x ! k),
K~ E(3 Kk, k%) I3~ h(x,x71),
K~ E(xk, k3, k%) I3~ h(x™!, k),

K~ E(x?, k%, k%) 13 ~ h(k°,&0). (D8)
Inside loops, the presence of multiple momentum modes of
the same virtuality (L> ~ x*) complicates a simple argu-
ment for soft-collinear factorization based on eikonal
decoupling [cf. the discussion surrounding Eq. (8), where
only a single, soft, momentum mode is present].14 We
proceed by direct evaluation of the diagrams.

The relevant squared matrix element contains interfer-
ence terms between the tree-level real radiation diagrams of
Fig. 1 and the one-loop real radiation diagrams of Fig. 2.
After averaging and summing over initial and final electron

|

PHYSICAL REVIEW D 95, 013001 (2017)

spins, the squared matrix element, divided by the tree-level
squared matrix element without radiation, can be expanded
in terms of the following basic integrals (and the integrals
related by p <> p/, € < =0):

1 1
/ : / [1,LK, LALY, LFLYLP),
D, (2)D,D3D, D\D,D;D,

1
/7[1,L”,L”L’“],
D,D,D,

1 1
/7[1,U‘,L/‘LD], / N
D\DsD, DD,

where integration is over [ = [ d’L, and the denominators
are

(D9)

Dl(ﬂ> - L2 —ﬂz, Dl - Lz,
D, =L*+2L-p, Dy =L*+2L-p,

Dy=L*+2L-(p'+¢)+2p -¢. (D10)
We evaluated these integrals using dimensional regulari-
zation for ultraviolet divergences and photon mass A for
infrared divergences. After mass, coupling and wave
function renormalization, and expressing the result in terms
of the on-shell coupling, we obtain expressions of the form
(D3), which may be expanded according to Egs. (DS5),
(D7), and (D8). Neglecting contributions that are power
suppressed after photon phase space integration, the final
result reads

2p-p'
SIMiP = Y IMpe| 2
QZ

2 2 2
(pn.af)z_ m }{14—1[210ng

A 2
+ 8log— <log——1> +6logQ —I———S}}
m 3

WPl U

(D11)

APPENDIX E: TWO-LOOP MIXED REAL-VIRTUAL CORRECTION: EFFECTIVE THEORY

Here we outline the evaluation of the mixed real-virtual corrections using a decomposition into soft and collinear
momentum regions, formalized as soft-collinear effective theory [18-25]. We first review the analysis of vertex

corrections.

1. Vertex corrections

Consider the amplitude pictured on the left hand side of Fig. 8,

d/L
SFyt = —ie? a
Y e /(Zﬂ)d}/

(E+p +m)y(E+p+my,

1 1
L> =2 L*>+2L-pL>+2L-p"”

(E1)

“For a related discussion on potential difficulties with naive factorization, see Ref. [34].
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YTy

FIG. 8.

Expansion in momentum regions of amplitudes for electron scattering in the static source limit. Diagram on the left hand side

is in the full theory (QED), and diagrams on the right hand side are in the effective theory. Soft and collinear photons are represented by
curly lines and curly lines superimposed on solid lines, respectively.

and the corresponding decomposition pictured on the right
hand side of Fig. 8. Introduce light-cone vectors n* and 7*
for the direction p#, and corresponding vectors n’# and 7'
for the direction p’*. The hard contribution is represented
by the first diagram on the right hand side of Fig. 8 and is
obtained from

dL
SFyyt = —ié? /

1
Y E+P I E+P ) as

(2x)4 L
1 1
X
L?>+2L-p_L*>+2L-p',
2 3 2
2l 2e|_ = _ =~ _ 8 —, E2
epledo =528+ (E)

where [c,] = i(47)72*T(1 + €), and p* = i1 - pn*/2 is the
large component of the momentum p* (similarly p” is
defined in terms of n* and 7). This yields the one-loop
contribution to F¥ in Eq. (34)."

The soft contribution corresponds to the second
diagram on the right hand side of Fig. 8. In dimensional
regularization,

P B B
Qo PP 20n paL -y

oF gyt = —iezy"/

2
— iepe i {—2log Qz] . (E3)
€ m

Combined with the soft contribution to on-shell wave
function renormalization [Z; in Eq. (A4)], this yields the
one-loop Fgm given by Egs. (41) and (45).

The remaining contributions arise from momentum
regions collinear to the final and initial electron momenta,
shown as the final diagrams on the right hand side of Fig. 8.
The required basis of integrals is (the photon mass 4 is
irrelevant in this region and is taken to zero)

e AL 11 I
[IcvlC’]C]: d_z 2 7
(2m)YL*2L-p_L*+2L-p
x [1,L#, L*LY). (E4)

Recall that our definition of @, absorbs e~7:¢, whereas [c,]
contains T'(1 +¢) = e72¢(1 + *2% /12 + - - -).

We expand
1
Ic = [Ce]_zl(o)’
0
I a
It = [ce]@[lﬁ Tpr 15 p,
v v (2 1 2 v 2 v
1 = [e] | g1 ol Cptpt + 1 !
2 v v
1D (et p_p'ﬂ»]. (E3)

The necessary elementary integrals are

and we obtain
5F; = —ie[c )21 + 218 + (p < p')]

2 4
= —ie*[cJm™>¢ [6—2 + . + 8] : (E7)

Combined with the collinear contribution to on-shell wave
function renormalization [the difference of Zy and Z;, in
Eq. (A4)], this yields the one-loop F¥ given by Eq. (40)
(recall that Fx = 1 at one-loop order).

The sum of 6Fy, 6Fg, and 6F; from Egs. (E2), (E3),
and (E7) reproduce the expression for 0F at leading power
in m?/Q? which may be computed directly from Eq. (E1).
The components of the factorization theorem (33) are thus
identified with effective theory contributions represented
by the diagrams of Fig. 8.

2. Real radiation

Consider now the case of real radiation at loop level.
Begin with the interference between the diagram pictured
in Fig. 9(a), and the tree-level photon emission diagrams
from Fig. 1. The relevant integrals in the full theory
evaluation are given by the first two terms of Eq. (D9),
with four denominators. Let us focus in particular on the
scalar integral,
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FIG. 9. Same as Fig. 8, but for electron scattering with real photon emission.

d‘L 1 1 1 1
I= d72_ 272 T2 72 ] T (E8)
() L*—A*L*+2L-pL*+2L-p'L*+2L-(p'+k)+2p -k

The soft-photon contribution, represented by the first diagram on the right hand side of Fig. 9(a) is

I_/ddL 111 1
) (2r)? L2 =222L-p2L-p'2(L+k)-p'

1 1 p. m*
T Q2%

2
2102 k- mo.r
[cg][ 2log Q2—|—2log 70 logQ2+ 2k (E9)

The collinear contribution, represented by the second diagram on the right hand side of Fig. 9(a) is

; _/ L 11 1 1
< ) @n){LP2L_-pL*4+2L-p'L* +2L-p' + 2k, - (L +p)

1 1 1 1 1 1
- dL)— - -
2k-p’/( )L2<n-pﬁ~(L+p’) n-pﬁ-L)(L2—|—2L-p’+n-kﬁ~(L+p’) L2+2L-p’>

1 1 1 1 1 1 7>
S DA P 170’0 — e 2 \-2€,,2¢( _~ -, E10
o731 € 190.0.0) = S ey (L + ) (E10)
where we introduce the functions
J(r,s,t) = /] a’xx“[ b1 }[x(l —x)m?a + x*m?)"=¢ — (x*m?)"~¢]. (EI11)
0 (I-x)" (=)
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The presence of multiple low energy scales leads to a
nontrivial subtraction in order to avoid double counting.
The soft limit of the collinear integral is

I

| /ddLi 11 1
) @ofLr2L_ - p2L-p 2L+ k) p

1 1 ) 1 P
— @Zk—p’ [c.](m?a)=2m? <— 72 E) , (E12)

so that accounting for the overlap, the collinear region gives
a vanishing contribution,

I,-1.],=0. (E13)

C L'|S

The remaining integrals may be treated similarly. For
example, consider

Iﬂ_/ dL 1 1 1
) Qe +2L-pL?+2L-p
1

3 El4
Lol (p k) r2p ok (E14)

In the collinear region, we expand as

Iﬂ_/ L 1 1 1
) @n)dL*2L_-pL*+2L-p

1
X L*
L>4+2L-p' +2k, - (L+p)
I 1 1 1
= gy P+ 1K), (E15)
with
1 =-La10
==,
- ka1 010, ®e
! € m?ae(l —e)
where J(n,m, p) is given above and
1 1 1
K(r,s,t :/ dxxs{ - ]
= f =y T
x (x(1 = x)m?a + x*m?)"=. (E17)
Explicit evaluation gives
1Y = —Li i
== 12(1—a)+€. (E138)
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Similarly, consider

w—/ d'L 1 1 1
) o)LL +2L-pL?+2L-p
1

LrLY. E19
Lol (p k) r2p ok (E19)
In the collinear region, we expand as
. / 'L 1 1 1
© ) @un)éL22L_-pL*+2L-p
1
X 2 U i LrL®
L*>+2L-p' +2k,-(L+p)
1 1 2w 2 )
- @2]( . p/ [Ce](1<1 )gﬂ + 1(2 )p/ﬂp/
+ 19 (PR 4+ K p) + 1R, (E20)
with
-1 a0,
: 2¢(1 —¢)
1
1 =-J(1,2,0),
€
1@ =Lka2,0 - J(2.1,1),
3 € m*ae(l —e)
@ 1 2 1
I, =-K(1,2,0) -————K(2,1,1),
4 € ( ) m?ae(l —¢) ( )
@ 1 2 1
I, =-K(1,2,0) -————K(2,1,1
4 € ( ) m*ae(l —e) ( )
+ 2 ! J(3,0,2) (E21)
(m*a)*e(l —e)(2—¢)" 77 77
The relevant integrals are, explicitly,
Q) _ 1. a i
I; :L12(1—a)—|—a_110ga—g. (E22)

Note that there are no leading-power soft contributions
corresponding to the full theory diagram in Fig. 9 involving
the photon loop momentum L* in the numerator.

Using these integrals, an explicit evaluation of the
diagram in Fig. 9(a) yields
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Z |M | Fig.9a,collinear = 2Re Z Y \? % W

a 2v-v
=) Mo —— [41 +218 + (a—>b)
2 2a

a 2ov-v . T
=e Z|MO|247”} T E [—2L12(1—a)+§—1_

loga + (a — b)] .
a

(E23)
Similarly (extracting the overall factor C = € Y |[M|?ed, . (47) 72T (1 + €)m~>¢, and real part implied),

(EME) et e e e ]

200 ) 7 2a
+mRe |:2L12(1 — Cl) -—+

31—
h (Z My '2)Fig. e callinear [(v -1k>2 e -1k>2 - v%?c;»'v-, k} (_ g) " [(v -1k)2 G -1k>2} =8

200 (5a—4) S5a -
U-kv'-k[ (a—1)% oga—i—a_ —|—(a—>b)},

= (! (Z |M1|2> ,

Fig. 9c, collinear

loga+8+(a—>b)]

+

¢! <z |M1|2)
Fig. 9d, collinear
1 1 200 6
2o M |2> = [ + - ] <—+ 8). (E24)
<Z : Fig. 9e, collinear (U . k>2 (7/ . k>2 v-kv' k| \e

Summing contributions, we find

()

For the soft contributions,

2\ —€ /
— 2 N 1 I 2vv | 4 2
- Z|MO| 4r (/42> {(1}-1()24_(1/%)2 vkt k|| € € 8 (E25)

collinear

1 v a 2w
-1 |_/\/l |2> = |: - :| |: 4L2+810g—L——:|
<Z : Fig. 9a, soft (U : k)2 v-kv' -k A 3

1 v-v mb 27
- 412 4 8log™ L~ |,
+{(v’-k)2 v-kv’-k][ +ole 3}
1 v-v 4 2%
-1 |M1|2> = [ ] [ L —8Lloga+4L* + ]
(Z Fig. 9b, soft (”‘k)2 v-kv' -k 3
1 v-v | [4 27
L—8Llogh +4L* +—
Jr{(v’-k) v-kv' - k][ 08b+ + 3 ]

(E0),, = [ e

Fig. 9c, soft
1 v-v 4
—8logh + 8
+{(v’ok) v-kv' - k][ ogh+ ]
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()

Fig. 9d, soft |:(

1 v 4
- ~Z 8481
v-k)? v-kv’-k}{ € * oga}
1 v-v 4
- ———8+8logh|,
+{(v"k)2 v-kv’-k][ € * og}

1

1 20 - 4

()

Summing contributions,

Fig. 9e, soft

iz

A
* (W k)2 vk k} {_EJrS]OgE} (E26)

1 20 -

(Eor)

For the hard contribution, only Fig. 9(b) contributes,

soft

a
4

(Zip) =S M

hard
4
X _
62

The contribution from the analog of Fig. 9 with the
photon emitted from the initial state electron results in the
same expressions with a <> b. The sum of hard, collinear,
and soft contributions is identical at leading power to the
full theory evaluation above.

This analysis shows that individual diagrams contain
nonvanishing contributions from soft photons emitted
interior to collinear photon loops. As discussed around

2\ —¢
_ 2 ) & (m” 1
oYt () oo

()l

1
+ = (—4L +6) + 212
€

} F (4L —4) - 8(L—1) log%] . (E27)

(W k)2 vk k] e

1 1 20 -

- +
v-k)? (v -k)? vk -k

2

2 2
—6L+ 16 —%} (E28)

[

Eq. (D8), the presence of multiple momentum modes
contributing at leading power to the real-photon phase
space integration complicates a simple factorization argu-
ment. Nonetheless, an explicit evaluation reveals that
factorization holds in the sum over diagrams, at least
through one-loop order, consistent with the direct evalu-
ation (D11). This leads to the simple expression (31), as
required by the factorization formula (33).

[1] R. Pohl et al., Nature (London) 466, 213 (2010).
[2] P.J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys.
84, 1527 (2012).
[3] L. Sick, Phys. Lett. B 576, 62 (2003).
[4] J.C. Bernauer et al. (Al Collaboration), Phys. Rev. Lett.
105, 242001 (2010).
[5] X. Zhan et al., Phys. Lett. B 705, 59 (2011).
[6] G. Lee, J.R. Arrington, and R.J. Hill, Phys. Rev. D 92,
013013 (2015).
[7]1 J.C. Bernauer et al. (Al Collaboration), Phys. Rev. C 90,
015206 (2014).
[8] R.J. Hill and G. Paz, Phys. Rev. D 82, 113005 (2010).
[9] Z.Epstein, G. Paz, and J. Roy, Phys. Rev. D 90, 074027 (2014).
[10] D.R. Yennie, S.C. Frautschi, and H. Suura, Ann. Phys.
(N.Y)) 13, 379 (1961).
[11] M. Neubert, Phys. Rep. 245, 259 (1994).
[12] A.V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol. 10, 1 (2000).

[13] W.E. Caswell and G.P. Lepage, Phys. Lett. 167B, 437
(1986).

[14] J. Heinonen, R.J. Hill, and M. P. Solon, Phys. Rev. D 86,
094020 (2012).

[15] M. Neubert, Phys. Rev. D 46, 2212 (1992).

[16] G.P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B283,
342 (1987).

[17] W. Kilian, P. Manakos, and T. Mannel, Phys. Rev. D 48,
1321 (1993).

[18] C. W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev. D 63,
014006 (2000).

[19] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys.
Rev. D 63, 114020 (2001).

[20] C. W. Bauer and 1. W. Stewart, Phys. Lett. B 516, 134
(2001).

[21] C. W. Bauer, D. Pirjol, and 1. W. Stewart, Phys. Rev. D 65,
054022 (2002).

[22] J. Chay and C. Kim, Phys. Rev. D 65, 114016 (2002).

013001-22


http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1103/RevModPhys.84.1527
http://dx.doi.org/10.1103/RevModPhys.84.1527
http://dx.doi.org/10.1016/j.physletb.2003.09.092
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1016/j.physletb.2011.10.002
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.90.074027
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1016/0370-1573(94)90091-4
http://dx.doi.org/10.1016/0370-2693(86)91297-9
http://dx.doi.org/10.1016/0370-2693(86)91297-9
http://dx.doi.org/10.1103/PhysRevD.86.094020
http://dx.doi.org/10.1103/PhysRevD.86.094020
http://dx.doi.org/10.1103/PhysRevD.46.2212
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1103/PhysRevD.48.1321
http://dx.doi.org/10.1103/PhysRevD.48.1321
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://dx.doi.org/10.1103/PhysRevD.65.114016

EFFECTIVE FIELD THEORY FOR LARGE LOGARITHMS ...

[23] M. Beneke, A.P. Chapovsky, M. Diehl, and T. Feldmann,
Nucl. Phys. B643, 431 (2002).

[24] R.J. Hill and M. Neubert, Nucl. Phys. B657, 229 (2003).

[25] For a review and further references, see T. Becher, A.
Broggio, and A. Ferroglia, Lect. Notes Phys. 896, 1 (2015).

[26] G.J. H. Burgers, Phys. Lett. 164B, 167 (1985).

[27] B. A. Kniehl, Phys. Lett. B 237, 127 (1990).

[28] P. Mastrolia and E. Remiddi, Nucl. Phys. B664, 341
(2003).

[29] S. Moch, J. A. M. Vermaseren, and A. Vogt, J. High Energy
Phys. 08 (2005) 049.

[30] T. Gehrmann, T. Huber, and D. Maitre, Phys. Lett. B 622,
295 (2005).

[31] T. Gehrmann (private communication).

[32] A.H. Hoang, J. H. Kuhn, and T. Teubner, Nucl. Phys. B452,
173 (1995).

[33] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch,
T. Leineweber, P. Mastrolia, and E. Remiddi, Nucl. Phys.
B706, 245 (2005).

[34] T. Becher and K. Melnikov, J. High Energy Phys. 06 (2007)
084.

[35] J.y. Chiu, F. Golf, R. Kelley, and A. V. Manohar, Phys. Rev.
D 77, 053004 (2008).

[36] T. Becher and M. Neubert, Eur. Phys. J. C 71, 1665 (2011).

[37] J. Y. Chiu, A. Jain, D. Neill, and I.Z. Rothstein, J. High
Energy Phys. 05 (2012) 084.

[38] D.J. Broadhurst and A. G. Grozin, Phys. Rev. D 52, 4082
(1995).

[39] A.B. Arbuzov and T. V. Kopylova, Eur. Phys. J. C 75, 603
(2015).

[40] L. C. Maximon and J. A. Tjon, Phys. Rev. C 62, 054320
(2000).

[41] D. Rimal et al. (CLAS Collaboration), arXiv:1603.00315.

[42] P.G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev.
Lett. 91, 142304 (2003); J. Arrington, Phys. Rev. C 69,
022201 (2004); Y.C. Chen, A. Afanasev, S.J. Brodsky,
C.E. Carlson, and M. Vanderhaeghen, Phys. Rev. Lett. 93,
122301 (2004); A.V. Afanasev and C.E. Carlson, Phys.
Rev. Lett. 94, 212301 (2005); A. V. Afanaseyv, S. J. Brodsky,
C.E. Carlson, Y.C. Chen, and M. Vanderhaeghen, Phys.
Rev. D 72, 013008 (2005); P. G. Blunden, W. Melnitchouk,
and J. A. Tjon, Phys. Rev. C 72, 034612 (2005); S.
Kondratyuk and P.G. Blunden, Nucl. Phys. A778, 44
(2006); M. A. Belushkin, H.-W. Hammer, and U.-G. Meiss-
ner, Phys. Rev. C 75, 035202 (2007); S. Kondratyuk and
P. G. Blunden, Phys. Rev. C 75, 038201 (2007); J. Arrington,
W. Melnitchouk, and J. A. Tjon, Phys. Rev. C 76, 035205
(2007); D. Borisyuk and A. Kobushkin, Phys. Rev. C 78,
025208 (2008); 86, 055204 (2012); 89, 025204 (2014); H. Q.
Zhou and S.N. Yang, Eur. Phys. J. A 51, 105 (2015); O.
Tomalak and M. Vanderhaeghen, Eur. Phys. J. A 51, 24

PHYSICAL REVIEW D 95, 013001 (2017)

(2015); L. T. Lorenz, U.G. Meiner, H.-W. Hammer, and
Y.-B. Dong, Phys. Rev. D 91, 014023 (2015); S.P. Dye,
M. Gonderinger, and G. Paz, Phys. Rev. D 94, 013006
(2016).

[43] For reviews and further references, see C. E. Carlson and M.
Vanderhaeghen, Annu. Rev. Nucl. Part. Sci. 57, 171 (2007);
J. Arrington, P. G. Blunden, and W. Melnitchouk, Prog.
Part. Nucl. Phys. 66, 782 (2011).

[44] M. Vanderhaeghen, J.M. Friedrich, D. Lhuillier, D.
Marchand, L. Van Hoorebeke, and J. Van de Wiele,
Phys. Rev. C 62, 025501 (2000).

[45] W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759
(1948).

[46] 1. Sick, Prog. Part. Nucl. Phys. 67, 473 (2012).

[47] J.R. Arrington, R.J. Hill, G. Lee, and Z. Ye (to be
published).

[48] S. Actis et al. (Working Group on Radiative Corrections and
Monte Carlo Generators for Low Energies Collaboration),
Eur. Phys. J. C 66, 585 (2010).

[49] F. Jegerlehner, Nuovo Cimento Soc. Ital. Fis. C034S1, 31
(2011).

[50] A.V. Gramolin, V.S. Fadin, A.L. Feldman, R.E.
Gerasimov, D.M. Nikolenko, I. A. Rachek, and D.K.
Toporkov, J. Phys. G 41, 115001 (2014).

[51] I. Akushevich, H. Gao, A. Ilyichev, and M. Meziane,
Eur. Phys. J. A 51, 1 (2015).

[52] A.V. Gramolin and D. M. Nikolenko, Phys. Rev. C 93,
055201 (2016).

[53] M. Day and K.S. McFarland, Phys. Rev. D 86, 053003
(2012).

[54] J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 92,
072015 (2015).

[55] J.Benesch et al. (MOLLER Collaboration), arXiv:1411.4088.

[56] A.G. Aleksejevs, S.G. Barkanova, Y.M. Bystritskiy,
E. A. Kuraev, A.N. Ilyichev, and V. A. Zykunov, arXiv:
1202.0378.

[57] A.G. Aleksejevs, S. G. Barkanova, Y. M. Bystritskiy, E. A.
Kuraev, and V. A. Zykunov, Phys. Part. Nucl. Lett. 12, 645
(2015).

[58] T. Becher, R.J. Hill, B. O. Lange, and M. Neubert, Phys.
Rev. D 69, 034013 (2004).

[59] T. Becher and M. Neubert, J. High Energy Phys. 06 (2009)
081; 11 (2013) 024(E).

[60] T. Becher and M. Neubert, Phys. Rev. D 79, 125004 (2009);
80, 109901(E) (2009).

[61] M. Beneke, P. Falgari, and C. Schwinn, Nucl. Phys. B828,
69 (2010).

[62] R.J. Hill and G. Paz, Phys. Rev. Lett. 107, 160402 (2011).

[63] K. Pachucki, Phys. Rev. A 60, 3593 (1999).

[64] G. 't Hooft and M.J. G. Veltman, Nucl. Phys. B153, 365
(1979).

013001-23


http://dx.doi.org/10.1016/S0550-3213(02)00687-9
http://dx.doi.org/10.1016/S0550-3213(03)00116-0
http://dx.doi.org/10.1007/978-3-319-14848-9
http://dx.doi.org/10.1016/0370-2693(85)90053-X
http://dx.doi.org/10.1016/0370-2693(90)90474-K
http://dx.doi.org/10.1016/S0550-3213(03)00405-X
http://dx.doi.org/10.1016/S0550-3213(03)00405-X
http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://dx.doi.org/10.1016/j.physletb.2005.07.019
http://dx.doi.org/10.1016/j.physletb.2005.07.019
http://dx.doi.org/10.1016/0550-3213(95)00308-F
http://dx.doi.org/10.1016/0550-3213(95)00308-F
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.059
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.059
http://dx.doi.org/10.1088/1126-6708/2007/06/084
http://dx.doi.org/10.1088/1126-6708/2007/06/084
http://dx.doi.org/10.1103/PhysRevD.77.053004
http://dx.doi.org/10.1103/PhysRevD.77.053004
http://dx.doi.org/10.1140/epjc/s10052-011-1665-7
http://dx.doi.org/10.1007/JHEP05(2012)084
http://dx.doi.org/10.1007/JHEP05(2012)084
http://dx.doi.org/10.1103/PhysRevD.52.4082
http://dx.doi.org/10.1103/PhysRevD.52.4082
http://dx.doi.org/10.1140/epjc/s10052-015-3833-7
http://dx.doi.org/10.1140/epjc/s10052-015-3833-7
http://dx.doi.org/10.1103/PhysRevC.62.054320
http://dx.doi.org/10.1103/PhysRevC.62.054320
http://arXiv.org/abs/1603.00315
http://dx.doi.org/10.1103/PhysRevLett.91.142304
http://dx.doi.org/10.1103/PhysRevLett.91.142304
http://dx.doi.org/10.1103/PhysRevC.69.022201
http://dx.doi.org/10.1103/PhysRevC.69.022201
http://dx.doi.org/10.1103/PhysRevLett.93.122301
http://dx.doi.org/10.1103/PhysRevLett.93.122301
http://dx.doi.org/10.1103/PhysRevLett.94.212301
http://dx.doi.org/10.1103/PhysRevLett.94.212301
http://dx.doi.org/10.1103/PhysRevD.72.013008
http://dx.doi.org/10.1103/PhysRevD.72.013008
http://dx.doi.org/10.1103/PhysRevC.72.034612
http://dx.doi.org/10.1016/j.nuclphysa.2006.07.038
http://dx.doi.org/10.1016/j.nuclphysa.2006.07.038
http://dx.doi.org/10.1103/PhysRevC.75.035202
http://dx.doi.org/10.1103/PhysRevC.75.038201
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1103/PhysRevC.78.025208
http://dx.doi.org/10.1103/PhysRevC.78.025208
http://dx.doi.org/10.1103/PhysRevC.86.055204
http://dx.doi.org/10.1103/PhysRevC.89.025204
http://dx.doi.org/10.1140/epja/i2015-15105-1
http://dx.doi.org/10.1140/epja/i2015-15024-1
http://dx.doi.org/10.1140/epja/i2015-15024-1
http://dx.doi.org/10.1103/PhysRevD.91.014023
http://dx.doi.org/10.1103/PhysRevD.94.013006
http://dx.doi.org/10.1103/PhysRevD.94.013006
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123116
http://dx.doi.org/10.1016/j.ppnp.2011.07.003
http://dx.doi.org/10.1016/j.ppnp.2011.07.003
http://dx.doi.org/10.1103/PhysRevC.62.025501
http://dx.doi.org/10.1103/PhysRev.74.1759
http://dx.doi.org/10.1103/PhysRev.74.1759
http://dx.doi.org/10.1016/j.ppnp.2012.01.013
http://dx.doi.org/10.1140/epjc/s10052-010-1251-4
http://dx.doi.org/10.1393/ncc/i2011-11011-0
http://dx.doi.org/10.1393/ncc/i2011-11011-0
http://dx.doi.org/10.1088/0954-3899/41/11/115001
http://dx.doi.org/10.1140/epja/i2015-15001-8
http://dx.doi.org/10.1103/PhysRevC.93.055201
http://dx.doi.org/10.1103/PhysRevC.93.055201
http://dx.doi.org/10.1103/PhysRevD.86.053003
http://dx.doi.org/10.1103/PhysRevD.86.053003
http://dx.doi.org/10.1103/PhysRevD.92.072015
http://dx.doi.org/10.1103/PhysRevD.92.072015
http://arXiv.org/abs/1411.4088
http://arXiv.org/abs/1202.0378
http://arXiv.org/abs/1202.0378
http://dx.doi.org/10.1134/S1547477115050039
http://dx.doi.org/10.1134/S1547477115050039
http://dx.doi.org/10.1103/PhysRevD.69.034013
http://dx.doi.org/10.1103/PhysRevD.69.034013
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://dx.doi.org/10.1007/JHEP11(2013)024
http://dx.doi.org/10.1103/PhysRevD.79.125004
http://dx.doi.org/10.1103/PhysRevD.80.109901
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.004
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.004
http://dx.doi.org/10.1103/PhysRevLett.107.160402
http://dx.doi.org/10.1103/PhysRevA.60.3593
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1016/0550-3213(79)90605-9

