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We present a measurement of top quark polarization in #7 pair production in pp collisions at /s =
1.96 TeV using data corresponding to 9.7 tb~! of integrated luminosity recorded with the DO detector at
the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The
polarization is measured through the distribution of lepton angles along three axes: the beam axis, the
helicity axis, and the transverse axis normal to the 77 production plane. This is the first measurement of top
quark polarization at the Tevatron using lepton + jet final states and the first measurement of the transverse
polarization in 7 production. The observed distributions are consistent with standard model predictions of
nearly no polarization.

DOI: 10.1103/PhysRevD.95.011101

I. INTRODUCTION for d-type quarks, —0.4 for b-quarks, and —0.3 for
neutrinos and u-type quarks [3]), and 6;; is the angle
between the direction of the decay product i and the
quantization axis 7. The mean polarizations of the top
and antitop quarks are expected to be identical because of
CP conservation. The P; can be obtained from the
asymmetry of the cos @ distribution

The standard model (SM) predicts that top quarks
produced at the Tevatron collider are almost unpolarized,
while models beyond the standard model (BSM) predict
enhanced polarizations [1]. The top quark polarization P,
can be measured in the top quark rest frame through the
angular distributions of the top quark decay products

relative to some chosen axis 71 [2], N(coso 0) - N(cos6 0)
cosf;; > 0)—N(cosb;; <
A, — in in , 2
PR N(cos;, > 0) + N(cos 0, < 0) @)

1 dr 1

fm:§(1+PﬁKicosei,h), (1)

where N(x) is the number of events passing the require-
where i is the decay product (lepton, quark, or neutrino), k; ment x and the polarization is then P; = 2Ap;. The
is its spin-analyzing power (~1 for charged leptons, 0.97  quantization axes are defined in the 77 rest frame, while
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the decay product directions are defined after successively
boosting the particles to the 7 rest frame and then to the
parent top quark rest frame. We measure the polarization
along three quantization axes: (i) the beam axis 71, given
by the direction of the proton beam [2]; (ii) the helicity axis
ny,, given by the direction of the parent top or antitop quark;
and (iii) the transverse axis 717, given as perpendicular to
the production plane defined by the proton and parent top
quark directions, i.., i1, x fi, (or by 7, x —n; for the
antitop quark) [4,5].

The DO Collaboration published a short study of the top
quark polarization along the helicity axis in pp collisions
as part of the measurement of angular asymmetries of
leptons [6], but no measured value was presented. Recently,
the DO Collaboration measured the top quark polarization
along the beam axis in #7 final states with two leptons [7],
finding it to be consistent with the SM. The ATLAS and
CMS collaborations measured the top quark polarization
along the helicity axis in pp collisions, and the results are
consistent with no polarization [8,9]. The polarization at the
Tevatron and LHC are expected to be different because of
the difference in the initial states, which motivates the
measurement of the polarizations in Tevatron data [10,11].
For beam and transverse axes, the top quark polarizations in
pp collisions are expected to be larger than those for pp
[2,4], therefore offering greater sensitivity to BSM models
with nonzero polarization.

The longitudinal polarizations along the beam and
helicity axes at the Tevatron collider are predicted by the
SM to be (—=0.19 £0.05)% and (—0.39 +0.04)% [12],
respectively, while the transverse polarization is estimated
to be ~1.1% [5]. Observation of a significant departure
from the expected value would be evidence for BSM
contributions to the top quark polarization [1].

We present a measurement of top quark polarization in
¢ + jets final states of /7 production using data collected
with the DO detector [13], corresponding to an integrated
luminosity of 9.7 fb~! of pp collisions at /s = 1.96 TeV.
The lepton is most sensitive to the polarization and is easily
identified. We therefore examine the angular distribution of
leptons. After selecting the events in the £ + jets final state,
we perform a kinematic fit to reconstruct the lepton angles
relative to the various axes. The resulting distributions are
fitted with mixtures of signal templates with +1 and —1
polarizations to extract the observed values. The down-type
quark has an analyzing power close to unity, but its
identification is difficult. It is therefore not used in the
measurement. However, to gain statistical precision, we use
reweighted Monte Carlo (MC) down-type quark distribu-
tions in forming signal event templates.

p

II. EVENT SELECTION

Each top quark of the 7 pair decays into a b quark and a
W boson with nearly 100% probability, leading to a
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W+W~bb final state. In £ + jets events, one of the W
bosons decays leptonically and the other into quarks that
evolve into jets. The trigger selects £ + jets events with at
least one lepton, electron (e) or a muon (¢). The efficiency
of the trigger is 95% or 80% for tf events containing
reconstructed e or y candidates, respectively. This analysis
requires the presence of one isolated e [14] or u [15] with
transverse momentum py > 20 GeV and physics pseudor-
apidity [16] || < 1.1 or |n| < 2, respectively. In addition,
leptons are required to originate from within 1 cm of the
primary pp interaction vertex (PV) in the coordinate along
the beam axis. Accepted events must have a reconstructed
PV within 60 cm of the center of the detector along the beam
axis. Furthermore, we require an imbalance in transverse
momentum pp > 20 GeV, expected from the undetected
neutrino. Jets are reconstructed using an iterative cone
algorithm [17] with a cone parameter of R =0.5. Jet
energies are corrected to the particle level using calibrations
from studies of exclusive y + jet, Z + jet, and dijet events
[18]. These calibrations account for differences in the
detector response to jets originating from gluons; b quarks;
and u, d, s, or ¢ quarks. We require at least three jets with
pr > 20 GeV within || < 2.5 and py > 40 GeV for the jet
of highest p;. At least one jet per event is required to be
identified as originating from a b quark (b tagged) through
the use of a multivariate algorithm [19]. In x4 + jets events,
upper limits are required on the transverse mass of the
reconstructed W boson [20] of MY < 250 GeV and pr <
250 GeV to remove events with misreconstructed muon py.
Additional selections are applied to reduce backgrounds in
muon events and to suppress contributions from multijet
production. A detailed description of these requirements can
be found in Ref. [21]. In addition, we require the curvature of
the track associated with the lepton to be well measured to
reduce lepton charge misidentification.

II1. SIGNAL AND BACKGROUND SAMPLES

We simulate ¢7 events at the next-to-leading-order (NLO)
in perturbative QCD with the MC@NLO event generator
version 3.4 [22] and at the leading-order (LO) with ALPGEN
event generator version 2.11 [23]. Parton showering,
hadronization, and modeling of the underlying event are
performed with HERWIG [24] for MC@NLO events and with
PYTHIA 6.4 [25] for ALPGEN events. The detector response is
simulated using GEANT3 [26]. To model the effects of
multiple pp interactions, the MC events are overlaid with
events from random pp collisions with the same luminosity
distribution as the data. The main background to the 7
signal is W + jets events, where the W boson is produced
via the electroweak interaction together with additional
partons from QCD radiation. The W + jets final state can
be split into four subsamples according to parton flavor,
Wbb + jets, Wcc + jets, Wc + jets, and W + light jets,
where light refers to gluons, u, d, or s quarks. The W + jets
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background is modeled with ALPGEN and PYTHIA [23,25],
as is the background from Z + jets events. Other back-
ground processes include WW, WZ, and ZZ diboson
productions simulated using PYTHIA and single top quark
electroweak production simulated using COMPHEP [27].
The multijet background, where a jet is misidentified as an
isolated lepton, is estimated from the data using the matrix
method [21,28]. We use six different BSM models [29] to
study modified #7 production: one Z' boson model and
five axigluon models with different axigluon masses
and couplings (m200R, m200L, m200A, m2000R, and
m2000A, where L, R, and A refer to left-handed, right-
handed, and axial couplings and numbers are the particle
masses in GeV). Some additional axigluon models such as
m2000L are not simulated as they are excluded by other
measurements of top quark properties. The BSM events are
generated with LO MADGRAPH 5 [30] interfaced to PYTHIA
for parton evolution.

IV. ANALYSIS METHOD

A constrained kinematic y? fit is used to associate the
observed leptons and jets with the individual top quarks
using a likelihood term for each jet-to-quark assignment, as
described in Ref. [31]. We assume the four jets with largest
pr to originate from 77 decay in events with more than four
jets. The algorithm includes a technique that reconstructs
events with a lepton and only three jets [32]. The addition
of the three-jet sample almost doubles the signal sample as
shown in Table I. In our analysis, all possible assignments
of jets to final state quarks are considered and weighted by
the y? probability of each kinematic fit and by the b tagging
probability.

To determine the sample composition, we construct a
kinematic discriminant based on the approximate like-
lihood ratio of expectations for 7 and W + jets events
[33]. The input variables are chosen to achieve good
separation between ff and W + jets events and required
to be well modeled and not strongly correlated with one
another or with the lepton polar angles used in the
measurement. Sets of input variables are selected

TABLE 1. Sample composition and event yields after imple-
menting the selection requirements and the maximum-likelihood
fit to kinematic distributions in data. Only statistical uncertainties
are shown.

3 jets >4 jets

Source e + jets u+ jets e + jets u+ jets
W + jets 1741 £26 1567 &= 15 339+3 205+3
Multijet 494 +7 128 +3 147 + 4 49 +2
Other Bkg 446 +5 378 £ 2 87 +1 73+1
1t signal 1200 £25 817+20 11374+24 904 +23
Sum 3881 =37 2890425 17104+25 1321 +£23
Data 3872 2901 1719 1352
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independently for the £ + 3 jet and the £+ > 4 jet events,
each in three subchannels according to the number of b
tagged jets: 0, 1, > 2. The channels without b tagged jets
are used to determine the sample composition and back-
ground calibration, not to measure the polarization.

The input variables used for the £ + 3 jet kinematic
discriminant are k" = min(pr, pry) - AR, Where

AR, = /(e — 1) + (o — ¢p)? is the angular distance
between the two closest jets (a and b), min(pr,. pr.p)
represents the smaller transverse momentum of the two jets,
and the ¢ are their azimuths in radians; aplanarity
A =3/22;, where A3 is the smallest eigenvalue of the
normalized momentum tensor; H 51, which is the scalar sum
of the pr of the jets and lepton; AR between the leading jet
and the next-to-leading jet; and AR between the lepton and
the leading jet.

The input variables for the £+ > 4 jet discriminant are
kpin: aplanarity; HY%; centrality, C = Hy/H, where Hy is
the scalar sum of all jet py values and H is the scalar sum of

all jet energies; the lowest y*> among the different kinematic

fit solutions in each event; (p5= — p?e") /(phm + pl}lep),

the relative py difference between by, the b jet candidate
from the t — bZv decay, and b,,4, the b jet candidate from
the t - bgq’ decay; and m;, the invariant mass of the two
jets corresponding to the W — ¢¢q’ decay.

The sample composition is determined from a simulta-
neous maximum-likelihood fit to the kinematic discrimi-
nant distributions. The W + jets background is normalized
separately for the heavy-flavor contribution (Whb + jets
and Wcc +jets) and for the light-parton contribution
(We + jets and W + light jets). The sample composition
after implementing the selections, and fitting the maximum
likelihood to data, is broken down into individual channels
by lepton flavor and number of jets and summarized in
Table 1. The obtained 77 yield is close to the expectations.

The lepton angular distributions in W + jets events must
be well modeled since these events form the leading
background, especially in the # + 3 jet sample. We there-
fore use a control sample of # + 3 jet events without b
tagged jets, as such events are dominated by W + jets
production with > 70% contribution. This sample is not
used for the polarization measurement. We reweight the
W 4 jets MC events so that the cos@,; distributions
agree with those for the control events in data with #7
and other background components subtracted. We use the
relative polarization asymmetry defined as [N;(cos®,;)—
N_;(cos®;,)]/[N;(cosb,;) + N_;(cos8,;)], where j
refers to bins of cosf,; values between 0 and 1 and —j
refers to bins between —1 and 0. The distributions of
simulated W + jets events and subtracted data are shown in
Fig. 1. The correction to MC obtained from the control
sample is applied to the background templates used in our
signal extraction. The corrections are 0.047 4 0.002 for
polarization along the beam axis, 0.011 £ 0.001 for the
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FIG. 1. The simulated W + jets events before correction and
data with 77 and other than W + jets background components
subtracted compared in cos 8, ; distributions in the # + 3 jet and
no b tagged jet control sample.

transverse axis, and a negligible amount for the helicity
axis. The uncertainties are propagated to the measurement
as a systematic uncertainty of the background modeling.
We observe the W + jets events to have polarization,
calculated as in Eq. (2), of +0.18 along the beam axis,
—0.23 along the helicity axis, and —0.02 along the trans-
verse axis. Other backgrounds give polarizations of 4+0.05
(beam axis), —0.30 (helicity axis), and +0.01 (trans-
verse axis).

To measure the polarization, a fit is performed to the
reconstructed cos 8 ; distribution using 7 templates of +1
and —1 polarizations and background templates normalized
to the expected event yield. The signal templates arise from
the 7 MC sample generated with no polarization but
reweighted to follow the expected double differential
distribution [2],

1 @ 1(1+ P; 1 cos@ + pKkyPj 5 cos O
S o P P
['dcos@,cosf, 4 17 4.1 1T PR b

— k1kyCcos B cos6,), (3)

where indices 1 and 2 represent the ¢ and 7 quark decay
products (the leptons and down quarks, or their charge
conjugates), k is the spin-analyzing power, and C is the ¢
spin correlation coefficient for a given quantization axis.
We use the SM values C = —0.368 (helicity axis) and

RAPID COMMUNICATIONS

PHYSICAL REVIEW D 95, 011101(R) (2017)

C =0.791 (beam axis), both calculated at NLO in QCD
and in electroweak couplings in Ref. [2]. The spin
correlation factor is not known for the transverse axis,
and thus we set C = 0 and assign a systematic uncertainty
by varying the choice of this factor. The P; ; represents the
polarization state we model (here P,; = +1) along the
chosen axis 71. In the SM, assuming CP invariance, P; | =
P; , and gives the relative sign factor p a value of 41 for the
helicity axis and —1 for the beam and transverse axes [2].

A simultaneous fit is performed for the eight samples
defined according to lepton flavor (e or u), lepton charge, and
number of jets (3 or > 4). The observed polarization is taken
as P = f, — f_, where f are the fraction of events with
P = +1 and —1 returned from the fit. The fitting procedure
and methodological approach are verified using pseudoex-
periments for five values of polarization and through a check
of consistency with predictions, using the BSM models with
nonzero generated longitudinal polarizations. The fitted
polarizations and the model inputs are in good agreement,
as shown in Fig. 2 for the polarizations along the beam axis,
thus verifying our template methodology. The distributions
in the cosine of the polar angle of leptons from 77 decay for all
three axes are shown in Fig. 3.

A previous measurement of top quark polarization and the
forward-backward ¢ and 7 asymmetry in dilepton final states
[7] noted a correlation between these two measurements.
This correlation is caused by acceptance and resolution
effects in the kinematic reconstruction of the events. We
determine the dependence of the observed polarization on
the forward-backward asymmetry at the parton level, Agg,
using samples in which the ¢ and 7 rapidity distributions are
reweighted to accommodate the polarizations. We then use a
correction for the difference between the nominal MC@NLO

8 [ T I T T T T ‘ T T ‘ T T T T ‘ T T T I T ] B B
5 i D@ Simulation™
o 0.2 O SM(MC@NLO+Herwig) .
o) | - g .
£ i 9F  SM (ALPGEN+PYTHIA) ¥ ]
T o4 z 7
S 0.17 ]

(0] A
k) L |
a [ o .
0 B v jol Axigluon models |
- ¢ m200R e
'O'1f A m200L 7]
L A u
- L m2000A T
0.2~ m2000R ]
il : 1 e b b ey L1

-0.2 -0.1 0

P (beam) generated

FIG. 2. Comparison of measured and generated polarizations
along the beam axis for the SM and several non-SM models. The
uncertainties are statistical.
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FIG. 3.

The combined e + jets and y + jets cos @ distributions for data, expected backgrounds, and signal templates for P = —1, SM,

and +1. Panels (a), (c), and (e) show £ + 3 jet events; (b), (d), and (f) show £+ > 4 jet events; (a) and (b) show distributions relative to
the beam axis; (c) and (d) show distributions relative to the helicity axis; and (e) and (f) show distributions relative to the transverse axis.
The hashed areas represent systematic uncertainties. The direction of the cos 6 axis is reversed for the £~ events for beam and transverse

spin-quantization axes plots.

production-level Agg of (5.01 £0.03)% and the next-
to-next-to-leading-order (NNLO) calculation [34] of
(9.5+0.7)%. The observed correction is —0.030 for
the polarization along the beam axis, less than 0.002 for
the polarization along the helicity axis, and is negligible
for the transverse polarization. The uncertainty on the
expected Agg is propagated to the measurement as part of
the methodology systematic uncertainty.

V. SYSTEMATIC UNCERTAINTIES

We have evaluated several categories of systematic
uncertainties using fully simulated events: uncertainties

TABLE II. Summary of the uncertainties in the measured top
quark polarization along three axes. The systematic uncertainty
source indicates the difference in polarization when the measure-
ment is repeated using alternative modeling, after applying un-
certainties from the employed methods, or from assumptions made
in the measurement. The uncertainties are added in quadrature to
form groups of systematic sources and the total uncertainty.

Source Beam  Helicity Transverse
Jet reconstruction £0.010  +£0.008 £0.008
Jet energy measurement +0.010  £0.023 +0.006
b tagging +0.009 +£0.014 £0.005
Background modeling +0.007  £0.021 +0.004
Signal modeling £0.016  +£0.020 +0.008
PDFs +0.013  +£0.011 £0.003
Methodology +0.013  +0.007 +0.009
Total systematic uncertainty  +0.030  40.042 +0.017
Statistical uncertainty +0.046  £0.044 +0.030
Total uncertainty +0.055 +£0.061 +0.035

associated with jet reconstruction, jet energy measurement,
b tagging, the modeling of background and signal events,
PDFs, and procedures and assumptions made in the
analysis. The sources of systematic uncertainties and their
contributions are listed in Table II and added in quadrature
for the total uncertainty. Details about the evaluation of the
uncertainties can be found in Refs. [21,31]. Additionally,
we assign an uncertainty in modeling the invariant mass of
the 77 system (m,;) based on the difference in m; distri-
butions in our signal MC and the NNLO predictions [35].

VI. RESULTS

The measured polarizations for the three spin-quantiza-
tion axes are shown in Table III. Results on the longitudinal
polarizations are presented in Fig. 4 and compared to SM
predictions and several of the BSM models discussed
previously. The measurement along the beam axis is
consistent with the previous DO result in the dilepton

TABLE III. Measured top quark polarization from the 17 £ +
jets channel along the beam, helicity, and transverse axes and the
combined polarization for beam axis with the dilepton result by
the DO Collaboration denoted as Beam—DO comb.. The total
uncertainties are obtained by adding the statistical and systematic
uncertainties in quadrature.

Axis Measured polarization SM prediction
Beam +0.070 £ 0.055 —0.002
Beam—DO comb. +0.081 £ 0.048 —0.002
Helicity —0.102 £ 0.061 —0.004
Transverse -+0.040 £+ 0.035 +0.011
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FIG. 4. Two-dimensional visualization of the longitudinal top
quark polarizations in the £ + jets channel measured along the
beam and helicity axes compared with the SM and the BSM
models described in the text. In this case, the m200A model is not
shown as it is indistinguishable from m2000A model. The
correlation of the two measurement uncertainties is 27%.

channel [7], P = 0.113 4+ 0.093. We estimate the correla-
tion between this result for the beam axis and that of
Ref. [7] to be 5%. The combination using the method of
Refs. [36,37] yields a top quark polarization along the beam
axis P = 0.081 %+ 0.048.

VII. CONCLUSION

In summary, we measure the top quark polarization for ¢7
production in pp collisions at /s = 1.96 TeV along
several spin-quantization axes. The polarizations are con-
sistent with SM predictions. The transverse polarization is

RAPID COMMUNICATIONS

PHYSICAL REVIEW D 95, 011101(R) (2017)

measured for the first time. These are the most precise
measurements of top quark polarization in pp collisions.
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