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We study the flavor structure in SOð32Þ heterotic string theory on six-dimensional tori with magnetic
fluxes. Specifically, we focus on models with the flavor symmetries SUð3Þf and Δð27Þ. In both models, we
can realize the realistic quark masses and mixing angles.
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I. INTRODUCTION

Superstring theory is a promising candidate for unified
theory to describe all interactions that include gravity
and matter, such as quarks, leptons, and Higgs fields.
Superstring theory predicts six-dimensional (6D) compact
space in addition to four-dimensional (4D) spacetime—i.e.,
ten-dimensional (10D) spacetime in total. The massless
spectrum is completely determined at the perturbative
level when one fixes concretely a compactification, i.e.,
a geometrical and gauge background. Actually, various
interesting models have been constructed, and they include
the gauge symmetry of the standard model (SM),
SUð3ÞC × SUð2ÞL ×Uð1ÞY , and three chiral generations
of quarks and leptons. (See [1] for a review.) In some
models, supersymmetry (SUSY) remains in 4D, while
SUSY is broken in other models. Thus, there are a lot
of (semi)realistic models from the viewpoint of massless
spectra. The next issue to examine in these models is
whether these models can lead to numerically realistic
results on the parameters in the SM, e.g., experimental
values of gauge couplings and Yukawa couplings, the
Higgs potential, the CP phase, etc.
Recently, SOð32Þ heterotic string theory on toroidal

compactification with magnetic fluxes was studied. Several
models with the SM gauge group and three chiral gen-
erations have been constructed [2]. In addition, one of the
interesting aspects in this type of models is that they lead to
nonuniversal gauge couplings among the SUð3ÞC, SUð2ÞL,
and Uð1ÞY groups, and such nonuniversal corrections
depend on magnetic fluxes and Kähler moduli [3]. Then,
it is possible that those models with the SM gauge group
and three chiral generations lead to gauge couplings that are
consistent with experimental values [4]. Note that the E8 ×
E8 heterotic string theory on toroidal compactification
cannot lead to such nonuniversal gauge couplings between

SUð3ÞC and SUð2ÞL only by magnetic fluxes.1 Hence, this
nonuniversality is an interesting aspect of SOð32Þ heterotic
string theory, although one-loop threshold corrections can
lead to nonuniversal effects on gauge couplings in E8 × E8

heterotic string theory [6–8]. (See [9,10] for numerical
studies.)
For the next step, we study quark and lepton masses and

mixing angles in SOð32Þ heterotic string theory on toroidal
compactification with magnetic fluxes. Because of mag-
netic fluxes, zero-mode profiles are nontrivially quasilo-
calized. When zero modes are localized close to each other,
their couplings are strong. On the other hand, when they are
localized far away from each other, their couplings are
suppressed. Indeed, their couplings are given by the Jacobi
ϑ function [11]. Thus, we could lead to phenomenologi-
cally interesting results on fermion mass matrices.2 The
flavor structure of SOð32Þ heterotic string theory on a
magnetized torus has already been studied in [2], and it was
shown that several flavor symmetries appear: SUð3Þf,
Δð27Þ, etc. The appearance of such discrete flavor sym-
metries as Δð27Þ, Δð64Þ, and D4 has been pointed out in
heterotic orbifold models [13,14] and intersecting/magnet-
ized D-brane models [15,16], and certain non-Abelian
flavor symmetries of note when realizing fermion masses
and mixing angles [17–19]. Thus, we study quark masses
and mixing angles which are derived from SOð32Þ heter-
otic string theory on toroidal compactification with mag-
netic fluxes. We focus on models with the flavor
symmetries SUð3Þf and Δð27Þ. We also discuss the lepton
sector. Although similar studies in magnetized D-brane
models with theΔð27Þ flavor symmetry were done [12], the
SUð3Þf flavor models have never been studied.
This paper is organized as follows. In Sec. II, we review

SOð32Þ heterotic string theory on toroidal compactification
with magnetic fluxes, and we explain models with the
flavor symmetries SUð3Þf and Δð27Þ. In Sec. III, we study
quark masses and mixing angles in SUð3Þf and Δð27Þ
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1See, e.g., [5] for 10D super E8 Yang-Mills models on tori and
orbifolds with magnetic fluxes.

2See [12] for a similar study on magnetized brane models.
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models. In Sec. IV, we also discuss the lepton sector and
neutrino and Higgs masses. Section V consists of the
conclusion and a discussion.

II. 10D SO(32) SYM THEORY
ON MAGNETIZED TORI

In this section, we give a brief review of SOð32Þ
heterotic string theory on the torus compactification with
background magnetic fluxes. We also explain their flavor
symmetries and Yukawa couplings.

A. Three generation models from SOð32Þ
heterotic string theory

The low-energy effective field theory of SOð32Þ
heterotic string theory is described by 10D SOð32Þ super
Yang-Mills (SYM) theory coupled with supergravity. We
compactify the 6D space to three 2-tori ðT2Þ1 × ðT2Þ2 ×
ðT2Þ3, with magnetic fluxes.
We break SOð32Þ gauge group by inserting Uð1Þ

magnetic fluxes,

SOð32Þ → SUð3ÞC × SUð2ÞL × Π13
a¼1Uð1Þa: ð1Þ

Since SOð32Þ has 16 Cartan elements Hiði ¼ 1;…; 16Þ,
we define Cartan elements of SUð3Þ along H1 −H2, H1 þ
H2 − 2H3 and SUð2Þ as H5 −H6. We set Cartan elements
of Uð1Þa as

Uð1Þ1∶
1ffiffiffi
2

p ð0; 0; 0; 0; 1; 1; 0; 0;…; 0Þ;

Uð1Þ2∶
1

2
ð1; 1; 1; 1; 0; 0; 0; 0;…; 0Þ;

Uð1Þ3∶
1ffiffiffiffiffi
12

p ð1; 1; 1;−3; 0; 0; 0; 0;…; 0Þ;

Uð1Þ4∶ ð0; 0; 0; 0; 0; 0; 1; 0;…; 0Þ;
Uð1Þ5∶ ð0; 0; 0; 0; 0; 0; 0; 1;…; 0Þ;

..

.

Uð1Þ13∶ ð0; 0; 0; 0; 0; 0; 0; 0;…; 1Þ; ð2Þ

in the basisHi. Then, we use the basis in which the nonzero
roots have the charges

ð�1;�1; 0;…; 0Þ; ð3Þ

under Hiði ¼ 1;…; 16Þ, where the underline indicates any
possible permutations. The gauge group enhances to a
larger one if Uð1Þ fluxes are absent or degenerate. For
example, if the magnetic flux along Uð1Þ3 is absent,
SUð3ÞC andUð1Þ3 enhance to SUð4Þ, with Cartan elements
alongH1 −H2,H1 þH2 − 2H3,H1 þH2 þH3 − 3H4, in

our model building. Those enhanced symmetries can be
broken by Wilson lines.
We define three 2-tori ðT2Þi ≃ C=Λi, with i ¼ 1, 2, 3,

where Λi represents two-dimensional lattices generated by
e1 ¼ 2πRi and e2 ¼ 2πRiτi, τi ∈ C. Ri and τi are the radii
and the complex structure moduli. Then, the 6D metric is
given by

ds26 ¼ gmndxmdxn ¼ 2hij̄dz
idzj̄;

gmn ¼

0
B@

gð1Þ 0 0

0 gð2Þ 0

0 0 gð3Þ

1
CA; hij̄ ¼

0
B@

hð1Þ 0 0

0 hð2Þ 0

0 0 hð3Þ

1
CA;

ð4Þ

where

gðiÞ ¼ ð2πRiÞ2
�

1 Reτi
Reτi jτij2

�
;

hðiÞ ¼ ð2πRiÞ2
�

0 1=2

1=2 0

�
; ð5Þ

with the real coordinates xm for ðm; n ¼ 4;…; 9Þ and the
complex coordinates zi ¼ x2þ2i þ τix3þ2i (i ¼ 1, 2, 3) of
the 6D space. We expand Uð1Þa magnetic fluxes in the
compact space f̄a with a ¼ 1;…; 13 in the basis of Kähler
forms, wi ¼ idzi∧dz̄i=ð2ImτiÞ,

f̄a ¼ 2πda
X3
i¼1

mi
awi; ð6Þ

where da indicates normalization factors and mi
a represents

integers or half integers determined by the Dirac quantiza-
tion condition.
The 10D gauge fields and gaugino fields are decom-

posed as

λðxμ; ziÞ ¼
X
l;m;n

χlmnðxμÞ ⊗ ψ1
lðz1Þ ⊗ ψ2

mðz2Þ ⊗ ψ3
nðz3Þ;

AMðxμ; ziÞ ¼
X
l;m;n

φlmn;MðxμÞ ⊗ ϕ1
l;Mðz1Þ ⊗ ϕ2

m;Mðz2Þ

⊗ ϕ3
n;Mðz3Þ; ð7Þ

where M ¼ 0; 1;…; 9, μ ¼ 0, 1, 2, 3, and ϕi
l;MðziÞ, and

ψ i
lðziÞ corresponds to the lth mode on the ith T2. ψ i

lðziÞ is
the 2D spinor, and we denote the zero mode ψ i

0ðziÞ as

ψ i
0ðziÞ ¼

�
ψ iþðziÞ
ψ i
−ðziÞ

�
: ð8Þ

Magnetic fluxes (6) can be obtained from the Uð1Þa
vector potentials
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Ai
aðziÞ ¼

πmi
a

Imτi
Imððz̄i þ ζ̄iaÞdziÞ: ð9Þ

Note that we included the degree of freedom of the complex
Wilson lines ζia ¼ ζx

2þ2i

a þ τiζ
x3þ2i

a .
We use the following gamma matrices on ðT2Þi:

Γ1
i ¼

�
0 1

1 0

�
; Γ2

i ¼
�
0 −i
i 0

�
ð10Þ

satisfying the Clifford algebra, fΓa
i ;Γb

i g ¼ 2δab. In hol-
omorphic coordinates, then, we obtain

Γzi ¼ ð2πRiÞ−1
�
0 2

0 0

�
; Γzi ¼ ð2πRiÞ−1

�
0 0

2 0

�

ð11Þ

from Eq. (5).
The Dirac equation for the zero modes with the repre-

sentation A and the Uð1Þa charge qAa is given by

iDiψ
i
0ðziÞ ¼ iðΓzi∇zi þ Γz̄i∇z̄iÞψ i

0ðziÞ ¼ 0; ð12Þ

with the covariant derivatives

∇zi ¼ ∂zi − iqAaðAi
aÞzi ;

∇z̄i ¼ ∂ z̄i − iqAaðAi
aÞz̄i : ð13Þ

The Dirac equations can be rewritten in terms of the
components of ψ iðziÞ as
�
∂ z̄i þ

πqAami
a

2Imτi

�
zi þ qAami

aζ
i
a

qAami
a

��
ψ iþðzi; z̄iÞ ¼ 0; ð14Þ

�
∂zi −

πqAami
a

2Imτi

�
z̄i þ qAami

aζ̄
i
a

qaAm
i
a

��
ψ i
−ðzi; z̄iÞ ¼ 0: ð15Þ

Here, ψ iþ has degenerate zero modes only if
Mi

A ¼ qAami
a > 0, whereas ψ i

− has degenerate zero modes
only if Mi

A < 0. Their degeneracy is given by jMi
Aj. In

addition, the effective Wilson line ζiA ¼ qAam
i
aζ

i
a

qAami
a
determines

the quasilocalization positions of the wave functions of
zero modes. Thus, Wilson lines are very important to
Yukawa couplings.
If Mi

A > 0, wave functions for ψ iþ are given by

ψ iA;Iþ ¼ ΘI;Mi
Aðzi þ ζiA; τiÞ; ð16Þ

where

ΘI;Mðz; τÞ ¼ N I · eπiMzImz=Imτ · ϑ

�
I=M

0

�
ðMz;MτÞ;

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ;

and normalization factors N I are determined, such that

Z
T2

d2zΘI;MðΘJ;MÞ� ¼ δIJ: ð17Þ

The index I ¼ 0;…; jMi
Aj labels degenerate zero modes.

The total degeneracy, i.e., the number of generations, is a
product of jMi

Aj,

MA ¼ jM1
AjjM2

AjjM3
Aj: ð18Þ

One can extract candidates for SM particles from an
adjoint representation of an SOð32Þ gauge group with
identification of the hypercharge Uð1ÞY ¼ ðUð1Þ3 þ
3
P

N
a¼4 Uð1ÞaÞ=6, where N depends on the models. (See

[2] for details.) These candidates are summarized as
follows:

Q∶
�
Q1 ¼ ð3; 2Þ1;1;1;0;…;0

Q2 ¼ ð3; 2Þ−1;1;1;0;…;0

; L∶
�
L1 ¼ ð1; 2Þ1;1;−3;0;…;0

L2 ¼ ð1; 2Þ−1;1;−3;0;…;0

;

uR∶ uaR2
¼ ð3; 1Þ0;1;1;1;0;…;0; dR∶ daR3

¼ ð3; 1Þ0;1;1;−1;0;…;0;

eR∶ uaR1
¼ ð1; 1Þ0;1;−3;−1;0;…;0; νR∶ na2 ¼ ð1; 1Þ0;1;−3;1;0;…;0;

Hu∶ L̄a
4 ¼ ð1; 2Þ1;0;0;1;0;…;0; Hd∶ La

3 ¼ ð1; 2Þ1;0;0;−1;0;…;0; ð19Þ

where the indices imply Uð1Þ1;…;13 charge q1;…;13 and the
underlines are possible permutations. Here, we focus on the
supersymmetric standard model, e.g., the minimal super-
symmetric standard model (MSSM). Here and hereafter,

we use the superfield notation. We can discuss the non-
supersymmetric SM similarly.
We need constraints on magnetic fluxes in order to make

Uð1ÞY massless [2],
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mi
3 ¼ 0;

mi
2þ2a ¼ −mi

3þ2a

�
a ¼ 1;…;

N − 3

2

�
: ð20Þ

Furthermore, we impose K-theory constraints to construct
models without heterotic five-branes,

X2
a¼1

mi
a ¼ 0 ðmod 2Þ: ð21Þ

We can achieve these conditions by setting

MQ2
¼ 3; ML2

¼ 3;

MQ1
¼ 0; ML1

¼ 0: ð22Þ

For the right-handed sector, we can obtain three generations
of quarks and leptons when

P
13
a¼4MuaR2

¼ −3. In general,

there are many Higgs pairs, Hu and Hd.

B. Flavor symmetries in three generation models

For the left-handed sector, three generations of quark and
lepton doublets are realized by 12 cases,

Mi
Q2

¼

8>><
>>:

ð3; 1; 1Þ
ð3;−1;−1Þ
ð−3;−1; 1Þ:

ð23Þ

Since these cases are related to each other by interchanging
two tori ðT2Þi ↔ ðT2Þj, or changing signs of magnetic

fluxes on two tori mi
a → −mi

a, m
j
a → −mj

a, we can set

Mi
Q2

¼ ð−3;−1; 1Þ ð24Þ

without losing generality.
For the right-handed sector, we have a lot of models to

realize three generations of quarks and leptons. The first
example is obtained as follows:

Mi
u4R2

¼ Mi
u6R2

¼ Mi
u8R2

; Mu4R2
¼ −1;

X13
a¼4

MuaR2
¼ −3:

ð25Þ

In this model, the gauge symmetries develop into a larger
one,

Q
9
a¼4Uð1Þa → SUð3Þu × SUð3Þd × SUð2ÞR. Cartan

elements of SUð3Þu areH4 −H6,H4 þH6 − 2H8. SUð3Þd
and SUð2ÞR are given by H5 −H7, H5 þH7 − 2H9

and H4 þH6 þH8 −H5 −H7 −H9, respectively. These
SUð3Þu;d symmetries are flavor symmetries among the
right-handed quarks and leptons, as well as the Higgs
fields. That is, the right-handed quarks in the up sector
(the down sector) are a triplet under SUð3Þu [SUð3Þd].

Similarly, the Higgs fields Hu (Hd) are also triplets under
SUð3Þu [SUð3Þd], while the right-handed neutrinos (the
charged leptons) are a triplet under SUð3Þu [SUð3Þd]. Thus,
we refer to this model as the SUð3Þf model. The left-
handed quarks and leptons are singlets under the SUð3Þu;d
symmetries.
The second example is obtained as

Mi
u4R2

¼ −Mi
Q2
;

X13
a¼5

MuaR2
¼ 0: ð26Þ

This model has a gauge symmetry SUð2ÞR whose Cartan
element is H4 −H5. In addition, this model has the non-
Abelian discrete symmetry Δð27Þ [15]. The three gener-
ations of the quarks and leptons are triplets under Δð27Þ.
The Higgs fields are also Δð27Þ triplets.
There are other models which have different flavor

structures. We focus on the above two models, the
SUð3Þf flavor model and the Δð27Þ flavor model, since
they contain good flavor symmetries, leading to simple
mass matrices. Throughout this paper, we assume that the
gauge couplings of these flavor symmetries are sufficiently
suppressed at the low-energy scale, although this depends
on the matter contents of the hidden sector. Furthermore,
we also assume the existence of theN ¼ 1 supersymmetry
to ensure the stability of our system, although it is irrelevant
to the flavor structure of the Yukawa coupling.

C. Computation of Yukawa couplings

As shown in the previous section, the wave function of
each degenerate mode on tori is quasilocalized at a different
point which is controlled byWilson lines. Since performing
an overlap integral derives Yukawa couplings, these cou-
plings can become hierarchical. Let us now compute
Yukawa couplings. Yukawa coupling in 4D is given by
the product of three overlap integrals on three 2-tori, i.e.,

YIJK ¼ gλð1ÞI1J1K1
λð2ÞI2J2K2

λð3ÞI3J3K3
;

λðiÞIiJiKi
¼
Z
ðT2Þi

d2ziΘIi;Mi
Aðzi þ ζiA; τiÞΘJi;Mi

Bðzi þ ζiB; τiÞ

× ðΘKi;−Mi
Cðzi þ ζiC; τiÞÞ�; ð27Þ

where g is the 4D gauge coupling, I ¼ ðI1; I2; I3Þ,
J ¼ ðJ1; J2; J3Þ,K ¼ ðK1; K2; K3Þ, and we impose invari-
ance under Uð1Þa gauge symmetries, qAa þ qBa þ qCa ¼ 0.
Note that the Lorentz symmetry of the 6D compact space
also leads to the selection rule of allowed Yukawa cou-
plings. For example, the Yukawa coupling, YðuÞHuQLuR, is
allowed only if the fermionic components of Hu, QL, and
uR have the chiralities ðþ;−;−Þ, ð−;þ;−Þ, and ð−;−;þÞ
in the 6D compact space, respectively, and other
permutations.
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By performing an overlap integral, we obtain

λIiJiKi
¼ N IiN Ji

N Ki

eπiðMi
Aζ

i
AImζiAþMi

Bζ
i
BImζiBþMi

Cζ
i
CImζiCÞ=Imτi

·
X

m∈ZMi
A
þMi

B

ϑ

�Mi
BIi−M

i
AJiþMi

AM
i
Bm

Mi
AM

i
Bð−Mi

CÞ
0

�

× ðMi
AM

i
BðζiA − ζiBÞ; τMi

AM
i
Bð−Mi

CÞÞ
· δIiþJiþMi

Am;Ki
: ð28Þ

III. QUARK MASSES AND MIXINGS

In this section, we study the mass matrices and mixing
angles of quark sector.

A. SUð3Þf model

We begin with the SUð3Þf model. Although there are
several SUð3Þf models, we focus on the case Mi

ucR
4
2

¼
ð−1; 1;−1Þ such that the Lorentz symmetry of the 6D
compact space allows for Yukawa couplings. The three
generations of the up-sector (down-sector) right-handed
quarks are a triplet under SUð3Þu [SUð3Þd]. This model
contains, in total, (4 × 3) pairs of vectorlike Higgs fields,
and these up-sector (down-sector) Higgs fields are four
triplets under SUð3Þu [SUð3Þd]. The degeneracy factor, 4,
comes from four chiral zero modes on the first T2. For
simplicity, we concentrate on a single zero mode among
four zero modes in order to study the properties of the
SUð3Þf flavor model. Note that the difference among four
chiral zero modes on the first T2 is the peak positions of the
wave functions, and the peak position can be shifted by
varying the Wilson line. This implies that any choice of a
single zero mode among four zero modes can lead to an
equivalent configuration by varying the Wilson lines. Thus,
we consider three pairs of Higgs fields, which are triplets
under SUð3Þu and SUð3Þd, and we denote them byHuK and
HdK , with K ¼ 0, 1, 2.
Yukawa coupling terms of the up-sector quarks and three

Higgs fields,

YðuÞ
IJKHuKQLI

uRJ
; ð29Þ

can be written as

YðuÞ
IJ0 ¼ g

0
B@

η8;ζu1 0 0

η4;ζu1 0 0

η0;ζu1 0 0

1
CA; YðuÞ

IJ1 ¼ g

0
B@

0 η8;ζu2 0

0 η4;ζu2 0

0 η0;ζu2 0

1
CA;

YðuÞ
IJ2 ¼ g

0
B@

0 0 η8;ζu3
0 0 η4;ζu3
0 0 η0;ζu3

1
CA; ð30Þ

up to the normalization factors, where ηn;ζui represents the
contributions on Yukawa couplings from the first T2, and is
obtained by use of Eq. (28). In the following analysis, we
restrict complex structure moduli τi and Wilson lines ζia are
pure imaginary. Then, ηn;ζui is written as

ηn;ζui ¼
X
l

e−12πImτð n
12
þlþImζui

Imτ1
Þ2 ; ð31Þ

where

ζui ¼ ðm1
2 þm1

2iþ2Þm1
1ζ

1
1 − ðm1

1 −m1
2iþ2Þm1

2ζ
1
2

− ðm1
1 þm1

2Þm1
2iþ2ζ

1
2iþ2: ð32Þ

We obtain η0;ζui ∼ 1 for ζui ¼ 0.
Similarly, the down-sector Yukawa couplings are written

in the same form, except for the replacement of ηn;ζui by
ηn;ζdi . Wilson lines for the down sector are defined by

ζdi ¼ ðm1
2 þm1

2iþ3Þm1
1ζ

1
1 − ðm1

1 −m1
2iþ3Þm1

2ζ
1
2

− ðm1
1 þm1

2Þm1
2iþ3ζ

1
2iþ3: ð33Þ

Here, we assume that these Higgs fields develop their
vacuum expectation values (VEVs). This leads to the
following mass matrix for the up sector:

Mu ¼ ghHu2i

0
B@

η8;ζu1ρu1 η8;ζu2ρu2 η8;ζu3
η4;ζu1ρu1 η4;ζu2ρu2 η4;ζu3
η0;ζu1ρu1 η0;ζu2ρu2 η0;ζu3

1
CA; ð34Þ

and the down-sector mass matrix

Md ¼ ghHd2i

0
B@

η8;ζd1ρd1 η8;ζd2ρd2 η8;ζd3
η4;ζd1ρd1 η4;ζd2ρd2 η4;ζd3
η0;ζd1ρd1 η0;ζd2ρd2 η0;ζd3

1
CA; ð35Þ

where

ρu1 ¼
hHu0i
hHu2i

; ρu2 ¼
hHu1i
hHu2i

; ð36Þ

ρd1 ¼
hHd0i
hHd2i

; ρd2 ¼
hHd1i
hHd2i

: ð37Þ

The mass ratios and mixing angles are determined by the
complex structure τ1 on the first T2, the Wilson lines ζui
and ζdi, and the ratios ρu1; ρu2; ρd1; ρd2. In this paper, we
treat them as free parameters to fit the data, although they
are determined by the stabilization of the moduli and the
Higgs fields.
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The above matrices for the up sector have the hierarchy
Mu

ij ≤ Mu
i0j0 for i ≤ i0, and j ≤ j0 when ζu1 ∼ ζu2 ∼ ζu3 ∼ 0.

Down-sector matrices have the same characteristics.
Let us consider the (2 × 2) lower right submatrix first.

Because of the hierarchical structure, the diagonalizing
angles of the up- and down-sector mass matrices are
estimated as

θu;d23 ∼Mu;d
23 =M

u;d
33 ; ð38Þ

and the mass ratios are also estimated as

ðm2=m3Þu;d ∼ jMu;d
22 =M

u;d
33 − ðMu;d

23 =M
u;d
33 ÞðMu;d

32 =M
u;d
33 Þj:

ð39Þ

Similarly, we can examine the (2 × 2) upper left submatrix
to estimate diagonalizing angles θu;d12 and θu;d13 , as well as
mass ratios. Then, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix,

VCKM ¼

0
B@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CA; ð40Þ

is estimated as

jVusj ∼ jθu12 − θd12j;
jVubj ∼ jθu13 − θd13j;
jVcbj ∼ jθu23 − θd23j: ð41Þ

These experimental values are

jVusj ¼ 0.23;

jVubj ¼ 0.0041;

jVcbj ¼ 0.041: ð42Þ

The renormalization group flow in the SM leads

mu=mt ∼ 6.5 × 10−6;

mc=mt ∼ 3.2 × 10−3;

md=mb ∼ 1.1 × 10−3;

ms=mb ∼ 2.2 × 10−2; ð43Þ

at ΛGUT ¼ 2 × 1016 GeV (see, e.g., [20]). The renormal-
ization group flow of the MSSM leads to similar values.
With hierarchical Yukawa matrices, we can estimate

mass ratios and mixing angles for the up sector,

ðm1=m3Þu ∼ ρu1

���� η8;ζu1η0;ζu3
−

ρu2
ðm2=m3Þu

η4;ζu1
η0;ζu3

η8;ζu2
η0;ζu3

����;
ðm2=m3Þu ∼ ρu2

���� η4;ζu2η0;ζu3
−
η4;ζu3
η0;ζu3

η0;ζu2
η0;ζu3

����;
mu

3 ∼ ghHu2iη0;ζu3
θu12 ∼

ρu2
ðm2=m3Þu

η8;ζu2
η0;ζu3

;

θu13 ∼
η8;ζu3
η0;ζu3

;

θu23 ∼
η4;ζu3
η0;ζu3

: ð44Þ

The down sector gives similar expressions.
When ρui ∼ ρdi ∼ 1, the ratios of the above parameters

bring insufficient hierarchy to realize the mixing angles;
thus, we need tuning to realize a hierarchical structure.
Here, we show an example of a set of parameters, yielding
realistic quark masses and mixings. We set

τ1 ¼ 1.1i;

ζui ¼ ð−0.065i;−0.068i;−0.072iÞ;
ζdi ¼ ð0.002i;−0.063i; 0.017iÞ;
ρui ¼ ð1; 1Þ;
ρdi ¼ ð1; 1Þ: ð45Þ

Note that thismodel contains tuning.For instance, ðm2=m3Þu
is estimated as j0.056–0.061j ¼ 0.005 inEq. (44), indicating
that cancellation derives the hierarchical mass ratio. Similar
cancellation is required to derive other mass ratios. Since
ρui; ρdi ∼Oð1Þ do not suppressmass ratio,we need tuning to
realize the hierarchical masses. These parameters lead to the
realistic values shown in Table I.
When ρui, ρdi are not of Oð1Þ but are instead hierar-

chical, we do not need tuning. Next, we show an example
without tuning. We set

τ1 ¼ 1.1i;

ζui ¼ ð0.010i;−0.035i;−0.020iÞ;
ζdi ¼ ð−0.020i;−0.084i;−0.070iÞ;
ρui ¼ ð0.0021; 0.44Þ;
ρd1 ¼ ð0.18; 0.97Þ; ð46Þ

leading to the results shown in Table II.

TABLE I. Mass ratios and mixings evaluated with values of the
complex structure moduli on the first T2, the Higgs VEVs, and
the Wilson lines in Eq. (45).

ðmu=mt; mc=mtÞ ð6.3 × 10−6; 4.0 × 10−3Þ
ðmd=mb;ms=mbÞ ð1.6 × 10−3; 1.9 × 10−2Þ
jVCKMj  

0.97 0.23 0.012
0.23 0.97 0.039
0.021 0.035 1.0

!
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We are assuming that one pair of Higgs fields, which
corresponds to the VEV direction, is light, and others are
sufficiently heavy, in order to avoid the flavor changing
neutral currents. It is an interesting but challenging issue—
but one which is beyond the scope of this paper—to realize
such Higgs mass matrices.

B. Δð27Þ model

Let us move on to the Δð27Þ flavor symmetry model.
In this model, all of the quarks and leptons are the same

type of triplets of Δð27Þ.3 We focus on the case Mi
ucR

4
2

¼
ð−3; 1;−1Þ to obtain full-rank mass matrices. This
model contains (6 ¼ 2 × 3) pairs of vectorlike Higgs
fields, and they are two triplets of Δð27Þ, which are also
the same type of triplets as the quarks and leptons. The
degeneracy factor, 6, comes from six chiral zero modes
on first T2.
We use all pairs of the Higgs fields to realize realistic

mass matrices, which are two triplets under Δð27Þ. We
denote them by HuK and HdK , with K ¼ 0;…; 5.
Among them, HuK and HdK , with K ¼ 0, 1, 2, corre-
spond to a triplet, while HuK and HdK , with K ¼ 3, 4, 5,
correspond to another triplet. They lead to the Yukawa
coupling term

YðuÞ
IJKHuKQLI

uRJ
; ð47Þ

which can be written as

YðuÞ
IJ0 ¼ g

0
B@

~η0;ζu 0 0

0 0 ~η6;ζu
0 ~η12;ζu 0

1
CA; YðuÞ

IJ1 ¼ g

0
B@

0 ~η15;ζu 0

~η3;ζu 0 0

0 0 ~η9;ζu

1
CA;

YðuÞ
IJ2 ¼ g

0
B@

0 0 ~η12;ζu
0 ~η0;ζu 0

~η6;ζu 0 0

1
CA; YðuÞ

IJ3 ¼ g

0
B@

~η9;ζu 0 0

0 0 ~η15;ζu
0 ~η3;ζu 0

1
CA;

YðuÞ
IJ4 ¼ g

0
B@

0 ~η6;ζu 0

~η12;ζu 0 0

0 0 ~η0;ζu

1
CA; YðuÞ

IJ5 ¼ g

0
B@

0 0 ~η3;ζu
0 ~η9;ζu 0

~η15;ζu 0 0

1
CA; ð48Þ

up to the normalization factors, where ~ηn;ζu again represents
the contributions on Yukawa couplings from the first T2. As
the SUð3Þf model, we restrict that complex structure
moduli τ, and the Wilson lines ζa are purely imaginary.
Then ~ηn;ζu is written as

~ηn;ζu ¼
X
l

X2
m¼0

e−54πImτð n
54
þm

3
þlþImζu

Imτ1
Þ2 : ð49Þ

Similarly, the down-sector Yukawa couplings are written
in the same form, except for the replacement of ~ηn;ζu by
~ηn;ζd . The Wilson lines for the up and down sectors are

ζu ¼ ðm1
2 þm1

4Þm1
1ζ

1
1 − ðm1

1 −m1
4Þm1

2ζ
1
2 − ðm1

1 þm1
2Þm1

4ζ
1
4

ð50Þ

and

ζd ¼ ðm1
2 þm1

5Þm1
1ζ

1
1 − ðm1

1 −m1
5Þm1

2ζ
1
2

− ðm1
1 þm1

2Þm1
5ζ

1
5: ð51Þ

Note that YIJm (m ¼ 0, 1, 2) has an opposite hierarchy to
YIJmþ3, which is not preferable for realizing a hierarchical
Yukawa matrix. We assume thatHu2,Hu3, andHu4 develop
their VEVs. Then, the mass matrix of the up-sector quarks
is obtained as

Mu ≈ ghHu4i

0
B@

~η9;ζuρu3 ~η6;ζu ~η12;ζuρu2

~η12;ζu ~η0;ζuρu2 ~η15;ζuρu3

ρu2 ~η6;ζu ~η3;ζuρu3 ~η0;ζu

1
CA; ð52Þ

where ρui ¼ hHuii
hHu4i, with i ¼ 2, 3. For the down sector,

ρd3 ~η9;ζd is too small to realize a down quark mass. Thus, we

TABLE II. Mass ratios and mixings evaluated with values of
complex structure moduli on the first T2, the Higgs VEVs, and
the Wilson lines in Eq. (46).

ðmu=mt; mc=mtÞ ð8.7 × 10−6; 2.8 × 10−3Þ
ðmd=mb;ms=mbÞ ð4.4 × 10−4; 1.4 × 10−2Þ
jVCKMj  

0.98 0.20 0.018
0.20 0.98 0.049

0.0076 0.051 1.0

!

3There are several types of triplets in Δð27Þ [18].
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assume that Hd0, as well as Hd2, Hd3 and Hd4, develops its
VEV. Then, the mass matrix of the down-sector quarks is
given by

Md ≈ ghHd4i

0
B@

~η0;ζdρd0 ~η6;ζd ~η12;ζdρd2

~η12;ζd ~η0;ζdρd2 ~η15;ζdρd3

~η6;ζdρd2 ~η3;ζdρd3 ~η0;ζd

1
CA; ð53Þ

where ρdi ¼ hHdii
hHd4i, with i ¼ 0, 2, 3.

Since ðmu=mtÞðmc=mtÞ ¼ detðMuÞ=ðmtÞ3 ∼
detðYIJ4=~η0;ξuÞ leads to a constraint on Imτ1,

ð~η6;ζuÞð~η12;ζuÞ ∼ e−
4
3
πImτ1 ≈ 2 × 10−8, we set Imτ1 ¼ 4.2.

Next, we concentrate on the 2 × 2 lower right matrices,

vu;d4

� ρu;d2 ~η0;ζu;d ρu;d3 ~η15;ζu;d
ρu;d3 ~η3;ζu;d ~η0;ζu;d

�
; ð54Þ

leading to

Vcb ∼ ρu3 ~η15;ζu=~η0;ζu − ρd3 ~η15;ζd=~η0;ζd ;

mc=mt ∼ ρu2 − ðρu3Þ2 ~η3;ζu ~η15;ζu=ð~η0.ζuÞ2;
ms=mb ∼ ρd2 − ðρd3Þ2 ~η3;ζd ~η15;ζd=ð~η0;ζdÞ2: ð55Þ

Then we can estimate ρu2 ∼ 3.2 × 10−3, ρd2 ∼ 2.2 × 10−2,
ρu3 − ρd3 ∼�0.36, assuming ζu ¼ ζd ¼ 0. Finally, we use
Y0 to realize md. In a way similar to the up-sector mass
matrix, we set ρd0 ∼ 1.1 × 10−3 from the constraint
detðMdÞ ∼ ρd0ρd2 ~η

3
0;ζd

. In the following representative
parameters,

τ ¼ 4.2i;

ζu ¼ 0.0045i;

ζd ¼ −0.1i;

ρui ¼ ð0; 0; 0.0053; 0.415; 1; 0Þ;
ρdi ¼ ð0.0012; 0; 0.027; 0.56; 1; 0Þ; ð56Þ

we obtain the realistic quark masses and mixings shown in
Table III.

IV. LEPTON SECTOR

Here, we provide comments on the lepton sector.
As mentioned in Sec. II A, when magnetic flux and

Wilson lines along the Uð1Þ3 direction are vanishing, the
SUð3ÞC gauge symmetry is enhanced to SUð4Þ. In such a
case, the charged lepton mass matrix is the same as the
down-sector quark mass matrix. Let us consider the model
where this SUð4Þ is broken only by Wilson lines. That is,
we introduce different Wilson lines between the down-
sector quarks and the charged lepton sectors. Then the
charged lepton mass matrix corresponding to Sec. III A can
be written

Ml ¼ ghHd2i

0
B@

η8;ζl1ρd1 η8;ζl2ρd2 η8;ζl3
η4;ζl1ρd1 η4;ζl2ρd2 η4;ζl3
η0;ζl1ρd1 η0;ζl2ρd2 η0;ζl3

1
CA ð57Þ

for the SUð3Þf model. Here, the new parameters in the
lepton sector are the Wilson lines, ζli . The experimental
values of mass ratios in the charged lepton sector, me=mτ

and mμ=mτ, are similar to those in the down-sector quarks,
md=mb and ms=mb. Thus, we can realize the charged
lepton mass ratios by setting ζli ∼ ζdi . Similarly, we can
discuss the charged lepton sector for the Δð27Þ model.
Thus, it is straightforward to realize the charged lepton
mass ratios in both the SUð3Þf model and theΔð27Þmodel.
We may assign the right-handed neutrinos such that they

can couple with the left-handed leptons and the up-sector
Higgs scalars. That is the assignment in Sec. II. Then, in
order to discuss the neutrino masses, we need to study
the origin of right-handed Majorana masses. Our models
do not include singlets, whose VEVs become right-handed
Majorana mass terms in the three-point couplings, because
of gauge invariances of extraUð1Þ symmetries. Thus, right-
handed Majorana mass terms would be generated by higher
dimensional terms or nonperturbative terms. Such non-
perturbative terms may be constrained by extra anomalous
Uð1Þ symmetries because factors in the nonperturbative
terms, e−aS−biTi , have anomalous Uð1Þ charges.
In the SUð3Þf model, the three generations of neutrinos

in the above assignment correspond to an SUð3Þu triplet
and they have the same extra Uð1Þ charge. Thus, their
Majorana mass terms cannot be generated unless the
SUð3Þu symmetry is broken. On the other hand, once
the SUð3Þu symmetry is broken, such mass terms would be
generated, but the pattern depends on the breaking pattern.
For example, it is possible to break SUð3Þu such that
breaking does not induce a large mass ratio among the
triplets and the Majorana mass terms realize large mixing
angles.
In the Δð27Þ model, three generations of right-handed

neutrinos are Δð27Þ triplets. Again, unless the Δð27Þ
symmetry is broken, their Majorana mass terms are not

TABLE III. Mass ratios and mixings evaluated with values of
complex structure moduli on the first T2, the Higgs VEVs, and
the Wilson lines in Eq. (56).

ðmu=mt; mc=mtÞ ð7.2 × 10−6; 3.2 × 10−3Þ
ðmd=mb;ms=mbÞ ð1.1 × 10−3; 2.1 × 10−2Þ
jVCKMj  

0.97 0.23 0.0019
0.23 0.97 0.033

0.0095 0.031 1.0

!
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generated. On the other hand, nonperturbative effects may
break the Δð27Þ symmetry.4 In such a case, all entries may
be allowed. Because three generations of right-handed
neutrinos have the same extra Uð1Þ charges, those entries
in the Majorana mass would be of the same order, and we
may have large mixing angles.
Also, we can comment on the Higgs μ-term matrix. Our

models have no singlets S, which have perturbative three-
point couplings with the Higgs pairs, SHuHd, such as the
next-to-minimal supersymmetric standard model, because
extra Uð1Þ symmetries forbid such couplings. Higher order
couplings or nonperturbative effects would generate the μ
terms. In the SUð3Þf model, Hu and Hd are triplets under
SUð3Þu and SUð3Þd, respectively. Thus, unless those
symmetries are broken, μ terms cannot be generated.
Similar to the above comment on the neutrino masses,
the pattern of the μ-term matrix depends on their breaking.
It is plausible that the triplets develop VEVs similar to
hHu0i ∼ hHu1i ∼ hHu2i and hHd0i ¼ hHd1i ¼ hHd2i. The
situation of the μ term in the Δð27Þ is similar.

V. CONCLUSION

We have studied quark mass matrices in SOð32Þ heter-
otic string theory on 6D tori with magnetic fluxes. We have
examined two models, the SUð3Þf flavor model and the
Δð27Þ model. In both models, we have realized realistic
quark masses and mixing angles by using our parameters,

the complex structure, and Wilson lines, as well as Higgs
VEV ratios. We could discuss the charged lepton masses
similarly.
We have used the complex structure and the Wilson lines

as free parameters. It is important to discuss the dynamics
for determining those values. Doing so is beyond the scope
of this paper.
Our models do not have Majorana right-handed neutrino

mass terms at tree level or singlets, such that they have
three-point couplings with right-handed neutrinos at tree
level and their VEVs induce neutrino mass terms. Majorana
right-handed neutrino mass terms may be generated by
higher dimensional operators5 and/or nonperturbative
effects. Indeed, nonperturbative computations for inducing
Majorana neutrino mass terms were studied in magnetized
D-brane models [22,24]. Thus, it would be quite interesting
to apply such discussions to SOð32Þ heterotic string theory.
We will study this scenario elsewhere.
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