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We discuss the dynamical Dp-brane solutions describing any number of Dp branes whose relative
orientations are given by certain SU(2) rotations. These are the generalization of the static angled Dp-brane
solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show
that the particular orientation of the smeared D3-brane configuration can provide an example of colliding
branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.
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I. INTRODUCTION

The time-dependent brane solutions in string theory were
introduced in [1–29] and have been widely used ever since.
But some aspects of the physical properties such as
dynamicalp brane oriented at angles have remained slightly
unclear.
The angled Dp-brane solutions were discovered by [30],

following the recognition of several roles of D-brane
configurations in string theory [31,32,34]. The classical
solution on ten-dimensional spacetime that should be
obtained to introduce oriented angles in string theories
was studied from several points of view in [21,30,34,35].
The authors have discussed the link between the super-
symmetric configurations, intersection of the brane, and
rotation angles. The other completely consistent computa-
tions for angled D branes were performed in [31–33]. The
articles [34,36,37] give a thorough review of much of what
was known in the late 1990s.
These results are more transparent if the dynamical Dp-

brane solution in string theory is discussed in terms of
supergravity theory, aiming to reduce everything to ordi-
nary higher-dimensional general relativity. In the present
paper, we construct new solutions with nontrivial angles in
string theory and study the dynamical behavior that one
would expect of a string theory with the time-dependent
fields and branes.
We start by describing the appropriate ansatz of the fields

and metric in string theory, and find the solution of the
dynamical D2 brane with angle in Sec. II A. The solution is
straightforwardly generalized from the static angled D2-
brane background. This is a good illustration, and also an
important example in order to understand the orientation of
a particular type of brane configuration, which is the so-
called angled D-brane system [30–32].
Using the T-duality map between the type IIA and IIB

string theories, we can obtain the dynamical angled

D3- and D4-brane solutions in terms of dynamical D2
branes, which are discussed in Appendix. We summarize
the general dynamical N Dp-brane system with angles in
Sec. II B, provide their properties in Sec. III and discuss
the collision of two D3 branes in the presence of angles in
Sec. IV. Finally, Sec. V is devoted to a summary and
discussion.

II. DYNAMICAL Dp-BRANE SYSTEM
WITH ANGLES

A. D2-brane system with angle

In this subsection, we consider dynamical D2 branes
oriented at some angles in ten dimensions. The ten-
dimensional spacetime metric depends on time as well
as the rotation angles which describe the orientations of
various D2 branes.

1. Basic equations

The action for the D2-brane system in the Einstein frame
is written as

S¼ 1

2κ2

Z �
R�1−1

2
�dϕ∧dϕ−

1

2 ·4!
eϕ=2 �Fð4Þ ∧Fð4Þ

�
;

ð1Þ

where κ2 is the ten-dimensional gravitational constant, � is
the Hodge dual operator in the ten-dimensional spacetime,
and Fð4Þ is the 4-form field strength. We assume that the
4-form Fð4Þ in the action Eq. (1) is now given by

Fð4Þ ¼ dCð3Þ; ð2Þ

where Cð3Þ is the 3-form gauge field. After variations with
respect to the metric, the scalar field, and the gauge field,
we obtain the field equations,
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RMN ¼ 1

2
∂Mϕ∂Nϕ

þ 1

2 · 4!
eϕ=2

�
2FMABCFN

ABC −
3

8
gMNF2

ð4Þ

�
; ð3aÞ

d � dϕ ¼ 1

4 · 4!
eϕ=2 � Fð4Þ ∧ Fð4Þ; ð3bÞ

dðeϕ=2 � Fð4ÞÞ ¼ 0: ð3cÞ

2. Single D2-brane solution with angle

First we consider a single D2-brane solution. The
geometry of dynamical D2-brane configuration in ten-
dimensional spacetime is assumed to be

ds2 ¼ h−5=8ðt; zÞð−dt2 þ γijdyidyjÞ
þ h3=8ðt; zÞuabðzÞdzadzb; ð4aÞ

γijdyidyj ¼ δijdyidyj þ fðt; zÞ½ðcos θdy1 − sin θdy2Þ2
þ ðcos θdy3 þ sin θdy4Þ2�; ð4bÞ

hðt; zÞ ¼ 1þ fðt; zÞ; ð4cÞ

where ds2 is the line element in the Einstein frame in ten
dimensions, δij is the four-dimensional flat Euclidean
metric, and uab is the metric of the five-dimensional space
Z depending only on the five-dimensional coordinates za.
The dilaton field and the gauge field strengths are assumed
to be

eϕ ¼ h1=2; ð5aÞ

Fð4Þ ¼ d½1 − h−1ðt; zÞ� ∧ dt ∧ ð−sin2θdy1 ∧ dy3

þ sin θ cos θdy1 ∧ dy4

− sin θ cos θdy2 ∧ dy3 þ cos2θdy2 ∧ dy4Þ: ð5bÞ

We first solve the equation for the gauge field strength Fð4Þ.
Substituting the above ansatz for the fields and the metric
form into Eq. (3c), we find

∂t∂ah ¼ 0; ΔZh ¼ 0: ð6Þ
The function h is given by

hðt; zÞ ¼ h0ðtÞ þ h1ðzÞ: ð7Þ
Then we solve the equation for the scalar field, Eq. (3b).

Using the assumptions (4) and (5b), we have

h−3=8ð∂2
t h − h−1ΔZhÞ ¼ 0; ð8Þ

where ΔZ is the Laplace operator on Z. Combining Eq. (8)
with Eqs. (6) and (7), we find

∂2
t h0 ¼ 0; ΔZh1 ¼ 0: ð9Þ

Finally we analyze the Einstein equations (3a). Using the
ansatz (4) and (5), the Einstein equations become

11

16
h−1∂2

t hþ 5

16
h−2ΔZh ¼ 0; ð10aÞ

h−1∂t∂ah ¼ 0; ð10bÞ

5

16
h−1γijð∂2

t h − h−1ΔZhÞ þ
1

2
h−1ΔZγij ¼ 0; ð10cÞ

RabðZÞ þ
3

16
uabð∂2

t h − h−1ΔZhÞ ¼ 0; ð10dÞ

where RabðZÞ is the Ricci tensor of the five-dimensional
space Z. Hence, the field equations reduce to

RabðZÞ ¼ 0; ð11aÞ
hðt; zÞ ¼ h0ðtÞ þ h1ðzÞ; ∂2

t h0 ¼ 0;

ΔZh1 ¼ 0; ΔZf ¼ 0: ð11bÞ

This is the exact solution of the present system for any
given Ricci flat metric uab.
As an example, we set

uab ¼ δab; ð12Þ
where δab is the five-dimensional Euclidean metric. Then
we find an exact solution for a single brane solution,

h0ðtÞ ¼ c0tþ c1; h1ðzÞ ¼ c2 þ
Q1

jza − zað1Þj3
; ð13Þ

where c0, c1, c2,Q1, and zað1Þ are constants.Q1 is the charge

of the D2 brane, and zað1Þ is the position of the D2 brane.

The mass of the brane is given by M1 ¼ jQ1j. If, however,
some spatial dimensions of Z space are smeared by the D2
branes, we find

h0ðtÞ¼ c0tþc1; h1ðzÞ¼ c2þ
Q1

jza− zað1Þj3−dZ
; ð14Þ

where dZð< 5Þ is the smeared dimensions. For the case of
dZ ¼ 3, we have to replace h1 with

h1ðzÞ ¼ c2 þQ1 ln jza − zað1Þj: ð15Þ

Although the above exact solution [Eqs. (4) and (5)]
includes the orientation angle θ in the solution, it is
equivalent to a single brane solution without an angle.
In fact we find that the above solution is reduced to a single
D2-brane solution without an angle if we rotate the y1 − y2
and y3 − y4 planes by the angles θ and −θ, respectively, as
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�
y10

y20

�
¼

�
cos θ − sin θ

sin θ cos θ

��
y1

y2

�
;

�
y30

y40

�
¼

�
cos θ sin θ

− sin θ cos θ

��
y3

y4

�
: ð16Þ

This solution is nothing but that without an angle.
However this description is important to construct the
N-brane system with different angles as we show it below.
Note that if all N D2 branes are parallel each other, we find
the exact solution for N D2 branes with the same angle θ as
Eq. (4) with Eq. (7) and

h0ðtÞ¼c0tþc1; h1ðzÞ¼c2þ
XN
α¼1

Qα

jza−zaðαÞj3−dZ
; ð17Þ

where c0, c1, c2, Qα, and zaðαÞ are constants and

dZð¼ 0;…; 4Þ is the smeared dimensions. Qα and zaðαÞ
denote the charges of branes and their positions, respec-
tively. In the case of dZ ¼ 3, the power function must be
replaced by ln jza − zaðαÞj.

3. Two D2-brane system with angles

Next we construct the exact solutions of two intersecting
D2 branes with nontrivial angle. The ten-dimensional
metric, scalar field and single 3-form potential are assumed
to be

ds2 ¼ h−5=8ðt; zÞð−dt2 þ γijdyidyjÞ
þ h3=8ðt; zÞuabðzÞdzadzb; ð18aÞ

γijdyidyj ¼ δijdyidyj þ fð1Þ½ðcos θ1dy1 − sin θ1dy2Þ2
þ ðcos θ1dy3 þ sin θ1dy4Þ2�
þ fð2Þ½ðcos θ2dy1 − sin θ2dy2Þ2
þ ðcos θ2dy3 þ sin θ2dy4Þ2�; ð18bÞ

hðt; zÞ ¼ 1þ fð1Þðt; zÞ þ fð2Þðt; zÞ
þ fð1Þðt; zÞfð2Þðt; zÞsin2θ; ð18cÞ

eϕ ¼ h1=2; ð18dÞ

Cð3Þ ¼ h−1ðt;zÞdt∧ ½−ffð1Þsin2θ1þfð2Þsin2θ2
þfð1Þfð2Þsin2ðθ1−θ2Þgdy1 ∧dy3þðfð1Þ sinθ1 cosθ1
þfð2Þ sinθ2 cosθ2Þðdy1 ∧dy4−dy2 ∧ dy3Þ
þffð1Þcos2θ1þfð2Þcos2θ2

þfð1Þfð2Þcos2ðθ1−θ2Þgdy2 ∧ dy4�; ð18eÞ
where θ ¼ θ2 − θ1. The notable property with the non-
trivial angle appears in the nonlinear interaction term
in Eq. (18c).

In the following, we consider the two D2-brane system
with the different rotation angles ðθ1; θ2Þ where θ1 ≠ θ2.
We assume ðθ1; θ2Þ ¼ ð0; θÞðθ ≠ 0Þ without loss of gen-
erality, because we can always set one angle to be 0 by an
appropriate rotation of yi-coordinates.
In terms of the ansatz for fields and the metric, the gauge

field equation (3c) gives

∂t∂afð1Þ ¼ 0; ΔZfð1Þ ¼ 0;

∂t∂afð2Þ ¼ 0; ΔZfð2Þ ¼ 0: ð19Þ

From the equation of scalar field, we find

h−3=8½∂2
t h − h−1fð1þ fð2Þsin2θÞΔZfð1Þ

þ ð1þ fð1Þsin2θÞΔZfð2Þg� ¼ 0: ð20Þ

Under our ansatz, the Einstein equations become

11

16
h−1∂2

t hþ 5

16
h−2½ð1þ fð2Þsin2θÞΔZfð1Þ

þ ð1þ fð1Þsin2θÞΔZfð2Þ� ¼ 0; ð21aÞ

h−1½ð1þ f2sin2θÞ∂t∂af1 þ ð1þ fð1Þsin2θÞ∂t∂afð2Þ� ¼ 0;

ð21bÞ

5

16
h−1γij½∂2

t h − h−1fð1þ fð2Þsin2θÞΔZfð1Þ

þ ð1þ fð1Þsin2θÞΔZfð2Þg� þ
1

2
h−1ΔZγij ¼ 0; ð21cÞ

RabðZÞ þ
3

16
uab½∂2

t h − h−1fð1þ fð2Þsin2θÞΔZfð1Þ

þ ð1þ fð1Þsin2θÞΔZfð2Þg� ¼ 0; ð21dÞ

where RabðZÞ is the Ricci tensor of the Z space. Then, the
field equations reduce to

RabðZÞ ¼ 0; ð22aÞ

fð1Þðt; zÞ ¼ ~fð1ÞðtÞ þ f̄ð1ÞðzÞ;
fð2Þðt; zÞ ¼ ~fð2ÞðtÞ þ f̄ð2ÞðzÞ; ð22bÞ

∂2
t
~fð1Þ ¼ 0; ∂2

t
~fð2Þ ¼ 0; ∂t

~fð1Þ∂t
~fð2Þ ¼ 0;

ΔZf̄ð1Þ ¼ 0; ΔZf̄ð2Þ ¼ 0: ð22cÞ

For a given Ricci flat Z space, we can obtain the exact
solution for the two D2-brane system with different angles
by solving the above equation (22c). As a result, at least one
of ~fð1Þ and ~fð2Þ must be constant and then only one brane
can be time dependent, i.e., for α ¼ 1 or 2,
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~fðαÞ ¼ cðαÞ0tþ cðαÞ1; ð23Þ

where cðαÞ0, cðαÞ1 are constant, and the other ~fðβÞ ¼ cðβÞ1
(β ≠ α) are constant. Following the same procedure as the
case of the two D2-brane, we can easily generalize the
above solution to the N D2-brane system with different
angles θαðα ¼ 1;…; NÞ.

4. N D2-brane system with angles

Now we present the solution of field equations for the N
D2-brane system with different angles θαðα ¼ 1;…; NÞ.
The ten-dimensional metric [30,34] is given by

ds2 ¼ h−5=8½−dt2 þ γijdyidyj þ huabðZÞdzadzb�; ð24aÞ

γijdyidyj ¼ δijdyidyj þ
XN
α¼1

fðαÞ½fðRðαÞÞ1idyig2

þ fðRðαÞÞ3jdyjg2�; ð24bÞ

hðt; zÞ ¼ 1þ fðt; zÞ: ð24cÞ

The metric (24) denotes the N D2-brane system such that
each brane first lying in the ðy2; y4Þ plane rotates by an angle
θα (α ¼ 1;…; N) in the ðy1; y2Þ and ðy3; y4Þ planes as
ðξ;ηÞ→ðeiθαξ;e−iθαηÞ where ξ¼y1þiy2 and η ¼ y3 þ iy4,
the rotation of which belongs to the SU(2) group. The
function h and the rotation matrix RðαÞ associated with the
αth D2-brane are given by

fðt; zÞ ¼
XN
α¼1

fðαÞ þ
XN
α<β

fðαÞfðβÞsin2ðθα − θβÞ; ð25aÞ

RðαÞ ¼

0
BBB@

cos θα − sin θα
sin θα cos θα

0

0
cos θα sin θα
− sin θα cos θα

1
CCCA; ð25bÞ

whereRðαÞðα ¼ 1;…; NÞ are SO(4) (≅ SUð2Þ) matrices that
correspond to the rotation of D2 branes. The scalar field ϕ
and the 3-form gauge field Cð3Þ are given by

Cð3Þ ¼ h−1dt∧
�XN

α¼1

fðαÞðRðαÞÞ2i dyi ∧ ðRðαÞÞ4jdyj

−
XN
a<b

fðαÞfðβÞsin2ðθα−θβÞðdy1 ∧ dy3−dy2 ∧ dy4Þ
�
;

ð26aÞ

e2ϕ ¼ h1=2: ð26bÞ

The assumption for fields is a straightforward generalization
of the case of a static D2-brane system with a certain SU(2)
angle, in the type-IIA low energy effective string theory
[30,34]. From the field equations, the ten-dimensional
metric (24) has to obey

RabðZÞ ¼ 0; ð27aÞ

fðαÞðt; zÞ ¼ ~fðαÞðtÞ þ f̄ðαÞðzÞ; ð27bÞ

∂2
t
~fðαÞ ¼ 0; ∂t

~fðαÞ∂t
~fðβÞ ¼ 0; ðα ≠ βÞ

ΔZf̄ðαÞ ¼ 0: ð27cÞ

This gives the exact solution for a N D2-brane system with
different angles for giving Ricci flat Z space. As the two
brane system, only one brane can be time dependent,

~fðαÞ ¼ cðαÞ0tþ cðαÞ1; ð28Þ

where cðαÞ0, cðαÞ1 are constant, and the other ~fðβÞ ¼ cðβÞ1
(β ≠ α) are constant. The interesting property for the case
with the nontrivial angle is the nonlinear interaction term
found in Eq. (25a).
For the case of uab ¼ δab, where δab is the five-dimen-

sional flat Euclidean metric, the functions f̄ðαÞ are given by
harmonic functions, which are associated with D2 branes
located at za ¼ zaðαÞ,

f̄ðαÞðzÞ ¼ c̄α þ
Qα

jza − zaðαÞj3−dZ
; ð29Þ

where cα,Qα and zaðαÞ are constants and dZð¼ 0;…; 4Þ is the
smeared dimensions in theZ space. In the case ofdZ ¼ 3, the
power function must be replaced by ln jza − zaðαÞj.

B. Dp-brane system with angles

In order to find the configurations of a higher-
dimensional Dp-brane system with angles (p>2), we use
a T duality. In Appendix, we present the explicit procedure
for the D3- andD4-brane systemwith angles. For the case of
p ≥ 5, we can repeat the same procedure. Here we sum-
marize the solution of theN Dp-brane system with different
SU(2) angles as follows.
The metric is given by

ds2 ¼ h
p−7
8 ½−dt2 þ γijdyidyj þ δmndζmdζn

þ huabðZÞdzadzb�; ð30Þ

with
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γijdyidyj ¼ δijdyidyj þ
XN
α¼1

fðαÞ½fðRðαÞÞ1idyig2

þ fðRðαÞÞ3jdyjg2�; ð31aÞ

hðt; zÞ ¼ 1þ fðt; zÞ: ð31bÞ

The number of the dimensions of the ζm-space is p − 2,
assuming p ≥ 2. The functions fðt; zÞ and fðαÞðt; zÞ in the
Dp brane are given by

fðt; zÞ ¼
XN
α¼1

fðαÞ þ
XN
α<β

fðαÞfðβÞsin2ðθα − θβÞ; ð32aÞ

fðαÞðt; zÞ ¼ ~fðαÞðtÞ þ f̄ðαÞðzÞ; ð32bÞ

~fðαÞðtÞ ¼ cðαÞ0tþ cðαÞ1;

f̄ðαÞðzÞ ¼ c̄α þ
Qα

jza − zaðαÞj5−p−dZ
; ð32cÞ

where cðαÞ0, cðαÞ1, c̄α are constants, and the rotation
matrices RðαÞ are defined by Eq. (25). dZð¼ 0;…; 6 − pÞ
denotes the number of smeared dimensions in Z space. In
the case of dZ ¼ 5 − p, the power function must be
replaced by ln jza − zaðαÞj. Qαðα ¼ 1;…; NÞ are the charges
(or masses) of Dp branes and each Dp brane is located at
zaðαÞ, respectively.

III. PROPERTIES OF THE Dp-BRANE
SYSTEM WITH ANGLES

A. Asymptotic structure

The asymptotic structure of the dynamical Dp-brane
solution is completely different from static ones. The static
solution has an asymptotically flat geometry, but the present
solution is time dependent. In fact, from Eq. (32) in the limit
of jzj → ∞, we find

ds2 ¼ −dτ2 þ
�
τ

τ0

�2ðp−7Þ
pþ9 ½γijðYÞdyidyj þ δmndζmdζn�

þ
�
τ

τ0

�2ðpþ1Þ
pþ9

uabðZÞdzadzb; ð33Þ

where we have defined the cosmic time τ by

τ ¼ τ0ðcðαÞ0tþ cðαÞ1Þ
16
pþ2: ð34Þ

Hence our solution approaches asymptotically the aniso-
tropic universe. The fastest expanding case is τðpþ1Þ=ðpþ9Þ for
Z, and the part of Y spaces. So, if the static solution gives a
Dp brane, then we can regard the present solution as a Dp
brane in the expanding universe. The asymptotic behavior of
the solution is sourced by the gravity and the time-dependent

dilaton for p ≠ 3 because the field strength vanishes
at jzj → ∞.
One important result with nontrivial angles (θα ≠ θβ)

is that the nonlinear interaction term between branes
appears as in Eq. (32a). From the solution (32), we find
that the world volume of the time-dependent brane system
in ten dimensions for the static observer is given byffiffiffiffiffiffi−gp ∝ hðpþ1Þ=8. Hence, if cðαÞ0 < 0, it is contracting .
Moreover, the transverse space to the Dp brane always
contracts as hðpþ1Þ=16. For the case with cðαÞ0 > 0, we find
the opposite behavior.

B. Spacetime singularity

A curvature singularity appears at h ¼ 0 in the ten-
dimensional spacetime. The regular region in ten-
dimensional spacetime is obtained if and only if h > 0.
This regular spacetime region is bounded by curvature
singularities.
If dZ ≤ 4 − p, although h diverges on the branes, we

find a regular spacetime at infinity. For dZ ¼ 5 − p , since
we have

f̄ðαÞðzÞ ¼ Qk ln jza − zaðαÞj; ð35Þ

the harmonic functionh diverges at infinity (jza− zaðαÞj→∞)
as well as near Dp branes (jza − zaðαÞj ≈ 0). Hence such a

solutionmay not be physically relevant. For dZ ¼ 6 − p, the
functions h are given by a sum of linear functions of z. Then
this solution gives a regular behavior near branes, although
the spacetime is not asymptotically flat.
As a result, the physically relevant solutions are classi-

fied by their behaviors into two classes: dZ ≤ 4 − p and
dZ ¼ 6 − p. The collision of branes shows different behav-
iors as we see later.

C. Compactified spacetime

Since some dimensions are homogeneous, we can
discuss the dynamics of a compactified spacetime. We
compactify some dimensions of homogeneous spaces
(Y space, ζm space, and dZ-dimensional smeared Z space).
We assume that Y space, ζm space and dcð≤ dZÞ dimen-
sions in smeared Z space are compacitified. As a result, we
find (dþ 1)-dimensional inhomogeneous compactified
spacetime in the Einstein frame as

ds2dþ1 ¼ −h2−d
d−1dt2 þ h

1
d−1dz2d; ð36Þ

where d ¼ 7 − p − dc.
In the far region from the branes, since h ≈ cðαÞ0t for

cðαÞ0 > 0, this spacetime expands as jτ − τ0j1d, where τ is the
cosmic time in the (dþ 1)-dimensional spacetime and τ0 is

an integration constant, which is given by ðτ − τ0Þ ∝ t
d

2ðd−1Þ .
However, since this is an inhomogeneous (dþ 1)-
dimensional spacetime, it cannot describe our Universe.
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It does not describe a time-dependent black hole
system either because of the present too simple brane
configuration [8–10].
In order to discuss cosmology, we must find our three

spaces in the homogeneous spaces (Y space, ζm space, and
a subset of dZ-dimensional smeared Z space) by fixing za

coordinates of unsmeared Z space. This means that our
Universe is described by a test 3-brane located at some
point za ¼ zað0Þ.

Let us consider the case of N ¼ 2. If we choose our three
space in Y space, we find our four-dimensional spacetime
in the Einstein frame as

ds24 ¼ hαλ−1=2ð−dt2 þ γ̄μνðY0ÞdyμdyνÞ; ð37Þ

where γ̄μνðY0Þ (μ ¼ 1, 2, 3), α, and λ are given by

γ̄μνðY0Þ ¼

0
B@

1þ f1 þ f2cos2θ −f2 sin θ cos θ 0

−f2 sin θ cos θ 1þ f2sin2θ 0

0 0 1þ f1 þ f2cos2θ

1
CA; ð38aÞ

α ¼ 1

16
ðpþ 1Þðpþ dZ − 7Þ þ 1

2
;

λ ¼ 1þ f1 þ f2cos2θ: ð38bÞ

The metric γ̄μνðY0Þ describes anisotropic expansion of the
three-dimensional universe even if γ̄μνðY0Þ is diagonalized.
Upon setting f1 ≈ c0t (c0 > 0) and ∂tf2 ¼ 0, the Universe

expands as jτ − τ0j
βþ1
βþ2, for the fastest expanding case. Here

the cosmic time τ and the constant β are given by

τ ¼ 2

c0ðβ þ 2Þ ðc0tÞ
βþ2
2 ; β ¼ α −

1

2
: ð39Þ

In what follows, using the solutions obtained in this
paper, we discuss the collision of D3 branes with different
angles in ten-dimensional spacetime.

IV. COLLISION OF THE DYNAMICAL D3 BRANE

We now discuss collision of two D3 branes with different
angles. The behavior of the harmonic function f̄ðαÞðzÞ is
classified into two classes depending on the number of
smeared dimensions of the D3 brane, that is, dZ ≤ 1 and
dZ ¼ 3, which we discuss below separately. For dZ ¼ 2, the
harmonic function f̄ðαÞðzÞ diverges both at infinity and near
D3 branes.

A. dZ ≤ 1

The harmonic function h becomes dominant in the limit
of za → zaðαÞ (α ¼ 1 and 2). Hence, we recover a static

spacetime of the Dp-brane system near branes. On the
other hand, the function h depends only on time t in the
limit of jzaj → ∞. As a result, in the far region from branes,
the homogeneous spacetime is found.
In order to analyze the brane collision, we consider a

concrete example as follows: Two D3 branes are located at
zað1Þ ¼ ðzð1Þ; 0;…; 0Þ and zað2Þ ¼ ðzð2Þ; 0;…; 0Þ. We assume

that ~fð1Þ is time dependent, and we discuss the time
evolution separately with respect to the signature of a
constant cð1Þ0 , because the behavior of spacetime strongly
depends on it. Since the spacetime is singular at hðt; zÞ ¼ 0,
the regular spacetime is obtained inside the spacetime
region restricted by

hðt; zÞ ¼ 1þ fðt; zÞ > 0; ð40Þ

where the function fðt; zÞ is given by

fðt; zÞ ¼ cð1Þ0tþ cð1Þ1 þ cð2Þ1 þ
Q1

jza − zað1Þj2−dZ

þ Q2

jza − zað2Þj2−dZ
: ð41Þ

We have set c̄1 ¼ c̄2 ¼ 0 without loss of generality. Since
the spacetime cannot be extended beyond this region, the
regular spacetime with two D3 branes ends on these
singular hypersurfaces. The solution with cð1Þ0 > 0 is the
time reversal one of cð1Þ0 < 0, because the time dependence
appears only in the form of cð1Þ0t. In the following, we
consider the case with cð1Þ0 < 0.
For cð1Þ0 < 0 and the appropriate choice of the constant

c, if Q1, Q2 > 0, the ten-dimensional spacetime is non-
singular at the initial time (t ¼ 0) because the function h is
positive everywhere. In the limit of t → −∞, the ten-
dimensional spacetime becomes asymptotically a time-
dependent uniform background except for the cylindrical
forms of infinite throats near branes (jza − zaðαÞj ≈ 0).
As time evolves (t > 0), the singularity appears from a

far region (jz − zðαÞj → ∞) and the singular hypersurface
erodes the region with the large values of jz − zðαÞj. As a
result, only the region of near D3 branes remains regular. A
singular hypersurface eventually surrounds each D3 brane
individually and then the regular regions near D3 branes
split into two isolated throats.
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In Fig. 1, for the case of dZ ¼ 1, we show the proper
distance dðt; θÞ between two branes at zað1Þ and zað2Þ, which
is defined by

dðt;θÞ¼
Z

zð2Þ

zð1Þ
dz

�
cð1Þ0tþcð1Þ1þcð2Þ1þ1þ Q1

jz− zð1Þj2−dZ

þ Q2

jz−zð2Þj2−dZ
þ
�
cð1Þ0tþcð1Þ1þ

Q1

jz− zð1Þj2−dZ
�

×

�
cð2Þ1þ

Q2

jz− zð2Þj2−dZ
�
sin2θ

�
1=4

; ð42Þ

where we have defined z≡ z1, and dZ denotes the number
of smeared dimension. This is a monotonically decreasing
function of t if cð1Þ0 < 0. In Fig. 1, we choose cð1Þ0 ¼ −1,
Q1 ¼ Q2 ¼ 1 and zð1Þ ¼ −zð2Þ ¼ −1.
Figure 1 shows that a singularity appears earlier as the angle

θ increases from 0 to π=2, but the singularity always appears
before the distance d vanishes. Then, a singularity between
two D3 branes forms before they collide into each other.
There is no qualitative difference when we have the

different magnitudes of charges. Two branes approach very
slowly, but a singularity eventually appears at a finite
distance and the spacetime splits into two isolated D3-brane
throats.
We should also mention the case with different signs of

charges (a system of the D3 brane and anti-D3 brane). IfQ1

andQ2 have different signs, we find that there always exists
a singularity between two branes. Hence we cannot even set
up such a situation from the beginning. It is, however, not
the case for dZ ¼ 3 (see the next subsection).
Hence, we cannot discuss a D3-brane collision in the

case of dZ ≤ 1.

B. dZ = 3

Next we consider the case dZ ¼ 3. We set two D3 branes
with a brane charge Q1 at z ¼ zð1Þ and the other Q2 at
z ¼ zð2Þ. The solution for f̄ðαÞðzÞ is obtained explicitly as

f̄ðαÞðzÞ ¼ Qkjz − zðαÞj; ð43Þ

where Qk and zðαÞ are constant parameters. We set c̄α ¼ 0

without loss of generality.

FIG. 1. (a) For the case ofQ1 ¼ Q2 in the dynamical D3 branes, the proper distance between two dynamical D3 branes given in (42) is
depicted. We fix dZ ¼ 1, cð1Þ0 ¼ −1, Q1 ¼ Q2 ¼ 1, zð1Þ ¼ −1; zð2Þ ¼ 1, and cð1Þ1 ¼ cð2Þ1 ¼ 1 for the angle 0 ≤ θ ≤ 2π. A singularity
appears between two D3 branes and the spacetime splits into two isolated brane throats before they collide. (b) We also show the proper
distance dðtÞ between two dynamical D3 branes for θ ¼ 0 (dashed curve), θ ¼ π=4 (bold curve) and θ ¼ π=2 (solid curve) from the
bottom in the case of dZ ¼ 1, Q1 ¼ Q2 ¼ 1, zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ0 ¼ −1 in the dynamical D3-brane system. Although the
proper distance decreases as t increases, the distance is still finite when a singularity appears.

FIG. 2. For the case of Q1 ¼ Q2 in the dynamical D3 branes,
the proper distance between two dynamical D3 branes given in
(42) is depicted. We fix dZ ¼ 3, cð1Þ0 ¼ −1, Q1 ¼ Q2 ¼ 1,
zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ1 ¼ cð2Þ1 ¼ 1 for 0 ≤ θ ≤ 2π. The
distance decreases, and then two D3 branes collide into each
other. The proper distance rapidly vanishes near two branes
colliding for the case of θ ¼ 0, θ ¼ π, θ ¼ 2π.
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The proper distance between two D3 branes is given by

dðt; θÞ ¼
Z

zð2Þ

zð1Þ
dz½cð1Þ0tþ cð1Þ1 þ cð2Þ1 þ 1þQ1jz − zð1Þj

þQ2jz − zð2Þj þ ðcð1Þ0tþ cð1Þ1 þQ1jz − zð1ÞjÞ
× ðcð2Þ1 þQ2jz − zð2ÞjÞsin2θ�1=4: ð44Þ

The proper distance is a monotonically decreasing
function of t if we set again cð1Þ0 < 0 . We illustrate
dðt; θÞ for the case of the D3-brane system in Fig. 2.
We also depict the proper distance dðtÞ for given angles
θ ¼ 0, π=4 and π=2, and the angular dependence of the
proper distance dðθÞ at some particular times t ¼ 0, 1, 2,

2.5, 4 and 5 in Fig. 3. We set cð1Þ0 ¼ −1, cð1Þ1 ¼ cð2Þ1 ¼ 1,
zð1Þ ¼ −1, zð2Þ ¼ 1, and Q1 ¼ Q2 ¼ 1.
The angle dependence is similar to the case of dZ ≤ 1.

The proper distance d between two branes never vanishes.
For the case of the equal charges (Q1 ¼ Q2), however, there
is one exceptional case, which is the two D3-brane system
with the trivial angle (θ ¼ 0 or π). In this case, as we can
see in Figs. 2 and 3, d vanishes just when a singularity
appears. Two D3 branes collide completely and a singu-
larity appears at the same time. Hence we conclude that two

FIG. 3. (a) We show the proper distance between two dynamical D3 branes for θ ¼ 0 (dashed curve), θ ¼ π=4 (bold curve) and
θ ¼ π=2 (solid curve) from the bottom in the case of dZ ¼ 3, Q1 ¼ Q2 ¼ 1, zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ0 ¼ −1 in the dynamical D3-
brane system. If we set θ ¼ 0, it causes the complete collision at t ¼ 5 simultaneously. For the case of θ ≠ nπ (n ¼ integer), it is still
finite when a singularity appears. (b) We also show the snapshots at t ¼ 0 (dashed line), t ¼ 1 (dashed-dotted line), t ¼ 2 (solid line),
t ¼ 2.5 (bold line), and t ¼ 4 (thick bold line). The proper distance dðt; θÞ vanishes at t ¼ 5, θ ¼ nπ (n ¼ integer).

FIG. 4. We depict the proper distance between two dynamical
D3 branes for the cases of 10Q1 ¼ Q2 ¼ 10 (thick bold line) and
2Q1 ¼ Q2 ¼ 2 (solid curve). We choose θ ¼ 0 , dZ ¼ 3,
zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ0 ¼ −1. All proper distances are
still finite when a singularity appears.

FIG. 5. For the case of Q1 ¼ −Q2 in the dynamical D3 branes,
the proper distance between two dynamical D3 branes given in
(42) is depicted. We fix dZ ¼ 3, cð1Þ0 ¼ −1, Q1 ¼ −Q2 ¼ 1,
zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ1 ¼ cð2Þ1 ¼ 1 for the 0 ≤ θ ≤ 2π.
In this case, a singularity appears at t < 0 when the distance is
still finite. Then, the solution does not describe the collision of
two D3 branes.
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branes will never collide into each other except in the case
with the trivial angles.
How about the different values of charges?We then show

the case with different magnitudes of charges in Fig. 4. In
this figure, we have just shown the case with θ ¼ 0, which
may give the closest distance when a singularity appears.
This figure shows that any two-brane system with the
different magnitudes of charges never collides when a
singularity appears.
We also show the proper distance between two branes for

the case with different signs of charges such that Q1 ¼ 1
and Q2 ¼ −1 in Figs. 5 and 6 . In this case, it describes the
system of the D3 brane and the anti-D3 brane with the same
masses of M1 ¼ M2 ¼ 1.
Although two branes approach each other, a singularity

always appears before two branes collide. It is different

from the case with the same charges (Q1 ¼ Q2), in which
two branes can collide when θ ¼ 0 or π. The proper
distance dðt; θÞ never vanishes for the present case. This
result does not change even if the magnitudes of two
charges are different, as we show in Fig. 7.
We then conclude that for the case of dZ ¼ 3, only the

two-brane system with the same charges as well as with the
trivial angle (θ ¼ 0 or π) gives a complete brane collision.
Since the collision of the Dp brane without angles

strongly depends on the form of harmonic functions, there
does not seem to be any novel feature due to the angles of
the branes. However, for the dynamical Dp-brane back-
ground with angles, the angle couples to time coordinates
in the ten-dimensional metric (30). Then, upon setting
cðαÞ0 < 0 , the function hðt; zÞ first vanishes at sin θ ¼ �1,
which corresponds to the curvature singularity in the
background. As the time evolves, the subsequent vanishing
of hðt; zÞ occurs at sin θ ≠ 0, before the proper distance
between the D branes vanishes, i.e., a singularity forms
before the collision of two branes.

V. DISCUSSION

In the present paper, we have discussed the dynamical
Dp-brane solution which describes several Dp branes
oriented at angles with respect to one another. Since the
corresponding background field configurations remain
largely unexplored, we have presented one such class of
solutions in the time-dependent Dp-brane background. The
dynamical solution which we have obtained in this paper
describes any number of Dp branes whose relative ori-
entations are given by certain SU(2) rotations. These are
functions of time that become static near D branes with the
simplest possible dependence on the warp factor. In the far
region from the angled Dp brane in the ten-dimensional
background, the solutions give a purely contracting or
expanding uniform universe.

FIG. 6. (a) We show the proper distance at θ ¼ 0 (dotted line), 0.35π (dashed-dotted line), and 0.5π (solid line) in the case of the
dynamical D3-brane system. We set dZ ¼ 3, Q1 ¼ −Q2 ¼ 1, zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ0 ¼ −1. Although the proper distance
decreases as t increases, the distance is still finite when a singularity appears at t < 0. (b) We also depict the snapshots at t ¼ −4 (dashed
line), t ¼ −3 (solid line), t ¼ −2 (bold line), and t ¼ −1 (thick bold line). Although the proper distance decreases as t increases, the
distance is still finite when a singularity appears at t < 0.

FIG. 7. We depict the proper distance between two dynamical
branes for the cases of Q1 ¼ −Q2 ¼ 1 (dashed-dotted line) and
5Q1 ¼ −Q2 ¼ 5 (dashed curve). We choose θ ¼ 0, dZ ¼ 3,
zð1Þ ¼ −1, zð2Þ ¼ 1, and cð1Þ0 ¼ −1. All proper distances are
still finite when a singularity appears.
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We have also discussed the dynamics of angled D3-brane
models with applications to collision of branes. The two D3
branes approach at an angle θ in the direction of the spatial
part of world volume coordinates yi. We have studied the
dynamics of D3 branes which have been smeared along the
transverse space to D3 branes. If two D3-brane charges are
different from each other (Q1 ¼ −Q2), the distance
between two D3 branes is still finite when a singularity
appears. Thus, we cannot describe the collision of two D3
branes in terms of the solution. For dZ ≤ 1, a singularity
again appears before D3 branes collide. Then, the topology
of the spacetime eventually changes so that branes are
separated by singular hypersurfaces surrounding each D3
brane. This behavior also appears if Q1 ¼ Q2 and dZ ¼ 3.
A singularity forms at θ ≠ 0, π, when the distance is still
finite. On the other hand, it has been shown that there exists
a complete collision where the orientation of configurations
between two smeared D3 branes with Q1 ¼ Q2 is either 0
or π. This result may be related to supersymmetry, which
may be broken for nonparallel branes.
Although the examples presented in the present paper

cannot provide a realistic cosmological model, the solution
may be utilized to construct a cosmological solution just by
introduction of a test brane universe in higher dimensions.
We may also construct a new type of time-dependent black
hole solution with nontrivial angles by setting up a more
complicated brane configuration. Those subjects are left for
future works.
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APPENDIX: DYNAMICAL SOLUTIONS OF
D3- AND D4-BRANE SYSTEMS WITH ANGLES

In this appendix, we show how to find the solution of a
dynamical Dp-brane system (p > 2) by use of a T duality.
We present the explicit procedure for the cases of D3- and
D4-brane systems. In order to find the configurations of a
higher-dimensional Dp-brane system with angles (p ≥ 5),
we can repeat the same procedure.

1. D3 brane with angle

The D3-brane system with angle is obtained by a T-
duality transformation from the solutions presented in
Sec. II A. Let us consider the D2-brane solutions (24).
To perform a T duality along the z5 direction, we have to
smear and delocalize the solution in this direction. Hence h
does not depend on z5.
For the string frame, the ten-dimensional T-duality

map from the type-IIA theory to type-IIB theory is given
by [30,38]

ḡðBÞζζ ¼ 1

ḡðAÞζζ

; ḡðBÞMN¼ ḡðAÞMN−
ḡðAÞζM ḡðAÞζN −BðAÞ

ζMBðAÞ
ζN

ḡðAÞζζ

;

ḡðBÞζM ¼−
BðAÞ
ζM

ḡðAÞζζ

;

e2ϕðBÞ ¼e2ϕðAÞ

ḡðAÞζζ

; BðBÞ
MN¼BðAÞ

MNþ2
ḡðAÞζ½MB

ðAÞ
N�ζ

ḡðAÞζζ

; BðBÞ
ζM ¼−

ḡðAÞζM

ḡðAÞζζ

;

CMN¼CMNζ−2C½MB
ðAÞ
N�ζþ2

ḡðAÞζ½MB
ðAÞ
N�ζCz

ḡðAÞζζ

;

CζM¼CM−
CðAÞ
ζ ḡðAÞζM

ḡðAÞζζ

;

CMNPζ¼CMNP−
3

2

�
C½MB

ðAÞ
NP�−

ḡðAÞζ½MB
ðAÞ
NP�Cζ

ḡðAÞζζ

þ
ḡðAÞζ½MCNP�ζ

ḡðAÞζζ

�
;

Cð0Þ ¼−Cζ; ðA1Þ

where ḡMN denotes the ten-dimensional metric in the string
frame performing a Weyl rescaling of the metric in Einstein
frame, ḡMN ¼ eϕ=2gMN , ζ ¼ z5 is the coordinate to which
the T dualization is applied, and M, N, P denote the other
coordinates: 0; yiði ¼ 1;…; 4Þ, and zaða ¼ 1;…; 4Þ. Via
the T-duality map (A1), we obtain the Einstein frame metric
of the dynamical N D3-brane system in ten-dimensional
background as [30,34]

ds2 ¼ gMNdxMdxN

¼ h−1=2½−dt2 þ γijdyidyj þ dζ2 þ huabðzÞdzadzb�;
ðA2aÞ

γijdyidyj ¼ δijdyidyj þ
XN
α¼1

fðαÞ½fðRðαÞÞ1idyig2

þ fðRðαÞÞ3jdyjg2�; ðA2bÞ

hðt; zÞ ¼ 1þ fðt; zÞ; ðA2cÞ

where the function f and the rotation matrix RðαÞ associated
with the αth D3 brane are given by (25).
This describes the N D3-brane system such that each

brane first lying in the ðy2; y4; ζÞ space rotates by an angle θα
(α ¼ 1;…; N) in the y1 − y2 and y3 − y4 planes as ðξ; ηÞ →
ðeiθαξ; e−iθαηÞ where ξ ¼ y1 þ iy2 and η ¼ y3 þ iy4, the
rotation of which belongs to the SU(2) group.
Since we apply the T-duality map from the type-IIA

to the type-IIB theory along ζ ¼ z5, the smeared-out
solution yields
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Fð5Þ ¼ ð1��Þdðh−1Þdt∧ dy5

∧
�XN

α¼1

fðαÞðRðαÞÞ2i dyi ∧ ðRðαÞÞ4jdyj

−
XN
a<b

fðαÞfðβÞsin2ðθα−θβÞðdy1 ∧ dy3−dy2 ∧ dy4Þ
�
;

ðA3aÞ

e2ϕ ¼ e2ϕ0 ; ðA3bÞ

where ϕ0 is constant and � denotes the Hodge dual operator
in the ten-dimensional background. Using the above
results, the field equations give

RabðZÞ ¼ 0; ðA4aÞ

fðαÞðt; zÞ ¼ ~fðαÞðtÞ þ f̄ðαÞðzÞ; ðA4bÞ

∂2
t
~fðαÞ ¼ 0; ∂t

~fðαÞ∂t
~fðβÞ ¼ 0ðα≠ βÞ; ΔZf̄ðαÞ ¼ 0:

ðA4cÞ

This gives the exact solution for the N D3-brane system
with different angles for giving Ricci flat Z space. As the
D2-brane system, only one brane can be time dependent,

~fðαÞ ¼ cðαÞ0tþ cðαÞ1; ðA5Þ

where cðαÞ0, cðαÞ1 are constant, and the other ~fðβÞ ¼ cðβÞ1
(β ≠ α) are constant.
For the metric uab¼δab, where δab are the four-

dimensional flat Euclidean metric, we find the exact
solution

f̄ðαÞðzÞ ¼ c̄α þ
Qα

jza − zaðαÞj2−dZ
; ðA6Þ

where c̄α, Qα and zaðαÞ are constant parameters and

dZð¼ 0;…; 3Þ is the smeared dimensions in the Z space.
In the case of dZ ¼ 2, the power function must be replaced
by ln jza − zaðαÞj. Qα denotes a charge (or mass) of the D3

brane and za ¼ zaðαÞ is the position of the D3 brane.

2. D4 brane with angle

Next we give the dynamical solution of the N D4-brane
system after applying a T-duality in the z4 direction of the
ten-dimensional spacetime (A2). The T-duality relations
from type-IIB to type-IIA theory are given by [35,38–40]

ḡðAÞζ0ζ0 ¼
1

ḡðBÞζ0ζ0
; ḡðAÞMN ¼ ḡðBÞMN −

ḡðBÞζ0Mḡ
ðBÞ
ζ0N − BðBÞ

ζ0MB
ðBÞ
ζ0N

ḡðBÞζ0ζ0
;

ḡðAÞζ0M ¼ −
BðBÞ
ζ0M

ḡðBÞζ0ζ0
;

e2ϕðAÞ ¼ e2ϕðBÞ

ḡðBÞζ0ζ0
; CM ¼ Cζ0M þ χBðBÞ

ζ0M; C0
ζ ¼ −χ;

BðAÞ
MN ¼ BðBÞ

MN þ 2
BðBÞ
ζ0½Mḡ

ðBÞ
N�ζ0

ḡðBÞζ0ζ0
; BðAÞ

ζ0M ¼ −
ḡðBÞζ0M

ḡðBÞζ0ζ0
;

Cζ0MN ¼ CMN þ 2
Cζ0½Mḡ

ðBÞ
N�ζ0

ḡðBÞζ0ζ0
;

CMNP ¼ CMNPζ0 þ
3

2

�
Cζ0½MB

ðBÞ
NP� − BðBÞ

ζ0½MCNP�

− 4
BðBÞ
ζ0½MCjζ0jNḡ

ðBÞ
P�ζ0

ḡðBÞζ0ζ0

�
; ðA7Þ

where ζ0 ¼ z4 is the coordinate to which the T duality is
performed. The indices M , N and P denote the other
coordinates: 0, yiði ¼ 1;…; 2Þ, ζ and zaða ¼ 1; 2; 3Þ. We
delocalize the D3-brane solution in the transverse
coordinate ζ0 ¼ z4 . With the relations in (A7), applying
T-duality along this direction to produce a system of an
N D4-brane system with different angles, the type-IIA
metric in the Einstein frame is given by

ds2 ¼ gMNdxMdxN

¼ h−3=8½−dt2 þ γijdyidyj þ dζ2 þ dζ02

þ huabðzÞdzadzb�; ðA8aÞ

γijdyidyj ¼ δijdyidyj

þ
XN
α¼1

fðαÞ½fðRðαÞÞ1idyig2 þ fðRðαÞÞ3jdyjg2�;

ðA8bÞ

hðt; zÞ ¼ 1þ fðt; zÞ; ðA8cÞ

where the function f and the rotation matrix RðαÞ associated
with the αth D4 brane is defined as (25). The other fields
are a straightforward generalization of the case of a static
D4-brane system with certain angles in the type-IIA low
energy effective string theory [30,34],

Fð4Þ ¼ dyi ∧ dyjϵijk∂k

�XN
α¼1

fðαÞðRðαÞÞ2ldyl ∧ ðRðαÞÞ4mdym
�
;

ðA9Þ
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e2ϕ ¼ h−1=2: ðA10Þ

Then, the field equations reduce to

RabðZÞ ¼ 0; ðA11aÞ

fðαÞðt; zÞ ¼ ~fðαÞðtÞ þ f̄ðαÞðzÞ; ðA11bÞ

∂2
t
~fðαÞ ¼ 0; ∂t

~fðαÞ∂t
~fðβÞ ¼ 0; ðα≠ βÞ ΔZf̄ðαÞ ¼ 0:

ðA11cÞ
This gives the exact solution for the N D4-brane system
with different angles for giving Ricci flat Z space. As for
the other multibrane systems, only one brane can be time
dependent,

~fðαÞ ¼ cðαÞ0tþ cðαÞ1; ðA12Þ
where cðαÞ0, cðαÞ1 are constant, and the other ~fðβÞ ¼ cðβÞ1
(β ≠ α) are constant.
For the metric uab ¼ δab, where δab is the three-

dimensional flat Euclidean metric, the harmonic functions
f̄α are given by

f̄ðαÞðzÞ ¼ c̄α þ
Qα

jza − zaðαÞj1−dZ
; ðA13Þ

where c̄α,Qα and zaðαÞ are constants and dZð¼ 0;…; 2Þ is the
smeared dimensions in theZ space. In the case ofdZ ¼ 1, the
power function must be replaced by ln jza − zaðαÞj. Qα

denotes the charge (or mass) of the D4 brane and each
D4 brane is located at za ¼ zaðαÞ.
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