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Cosmological α-attractor models in N ¼ 1 supergravity are based on the hyperbolic geometry of a
Poincaré disk with the radius square R2 ¼ 3α. The predictions for the B modes, r ≈ 3α 4

N2, depend on

moduli space geometry and are robust for a rather general class of potentials. Here we notice that starting
with M theory compactified on a 7-manifold with G2 holonomy, with a special choice of Betti numbers,

one can obtain d ¼ 4, N ¼ 1 supergravity with the rank 7 scalar coset ½SLð2ÞSOð2Þ�7. In a model where these

seven unit size Poincaré disks have identified moduli one finds that 3α ¼ 7. Assuming that the moduli
space geometry of the phenomenological models is inherited from this version of M theory, one would
predict r ≈ 10−2 for N ¼ 53 e-foldings. We also describe the related maximal supergravity and M/string
theory models leading to preferred values 3α ¼ 1, 2, 3, 4, 5, 6, 7.

DOI: 10.1103/PhysRevD.94.126015

I. INTRODUCTION

To compare the predictions of theoretical models with
the observational data on inflationary cosmology [1] one
has to use some form of the d ¼ 4 Einstein theory. In
particular, one can useN ¼ 1 supergravity models making
a choice of the Kähler potential and a superpotential to fit
the data. Cosmological models called α-attractor models
[2–6], based on hyperbolic geometry of a Poincaré disk
with the radius square 3α, are in good agreement with the
data. The tilt of the spectrum of fluctuations and the level of
Bmodels depend on the number of e-foldings N and on the
moduli space curvature RK̈ahler ¼ − 2

3α,

ns ≈ 1 −
2

N
; r ≈ 3α

4

N2
: ð1:1Þ

This prediction is valid for α-attractor models with α ≲
Oð10Þ for a rather general class of potentials described in
[2–6]. The early versions of these models were derived
in [2], and the more advanced versions were presented in
[3–6]. At the level of phenomenological N ¼ 1 super-
gravity any value of 0 < 3α < ∞ is acceptable. In
advanced α-attractor models the stabilization of all scalars
but the inflaton is possible for all values of α. Therefore one

can view the future detection of the B modes, or a new
bound on r, as an experimental information about the
curvature of the moduli space in these models.
One may try to motivate certain preferred values of the

Poincaré disk radius square 3α as originating from a
fundamental theory underlying N ¼ 1 supergravity. It
was already suggested in [3] that the lowest possible value
3α ¼ 1, with one unit size Poincaré disk, is motivated by a
maximal superconformal N ¼ 4 theory [7] and N ¼ 4
pure supergravity without matter [8].
In this note we will study the possible origin of the

moduli space geometries in maximal N ¼ 8 supergravity
and M/string theory. We assume that when the maximally
supersymmetric theories are reduced to N ¼ 1 phenom-
enological α-attractor models, some mechanism of gen-
erating the required potentials will take place, but the
moduli space geometry will be inherited from the more
fundamental theories.
In this setting we will find reasonably well motivated

models of the Poincaré disk with radius square 3α
taking values 1,2,3,4,5,6,7. In particular, the case with
the highest value of 3α ¼ 7 suggests that r is only slightly
below 10−2.
Joint analysis of the data from the BICEP2/Keck and

Planck experiments [1] yields an upper limit on B modes,
r ≤ 7 × 10−2. The new interesting target with preferred
values of α originating in M/string theory, for the number of
e-foldings 47 < N < 57, is now

3α ¼ 7∶ r ≈ 7
4

N2
; 0.86 × 10−2 < r < 1.3 × 10−2;

ð1:2Þ
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and the lowest one in the context of maximal N ¼ 4
superconformal theory is

3α ¼ 1∶ r ≈
4

N2
; 1.2 × 10−3 < r < 1.8 × 10−3:

ð1:3Þ

II. POINCARÉ DISK WITH THE
RADIUS SQUARE 3α

Consider the Kähler potential

K ¼ −3α lnð1 − ZZ̄Þ: ð2:1Þ

It describes a Poincaré disk with the radius square 3α. The
metric of the moduli space is gZZ̄ ¼ KZZ̄ ¼ 3α

ð1−ZZ̄Þ2. The
Kähler manifold curvature computed from this metric
depends on α,

RK̈ahler ¼ −g−1ZZ̄∂Z∂Z̄ log gZZ̄ ¼ −
2

3α
: ð2:2Þ

The kinetic term for the complex scalar field is

ds2 ¼ 3α

ð1 − ZZ̄Þ2 dZdZ̄ ¼ dx2 þ dy2

ð1 − x2þy2

3α Þ2
; ð2:3Þ

where Z ¼ ðxþ iyÞ= ffiffiffiffiffiffi
3α

p
.

Advanced models of inflation which use the Kähler
potential above as a part of the total moduli space geometry
typically have another chiral superfield,1 often called a
“stabilizer” superfield S in [3–6] so that

K ¼ −3α lnð1 − ZZ̄Þ þ SS̄: ð2:4Þ

In these models the light inflaton is in the Z þ Z̄ direction,
whereas the remaining three scalars, the complex stabilizer
S, and the sinflaton Z − Z̄ are stabilized by the potentials to
the values S ¼ Z − Z̄ ¼ 0. It was shown in [5] that such a
stabilization of the sinflaton is possible for all values of α,
whereas stabilizing S at zero might require additional terms
ðSS̄Þ2 in the Kähler potential.2 An even more interesting
possibility is to use models with constrained orthogonal
superfields S2½x; θ� ¼ 0 and SðZ− Z̄Þ½x;θ; θ̄� ¼ 0 [6], where
the “unwanted scalars” S and Z − Z̄ are not fundamental

fields; they depend on fermions and do not participate in
cosmological evolution. The constraints on the curvature
of the moduli space in [11] do not apply to advanced
α-attractor models, with inflaton and stabilizer, where all
moduli, with exception of the inflaton, are stabilized. In
these models the observable combinations of the slow-roll
parameters ns ¼ 1 − 6ϵþ 2η and r ¼ 16ϵ in Eq. (1.1) are
in good agreement with the data, and there is no η problem
for all values of α.
For the vanishing sinflaton the kinetic term becomes in

terms of the inflaton Z ¼ Z̄ ¼ tanh φffiffiffiffi
6α

p

3α
∂μZ∂μZ

ð1 − ZÞ2 ¼
1

2
ð∂μφÞ2: ð2:5Þ

In these models the potentials depend on a geometric
variable Z ¼ Z̄,

V ¼ V

�
tanh

φffiffiffiffiffiffi
6α

p
�
: ð2:6Þ

A. HALF-PLANE VARIABLES

One can use an alternative description of the same
physical system by making a choice 1þZ

1−Z ¼ −iτ,

K ¼ −3α lnð−iðτ − τ̄ÞÞ: ð2:7Þ

The kinetic term for the complex scalar field is

ds2 ¼ 3α
dτdτ̄

ð2ImτÞ2 : ð2:8Þ

In this form the kinetic term has an SLð2;RÞ symmetry

τ0 ¼ aτ þ b
cτ þ d

; ad − bc ≠ 0; ð2:9Þ

where a, b, c, d are real numbers and

dτdτ̄
ðτ − τ̄Þ2 ¼

dτ0dτ̄0

ðτ0 − τ̄0Þ2 : ð2:10Þ

When the sinflaton τ þ τ̄ vanishes at τ ¼ −τ̄ ¼ ie
ffiffiffi
2
3α

p
φ,

3α
dτdτ̄

ð2ImτÞ2 ¼
1

2
ð∂μφÞ2: ð2:11Þ

III. SEVEN-DISK GEOMETRY IN
MAXIMAL SUPERGRAVITY

Before looking at M theory on a 7-manifold with G2

holonomy we will explain the origin of the seven-disk
geometry starting from D ¼ 4, N ¼ 8 supergravity. M
theory/d ¼ 11 supergravity can be compactified on a

1In the case of a single superfield there are consistent inflation
models for all α, including α ≤ 1; see for example [3,9].
However, this case requires the modification of the Kähler
potential as shown in Eq. (24) in [3], and in Eq. (1.4) in [9].
The relevant modification changes the value of the curvature
[3,10].

2In earlier models with the S dependence inside the logarithm
one may use the bisectional curvature RZZ̄SS̄ to stabilize the
inflaton partner for all values of α; see for example [3], Eq. (29).
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7-torus, which leads to d ¼ 4maximalN ¼ 8 supergravity
[12] upon dualization of the form fields. This model has 70

scalars in the coset space
E7ð7Þ
SUð8Þ and E7ð7Þ symmetry.

Following [13], we consider truncation of N ¼ 8 super-
gravity [12] to N ¼ 4 supergravity interacting with six
N ¼ 4 vector multiplets. The E7ð7Þ symmetry is decom-
posed as follows:

E7ð7Þ ⊃ ½SLð2Þ� × SOð6; 6Þ: ð3:1Þ

The 70 scalars of N ¼ 8 supergravity [12] are first
truncated to

70 → 2þ 36: ð3:2Þ

In the next step one takes into account that

SOð6; 6Þ ⊃ SOð2; 2Þ × SOð2; 2Þ × SOð2; 2Þ ð3:3Þ

and

36 → 3 × 4 ð3:4Þ

so that

70 → 2ð1þ 6Þ ¼ 2 × 7 ¼ 14: ð3:5Þ

This truncation has a Kähler structure supporting N ¼ 1
supersymmetry. One can identify seven Poincaré disks due
to the decomposition

E7ð7ÞðRÞ ⊃ ½SLð2;RÞ�7: ð3:6Þ

The original kinetic term is reduced to a form with the
Kähler potential of the form

K ¼ −
X7
i¼1

lnð−iðτi − τ̄iÞÞ ð3:7Þ

with seven pairs of independent scalars and the ½SLð2;RÞ�7
symmetry, a seven-disk manifold. The fact that the disk of
the SLð2Þ commuting with SOð6; 6Þ has the same Kähler
curvature of the other six SLð2Þ=SOð2Þ (each separately
corresponding to α ¼ 1=3) can be understood by string
triality arguments [14] and by the underlying special
geometry of the N ¼ 2 truncation [15].

IV. M THEORY ON A 7-MANIFOLD
WITH G2 HOLONOMY

Instead of a compactification on a 7-torus, one can
compactify M theory on a 7-manifold with G2 holonomy.
The early investigation of G2 holonomy in physics was
performed in [16], with a review of the first 20 years in [17].
One of the most recent applications of this compactification

can be found in [18], and, of course, many more studies of
M theory on G2 were performed over the years.
Here we will focus on the model studied in [19,20],

which requires the following choice of the Betti numbers:

ðb0; b1; b2; b3Þ ¼ ð1; 0; 0; 7Þ: ð4:1Þ

This theory is identified with the maximal rank reduction
on the 7-torus and leads directly to d ¼ 4, N ¼ 1 “curious
supergravity” where seven complex scalars are coordinates
of the coset space

�
SLð2;RÞ
SOð2Þ

�
7

: ð4:2Þ

The corresponding Kähler potential describing the scalar
sector of this theory is the one in Eq. (3.7) with seven pairs
of independent scalars and the ½SLð2;RÞ�7 symmetry. This
model is one of the “four curious supergravities” defined in
[20]. The other three have N ¼ 2, N ¼ 4, N ¼ 8 super-
symmetries, and we are interested only in N ¼ 1 “curious
supergravity.” It has the field content defined by Betti
numbers: the d ¼ 4 fields originating from the d ¼ 11
metric gMN are

gμν → b0 ¼ 1;

Aμ → b1 ¼ 0;

A → b1 þ b3 ¼ 7: ð4:3Þ

The ones from d ¼ 11 gravitino ψM are

ψμ → b0 þ b1 ¼ 1;

χ → b2 þ b3 ¼ 7: ð4:4Þ

The ones from the 3-form AMNP are

Aμνρ → b0 ¼ 1;

Aμν → b1 ¼ 0;

Aμ → b2 ¼ 0;

A → b3 ¼ 7: ð4:5Þ

To summarize, the field content of the M theory compac-
tified on a 7-manifold with G2 holonomy and Betti
numbers (4.1) is a metric, a gravitino, and a 3-form (which
has no degrees of freedom but affects trace anomaly)

gμν;ψμ; Aμνρ ð4:6Þ

and seven scalars, seven spin 1=2 fields, and seven
pseudoscalars

τi ¼ Ai þ iAi; χi: ð4:7Þ
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The corresponding Kähler geometry is the seven-disk
manifold in (3.7).
For generic Betti numbers ðb0; b1; b2; b3Þ these models

are known to have a generalized mirror symmetry, which
flips one set of Betti numbers into the other one,

ðb0; b1; b2; b3Þ → ðb0; b1; b2 − ρ=2; b3 þ ρ=2Þ; ð4:8Þ

and ρ≡ 7b0 − 5b1 þ 3b2 − b3 changes the sign. One of
the reasons the model we describe here was given the
name curious supergravity is that it has ρ ¼ 0; it is a
self-mirror in the above sense. It also means that it
has a vanishing Weyl anomaly gμνhTμνi ¼ − ρ

24×32π2 ×
R�μνρσR�

μνρσ ¼ 0, and the presence of the 3-form Aμνρ

is important for this.
To connect this compactified M theory model to

α-attractor geometry we can make a choice that all
moduli in our seven unit radius disks in (3.7) are identified,
namely

3α ¼ 7∶ τ1 ¼ τ2 ¼ τ3 ¼ τ4 ¼ τ5 ¼ τ6 ¼ τ7 ≡ τ: ð4:9Þ

We are left with one Poincaré disk of the radius square 7
times larger than the unit radius square,

K ¼ −
X7
i¼1

lnð−iðτi − τ̄iÞÞ ¼ −7 lnð−iðτ − τ̄ÞÞ; ð4:10Þ

ds2 ¼ 7
dτdτ̄

ð2ImτÞ2 : ð4:11Þ

The following interpretation of this identification can
be suggested: the diagonal components of the internal
space metric gij are taken to be the same in all seven
directions, gij ∼ δij, and the 3-form Aijk, which leads to
seven pseudoscalars in d ¼ 4, since b3 ¼ 7, is also the
same in all directions. An analogous identification was
performed in [21], where an early dimensional reduction
of superstring theories was studied. The resulting d ¼ 4,
N ¼ 1 supergravity, neglecting the matter fields C in [21],
has the following Kähler manifold:

K ¼ − lnð−iðs − s̄ÞÞ − 3 lnð−iðt − t̄ÞÞ: ð4:12Þ

We will show in the next section that using string theory
compactification on a product of 3-tori T2 × T2 × T2 ⊂ T6

one can get the seven-disk geometry.

K ¼ − lnð−iðs − s̄ÞÞ − lnð−iðt1 − t̄1ÞÞ
− lnð−iðt2 − t̄2ÞÞ − lnð−iðt3 − t̄3ÞÞ
− lnð−iðu1 − ū1ÞÞ − lnð−iðu2 − ū2ÞÞ
− lnð−iðu3 − ū3ÞÞ: ð4:13Þ

Thus, the model (4.12) in [21] corresponds to the one in
(4.13) under the condition that

t1 ¼ t2 ¼ t3 ¼ t; u1 ¼ u2 ¼ u3 ¼ const: ð4:14Þ

This means that some fields of higher-dimensional geom-
etry were discarded, for example, all ui fields and the
difference between ti fields. If instead we would impose on
(4.13) the condition

s ¼ t1 ¼ t2 ¼ t3 ¼ u1 ¼ u2 ¼ u3 ¼ τ; ð4:15Þ

we would reproduce the Kähler geometry (4.10) of the
single Poincaré disk of the radius square 3α ¼ 7. In an
analogous manner we can get other values

3α ¼ f1; 2; 3; 4; 5; 6; 7g ð4:16Þ

by requiring that

3α ¼ 7∶ τ1 ¼ τ2 ¼ τ3 ¼ τ4 ¼ τ5 ¼ τ6 ¼ τ7 ≡ τ

3α ¼ 6∶ τ1 ¼ τ2 ¼ τ3 ¼ τ4 ¼ τ5 ¼ τ6 ≡ τ; τ7 ¼ const;

3α ¼ 5∶ τ1 ¼ τ2 ¼ τ3 ¼ τ4 ¼ τ5 ≡ τ; τ6 ¼ τ7 ¼ const;

3α ¼ 4∶ τ1 ¼ τ2 ¼ τ3 ¼ τ4 ≡ τ; τ5 ¼ τ6 ¼ τ7 ¼ const

3α ¼ 3∶ τ1 ¼ τ2 ¼ τ3 ≡ τ; τ4 ¼ τ5 ¼ τ6 ¼ τ7 ¼ const;

3α ¼ 2∶ τ1 ¼ τ2 ≡ τ; τ3 ¼ τ4 ¼ τ5 ¼ τ6 ¼ τ7 ¼ const;

3α ¼ 1∶ τ1 ≡ τ; τ2 ¼ τ3 ¼ τ4 ¼ τ5 ¼ τ6 ¼ τ7 ¼ const:

ð4:17Þ

We illustrate in Fig. 1 the features of α-attractor models
[2,3,6] with the seven-disk geometry using the recent
discussion of B modes in the CMB-S4 Science Book
[22]. We show in Fig. 1 predictions of α-attractor models
with seven-disk geometry in the ns − r plane for N ∼ 55,
for the minimal value 3α ¼ 1 and for the maximal
value 3α ¼ 7.
The constraints on the fields presented in Eqs. (4.14) and

(4.17) are expected to emerge as a consequence of
specifically designed potentials, which align the fields in
the desirable direction. We have not yet presented such
potentials here; these are still to be constructed. Examples
when the structure of the potential was designed to put
constraints on the field of the theory are known in
cosmological literature. A relevant mechanism was
invented in [23] in models known as aligned natural
inflation. In the simplest case with two axions the potential
enforces one combination of axions to be light and serve as
an inflaton, whereas the other one is heavy and drops from
the evolution. This type of alignment was also generalized
to many axion models. Another example is N-flation in
[24] where there are N axions. In polar coordinates only the
radial direction is a light inflaton field, and all other angular
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variables drop from the evolution under certain assump-
tions specified in these class of models.

V. VALUES OF 3α IN STRING THEORY

Here we will show how to derive the seven-disk
geometry (4.13) in string theory. We start with the
derivation of noncompact symmetries in string theory
following [25,26]. The toroidal compactification to d ¼
4 of theN ¼ 1 supergravity/string theory in d ¼ 10 space-

time leads to scalars in SOð6;6Þ
SOð6Þ×SOð6Þ coset space3 upon

truncation of nongeometric moduli from the d ¼ 10 vector
multiplets.
As the result of the dimensional reduction one finds a

d ¼ 4 action for the scalars of the following form:

Z
d4x

ffiffiffiffiffiffi
−g

p
e−ϕðL1 þ L2Þ: ð5:1Þ

Here

L1 ¼ Rþ gμν∂μϕ∂νϕ −
1

12
HμνρHμνρ; ð5:2Þ

and

L2 ¼
1

8
trð∂μM−1∂μMÞ: ð5:3Þ

Here M is a symmetric Oð6; 6Þ matrix

M ¼
�

G−1 −G−1B

BG−1 G − BG−1B

�
; ð5:4Þ

where Gαβ and Bαβ are the internal space metric and a 2-
form, α; β ¼ 1;…; 6. Together they represent the 36

coordinates of the coset space SOð6;6Þ
SOð6Þ×SOð6Þ, and we recover

the moduli space of the 6-torus T6 in string theory. We now
would like to perform the truncation of the 6-torus to three
T2 so that

T2 × T2 × T2 ⊂ T6: ð5:5Þ

This corresponds to the reduction SOð6; 6Þ ⊃ ½SOð2; 2Þ�3
and analogous reduction on the coset representative

SOð6; 6Þ
SOð6Þ × SOð6Þ →

�
SOð2; 2Þ

SOð2Þ × SOð2Þ
�
3

: ð5:6Þ

This means that we keep the following nine components
of Gαβ:

GðIJÞ ¼ ðg11; g22; g12; g33; g44; g34; g55; g66; g56Þ; ð5:7Þ

and three components of Bαβ

FIG. 1. Taken from [22], this figure represents a forecast of CMB-S4 constraints in the ns − r plane for a fiducial model with r ¼ 0.01.
Here the grey band shows predictions of the subclass of α-attractor models [2,3,6]. We have added to this figure a blue circle with the
letter T inside it corresponding to the highest preferred value 3α ¼ 7 and the purple one corresponding to the lowest preferred value
3α ¼ 1 in a seven-disk geometry. All intermediate cases 3α ¼ f1; 2; 3; 4; 5; 6; 7g are between these two. They all describe the class of α-
attractor models with V ∼ tanh2ðφ= ffiffiffiffiffi

6α
p Þ, so-called quadratic T models. The quadratic E models with V ∼ ð1 − e

ffiffiffiffiffiffiffi
2=3α

p
φÞ2 tend to be

slightly to the right of the T models; see [2]. We show them as a navy circle with the letter E inside it.

3In general, in the case of the heterotic string theory one finds
scalars in the SOð6;6þnÞ

SOð6Þ×SOð6þnÞ coset space. Here the scalars in the
SOð6;6Þ

SOð6Þ×SOð6Þ part of the coset space originate from the geometric
moduli, whereas the additional ones with n ≠ 0 originate from
the matter vector multiplets in d ¼ 10. If we keep some of the
vector multiplets, so that n > 0 we do not find models with
Poincaré disk geometry.
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B½IJ� ¼ ðb12 ≡ b1; b34 ≡ b2; b56 ≡ b3Þ: ð5:8Þ

We also introduce notation

g1 ≡ g11g22 − g212; g2 ≡ g33g44 − g234;

g3 ≡ g55g66 − g256: ð5:9Þ

Now we observe that the coset SOð2;2Þ
SOð2Þ×SOð2Þ is isomorphic to

SLð2;RÞ
SOð2Þ × SLð2;RÞ

SOð2Þ , and so we can package the SOð2; 2Þmatrix

into an SLð2;RÞ × SLð2;RÞ matrix. We will do this for all

three copies of SOð2;2Þ
SOð2Þ×SOð2Þ cosets, following an example of

one of them in [26]. We have four real scalars from g11, g22,
g12, b12. We package them as follows: t1 ≡ b1 þ i

ffiffiffi
g

p
1
and

u1 ≡ g12
g22

þ i
ffiffi
g

p
1

g22
. The inverse relation is for the 2 × 2

matrices

G ¼
�
g11 g12
g21 g22

�
¼ Imt1

Imu1

�
u1u�1 Reu1
Reu1 1

�
; ð5:10Þ

B ¼
�

0 b12
b21 0

�
¼ Ret1

�
0 1

−1 0

�
: ð5:11Þ

In the same way we can organize all six complex scalars;
three of them are often called Kähler moduli,

t1 ¼ b1 þ i
ffiffiffi
g

p
1; t2 ¼ b2 þ i

ffiffiffi
g

p
2; t3 ¼ b3 þ i

ffiffiffi
g

p
3;

ð5:12Þ

and the other three are called complex structure moduli,

u1 ¼
g12
g22

þ i
ffiffiffi
g

p
1

g22
; u2 ¼

g34
g44

þ i
ffiffiffi
g

p
2

g44
;

u3 ¼
g56
g66

þ i
ffiffiffi
g

p
3

g66
: ð5:13Þ

This corresponds to reorganizing ½ SOð2;2Þ
SOð2Þ×SOð2Þ�3 into

½SLð2;RÞ�SOð2Þ �6. The corresponding Kähler potentials are

Kðti;t̄iÞ¼−lnð−iðti− t̄iÞÞ and Kðui;ūiÞ¼−lnð−iðui−ūiÞÞ.
One more important step here is to switch from the string

frame as in (5.1) to the Einstein frame in d ¼ 4, which is a
well known procedure of rescaling the metric; see for
example [21]. As the result, we find an action with N ¼ 1
supersymmetry and seven complex scalars. The axion, dual
to Hμνλ, and dilaton as shown in Eq. (5.2) form a complex
scalar

s ¼ aþ ieϕ ð5:14Þ

with the Kähler potential K ¼ − lnð−iðs − s̄ÞÞ. The com-
plete Kähler potential of the string theory dimensionally
reduced on T2 × T2 × T2 ⊂ T6 is now given by the
expression in (4.13) in the previous section, as prom-
ised there.
Thus here again we reproduced the seven Poincaré

disk geometry of the unit radius each. We may now study
the same cases as we did in the previous section: the
conclusion is as in M theory compactified on the
7-manifold with G2 holonomy in Eq. (4.16) which gives
us seven possible values of r, according to (1.1), for
example, for N ¼ 55,

r ≈ f1.3; 2.6; 3.9; 5.2; 6.5; 7.8; 9.1g × 10−3: ð5:15Þ

VI. CONCLUSION

In conclusion, we made an assumption that the
moduli space geometry of the phenomenological
N ¼ 1 α-attractor models in [2,3,6] is inherited from
the M theory compactified on the 7-manifold with G2

holonomy to a “curious N ¼ 1 supergravity” [20], or
from truncated N ¼ 8 maximal supergravity, or from
toroidally compactified string theory. In such a case we
argued that the possible cosmological α-attractor models
might come with the values of 3α ¼ 1, 2, 3, 4, 5, 6, 7
when some of the higher dimensional fields are dis-
carded, following the procedure employed in the past in
[21] and presented in Eq. (4.17). To make a step from
preferred values for 3α to a realistic prediction we
would need to find the origin of the suitable class of
potentials in these theories.
The relevant preferred values of the ratio of the tensor to

scalar fluctuations during inflation are shown in Eq. (5.15).
We illustrated the position of these models in the ns − r
plane in Fig. 1. The highest one, r ≈ 10−2, will be the first
interesting target for the B-mode experiments as well as for
the theoretical studies of realistic cosmological models
based on the seven-disk geometry.
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