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We argue that a natural boundary condition for gravity in asymptotically anti–de Sitter (AdS) spaces is to
hold the renormalized boundary stress tensor density fixed, instead of the boundary metric. This leads to a
well-defined variational problem, as well as new counterterms and a finite on-shell action. We elaborate this
in various (even and odd) dimensions in the language of holographic renormalization. Even though the
form of the new renormalized action is distinct from the standard one, once the cutoff is taken to infinity,
their values on classical solutions coincide when the trace anomaly vanishes. For AdS4, we compute the
Arnowitt-Deser-Misner form of this renormalized action and show in detail how the correct thermody-
namics of Kerr-AdS black holes emerge. We comment on the possibility of a consistent quantization with
our boundary conditions when the boundary is dynamical, and make a connection to the results of Compere
and Marolf. The difference between our approach and microcanonical-like ensembles in standard AdS/
CFT is emphasized.
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I. INTRODUCTION

Historically, most of the work on boundary conditions in
gravity has been in the context of Dirichlet boundary
conditions: the Gibbons-Hawking-York (GHY) boundary
term [1] was the first boundary term to be identified that
made the variational problem for gravity well defined. It
also gave a formal yet compelling basis for horizon
thermodynamics [2,3]. In the usual AdS/CFT correspon-
dence [4–6], the boundary values of fields on the gravity
side are identified as the sources of the fields in the field
theory. Thus AdS/CFT correspondence is formulated as a
Dirichlet problem as well (on the gravity side).
Recently however a boundary term for gravity [7] has

been introduced (see also various related works [8–19])
which is a natural candidate for a Neumann formulation of
gravity. Furthermore it was shown [20] that various
thermodynamical aspects of gravity can in fact be repro-
duced using this Neumann boundary term as well. In light
of this, in this paper, we will explore gravity in asymp-
totically anti–de Sitter (AdS) spacetimes with Neumann
boundary conditions.
The proposal of Ref. [7] was to treat the Neumann

boundary condition as holding the canonical conjugate of
the boundary metric1 fixed. In particle mechanics and field
theory, holding the canonical conjugate of the boundary
value of the field fixed is identical to the usual Neumann
boundary conditions, but in gravity this leads to an
alternative to holding the normal derivative2 of the

boundary metric fixed, and leads to a well-defined new
boundary term [7]. The translation from Dirichlet to
Neumann can be understood as a Legendre trans-
form [20,21].
Typically, to get a finite action on solutions, one has to

take care of infrared divergences of the Einstein-Hilbert
action in both flat space and in AdS. This is true even with
the addition of boundary terms that make the variational
problem well defined. In flat space, this was done for the
GHY boundary term in Ref. [2] and for the Neumann term
in Ref. [20] via appropriate background subtraction pro-
cedures. In AdS however, for the Dirichlet problem, there
exists a well-defined and quite natural way to get finite
actions by the addition of counterterms [22,23], which have
a very natural interpretation in the dual field theory as
canceling UV divergences. Such counterterms lead to a
finite action and a finite (renormalized) stress tensor.
The existence of this finite stress tensor suggests that in

AdS, one can define the Neumann variational problem to be
one where we hold the renormalized stress tensor density
fixed, and one should get awell-defined variational principle
and finite Neumann action. We can do this in two ways: we
can do this via starting from the renormalized Dirichlet
action inAdS (which is well known from, say, Ref. [23]) and
do a Legendre transform on the boundary metric, or we can
start from a Fefferman-Graham expansion as the definition
of asymptotically AdS space, and systematically construct
counterterms for the unrenormalized Neumann action by
demanding vanishing of divergences. In the next section, we
will adopt the latter strategy and write down explicit
renormalized Neumann actions in AdSdþ1 with d ¼ 2, 3,
4. Remarkably, we will find in Appendix B that both these
approaches yield the same results.
In a later section we will evaluate the finite actions that

this leads to on classical (black hole) solutions. Wewill also
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1This turns out to be the boundary stress tensor density.
2To the best of our knowledge, a boundary term with the

normal derivative at the boundary fixed, is not known for gravity.
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find that these actions have the same numerical values as
the corresponding Dirichlet actions on these solutions, up
to subleading terms that vanish when the radial cutoff is
taken to infinity. This is not surprising, because the
Legendre transform relating the two actions is of the form

SrenN ¼ SrenD −
Z
∂M

πijγij ð1:1Þ

where γij is the boundary metric and πij is its canonical
conjugate, and is equal to the renormalized energy-momen-
tum tensor density. This means that πijγij is proportional to
the trace of the boundary stress tensor and so when the
conformal anomaly of the boundary theory vanishes, this
object is zero on classical solutions.3

We will see however that even though the values can be
the same (as the cutoff is taken to infinity), the forms of the
renormalized Dirichlet and Neumann actions can be quite
different. To illustrate this in some detail, we will compute
the Arnowitt-Deser-Misner (ADM) version of both these
actions. We will also find that comparing the covariant and
Hamiltonian ways of evaluating these actions yields the
generalized Smarr formula, but in different ways. The
covariant-canonical relations and the Smarr formula auto-
matically imply the first law as well [24].
Our results are conservatively thought of merely as a new

boundary condition for classical AdS gravity with suitable
boundary terms, but we find it plausible that our results go
beyond classical.We believe they are indicative of a possibly
interesting boundary condition for quantum gravity in AdS.
This might seem a priori impossible because consistent
quantization of fields in AdS requires that they be normal-
izable (or have finite energy), and except in some windows
of masses [21] for scalars (say), it is known that only one
boundary condition leads to consistent quantization for
fields in a fixed AdS background. We will argue however
that this is not quite true: the reason is that the notion of
energy in a fixedAdS background is different from that in an
AdS background where the metric is dynamical [25]. In
particular we will speculate (partly inspired by a result of
Compere and Marolf) that it may be possible that our
boundary conditions are consistent at the quantum level
when the boundary metric in AdS is dynamical: that is, the
boundary theory contains dynamical gravity. We leave a
conclusive take on this problem for later work.
Holding the boundary metric fixed is the standard way of

thinking about AdS familiar from AdS/CFT. To clarify
some points which might cause confusion, we conclude by
elaborating a little on the choice of ensembles in AdS/CFT.
We relegate some of the relevant facts we need (among
other things) to the Appendices.

II. HOLOGRAPHIC RENORMALIZATION OF
NEUMANN GRAVITY

In this section we will derive the renormalized Neumann
action by directly dealing with the Fefferman-Graham (FG)
expansion (2.2) and demanding that the action be finite.
Typically in Dirichlet theory one imagines that the boun-
dary conditions are set by the leading part of the FG
expansion; in our case it is a combination of the gi’s [see
Eq. (2.2)] that is getting fixed via the renormalized
boundary stress tensor. A standard review is Ref. [26].

A. Regularized action in Fefferman-Graham
coordinates

By asymptotically AdSdþ1 space, in this paper we will
mean a metric that solves the Einstein equation with a
negative cosmological constant, that can be expressed
asymptotically (i.e., as z → 0) by a general Fefferman-
Graham expansion given by

ds2 ¼ Gμνdxμdxν ¼
l2

z2
ðdz2 þ gijðx; zÞdxidxjÞ ð2:1Þ

where

gðx; zÞ ¼ g0 þ z2g2 þ � � � þ zdgd þ zd log z2hd þOðzdþ1Þ:
ð2:2Þ

Only even powers of z appear up to Oðz½d−1�Þ. The log term
appears only for even d. In all the discussions that follow,
we set l ¼ 1. The cosmological constant is related to the

AdS radius through the relation Λ ¼ − dðd−1Þ
2l2 . Since only

even powers appear in the expansion, we introduce a new
coordinate ρ ¼ z2 in which the metric takes the form

ds2 ¼ dρ2

4ρ2
þ 1

ρ
gijðx; ρÞdxidxj;

gðx; ρÞ ¼ g0 þ ρg2 þ � � � þ ρd=2gd þ ρd=2 log ρhd: ð2:3Þ
Note that the condition that this metric solves the Einstein
equation means that the higher-order gðmÞij can be deter-
mined in terms of the lower-order ones, and explicit
formulas can be written down for them. We present explicit
expressions in Appendix B.
We can compute4 the Neumann action [7,20] (note that

Ref. [7] worked with the bulk dimension, so our d ¼ D − 1
in the notation there),

3As it happens, since the conformal anomaly is related to the
curvatures of the boundary surface, when these curvatures are
vanishing, we will see a match for standard black hole solutions
between Dirichlet and Neumann also in AdSdþ1 with even d.

4In what follows, γij is the induced metric on ∂M and ε takes
values �1 depending on whether ∂M is time-like or space-like
respectively. Θ is the trace of the extrinsic curvature of ∂M
which is defined to be Θij ¼ ∇ðanbÞeai e

b
j , where na is the

outward-pointing normal vector and eai ¼ ∂xa
∂yi is the projector

arising from the bulk coordinates xa and the boundary coor-
dinates yi.
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SN ¼ 1

2κ

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
ðd − 3Þ
2κ

Z
∂M

ddy
ffiffiffiffiffi
jγj

p
εΘ ð2:4Þ

for Eq. (2.3) and we immediately sees that it diverges. This
is not a surprise: the same thing happens for the Dirichlet
action as well, and the process of adding counterterms to
the Dirichlet action to make it finite is known as holo-
graphic renormalization [23]. We can adopt a similar
approach here. The first step is to cut off the radial
integration at a finite ρ ¼ ϵ, to regulate the action. After
this regularization, the Neumann action (2.4) is given by

SregN ¼ −
d
2κ

Z
ddx

Z
ϵ
dρ

1

ρd=2þ1

ffiffiffiffiffiffi
−g

p
−
ðd − 3Þ
2κ

×
Z

ddx
1

ρd=2
ðd ffiffiffiffiffiffi

−g
p

− 2ρ∂ρ
ffiffiffiffiffiffi
−g

p Þj
ρ¼ϵ

: ð2:5Þ

Our goal is to add counterterms so that the Neumann
action becomes finite. We will find that this is indeed a
natural construction and for standard black hole solutions it
leads to the same on-shell action as the Dirichlet theory.

B. AdS3 (d = 2)

In d ¼ 2 the regularized Neumann action takes the form,

SregN ¼ −
1

κ

Z
d2x

�Z
ϵ
dρ

ffiffiffiffiffiffi−gp
ρ2

þ
�
−

ffiffiffiffiffiffi−gp
ϵ

þ ∂ρ
ffiffiffiffiffiffi
−g

p �����
ρ¼ϵ

�
:

ð2:6Þ

Using the expansion for the determinant [Eq. (A1)] and
doing the ρ integral, we arrive at the following final form
for the regulated action:

SregN ¼ 1

2κ

Z
d2x

ffiffiffiffiffiffiffiffi
−g0

p
log ϵTrg2: ð2:7Þ

In this paper, we will ignore this logarithmic divergence,
because it will not be relevant for the situations we
consider, like black holes. This is similar to the approach
of Ref. [22] and we would like to write down counterterms
parallel to theirs in terms of the induced metric. The
logarithmic divergence in the Dirichlet case was presented
later in Ref. [23]. We emphasize however that even though
we do not use them, our presentation of logarithmic
divergences is complete: the expressions for the quantities
involving g2 in Eqs. (2.7) and (2.20) in terms of curvatures
of the boundary metric g0 are presented in Appendix B.
Note however that unlike the other counterterms, we cannot
absorb the cutoff dependence of the logarithmic divergence
entirely into expressions involving the induced metric; a
logarithmic cutoff dependence will remain. This is
unavoidable, and this is the form in which Ref. [23] also

left their results; see the last term of their Eq. (B.4). The
renormalized quantities are of course cutoff independent by
construction.
Once we ignore the logarithmic term, the renormalized

Neumann action is therefore identical to the original
Neumann action SN in three dimensions: no counterterms
are required to render the action finite,

SrenN ¼ SN: ð2:8Þ
This was an observation that was already made in a slightly
different language in Refs. [8,27], as a special observation
about three dimensions. From our perspective, the fact that
the bare action is already finite in 2þ 1 dimensions is the
crucial reason why their construction works.
Now we come to one crucial observation. The renor-

malized stress tensor in 2þ 1 dimensions is given by [22]

Tren
ab ¼ 1

κ
½Θab − Θγab þ γab�: ð2:9Þ

We will now show that the renormalized Neumann action
(which coincidentally happens to be the same as the bare
Neumann action in 2þ 1 dimensions5) gives rise to a well-
defined variational principle when we demand that the
renormalized boundary stress tensor density is held fixed.
This means that, given the renormalized stress tensor as our
boundary data, we have a well-defined variational
principle.
To show this, first note that in three dimensions,

δSrenN ¼ δSN ¼ δ

�
1

2κ

Z
M

d3x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

2κ

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
Θ
�

¼ 1

2κ

Z
M

d3x
ffiffiffiffiffiffi
−g

p ðGab þ ΛgabÞδgab

−
Z

d2x

�
δ

�
−

ffiffiffiffiffiffi−γp
2κ

ðΘab − ΘγabÞ
�
γab

�
: ð2:10Þ

The bare stress tensor is defined as

Tbare
ab ¼ 1

κ
½Θab − Θγab�: ð2:11Þ

The surface term in Eq. (2.10) can be thus expressed as

δ

�
−

ffiffiffi
γ

p
2κ

ðΘab − ΘγabÞ
�
γab ¼ δ

� ffiffiffiffiffiffi−γp
2

Tbareab

�
γab:

ð2:12Þ

5This coincidence of the renormalized and the bare Neumann
actions is a feature of 2þ 1 dimensions and does not hold in
higher dimensions, but the statements we make about the
renormalized action apply in higher dimensions as well.
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Now by an explicit calculation, we can see that

δ

� ffiffiffiffiffiffi−γp
2

Tbare
ab

�
γab ¼ δ

� ffiffiffiffiffiffi−γp
2

Tren
ab

�
γab: ð2:13Þ

This shows that the Neumann variational problem of the
renormalized action might as well be formulated by holding
the renormalized boundary stress tensor density fixed. This
arises because in formulating the variational problem one
has the freedom to add a χab to the stress tensor that one is
holding fixed at the boundary as long as it satisfies

δð ffiffiffiffiffiffi
−γ

p
χabÞγab ¼ 0: ð2:14Þ

We will see that in odd d dimensions, this ambiguity6 in
practice does not arise because the variational problem of
the Neumann type for the renormalized action essentially
automatically leads to the renormalized stress tensor. We
turn now to demonstrate this in four dimensions.

C. AdS4 (d = 3)

In d ¼ 3, the singular part of the regularized action
evaluates to

SregN ¼ −
3

2κ

Z
d3x

Z
ϵ
dρ

ffiffiffiffiffiffi−gp
ρ5=2

¼ −
1

κ

Z
d3x

ffiffiffiffiffiffiffiffi
−g0

p �
1

ϵ3=2
þ 3

2ϵ1=2
Trg2

�
ð2:15Þ

where we have once again used the determinant expansion
(A1). The determinant of the induced metric γab can be
expressed as

ffiffiffiffiffiffi
−γ

p ¼
ffiffiffiffiffiffi−gp

ϵd=2
: ð2:16Þ

This, together with Eq. (A4) allows us to write the
counterterm action

Sct ¼ 1

κ

Z
d3x

ffiffiffiffiffiffi
−γ

p �
1 −

1

4
R½γ�

�
: ð2:17Þ

The fact that this is the correct counterterm can be checked
by expanding Eq. (2.17) in the Fefferman-Graham expan-
sion order by order and using Eqs. (A1) and (A4). The
renormalized Neumann action, in a notation analogous to
that in Ref. [22], is thus given by

SrenN ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
d3x

ffiffiffiffiffiffi
−γ

p �
1 −

1

4
R½γ�

�
: ð2:18Þ

Including this counterterm and doing variations, we also
reproduce the stress tensor of Refs. [22,23]

Tren
ab ¼ 1

κ
½Θab − Θγab þ 2γab − Gab� ð2:19Þ

whereGab ¼ Rab½γ� − 1
2
R½γ�γab is the Einstein tensor of the

induced metric.7 This stress tensor is known for empty AdS
and an AdS black hole to be finite and also has the right
leading fall-offs to reproduce the correct finite charges for
the AdS black hole.
This shows again that the renormalized Neumann action

leads to a well-defined variational problem when holding
the renormalized boundary stress tensor fixed.

D. AdS5 (d = 4)

For the case of d ¼ 4, the divergent part of the action
evaluates to

SregN ¼ −
2

κ

Z
d4x

ffiffiffiffiffiffiffiffi
−g0

p �
3

2ϵ2
þ 3

4ϵ
Trg2

− log ϵ
1

8
ððTrðg2ÞÞ2 − Trðg2Þ2Þ

�
: ð2:20Þ

Barring the log term, all other divergences in Eq. (2.20) can
be canceled by adding a counterterm given by

SctN ¼ 3

κ

Z
d4x

ffiffiffiffiffiffi
−γ

p
: ð2:21Þ

Once again, this can be explicitly checked by expanding
Eq. (2.21) in Fefferman-Graham expansion and using the
relations (A1) and (A4). The renormalized Neumann action
is given by

SrenN ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
1

2κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Θþ 3

κ

Z
d4x

ffiffiffiffiffiffi
−γ

p
: ð2:22Þ

As in the case of d ¼ 2, there is an ambiguity in the stress
tensor. The renormalized stress tensor we hold fixed for the
variational principle is given by

Tren
ab ¼ 1

κ

�
Θab − Θγab þ 3γab −

1

2
Gab

�
: ð2:23Þ

Once again this shows that the renormalized Neumann
action (2.22) gives a well-defined variational principle with
the renormalized stress tensor. We also note that Eq. (2.22),
being an even-d case has an ambiguity similar to the d ¼ 2
case, and we have used the fact that

6We will discuss this ambiguity, together with the logarithmic
divergence, elsewhere.

7More precisely, what we reproduce is δTren
ab from the varia-

tional problem for the renormalized Neumann action. But unlike
in odd d, this leads directly to Eq. (2.19) and we do not need to
use the ambiguity of the type (2.14).
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δð ffiffiffiffiffiffi
−γ

p
GabÞγab ¼ 0: ð2:24Þ

In what follows, we will often suppress the superscript
renwhen there is no source of ambiguity that we are indeed
working with the renormalized action.

E. Comparison with standard holographic
renormalization

How does all this compare with the standard discussion
of holographic renormalization in the Dirichlet case?
One difference is that the counterterms that are added in

the Dirichlet case do not change the variational problem:
before and after their addition, the boundary metric that is
held fixed is identical. This is not true in our case. Before
renormalization, the quantity that is held fixed is the
unrenormalized stress tensor density, but at the end it is
the renormalized stress tensor density. It is of course not
surprising that added terms can change the variational
problem, but what is worthy of remark here is the
philosophy behind it: we demanded the finiteness of the
Neumann action, and that leads to a well-defined varia-
tional problem with the renormalized quantity held fixed.
Satisfyingly, this same object can also be obtained as the
Legendre transform of the renormalized Dirichlet action;
see Appendix B. Note that the unrenormalized actions are
merely a crutch and the renormalized actions are the
physically relevant objects.
Let us also note that the total action/partition function

(including counterterms and everything else) can only be a
functional of the quantity fixed at the boundary. This is
guaranteed at the level of the action because again, the
Neumann action is a Legendre transform of Dirichlet and
therefore (by construction) depends only on the conjugate
variable. In equations, as we discuss in Appendix B, we can
view our action as

SrenN ½πrenab � ¼ SrenD ½γab� −
Z
∂M

dD−1xπrenab γ
ab ð2:25Þ

where

πrenab ¼ δSrenD

δγab
: ð2:26Þ

This can be viewed as the semiclassical version8 of a
Legendre transform at the level of partition functions:

Γ½δW=δγab� ¼ W½γab� −
Z
∂M

dD−1x
δW
δγab

γab: ð2:27Þ

At the level of the semiclassical saddle, this translates to the
statement that the variational principle (while holding the
conjugate quantity fixed at boundary) is well defined,
which we checked explicitly earlier in this section.

The separate terms (including counterterms) in the action
which are integrated over can have complicated depend-
ences, but they conspire to satisfy the above demands.
As an aside, we also note some papers in the literature

which dealt with related setups. In particular, in Ref. [14]
the boundary metric fluctuated but they arranged it so that
the variational principle with the Dirichlet action works, by
setting Tij ¼ 0. There are other papers, especially in three
dimensions, which deal with similar setups [15,19,29]. In
fact, our approach can be thought of in many ways as a
general framework for dealing with some of these situa-
tions. The authors of Ref. [14] treated the boundary stress
tensor as a fixed given value (namely, zero), so their
partition function was a number, so they did not discuss
the points we emphasized in the previous paragraph. Our
work can be thought of as a generalization of theirs and our
partition function is a proper functional, where instead of
setting the stress tensor (density) to be zero, we treat it as
arbitrary but fixed.9

III. FINITE ON-SHELL ACTION

In this section we present the results of on-shell action
and stress energy tensor for the Neumann action in various
dimensions. We also draw a comparison between our on-
shell action and the on-shell Dirichlet action. Note that the
precise value of the action is sensitive to the infrared cutoff
of the action integral. So one cannot work abstractly at the
level of the Fefferman-Graham expansion like we did so
far, because we need to know the metric finitely deep into
the geometry and not merely as an expansion at the
boundary. So we will consider explicit solutions like black
holes.

A. AdS3

The Dirichlet action for gravity in AdS3 is given by [22]

SD ¼ 1

2κ

Z
M

d3x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
∂M

ffiffiffiffiffiffi
−γ

p
Θ −

1

κ

Z
∂M

ffiffiffiffiffiffi
−γ

p
: ð3:1Þ

We evaluate the above action on the Bañados-Teitelboim-
Zanelli (BTZ) metric

ds2 ¼ −
ðr2 − r2þÞðr2 − r2−Þ

r2
dt2 þ r2dr2

ðr2 − r2þÞðr2 − r2−Þ

þ r2
�
dϕ −

rþr−
r2

dt

�
2

ð3:2Þ

8We will briefly discuss the existence of a full quantum theory
further in Secs. V and VI, as well as in more detail in Ref. [28].

9The “arbitrariness” of the boundary stress tensor should of
course still satisfy the requirement that the Fefferman-Graham
expansion should satisfy the bulk equations of motion; see the
discussion in Ref. [23] for details.
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where rþ and r− are the outer and inner horizons respec-
tively and are related to the charges through the relation
M ¼ r2þ þ r2− and J ¼ 2rþr−. In the above metric we have
set l ¼ 1. Evaluating the action between time −T to T and
rþ < r < R on this solution yields

SBTZD ¼ 2πðr2þ þ r2−ÞT
κ

þO

�
1

R2

�
: ð3:3Þ

The on-shell Neumann action for the BTZ solution yields

SBTZN ¼ 2πðr2þ þ r2−ÞT
κ

ð3:4Þ

which matches with the Dirichlet action in the limit
R → ∞. The stress-energy tensor similarly takes the form

Tab ¼
 
− r2þþr2−

2κ
rþr−
κ

rþr−
κ − r2þþr2−

2κ

!
þO

�
1

R2

�
: ð3:5Þ

This stress tensor has the right falloffs to reproduce finite
charges M and J through the relation [30,31]

Qξ ¼ −
Z
Σ
dD−1x

ffiffiffi
σ

p ðuaTabξ
bÞ ð3:6Þ

where ξa is the Killing vector generating the isometry of the
boundary metric and ua is the unit time-like vector. We see
that the counterterm action that was chosen to make the on-
shell Neumann action finite also produces a finite stress
tensor. This was shown for the Dirichlet case in Ref. [22].

B. AdS4

The (renormalized) Dirichlet action in D ¼ 4 takes the
form

SD ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ −

2

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p �
1þ

ð3ÞR
4

�
:

ð3:7Þ
The AdS-Schwarzschild black hole metric is given by

ds2 ¼ −
�
1 −

2M
r

þ r2
�
dt2 þ dr2

ð1 − 2M
r þ r2Þ þ r2dΩ2:

ð3:8Þ
The horizon is obtained by the real root of

1 −
2M
rH

þ r2H ¼ 0: ð3:9Þ

Evaluating the action for this metric yields (integrated in the
region −T < t < T and rH < r < R)

SAdS−BHD ¼ −
8πðM − r3HÞT

κ
þO

�
1

R

�
: ð3:10Þ

The stress tensor computed for this metric is given by

Tab ¼

0
B@

− 2M
κR 0 0

0 − M
κR 0

0 0 −M sin2ðθÞ
κR

1
CAþOð1=R2Þ ð3:11Þ

which once again has the right falloffs to obtain finite
charges as described in the previous section. The Neumann
action in D ¼ 4 takes the form

SN ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p �
1 −

ð3ÞR
4

�
ð3:12Þ

which evaluates to

SAdS−BHN ¼ −
8πðM − r3HÞT

κ
þO

�
1

R

�
: ð3:13Þ

The subleading term here differs from the subleading term
in the Dirichlet action and the two actions are same only in
the R → ∞ limit.

C. AdS5

In D ¼ 5 the Dirichlet action takes the form

SD ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Θ −

3

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p �
1þ

ð4ÞR
12

�
:

ð3:14Þ
We evaluate this action for the black hole metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3 ð3:15Þ

where

fðrÞ ¼ r2 þ 1 −
2M
r2

: ð3:16Þ

The horizon is once again determined by the largest
positive root of

r2H þ 1 −
2M
r2H

¼ 0: ð3:17Þ

The action evaluates to

SBHD ¼ −
2π2T
κ

�
2M þ 3

4
− 2r4H

�
þOð1=R4Þ: ð3:18Þ
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The stress tensor takes the form

Tab ¼

0
BBBBBB@

− 3ð8Mþ1Þ
8R2κ

0 0 0

0 − ð8Mþ1Þ
8R2κ

0 0

0 0 − ðð8Mþ1Þ sin2ðψÞÞ
8R2κ

0

0 0 0 − ðð8Mþ1Þ sin2ðθÞ sin2ðψÞÞ
8R2κ

1
CCCCCCA

þOð1=R4Þ: ð3:19Þ

The Neumann action in this case can be written as

SN ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
1

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Θþ 3

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p ð3:20Þ

which evaluates to

SBHN ¼ −
2π2T
κ

�
2M þ 3

4
− 2r4H

�
þOð1=R2Þ: ð3:21Þ

Again, we find agreement when the radial cutoff is taken to
infinity.

IV. ADM FORMULATION OF RENORMALIZED
AdS4 ACTION

The ADM formulation of general relativity (GR) works
by singling out the time direction from the spatial direction
and reexpressing the content of GR in terms of ADM
variables. Thus the spacetime is thought of as foliated by
spatial slices Σt which are the hypersurfaces of constant t.
The spacetime metric can be expressed as

ds2 ≡ gαβdxαdxβ

¼ −N2dt2 þ habðdya þ NadtÞðdyb þ NbdtÞ ð4:1Þ

where N is the lapse function, Na is the shift vector and hab
is the induced metric on the hypersurface Σt. In what
follows, we assume that the manifold is a box with finite
spatial extent such that the boundary is time-like, denoted
B. The spatial section of B is denotedB. Wewill also ignore
the space-like boundaries at initial and final times and work
with coordinates such that the time-like boundary is
orthogonal to the spatial hypersurfaces, Σt. Under the
ADM split of the bulk metric, Eq. (4.1), the induced metric
on the boundary B, also undergoes a decomposition

ds2 ≡ γijdxidxj

¼ −N2dt2 þ σABðdθA þ NAdtÞðdθB þ NBdtÞ ð4:2Þ

where σAB is the induced metric on B. We will also need the
expression for the decomposition of the Ricci scalar

ðDÞR ¼ ðD−1ÞRþ KabKab − K2 − 2∇αðuβ∇βuα − uα∇βuβÞ
ð4:3Þ

where Kab is the extrinsic curvature of the spatial hyper-
surface Σt (not to be confused with the boundary). The
point about ADM split is that N and Na are not dynamical
fields and therefore their conjugates are constraint relations.
The dynamical field is the spatial metric hab and the
canonical conjugate momentum is given by

pab ≡ ∂
∂ _hab

ð ffiffiffiffiffiffi
−g

p
LGÞ ¼

ffiffiffi
h

p

2κ
ðKab − KhabÞ ð4:4Þ

whereKab is the extrinsic curvature of Σt. The details of the
ADM decomposition of the gravitational action can be
found in Refs. [20,32]. We will work with AdS4 in what
follows, for convenience.

A. Dirichlet action

In this section, we return to the case of ADM decom-
position, for the renormalized Dirichlet action in AdS4. The
renormalized action in the covariant form is given by
[22,23]

SD ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

κ

Z
B
d3x

ffiffiffiffiffiffi
−γ

p
Θ

þ 1

κ

Z
B
d3x

ffiffiffiffiffiffi
−γ

p �
−
2

l

��
1þ

ð3ÞR
4

�
: ð4:5Þ

The first two terms are the Einstein-Hilbert and the GHY
pieces, and can be written in terms of the ADM variables
following the steps of Ref. [20]. This gives us the following
form for the action [32]:

SD ¼ SEH þ SGHY þ Sct

¼
Z
M

dDxðpab _hab − NH − NaHaÞ

þ
Z
B
dD−1y

ffiffiffi
σ

p ðNε − NajaÞ þ Sct ð4:6Þ

where H and Ha are the Hamiltonian and momentum
constraints,
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H ¼
ffiffiffi
h

p

2κ
ðKabKab − K2 − ð3ÞRþ 2ΛÞ;

Ha ¼ −
ffiffiffi
h

p

κ
DbðKab − KhabÞ: ð4:7Þ

ffiffiffi
σ

p
ε,

ffiffiffi
σ

p
ja and N

ffiffiffi
σ

p
sab=2 are the momenta conjugate to

N, Na and σab.. and are given by

ε ¼ k
κ
; ja ¼

2ffiffiffi
h

p rbpb
a;

sab ¼ 1

κ

�
kab −

�
ra∂aN
N

þ k

�
σab
�

ð4:8Þ

where kab is the extrinsic curvature of B embedded in Σt

and k ¼ kabσab. The counterterm action is given in the
covariant form by

Sct ¼
1

κ

Z
B
d3x

ffiffiffiffiffiffi
−γ

p �
−
2

l

��
1þ

ð3ÞR
4

�
: ð4:9Þ

Using Eq. (4.3) and the expression for the determinantffiffiffiffiffiffi−γp ¼ N
ffiffiffi
σ

p
, we obtain the counterterm action as

Sct ¼
1

κ

Z
B
d3x

�
−
2

l

��
1þ l2

4
ðð2ÞRþ k̂abk̂

ab − k̂2Þ
�
ð4:10Þ

where k̂ab is the extrinsic curvature of B as a hypersurface
embedded in B. For black hole geometries, we also get a
contribution from the horizon which is given by decom-
posing the covariant Neumann action with a boundary at
the horizon where no data is specified [20,30,33]. The
action then takes the form

SD ¼
Z
M

dDxðpab _hab − NH − NaHaÞ

þ
Z
H
dD−1y

ffiffiffi
σ

p �
ra∂aN

κ
þ 2raNbpabffiffiffi

h
p

�

þ
Z
B
dD−1y

ffiffiffi
σ

p ðNε − NajaÞ

þ 1

κ

Z
B
d3x

�
−
2

l

��
1þ l2

4
ðð2ÞRþ k̂abk̂

ab − k̂2Þ
�
:

ð4:11Þ

We can further express the above action in terms of the
renormalized parameters thereby absorbing the counter-
term into the renormalized quantities εren ¼ εþ εct, jrena ¼
ja þ jcta and srenab ¼ sab þ sctab. To do so, we do a canonical
decomposition of the tensor using normal and tangential
projections [31]. The expressions for renormalized quan-
tities are given by

εren ¼ uaubTab;

jrena ¼ −σabTbcuc;

srenab ¼ σacσbdTcd ð4:12Þ

where Tab is the renormalized stress tensor given by

Tab ¼ 1

κ

�
Θab − Θγab þ 2

l
γab − lGab

�
: ð4:13Þ

Using the above expressions, we get

εren ¼ ε −
1

κ

�
2

l
þ l
2
ðð2ÞR − k̂abk̂

ab þ k̂2Þ
�
;

jrena ¼ ja þ
l
κ
ðdak̂ − dbk̂

b
aÞ;

srenab ¼ sab þ
1

κ

�
2

l
σab þ

l
2
ðð2ÞRþ k̂abk̂ab − k̂2Þ

− l

�
−
1

N
Lmk̂ab −

1

N
dadbN þ ð2ÞRab

þ k̂k̂ab − 2k̂ack̂
c
b

��
: ð4:14Þ

In writing the above expressions, we have made use of
Gauss-Codazzi relations whose exact expressions are given
in Appendix B. Thus, the renormalized action can be
expressed as

SD ¼
Z
M

dDxðpab _hab − NH − NaHaÞ

þ
Z
H
dD−1y

ffiffiffi
σ

p �
ra∂aN

κ
þ 2raNbpabffiffiffi

h
p

�

þ
Z
B
dD−1y

ffiffiffi
σ

p ðNεren − Najrena Þ: ð4:15Þ

1. Kerr-AdS: Covariant

As an illustration of our construction, we can evaluate
the action on the Kerr-AdS metric inD ¼ 4. Rotating black
holes are better defined in AdS, than in flat space (see e.g.,
Refs. [34,35]). The metric in Boyer-Lindquist type coor-
dinates is given by

ds2 ¼ ρ2
�
dr2

Δ
þ dθ2

Δθ

�
þ Δθ sin2 θ

ρ2

�
adt −

r2 þ a2

Σ
dϕ

�
2

−
Δ
ρ2

�
dt −

a sin2 θ
Σ

dϕ

�
2

ð4:16Þ

where
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ρ2 ¼ r2 þ a2cos2θ; Δ ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2Mr;

Δθ ¼ 1 −
a2

l2
cos2θ; Σ ¼ 1 −

a2

l2
: ð4:17Þ

The horizon is at the largest positive root of ΔðrHÞ ¼ 0.
The angular velocity of the black hole (for r ≥ rH) is
given by

ω ¼ aΣ
�

Δθðr2 þ a2Þ − Δ
ðr2 þ a2Þ2Δθ − a2Δ sin2 θ

�
: ð4:18Þ

The angular velocity at the horizon is given by

ΩH ¼ aΣ
r2H þ a2

ð4:19Þ

while the angular velocity at the boundary (r → ∞), is
given byΩ∞ ¼ −a=l2. The angular velocity relevant for the
thermodynamics is given by Ω ¼ ΩH − Ω∞ [24,36]. Given
the metric, the ADM variables can be read off by compar-
ing Eq. (4.16) with the ADM form of the metric. The lapse,
shift and spatial metric are given by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2ΔΔθ

ðr2 þ a2Þ2Δθ − a2Δ sin2 θ

s
;

Nϕ ¼ aΣ
ðΔ − Δθðr2 þ a2ÞÞ

ðr2 þ a2Þ2Δθ − a2Δ sin2 θ
;

hab ¼

0
BB@

ρ2

Δ 0 0

0 ρ2

Δθ
0

0 0
ððr2þa2Þ2Δθ−a2Δ sin2 θÞ

ρ2Σ2

1
CCA: ð4:20Þ

For the thermodynamic interpretation we must work
with the complex metric associated with the black hole,
which is given by the identificationN → −i ~N,Nϕ → −i ~Nϕ

[20,30]. The periodicity of the time circle can be estimated
by evaluating the ra∂a

~N ≡ 2π=β term on the horizon. This
gives the time periodicity, β, to be

β ¼ 4πðr2H þ a2Þ
rHð1þ a2

l2 þ
3r2H
l2 − a2

r2H
Þ
: ð4:21Þ

The expressions for various terms in the covariant action
are

R ¼ −
12

l2
;

Θ ¼ 3

l
þ ð−3a2 þ 2l2 − 5a2 cos 2θÞ

4lR2
c

;þOð1=R4
cÞ

ð3ÞR ¼ 2l2 − 3a2 − 5a2 cos 2θ
l2R2

c
þOð1=R4

cÞ: ð4:22Þ

Evaluating the complex metric on the covariant action
(4.5), and using the expression (4.21) for the periodicity, we
get

SD ¼ −i
πl2ðr2H þ a2Þ2ðl2 − r2HÞ

ðl2 − a2Þða2l2 − ða2 þ l2Þr2H − 3r4HÞ
: ð4:23Þ

This is related to the free energy through the relation

−βFD ≡ logZD ≈ iSD ð4:24Þ
where β is the inverse temperature which can be identified
with the periodicity of the time circle. This gives the free
energy of the black hole to be

FD ¼ ðr2H þ a2Þðl2 − r2HÞ
4ðl2 − a2ÞrH

: ð4:25Þ

2. Kerr-AdS: ADM

Evaluating the complex metric on the ADM decomposed
action, the bulk term vanishes because the metric is
stationary and satisfies Einstein’s equation. The horizon
term gives a contribution of

SH ¼ −i
A
4
− iΩHPJ: ð4:26Þ

On the boundary we can see that the renormalized ε, jϕ and
sAB have correct falloffs so as to give finite results for the
integral,

εren ¼
�
Mða2 − 4l2 þ 3a2 cos 2θÞ

lΣκ

�
1

R3
c
þO

�
1

R4
c

�
;

jϕren ¼ 3aM
κ

ffiffiffiffiffiffi
Δθ

Σ

r
1

R4
c
þO

�
1

R5
c

�
: ð4:27Þ

Evaluating the boundary integrals, we have

SB ¼ iEPþ iΩ∞PJ ð4:28Þ
where E and J are calculated as

E ¼ M
Σ2

; J ¼ Ma
Σ2

ð4:29Þ

which are the ADM charges of the Kerr black hole. Using
Eq. (4.24), we have

FD ¼ E − TS −ΩJ: ð4:30Þ

Now, by an explicit computation, we can verify that the free
energy, FD, in Eq. (4.25) can be expressed as

FD ¼ −T
A
4
−ΩJ þ gðA; JÞ ð4:31Þ

where
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gðA; JÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
16π

þ 4π

A
J2 þ J2

l2
þ A
8πl2

�
A
4π

þ A2

32π2l2

�s
:

ð4:32Þ

Equating Eq. (4.31) to the free energy computed using the
ADM approach, Eq. (4.30), we get the generalized Smarr
formula [see Eq. (41) of Ref. [24]]:

E2 ¼ A
16π

þ 4π

A
J2 þ J2

l2
þ A
8πl2

�
A
4π

þ A2

32π2l2

�
: ð4:33Þ

Following Ref. [24] we can also relate these calculations to
the first law, which we will not repeat.

B. Neumann action

The renormalized Neumann action in AdS4 is given by

SN ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
B
d3x

ffiffiffiffiffiffi
−γ

p �
1

l

��
1 −

l2

4
ð3ÞR

�
: ð4:34Þ

The bare part of the Neumann action in ADM was derived
in Ref. [20]. In D ¼ 4 it can be used to write

SN ¼ SEH þ Sct ¼
Z
M

d4xðpab _hab − NH − NaHaÞ

þ
Z
B
d3x

ffiffiffi
σ

p �
Nε

2
− Naja þ

N
2
sabσab

�
þ Sct:

ð4:35Þ
The counterterm action can be decomposed similarly to the
Dirichlet case and we get

Sct ¼
1

κ

Z
B
d3x

�
1

l

��
1 −

l2

4
ðð2ÞRþ k̂abk̂

ab − k̂2Þ
�
: ð4:36Þ

For the black hole geometries, one again has a contribution
from the horizon and the action takes the form

SN ¼
Z
M

d4xðpab _hab − NH − NaHaÞ

þ
Z
H
d3y

ffiffiffi
σ

p �
ra∂aN

κ
þ 2raNbpabffiffiffi

h
p

�

þ
Z
B
d3x

ffiffiffi
σ

p �
Nε

2
− Naja þ

N
2
sabσab

�

þ 1

κ

Z
B
d3x

�
1

l

��
1 −

l2

4
ðð2ÞRþ k̂abk̂

ab − k̂2Þ
�
:

ð4:37Þ

Using the expressions for renormalized parameters, the
Neumann action can be expressed as

SN ¼
Z
M

d4xðpab _hab − NH − NaHaÞ

þ
Z
H
d3y

ffiffiffi
σ

p �
ra∂aN

κ
þ 2raNbpabffiffiffi

h
p

�

þ
Z
B
d3x

ffiffiffi
σ

p �
Nεren

2
− Najrena þ N

2
srenabσab

�
:

ð4:38Þ

1. Kerr-AdS: Covariant

We can evaluate the covariant Neumann action on the
Kerr-AdS complex metric; we obtain

SN ¼ −i
πl2ðr2H þ a2Þ2ðl2 − r2HÞ

ðl2 − a2Þða2l2 − ða2 þ l2Þr2H − 3r4HÞ
: ð4:39Þ

Notice that unlike the asymptotically flat case, the on-shell
values of the Dirichlet and Neumann actions are equal. The
on-shell action is related to the Neumann free energy
through the relation

−βFN ≡ logZN ≈ iSN ð4:40Þ
which gives the free energy of the black hole to be

FN ¼ ðr2H þ a2Þðl2 − r2HÞ
4ðl2 − a2ÞrH

: ð4:41Þ

2. Kerr-AdS: ADM

Evaluating the complex metric on the ADM decomposed
action, the horizon term gives a contribution of

SH ¼ −i
A
4
− iΩHPJ: ð4:42Þ

On the boundary we have,

sabren ¼
 
− lMΔθ

κ 0

0 −Mða2þ2l2−3a2 cos 2θÞ
2lκ sin2 θ

!
1

R3
c
þOð1=R4

cÞ;

σab ¼
 ρ2

Δθ
0

0
ððr2þa2Þ2Δθ−a2Δ sin2 θÞ

ρ2Σ2

!
: ð4:43Þ

We get a contribution of iEP=2 from the integration over
εren term and another contribution of iEP=2 from the
integration over srenab term. The jrenϕ gives a contribution
of iΩ∞PJ. Together we have again

SB ¼ iEP − iΩ∞PJ: ð4:44Þ
Again using Eq. (4.40), the free energy takes the form

FN ¼ E − TS − ΩJ ð4:45Þ
where Ω ¼ ΩH − Ω∞ is the potential relevant for the
thermodynamics. So we end up getting the exact same
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expressions for FN and FD (in covariant and canonical
approaches, separately).
The emergence of the canonical ensemble together with

the Smarr formula implies the first law as well. This follows
from the discussion in Ref. [24], so we will not repeat it.

V. ALTERNATIVE QUANTIZATIONS IN ADS

We would like to investigate whether these boundary
conditions can define a consistent quantum gravity in AdS.
If so, this will provide a set of boundary conditions that are
different from the standard Dirichlet boundary conditions
familiar from AdS/CFT. On the other hand, a skeptic could
choose to think of our discussion as merely a class of well-
defined boundary conditions/terms for classical gravity in
AdS. However, the fact that these boundary conditions give
rise to finite actions that lead to correct thermodynamical
relations is suggestive to us of an underlying quantum
theory: so let us try and explore to see whether we can take
these boundary conditions seriously at the quantum level.10

We will not prove in this paper (but see Ref. [28]) that our
approach can be the starting point of a consistent quantum
theory, but we will merely make some related observations.
From the boundary theory point of view, the translation

from the metric-fixed to stress-tensor-fixed point of view is
a Legendre transform that takes the boundary partition
function to the boundary effective action.11 This seems to
us to be a perfectly natural and consistent operation as we
discussed in Sec. II E, so we believe there should be a
legitimate formulation of holography in which the corre-
spondence is phrased in the language of the effective action
and not in terms of the generating functional. Note that for
this, we will have to move away from the standard Dirichlet
formulation of holography where the boundary values of
bulk fields are interpreted as sources.
The trouble is that it is well known that (for example) for

scalars in a fixed AdS background, of the two modes
(which we can call Dirichlet and Neumann) only the
Dirichlet mode is typically normalizable [21,37]. The
exception to this is when the mass of the scalar falls in
the Breitenlohner-Freedman window, where a Legendre
transform analogous to ours takes the Dirichlet scalar
theory to the Neumann scalar theory, and both are well
defined quantum mechanically [21]. When the scalar mass
is not in this specific range, there is only one choice of
acceptable normalizable mode and a unique quantization in
a fixed AdS background.
To understand this better, let us note that the reason why

wewant normalizable modes is because we want them to be
well-defined states in the Hilbert space of the putative

quantum theory, with finite norm. This translates to a
notion of finite energy: when the scalar mode has finite
energy in the bulk of AdS, it can be well defined as a state
in the Hilbert space of the quantum theory. This is what
happens in the case of scalar quantum field theory in a fixed
AdS background [21,37,38].
Now, let us consider the case when the background is not

rigid and the metric is allowed to fluctuate. Let us start by
considering scalar fields in such a setup.We note two things.
One is that a dynamical background makes the notion of
energy more subtle, and second the notion of mass of the
scalar is ambiguous because (say) a term of the form

ðm2 þ λRÞϕ2 ð5:1Þ
whereR is the curvature scalar of the backgroundwill look like
a usual mass term in the rigid limit. So a nonminimal coupling
can sometimes be difficult to distinguish. As it happens both
these issues have been addressed in Ref. [25] (see also
Refs. [39,40]) and it was found that once one deals with
the appropriate notion of (canonical) energy both quantiza-
tions are admissible. We will take this as an encouraging fact:
when dealing with the full gravity theory with appropriate
counterterms etc. it is not necessarily only a Dirichlet
boundary condition that can be well defined; the notion of
canonical energy needs to take into account the full theory.
Indeed, a similar conclusion was arrived at by Compere

and Marolf [14], who considered the possibility of not
fixing the boundary metric, and instead considered simply
integrating it over in the path integral. At the semiclassical
level, the variational principle would then yield

δSrenD ¼ Eqs: of motionþ 1

2

Z
∂M

ddx
ffiffiffiffiffiffiffiffi
−g0

p
Tijδg0ij ; ð5:2Þ

where now there is no assumption that δg0ij ¼ 0 because we
are letting it fluctuate. This means that to ensure that the
action is stationary, now we need the boundary (renormal-
ized) stress tensor to vanish.12 Remarkably, Compere and
Marolf found that such boundary metric fluctuations are in
fact normalizable with respect to the canonical (symplectic)

10C.K. thanks K. Skenderis for comments on (non)normal-
izable modes and the choice of quantizations in AdS.

11A similar approach for scalar fields was taken in Ref. [21];
the source and condensate are dual variables in the Legendre
transform sense.

12The boundary stress-energy tensor that we have often used in
our discussions in this paper is given by the relation

Tren
ij ½γ� ¼ −

2ffiffiffiffiffiffi−γp δSrenD

δγij
ð5:3Þ

where the boundary is placed at ρ ¼ ϵ. This is related to the CFT
stress tensor (which is the true renormalized stress tensor, and the
one we are using in this section) through

Tij ¼ lim
ϵ→0

�
1

ϵd=2−1
Tren
ij ½γ�

�
¼ lim

ϵ→0

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx; ϵÞp δSrenD

δgij

�

¼ −
2ffiffiffiffiffi
g0

p δSrenD

δgij0
: ð5:4Þ

Here, g0 is the leading term in the Fefferman-Graham expansion.
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structure defined by the full renormalized Dirichlet action
SrenD . Furthermore they also showed that the symplectic
structure is also conserved when the boundary condition
Tij ¼ 0 holds. They further showed that if we couple the
full renormalized bulk Dirichlet action above to a boundary
action that is a functional of the boundary metric (i.e., the
boundary is dynamical), so that the variation now becomes

δSbndryD ≡ δðSDþSbndryÞ ¼ e:o:m−
1

2

Z
∂M

ddx
ffiffiffiffiffiffiffiffi
−g0

p
Tijδg0ij

þ
Z
∂M

ddx
δSbndry
δg0ij

δg0ij

¼ e:o:m−
1

2

Z
∂M

ddx
ffiffiffiffiffi
g0

p �
Tij−

2ffiffiffiffiffi
g0

p δSbndry
δg0ij

�
δg0ij

ð5:5Þ

then again the claims above hold, if instead of requiring
Tij ¼ 0 we now require

Tij −
2ffiffiffiffiffi
g0

p δSbndry
δg0ij

¼ 0: ð5:6Þ

With that aside, let us turn to our Neumann case. We will
merely discuss some connections between our work and
that of Compere and Marolf and leave it at that for now. We
first note that the usual Dirichlet action plus a boundary
term, after a Legendre transform of the kind we discussed,
takes the form

SbndryN ≡ SD þ Sbndry

þ
Z
∂M

ddx
ffiffiffiffiffi
g0

p
2

�
Tij −

2ffiffiffiffiffi
g0

p δSbndry
δg0ij

�
g0ij: ð5:7Þ

This has the variation

δSbndryN ¼e:o:mþ1

2

Z
∂M

ddxg0ijδ

� ffiffiffiffiffi
g0

p �
Tij−

2ffiffiffiffiffi
g0

p δSbndry
δg0ij

��
:

ð5:8Þ
Note that this is of the Neumann form, but now with
boundary dynamics. It would be interesting to see if this
leads to normalizable fluctuations, perhaps if one imposes
the condition (5.6) that Compere and Marolf did. It is worth
mentioning here that what the authors of Ref. [14] called
the Neumann boundary condition is (as is often conven-
tional in the gravity literature) the vanishing of Tij. This is
the gravitational analogue of starting with the standard
Dirichlet action in particle mechanics, letting the coordi-
nate q fluctuate at the boundary, but demanding that _q ¼ 0
at the boundary so that the boundary piece dies anyway, so
that the variational problem is well defined. A genuine
Neumann boundary condition is less constraining: it merely
says that the normal derivative/canonical conjugate is fixed,
and not necessarily zero. This is what we do in this paper.

Of course to conclusively settle this question requires
further work, but we suspect that when one takes into
account the full dynamics of the system instead of a fixed
AdS background, more boundary conditions than what are
usually considered will lead to consistent quantum theories.
It seems likely that one can discuss the normalizability via
the symplectic structure in a covariant phase space approach,
and we will report on work in this direction elsewhere.13

VI. MICROCANONICAL IN GRAVITY,
MICROCANONICAL IN CFT, AND NEUMANN

The Neumann path integral that we have considered in
this paper is related to the “microcanonical” path integral
that was considered by Brown and York [30]. Their
approach amounts to holding some of the components of
the quasilocal (boundary) stress tensor density fixed,
whereas our approach is in some sense more covariant:
we hold the entire boundary stress tensor density fixed. We
saw that this has a natural interpretation as a Neumann
problem, and results in a very simple Neumann action that
leads to various nice features, some of which we inves-
tigated in Refs. [7,20] as well as this paper.
The path integral of Ref. [30] was called a “micro-

canonical” functional integral. The motivation of Ref. [30]
for this nomenclature was that in gravity, the total charges
reduce to surface integrals over the boundary. In Ref. [30]
this surface integral was not explicitly done, but we believe
this surface integral actually needs to be done in order to get
a true charge, and to make the path integral truly “micro-
canonical” from the gravity perspective.
We would like to emphasize however that even keeping

the integrated charge (energy) fixed on the gravity side in the
sense of Ref. [30] is not quite the same as holding the
conformal field theory (CFT) energy fixed in AdS/CFT. This
is because in Ref. [30] the boundary metric is allowed to
fluctuate. In AdS/CFT however, in the microcanonical
ensemble when we hold the CFT energy fixed, we also hold
the metric fixed. If we have infinite resolution, there is no
ensemble of states in theCFTsatisfyingboth these conditions.
In AdS/CFT, the natural microcanonical object to hold

fixed from the CFT perspective is the total CFT energy,
which should be compared to a charge (the boundary stress
tensor density is a current from the CFT perspective). In the
thermodynamic limit, the microcanonical density of states
is a Laplace transform of the canonical partition function
[41]. The usual discussion of the Hawking-Page transition
in AdS/CFT is in the context of the canonical ensemble, but
by doing this Laplace transform we can move to the
microcanonical ensemble as well. The resulting discussion
is guaranteed to match with the discussion of AdS
thermodynamics in the microcanonical ensemble done in

13Progress has been made in this direction after the first version
of this paper appeared; it will be reported in Ref. [28].
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the Hawking-Page paper [42],14because the corresponding
canonical discussions match.
Our construction, as we have emphasized, is different

from both Ref. [30] as well as the AdS/CFT discussion.
Morally it is more similar to Ref. [30] because we also do
not pin down the metric at the boundary. Our approach
could be viewed as an alternate implementation of holog-
raphy in AdS where the boundary metric is allowed to
fluctuate. In a follow-up paper [28], further evidence will be
provided (along the lines of the suspicions expressed in
Sec. V) that these boundary conditions may be consistent
boundary conditions for quantum gravity in AdS: we will
find that in odd d the fluctuations are normalizable, and that
in even d, normalizability of the bulk fluctuations is
guaranteed when the dynamics of the boundary metric is
controlled by conformal gravity. Another direction that
is being explored is the possibility of doing a similar
renormalized construction for flat space Neumann gravity
along the lines of the Dirichlet case discussed by Mann and
Marolf [43]. We have recently also constructed Robin
boundary terms for gravity. Considering the fact that the
Dirichlet boundary term [1,2] has had numerous applica-
tions since its inception more than 40 years ago, perhaps it
is not surprising that the Neumann term [7] also leads to
natural applications and generalizations.
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APPENDIX A: ASYMPTOTIC SOLUTION

The relation between the various gi’s (with i < d) in the
Fefferman-Graham expansion is determined by solving
Einstein’s equation iteratively. This was worked out in detail
in Ref. [23] and here we collect some useful results for
completeness. The indices beloware raisedwith themetric g0.
The determinant of the induced metric on ρ ¼ ϵ boun-

dary can be expanded as follows:

ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffiffiffi
−g0

p �
1þ 1

2
ϵTrðg−10 g2Þ þ

1

8
ϵ2ððTrðg−10 g2ÞÞ2

− Trðg−10 g2Þ2Þ þOðϵ3Þ
�
: ðA1Þ

The leading coefficients gn for n ≠ d are given by15

g2 ij ¼ −
1

ðd − 2Þ
�
Rij −

1

2ðd − 1ÞRg0ij
�
; ðA2Þ

g4 ij ¼
1

ðd − 4Þ
�

1

8ðd − 1ÞDiDjR −
1

4ðd − 2ÞD
kDkRij

þ 1

8ðd − 1Þðd − 2Þ g0ijD
kDkR

−
1

2ðd − 2ÞR
klRikjl þ

ðd − 4Þ
2ðd − 2Þ2 R

k
i Rkj

þ 1

ðd − 1Þðd − 2Þ2 RRij þ
1

4ðd − 2Þ2 R
klRklg0ij

−
3d

16ðd − 1Þ2ðd − 2Þ2 R
2g0ij

�
: ðA3Þ

For n ¼ d, one can obtain the trace and divergence of gn
as well as the coefficient of the logarithmic term hd from
Einstein’s equation and we refer the reader to Appendix A
of Ref. [23]. The on-shell g2 is determined in terms of the
induced metric γ as [23]

Trg2 ¼
1

2ϵðd − 1Þ
�
−R½γ� þ 1

ðd − 2Þ
�
Rij½γ�Rij½γ�

−
1

2ðd − 1ÞR
2½γ�
�
þO½R3½γ��

�
;

Trg22 ¼
1

ðd − 2Þ2ϵ2
�
Rij½γ�Rij½γ� þ 4 − 3d

4ðd − 1Þ2 R
2½γ�

þO½R3½γ��
�
: ðA4Þ

APPENDIX B: LEGENDRE TRANSFORM
APPROACH

The Neumann action can be thought of as a boundary
Legendre transform of the Dirichlet action. The Neumann
and Dirichlet actions are related by [20]

SrenN ¼ SrenD −
Z
∂M

dD−1xπrenab γ
ab ðB1Þ

where πrenab ¼ δSrenD
δγab

. πrenab is further related to the renormalized

boundary stress tensor as

πrenab ¼ −
ffiffiffiffiffiffi−γp
2

Tren
ab : ðB2Þ

So, given the renormalized action and the boundary stress
tensor for the Dirichlet case, we can use the above relations14This discussion is in the last section of their paper, and is not

as well known as their canonical discussion. The only thing
relevant for our purposes here is that they change ensembles via
the aforementioned Laplace transform.

15Our convention for the Ricci tensor and Ricci scalar differ
from Ref. [23] by a minus sign.
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between the Dirichlet and Neumann action to obtain a
renormalized action for the Neumann case. This serves as
an independent check of the holographic renormalization of
the Neumann case and we will go through each case
(D ¼ 3, 4, 5) separately here.

1. AdS3

The renormalized Dirichlet action and stress tensor for
AdS3 are given by [22,23]

SrenD ¼ 1

2κ

Z
M

d3x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

κ

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

κ

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p ðB3Þ

and

Tren
ab ¼ 1

κ
ðΘab − Θγab þ γabÞ ðB4Þ

where we have set l ¼ 1. Using Eqs. (B1) and (B2) we
immediately see that

SrenN ¼ 1

2κ

Z
M

d3x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

2κ

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
Θ ðB5Þ

which matches with the renormalized Neumann action
obtained by holographic renormalization.

2. AdS4

In AdS4, the renormalized Dirichlet action and stress
tensor are [22,23] (for l ¼ 1)

SrenD ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ

−
2

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p �
1þ

ð3ÞR
4

�
ðB6Þ

and

Tren
ab ¼ 1

κ
ðΘab − Θγab þ 2γab − ð3ÞGabÞ: ðB7Þ

Using Eqs. (B1) and (B2) we obtain

SrenN ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p �
1 −

ð3ÞR
4

�
ðB8Þ

which is in agreement with the renormalized Neumann
action obtained by holographic renormalization.

3. AdS5

For the case of AdS5 the renormalized action and stress
tensor are given by [22,23] (for l ¼ 1)

SrenD ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Θ

−
3

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p �
1þ

ð4ÞR
12

�
ðB9Þ

and

Tren
ab ¼ 1

κ

�
Θab − Θγab þ 3γab −

1

2
ð4ÞGab

�
: ðB10Þ

Using Eqs. (B1) and (B2) we once again obtain the
renormalized Neumann action which matches with the
one obtained by holographic renormalization

SrenN ¼ 1

2κ

Z
M

d5x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ − 1

2κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Θ

þ 3

κ

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
: ðB11Þ

APPENDIX C: GAUSS-CODAZZI-RICCI
RELATIONS

Gauss-Codazzi relations help us express the spacetime
curvature tensors in terms of the intrinsic and extrinsic
curvatures of the embedding hypersurface. They can be
summarized as follows:

Rþ 2Rabuaub ¼ ð2ÞR − k̂abk̂
ab þ k̂2;

σabucRbc ¼ dak̂ − dbk̂
b
a;

σacσbdRcd ¼ −
1

N
Lmk̂ab −

1

N
dadbN þ ð2ÞRab

þ k̂k̂ab − 2k̂ack̂
c
b ðC1Þ

where Lm refers to the Lie derivative with respect to the
vector ma ¼ Nua, da is the covariant derivative with
respect to the metric σab and k̂ab is the extrinsic curvature
of B embedded in B.
The last of these relations does not arise as commonly as

the first two; we refer the reader to Ref. [44]. We need all
three of them in our simplifications of the ADM version of
the renormalized actions.
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