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We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the
k-body embedded random ensembles studied for several decades in the context of nuclear physics and
quantum chaos. We show analytically that the fourth- and sixth-order energy cumulants vanish in the limit
of a large number of particles N → ∞, which is consistent with a Gaussian spectral density. However, for
finite N, the tail of the average spectral density is well approximated by a semicircle law. The specific heat
coefficient, determined numerically from the low-temperature behavior of the partition function, is
consistent with the value obtained by previous analytical calculations. For energy scales of the order of the
mean level spacing we show that level statistics are well described by random matrix theory. Due to the
underlying Clifford algebra of the model, the universality class of the spectral correlations depends on N.
For larger energy separations we identify an energy scale that grows with N, reminiscent of the Thouless
energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a
further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to
recent claims in the literature, this is an expected feature in field theories with a gravity dual.
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I. INTRODUCTION

The insurmountable technical difficulties posed by the
theoretical description of the many-body nuclear forces
have led to many effective descriptions of nuclei to bypass
the microscopic Hamiltonian. A crude assumption is to
replace the nuclear Hamiltonian with a random matrix
ensemble [1–7] only constrained by global symmetries (the
Wigner-Dyson ensembles). Surprisingly good agreement
was found between spectral correlations of highly excited
nuclei and the analytical predictions of random matrix
theory for energy scales of the order of the mean level
spacing. Despite its success, this approximation has evident
shortcomings. The nuclear shell model suggests that
nuclear interactions are well described by a mean field
potential plus a residual two-body interaction, while in the
random matrix approach higher many-body interactions
are equally important. Moreover, it was noticed that the
spectral density associated with these nuclear excitations
did not follow the semicircle law, the random matrix theory
prediction, but it is better approximated by the Bethe
formula [8].
In response to these problems, a model of fermionic

random k-body interactions of infinite range, the so called
k-body embedded ensembles, was proposed more than
forty years ago [9–12] as a more accurate stochastic
description of nuclei. Although the interactions are random,
the effective Hamiltonian is sparse, and therefore deviations

from the Wigner-Dyson ensembles were expected. Indeed,
numerical [10] and later analytical results [13] show that,
in line with the experimental data, the spectral density is
Gaussian for sufficiently small k, instead of following the
semicircle law. By contrast, spectral correlations are still
close to the random-matrix prediction [14] for sufficiently
close eigenvalues. For more information on the model,
especially in the context of nuclear physics and quantum
chaos, we refer to Refs. [15–19].
Recently, similar models of fermions with k-body

infinite-range interactions, called Sachdev-Ye-Kitaev mod-
els (SYK) [20–32], and originally introduced in the study
of spin liquids [33], are being intensively investigated
in a completely different context: holographic dualities in
string theory [34]. Based on the same pattern of conformal
symmetry breaking, it has been speculated [20–24,35,36]
that, in the infrared limit, the holographic dual of an anti–de
Sitter (AdS) background in two bulk dimensions AdS2 is
closely related to one of the variants of the SYK model—
namely, a model of N Majorana fermions [20] in zero
spatial dimensions with random two-body interactions of
infinite range. Green’s functions [21,22,27,28], thermody-
namic properties [29], such as the low-temperature limit of
the entropy, and also out-of-equilibrium features [21] such
as the exponential growth of certain out-of-time-ordered
correlators are strikingly similar in both models. The latter,
related to quantum corrections in the gravity dual [37], is
also a signature of quantum chaotic features. More inter-
estingly, it is believed that the SYK model may describe the
low-energy limit of a higher-dimensional gauge theory with
a string theory dual still to be named. Very recent results
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[38] suggest that disorder is not strictly necessary for a
gravity-dual interpretation.
Despite these advances, the description of many aspects

of the SYK model dynamics still poses severe technical,
both numerical and analytical, challenges. In closely related
problems such as quantum chaos and disordered systems,
the spectrum and level statistics provide a rather compre-
hensive description of the quantum dynamics without the
need of the more expensive computation of eigenvectors.
In the context of the SYK model, spectral correlations have
so far been investigated in Ref. [30], where level repulsion
was found, typical of a disordered metal, though its strength
changes with the number of particles N modulo 8.
Here we aim to fill this gap by carrying out an extensive

analysis of the spectral density, thermodynamical proper-
ties, and both short-range and long-range spectral correla-
tions of the SYK model, with N Majorana fermions.
Our main results are summarized as follows: we show

analytically that in the N → ∞ limit the fourth and sixth
cumulants of the spectral density vanish, which strongly
suggests that it is Gaussian. However, its tail at finite N,
that controls the specific heat, is well approximated by the
semicircle law. Results from exact diagonalization, for up
to N ¼ 36Majorana fermions, are fully consistent with the
analytical findings, including results for the entropy and
the specific heat. Spectral correlations that test short-range
correlations such as the level spacing distribution are in
good agreement with the random matrix prediction. We
find that, in agreement with Ref. [30], the Bott periodicity
of the Clifford algebra that governs the Majorana fermions
labels the global symmetries of the model. However, we
have observed systematic deviations from the random
matrix predictions, for sufficiently well separated eigen-
values, that suggest that the model is not ergodic for short
times. The point of departure from the universal results of
random matrix theory increases with N, which is a strong
indication of the existence of a Thouless energy [39–41] for
the system.
This paper is organized as follows: in the next section we

introduce the model and discuss its spectral density. The
thermodynamical properties of the model are evaluated in
Sec. III. Spectral correlations are computed in Sec. IV. We
finish with concluding remarks and some ideas for future
research in Sec. V. Some technical details involving the
calculation of the cumulants and the symmetry properties
of the gamma matrices are worked out in two appendixes.

II. THE SPECTRAL DENSITY

Kitaev recently introduced [20] a model of interacting
fermions aimed to explore its potential as a gravity dual.
The Hamiltonian is given by

H ¼ 1

4!

XN
i;j;k;l¼1

Jijkl χiχjχkχl; ð1Þ

where χi are Majorana fermions that verify

fχi; χjg ¼ δij: ð2Þ

The fermions are coupled by Gaussian distributed
random variables Jijkl with probability distribution

PðJijklÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N3

12πJ2

s
exp

�
−
N3J2ijkl
12J2

�
: ð3Þ

We note that Eq. (2) is the defining relation of a
Euclidean N-dimensional Clifford algebra. Many interest-
ing features of the model are a direct consequence of
Clifford algebra properties. For instance, the Bott perio-
dicity of the Clifford algebra suggests that the global
symmetries of the Majorana fermions, that to some extent
control the spectral properties of the model, are sensitive to
the arithmetic nature of N. We shall see that this is indeed
the case when we study level statistics later in the paper.
It will also be helpful for our first objective: to derive
analytical results for the many-body spectral density.
We will follow the strategy of Mon and French [13] of

evaluating moments of the spectral density. In this model,
this is again facilitated by noticing that the Euclidean
Clifford algebra in N dimensions of the Majorana fermions
[Eq. (2)] is shared by Euclidean Dirac γ matrices.
Therefore, it is possible to employ the full machinery
developed in that context to compute the trace of a large
number of Majorana fermions, a key part in the calculation
of energy moments. We leave the details of the calculation
to Appendix B. Here we just define the moments, sketch
the main steps of the calculation, and give the final
expression as a function of the number of particles N.
Since the Gaussian disorder distribution is an even func-
tion, all odd moments will vanish. From now on, we will
focus only on the even ones:

M2pðNÞ ¼ hTrH2pi; ð4Þ

where p ¼ 1; 2; 3…, and h…i stands for the spectral and
ensemble average. The strategy to evaluate MpðNÞ is
straightforward: we first perform the Gaussian average,
equivalent to summing over all possible contractions accord-
ing to Wick’s theorem, and then we evaluate each of these
terms, involving the trace of products of γ matrices, by using
properties of γ matrices in N Euclidean dimensions.
Denoting the product of four γ matrices by Γα, we have

that the moments are given by

M2p ¼
�
Tr

XY2p
k¼1

JαkΓαk

�
: ð5Þ

The Gaussian average over the random couplings Jα of the
Hamiltonian (1), denoted by h� � �i, is equal to the sum over
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all possible contractions. In the limit N ≫ 2p, almost
all Γα have no overlapping indices so that they commute.
Because of

Γ2
α ¼ 1; ð6Þ

we find that in this case all ð2p − 1Þ!! contractions give the
same contribution, resulting in the moments

M2p ¼ ð2p − 1Þ!!hJ2αip2N=2: ð7Þ

These are the moments of a Gaussian distribution resulting
in a Gaussian spectral density. We have evaluated the exact
analytical result for M4 and M6. This requires the evalu-
ation of diagrams that are subleading in N. For that purpose

it is helpful to note that when we have common γ matrices
in Γα and Γβ, they commute or anticommute depending on
the number of common γ matrices. This results in large
cancellations suppressing the contribution of intersecting
diagrams. Following this procedure, the first two nontrivial
normalized cumulants, κ4 and κ6, are easily obtained as a
function of N from the moments M2pðNÞ (see Appendix B
for details):

κ4ðNÞ ¼ −
32ðN − 4ÞðN2 − 11N þ 36Þ
NðN − 1ÞðN − 2ÞðN − 3Þ ; ð8Þ

with large-N asymptotics −32=N and

κ6ðNÞ ¼ 512ðN − 4Þð11N5 − 304N4 þ 3535N3 − 21302N2 þ 65856N − 82656Þ
ðN − 3Þ2ðN − 2Þ2ðN − 1Þ2N2

; ð9Þ

with large-N asymptotics 512 × 11=N2, where from now
on we set J ¼ 1.
For higher moments, the combinatorial problem

becomes increasingly difficult, and the final expressions
are rather cumbersome. However, these few cumulants
already contain interesting information.
As we have seen above, for N → ∞ the normalized

cumulants vanish for orders 8p ≪ N. This is a distinctive
feature of a Gaussian distribution. Therefore, the average
analytical spectral density converges (nonuniformly) to a
Gaussian of zero average and variance equal to 6=N3.
We note that a Gaussian spectral density is expected for

models with an entropy S ¼ NfðE=NÞ in the large-N limit.
The only requirement is that f must be a smooth function
that has a maximum. Gaussian behavior in the central part

of the spectrum, assuming a maximum at E ¼ 0, results
after expanding f around the maximum.
In Fig. 1, we compare the analytical predictions [Eqs. (8)

and (9)] of the normalized fourth and sixth cumulants with
numerical results obtained by using exact diagonalization
techniques. The agreement is excellent.
In Fig. 2, we depict the average spectral density for

N ¼ 34, the largest size for which we can obtain numeri-
cally the full spectrum, with the analytical prediction of a
Gaussian distribution with a variance that has been fitted to
the data. Here the agreement is good, but we observe clear
deviations in the tail of the density. The reason for that
discrepancy is that corrections to the Gaussian distribution,
as described by the moments above, are still of order 1 for
N ¼ 34. We were unable to compute analytically the
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 κ
4
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N

3
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6

FIG. 1. The fourth and sixth normalized energy cumulants related to the Hamiltonian (1) as a function of the system sizeN. The circles
correspond to the numerical results obtained by exact diagonalization after the spectral and ensemble average. At least a total of 5 × 105

eigenvalues were employed for each N. The solid line is the analytical prediction for the fourth [left; Eq. (8)] and sixth [right; Eq. (9)]
cumulant.
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leading N corrections to the Gaussian density of states.
However, in the next section, we carry out a detailed
numerical analysis of the tail of the average spectral
density.

III. THERMODYNAMIC PROPERTIES
IN THE LOW-TEMPERATURE LIMIT

Part of the renewed interest in the SYK model stems
from the fact that its low-temperature properties are similar
to those of a gravity background that in the infrared limit is
well described by AdS2 geometry. Typical features include
a finite entropy at zero temperature, a ground state energy
that is extensive in the number of particles, and a specific
heat linear in temperature but with a prefactor different
from that of free fermions. There are already approximate
analytical predictions [21,27] in the literature for these
observables. Exact numerical diagonalization of the SYK
Hamiltonian [Eq. (1)] was employed in Ref. [21] to
compute the zero-temperature entropy [21]. We are not
aware of exact diagonalization results for the specific heat
or the ground state energy. In this section we address this
problem by a detailed numerical study of the tail of the
spectrum that controls the thermodynamic properties in
the low-temperature limit. We start with the ground state
energy. The lowest eigenvalue of the SYK Hamiltonian,
Emin, is the ground state energy of the SYK model with N
Majorana fermions [Eq. (1)]. Due to the fermionic nature of
the model, we expect Emin to be proportional to N. In Fig. 3
we show the ensemble average of Emin versus N, and it
indeed shows a nice linear asymptotic dependence on the
dimension N.
From a careful fitting of the numerical data, we find that

the tail of the spectrum is well approximated by

ρtailðEÞ ¼ 2N=2aðE − EminÞ1=2½1þ bðE − EminÞ�; ð10Þ

which also determines the low-temperature limit of the
partition function,

ZðβÞ ¼
Z

∞

Emin

e−βEρðEÞ;

≈
Z

∞

Emin

e−βEρtailðEÞ;

¼ a
ffiffiffi
π

p
2

1

β3=2
e−βEmin

�
1þ 3

2β
b

�
: ð11Þ

The low-temperature limit of the SYK model is given by
[21,27]

ZðβÞ ¼ c0
β3=2

e−βE0þS0þ c
2βJ; ð12Þ

where the ground state energy E0, the entropy S0, and
the specific heat coefficient c are all proportional to N.
The prefactor β−3=2 is an order-1 contribution coming from
one-loop quantum corrections, and c0 is a temperature-
independent constant. Comparing this to Eq. (11), we can
make the identification

E0 ¼ Emin;

S0 ¼
N
2
log 2þ N

d
dN

log a: ð13Þ

In Fig. 4, we depict logaðNÞ and bðNÞ by the fitting of
the exact partition function computed numerically by exact
diagonalization. The zero-temperature entropy and the
ground state energy are then obtained from Eq. (13):

S0 ¼ 0.21N; E0 ¼ −0.055 − 0.029N: ð14Þ

-1 0 1
 E
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1
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6

ρ(E)

N = 34
Gaussian

FIG. 2. Spectral density ρðEÞ as a function of the energy E. The
solid line is the analytical prediction valid in the N → ∞ limit.
Circles are the numerical spectral density for the largest size
N ¼ 34 for which we can obtain all eigenvalues of the Hamil-
tonian. Except for the tails, the agreement with the numerical
results is very good.

FIG. 3. Ensemble average of the smallest eigenvalue as a
function of the system size N. For N ≫ 1 we observe that it
decreases linearly withN. This is an expected feature for a system
of N interacting fermions.
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The value of S0 is in rough agreement with the result
∼0.23N obtained by Maldacena and Stanford [21].
We now move to the calculation of the specific heat. In

the very low-temperature limit with βJ ≫ N, we can
expand the partition function as

ZðβÞ ¼ c0
β3=2

e−βE0þS0

�
1þ c

2βJ

�
: ð15Þ

It would be tempting to also make the identification

c
2
¼ 3

2
N

db
dN

;

but in the parameter range we are looking at, it is not
justified to expand the exponential. Rather, we determine
the specific heat coefficient c by directly fitting the β
dependence of the specific heat,

dUðTÞ
dT

; ð16Þ

where the internal energy per particle, UðTÞ, is defined in
the usual way,

UðTÞ ¼ −
1

N
d logZ
dβ

: ð17Þ

Setting J ¼ 1 for convenience, and using the low-
temperature expansion of the partition function given in
Eq. (12),

ZðβÞ ¼ 1

βq
e−βE0þS0þ c

2β; ð18Þ

we find that

dU
dT

¼ q
N
þ c
N
T; ð19Þ

where the exponent q that controls the one-loop quantum
correction 1=βq to the partition function is left as a free

parameter rather than fixing it to the perturbative [20,21]
prediction q ¼ 3=2.
In terms of the eigenvalues Ek;p of the pth member of

the ensemble of SYK Hamiltonians, the specific heat per
particle is given by

dUðTÞ
dT

¼ 1

N
1

Z

X
k;p

ðEk;p − hEiÞ
T2

e−βEk;p ; ð20Þ

with

hEi ¼ 1

Z

X
k;p

Ek;pe−βEk;p ð21Þ

and

Z ¼
X
k;p

e−βEk;p : ð22Þ

For a given realization of the random Hamiltonian, the
fluctuations of the average energy,

Ēp ¼
P

kEk;pe−βEk;pP
ke

−βEk;p
; ð23Þ

give rise to significant finite size contributions to the
specific heat which can be eliminated by performing the
ensemble average relative to the average energy for each
realization of the SYK Hamiltonian; i.e.,

dUðTÞ
dT

¼ 1

N
1

Z

X
k;p

ðEk;p − ĒpÞ2
T2

e−βEk;p : ð24Þ

For a large number of particles, this procedure should
be equivalent to the calculation according to Eq. (20).
However, for the values of N we work with, this finite size
effect must be removed in order to obtain accurate results
for the low-temperature limit of the specific heat.
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Fitted Values
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FIG. 4. The fitted values of log a (left) and b (right), defined in Eq. (10), versus N. The lines are the best fits to the data. In the right
figure, only the points for N ≥ 28 have been used for the fitting.
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The finite size effects discussed in the previous para-
graph decrease rapidly with the total number of particles.
As an example, we show in Fig. 5 the temperature
dependence of the specific heat for N ¼ 28 (left) and
N ¼ 36 (right). We show both the result where the specific
heat is calculated according to Eq. (20) (red dots) and
the result where we first calculate the specific heat for
each realization of the Hamiltonian and then perform the
ensemble average as given in Eq. (24) (blue dots). The
curves are fits to the blue dots.
Except for N ¼ 36, where we have only 2000 eigenval-

ues for each configuration and use a linear fit on a shorter
fitting interval, we use cubic fits

dUðTÞ
dT

¼ qðNÞ
N

þ cðNÞT þ c2ðNÞT2 þ c3ðNÞT3: ð25Þ

In Fig. 6, we show the N dependence of qðNÞ (left) and
cðNÞ (right), which are fitted by a constant for N ≥ 28
(see curves). This results in the following estimates for the
exponent q in Eq. (18) that controls one-loop quantum
corrections and the specific heat coefficient:

q ¼ 1.53� 0.2; c=N ¼ 0.43� 0.10: ð26Þ

The value of q is consistent with the estimate q ¼ 3=2
[21] from an analytical calculation of one-loop quantum
corrections to the classical action. It is also in agreement
with the semicircular form of the spectral density, see
Eq. (10). Likewise, the analytical estimation of the specific
heat coefficient c=N ¼ 0.396 [21] is also consistent with
our numerical results.
We note that all the results of this section are based on the

ansatz Eq. (10) for the density of states. The exponent 1=2
of the prefactor was chosen because it gave the best fit to
the numerical results. However, there is an indirect theo-
retical justification for that exponent. In the recent literature
on the SYK model, there are several studies [20–22,27] of
the one-point temporal correlation function, which is the
Fourier transform of the strength function

−
1

N

X
α

X
k

jh0jγαjkij2δðEþ Ek − E0Þ; ð27Þ

where E0 is the N-particle ground state energy, jki are
eigenstates with N � 1 particles, and γα is a Euclidean γ
matrix. These results are based on perturbative semiclass-
ical techniques that typically are valid only up to time scales
of the order of the Ehrenfest time. However, in Ref. [28], a
nonperturbative treatment of quasizero modes enlarged the
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FIG. 5. The specific heat as a function of the temperature for N ¼ 28 (left) and N ¼ 36 (right). The red dots represent the numerical
result for the SYK model when specific heat is calculated relative to the ensemble average [see Eq. (20)], while the blue dots show the
results where the free energy is calculated relative to the average energy Ēp for each realization of the ensemble [see Eq. (24)]. The blue
curve is a linear fit to the blue dots on the interval [0.0075, 0.015] for N ¼ 36 and a cubic polynomial fit on [0.025, 0.05] for N ¼ 28.
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FIG. 6. The exponent of the prefactor β−qðNÞ of the partition function [Eq. (18)] versus N (left) and the specific heat coefficient cðNÞ
[Eq. (25)] versus N (right). The exponent qðNÞ and the specific heat coefficient cðNÞ are fitted by a constant.
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time domain of applicability of the analytical results to
scales shorter than, but of the order of, the Heisenberg
time. Interestingly, it was found [28] that, in an energy
representation, the strength function for low energies
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − E0

p
. In principle, the strength function is unrelated

to the many-body spectral density Eq. (10) because the
former also provides information of the correlations
between eigenvalues and eigenvectors. However, if the
eigenvectors and the eigenvalues are uncorrelated, as is the
case for the Wigner-Dyson random matrix ensembles,
the strength function is proportional to the spectral density.
Below, we will see that spectral correlations of the SYK
model are well described by the Wigner-Dyson ensembles,
which justifies a posteriori the ansatz in Eq. (10) for the tail
of the spectral density.
In summary, we have shown that the spectral density of

the SYK model is Gaussian in the limit of a large number
of particles N, so it is qualitatively different from the
semicircle law typical of random matrices. However for a
fixed finite N, the tail of the spectral density is close to a
semicircle law, while the center is Gaussian. The value of
the zero-temperature entropy and specific heat coefficient,
obtained numerically from the tail of the spectrum and the
low-temperature behavior of the partition function, are
close to previously obtained analytical estimates [21,27].

IV. SPECTRAL CORRELATIONS

In this section we investigate eigenvalue correlations
that provide valuable information on the dynamics of the
system. We focus on long time scales of the order of the
Heisenberg time ∼ℏ=Δ, where Δ is the mean level spacing.
Disordered metals, or quantum chaotic systems, are
expected to be described by the invariant random matrix
ensembles in this region. Physically, agreement with
random matrix theory predictions indicates that an initially
localized wave packet reaches the boundary of the sample
for sufficiently long time scales. For a disordered insulator,
we expect level correlations to be described by Poisson
statistics. Although in the literature on k-body embedded
fermionic ensembles there are some reports of Poisson
statistics for two-body random interactions in the dilute
limit [42], there is broad evidence from numerical and
analytical findings [10,14,43] that level statistics are very
close to the random matrix theory prediction, at least for
short-range eigenvalue correlations.
As was mentioned in the Introduction, the only previous

study of spectral correlations in the SYK model [30]
investigated numerically the ratio of consecutive level
spacings, which only explores time scales of the order
of the Heisenberg time. For shorter time scales, corre-
sponding to energy scales beyond the mean level spacing,
level statistics for the SYK model are yet an open problem.
We shall see that level statistics in this region are well
described by random matrix theory, though deviations, that
decrease with N, are systematically observed for larger

spectral distances corresponding to time scales much
shorter than the Heisenberg time.
The universality class for the spectral correlations is

determined by the antiunitary and involutive symmetries
of the system. Since the SYK Hamiltonian does not have
any involutive symmetries, the universality class is given by
the Wigner-Dyson random matrix ensembles with a Dyson
index βD ¼ 1, 2 or 4. The first case is when the antiunitary
symmetry squares to 1, the second case when there
are no antiunitary symmetries, and the third case when
the antiunitary symmetry squares to −1. The SYK
Hamiltonian has two antiunitary symmetries (see Table I),

½C1K;HSYK� ¼ 0; ½C2K;HSYK� ¼ 0; ð28Þ

which is equivalent to one irreducible antiunitary
symmetry, C1K, and the unitary symmetry C1KC2K.
Physically, the symmetries C1K and C2K are charge
conjugation symmetries which are equal to the product
of the “even” gamma matrices or “odd” gamma
matrices, respectively (choosing the right labeling
for “even” and “odd”). Therefore, C1KC2K ∼ Γ5, with
Γ5 ¼ diagð1;…; 1;−1;…;−1Þ in a chiral representation
of the Dirac γ matrices. In this representation the SYK
Hamiltonian splits into two diagonal block matrices of
equal size. If C1KC2K ¼ �Γ5, the charge conjugation
matrix commutates with the projection on the diagonal
blocks. If ðC1KÞ2 ¼ 1, it is possible [44] to find an
H-independent basis for which the blocks become real,
corresponding to a Dyson index βD ¼ 1. Moreover, if
ðC1KÞ2 ¼ −1, it is possible to construct an H-independent
basis for which the Hamiltonian can be arranged into
quaternion real matrix elements corresponding to a Dyson
index βD ¼ 4. If C1KC2K ¼ �iΓ5, the charge conjugation
matrix does not commute with the projection onto the
blocks. Therefore, we cannot use these symmetries to
construct a basis for which the Hamiltonian becomes real
or quaternion real. Since there are no unitary symmetries,
the matrix elements of the SYK Hamiltonian are complex,
corresponding to a Dyson index βD ¼ 2. However, the
symmetry C1K still can be used to show that both blocks
have the same eigenvalues (see Ref. [45] for a similar
reasoning). We refer to Appendix A for all technical details.

TABLE I. (Anti-)unitary symmetries of the SYK Hamiltonian
and the corresponding random matrix ensemble. The symmetries
are periodic in N modulo 8.

N ðC1KÞ2 ðC2KÞ2 C1KC2K RMT

2 1 −1 −iΓ5 GUE
4 −1 −1 −Γ5 GSE
6 −1 1 −iΓ5 GUE
8 1 1 Γ5 GOE
10 1 −1 −iΓ5 GUE
12 −1 −1 Γ5 GSE
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For our study, we employ the level spacing distribution
PðsÞ [Eq. (29)], the probability to find two neighboring
eigenvalues separated by a distance s ¼ ðEiþ1 − EiÞ=Δ,
and the number variance Σ2ðLÞ [Eq. (31)], that describes
fluctuations in the number of eigenvalues in a spectral
window of size L, again measured in units of the mean
level spacing Δ. The latter, a long-range spectral correlator
directly related to the two-point correlation function, gives
information on the quantum dynamics for time scales of the
order of, but much larger than, the mean level spacing
(Heisenberg time). We shall use it to investigate deviations
from random matrix predictions. The former is more suited
to study longer time scales ≈ℏ=Δ and also provides indirect
information on higher-order correlation functions.
We investigate level statistics numerically by an exact

diagonalization of the upper block of the Hamiltonian (1)
for N ≤ 36. The first step in the spectral analysis is the
unfolding of the spectrum [7]—namely, to rescale the
spectrum so that the mean level spacing is the same for
all energies. This is a necessary condition to compare level
statistics in different parts of the spectrum. For that
purpose, for each N, we employ the averaged smooth
staircase function (the integral of the spectral density)
resulting from a fifth-order polynomial fitting involving
only odd powers to unfold the spectrum. The spectrum
rescaled in that way, which has unit mean level spacing
for all energies, is ready for the level statistics analysis.
We have observed that level statistics are similar for all
energies. Except for N ¼ 36, where we have only obtained
about 2% of eigenvalues close to the edge of the spectrum,
we have taken about 70% of the eigenvalues around E ≈ 0.

A. Short-range spectral correlations: PðsÞ
The level spacing distribution PðsÞ is the probability to

find two eigenvalues separated at a distance s in units of Δ
with no other eigenvalues in between:

PðsÞ ¼
X
i

hδðs − ϵi þ ϵiþ1Þi ϵi ¼ Ei=Δ: ð29Þ

In an insulator, it is given by Poisson statistics: PðsÞ ¼ e−s.
By contrast, the random matrix prediction, which applies
to a disordered metal and to a quantum chaotic system, is
very well approximated by the Wigner surmise,

PðsÞ ≈ aβsβ expð−bβs2Þ: ð30Þ

Level repulsion, PðsÞ → 0 for s → 0, is a distinguishing
feature of extended states, though its strength depends on
the global symmetries of the Hamiltonian (1). For systems
that admit a real representation of the Hamiltonian, due
to time reversal invariance (or more generally, due to an
antiunitary symmetry that squares to 1), β ¼ 1, a1 ¼ π=2,
b1 ¼ π=4. Similarly, if the Hamiltonian only admits a
complex representation, due for instance to the breaking

of time translational invariance as a consequence of a
magnetic field or flux, β ¼ 2, a2 ¼ 32=π2, b2 ¼ 4=π.
Finally, the case β¼ 4, a4 ¼ 262144=729π3, b4 ¼ 64=9π
corresponds to systems with time reversal symmetry and
strong spin-orbit interactions leading to a doubly degen-
erate spectrum (or more generally, to systems with an
antiunitary symmetry that squares to −1). It is typical of
random matrices with quaternionic entries.
In Fig. 7, we plot PðsÞ for N ¼ 28, N ¼ 34 and N ¼ 36.

Excellent agreement with the random matrix prediction is
found in all cases. As can be seen from Table I, N ¼ 28
belongs to the Gaussian symplectic ensemble (GSE)
universality class (βD ¼ 4), while N ¼ 34 belongs to the
Gaussian unitary ensemble (GUE) universality class
(βD ¼ 2). We note that the N dependence of the univer-
sality class was already reported in Ref. [30], although it
was not discussed that this was a simple consequence of
two features of Clifford algebras: the existence of real,
complex or quaternionic representations for different values
of the dimensionality N and Bott periodicity—namely,
these representations follow a periodic pattern; in this case
the Bott periodicity is N mod 8. An example of a period is
N ¼ 36: GSE; N ¼ 34: GUE; N ¼ 32: GOE; N ¼ 30:
GUE; and so on.

210
 s

0

0.5

1

 P
(s

)

 N = 36
 N = 34
 N = 28
 GUE
 GSE

FIG. 7. Level spacing distribution PðsÞ [Eq. (29)]. Numerical
results N ¼ 28 (circles), N ¼ 34 (squares), and N ¼ 36 (dia-
monds) are in excellent agreement with the predictions of random
matrix theory (solid lines) corresponding to the Gaussian unitary
ensemble (GUE) for N ¼ 34 and the Gaussian symplectic
ensemble (GSE) for N ¼ 28, 36. We note that while for
N ¼ 28, 34 we have taken about 70% of the available spectrum
around the center of the band; for N ¼ 36, where we cannot
diagonalize the full Hamiltonian, we consider only a total of
about 15000 different eigenvalues close to the ground state from
15 disorder realizations. The universality class is controlled by
the type of allowed representations of the Clifford algebra of
the Majorana fermions, which is sensitive to N (see Table I and
the main text for more details). These results clearly show that the
SYK model has quantum chaotic features even for large times
s ∼ 1 of the order of the Heisenberg time.
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In Fig. 8, we depict PðsÞ for N ¼ 16 and N ¼ 32 both
belonging to the Gaussian orthogonal ensemble (GOE)
universality class. Despite the large difference in size, we
do not observe important differences between the two
cases. We will see in the following analysis of the number
variance, a long-range spectral correlator, that deviations
from random matrix theory eventually occur for larger
eigenvalue separations, which indicates that the SYK
model is not ergodic for sufficiently short time scales.

B. Long-range spectral correlations:
The number variance Σ2ðLÞ

The number variance is defined as the variance
of the number of levels N inside an energy interval that
has (in units of the mean level spacing) L eigenvalues on
average:

Σ2ðLÞ ¼ hN2ðLÞi − hNðLÞi2: ð31Þ

For a Poisson distribution typical of an insulator, differ-
ent parts of the spectrum are not correlated, so the number
variance is linear with slope 1, Σ2ðLÞ ¼ L. The random
matrix prediction, that also occurs in noninteracting [39,40]
and strongly coupled [41] disordered metals below the
Thouless energy, is that level repulsion causes, for L ≫ 1,
a slow logarithmic increase, usually termed the level or
spectral rigidity of the number variance:

Σ2ðLÞ ≈ cβðlogðdβπLÞ þ γ þ 1þ eβ…Þ; ð32Þ

with c1 ¼ 2=π2, c2 ¼ c1=2, c4 ¼ c1=4, d1 ¼ d2 ¼ 2,
d4 ¼ 4, e1 ¼ −π2=8, e2 ¼ 0, e4 ¼ π2=8, and where
γ ¼ 0.5772… is Euler’s constant. In Fig. 9, we depict
the number variance for several values of the system size,
N ¼ 28, N ¼ 32 and N ¼ 34, each of them belonging to a
different universality class: GOE for N ¼ 32, GUE for
N ¼ 34, and GSE for N ¼ 28. For all universality classes
we find an excellent agreement with the random matrix
prediction for small L. However, we observe systematic
deviations for sufficiently large L≳ 30. As N increases,
the region of agreement with random matrix increases as
well—namely, deviations are observed only for larger L.
In Fig. 10, we depict the number variance for two sizes

(N ¼ 22 and N ¼ 34) belonging to the same universality,
but one matrix size is much smaller than the other. The
idea is to study finite size effects related to mesoscopic
fluctuations in the number variance. For small L ≤ 20, the
number variance follows the GUE prediction for both sizes.
However, for larger L, deviations from the random matrix
result occur much earlier, and grow much faster, for
N ¼ 22 than for N ¼ 34. An eyeball estimate suggests
that the region of agreement with random matrix predic-
tions scales approximately as 2N=8.
Several conclusions can be drawn from these results:

(a) The SYK model has spectral correlations similar to that
of a disordered metal or a quantum chaotic systems even for
energy scales much larger than the inverse mean level
spacing. (b) Deviations for sufficiently large scales suggest
that, unlike a dense random matrix, the SYK model is not
ergodic for sufficiently short time scales. This is expected,
as the Hamiltonian is rather sparse, with only ∼N4 nonzero
elements. This feature is also required for a gravity-dual
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FIG. 8. Level spacing distribution PðsÞ [Eq. (29)], for N ¼ 16
(circles) and N ¼ 32 (squares). For both dimensions, the Clifford
algebra admits a real representation so the expected universality
class is that of the Gaussian orthogonal ensemble (GOE). Indeed,
the numerical results (symbols) are in excellent agreement with
the GOE prediction. Interestingly, despite the vast difference in
size, we do not observe substantial deviations from the GOE
prediction, even for N ¼ 16, where mesoscopic fluctuations are
expected to be stronger.

40200
 L

0

0.5

1

Σ2
(L)

N = 28
N = 32
N = 34
GUE
GSE
GOE

FIG. 9. Number variance Σ2ðLÞ [Eq. (31)], for N ¼ 28
(diamonds), N ¼ 32 (circles), N ¼ 34 (squares), which belong
to the GSE, GOE and GUE universality classes, respectively
(solid lines), as a function of the width L of the energy interval,
corresponding to a spectral window with L eigenvalues on
average. For sufficiently large L, we start observing deviations
from the random matrix theory predictions.
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interpretation, where it is expected that, for times of the
order of the Ehrenfest time ∼ log 1=ℏ, certain correlation
functions grow exponentially at a rate controlled by the
Lyapunov exponent of the system [37]. (c) The fact that as
N increases, deviations from the random matrix occur for
larger L is a strong indication that the observed chaotic
features persist in the thermodynamic limit. It also suggests
the existence of the equivalent of a Thouless energy in the
system related to the typical time necessary to explore the
full available phase space.

V. OUTLOOK AND CONCLUSIONS

We have shown analytically that, in the limit of a large
number of particles, the SYK Hamiltonian has a Gaussian
spectral density, although for a fixed finite number of
particles, we have found numerically that the tail of the
density is well approximated by the semicircle law. Level
statistics are well described by random matrix theory up to
energy scales much larger than, but still of the order of, the
mean level spacing. Deviations from random matrix theory
for larger energies, or shorter times, are an indication that
the model is not ergodic for short times. Together with
previous results, this is a further confirmation that the SYK
model has quantum chaotic features at any time scale.
According to Ref. [21], this is an expected feature in field
theories with a gravity dual. Indeed, we have numerically
calculated the specific heat and the entropy, and found that
the low-temperature thermodynamic properties of the SYK
model are similar to those of a gravity background with an
AdS2 infrared limit. To some extent, our work on the SYK

model shows that a compound nucleus may have a
gravity dual.
Finally, we mention a few venues for further research. It

would be interesting to explore metal-insulator transitions
in the model by reducing the range of the interaction from
infinity to a power-law decay. Another interesting problem
is to evaluate analytically the two-level correlation function
in the N → ∞ limit by the replica trick by following the
procedure of Ref. [14] for the k-body embedded ensemble.
Similarly, the analytical evaluation of the leading finite N
corrections of the spectral density, by a careful evaluation
of higher-order N moments, would provide a full descrip-
tion of the low-temperature thermodynamic properties of
the model. This is a necessary step for a full understanding
of the relevance of the SYK model in holography. We plan
to address some of these problems in future publications.
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Note added in proof.—After this paper was accepted for
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paper spectral correlations are investigated [47] by means
of correlators of partition functions which at infinite
temperature reduce to the spectral form factor which is
the Fourier transform of the two-point correlation function.

APPENDIX A: CONSTRUCTION
OF THE GAMMA MATRICES

The γ matrices are constructed iteratively starting from
the gamma matrices in two dimensions:

γð2Þ1 ¼ σ1; γð2Þ2 ¼ σ2; γð2Þ3 ¼ σ3; ðA1Þ
and using the recursion relation

γðdþ2Þ
k ¼ σ1 ⊗ γdk; for k ¼ 1;…; dþ 1;

γðdþ2Þ
dþ2 ¼ σ2 ⊗ 12d=2 ðA2Þ

to extend it to dþ 2 ¼ N dimensions, where N is an even
number of Majorana fermions. As we will see below, in this
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FIG. 10. Number variance Σ2ðLÞ [Eq. (31)], for N ¼ 22 and
N ¼ 34, both corresponding to the GUE universality classes. We
observe that deviations from the random matrix prediction occur
much earlier for the smaller dimension N ¼ 22. This suggests
that the observed deviations are due to mesoscopic fluctuations in
a way reminiscent to the existence of a Thouless energy in the
system. It is also an indication that the system is not ergodic and
chaotic for sufficiently short times, an expected feature [20,46] in
field theories with a gravity dual.
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representation, the product of four gamma matrices is block
diagonal.
We can construct two antiunitary symmetry operators

(note that the gamma matrices in C1 are purely imaginary,
while the γ matrices in C2 are purely real):

C1 ¼ γ1
YN
i¼2

γ2iK;

C2 ¼ γ2
YN−1

i¼2

γ2iþ1K; ðA3Þ

where K is the complex conjugation operator (we could
have interchanged the labels of γ1 and γ2 so that C1 would
have been the product of the odd gamma matrices and C2

the product of the even gamma matrices). They satisfy the
symmetry relations

C1Kγμ þ ð−1ÞN=2γμC1K ¼ 0;

C2Kγμ − ð−1ÞN=2γμC2K ¼ 0; ðA4Þ
with μ ¼ 1;…N. Since the Hamiltonian is a sum of
products of four gamma matrices, we have

½C1K;H� ¼ 0; ½C2K;H� ¼ 0: ðA5Þ

We also have that

½C1K;C2K� ¼ 0: ðA6Þ

In Table I given in the main text, we give the main
properties of these antiunitary symmetries. Because of
(A5), we have that ½Γ5; H� ¼ 0, with Γ5 ¼ i−N=2

Q
N
i¼1 γi,

so that H splits into two block-diagonal matrices of the
same size. If C1KC2K ¼ �Γ5, then

P≡ 1

2
ð1þ C1KC2KÞ ðA7Þ

is a projection operator

P2 ¼ P; ðA8Þ

and

½P;H� ¼ 0; ½C1K;P� ¼ 0: ðA9Þ

In this case we have that ðC1KÞ2 ¼ ðC2KÞ2 ¼ �1. If
ðC1KÞ2 ¼ 1, it is possible to find an H-independent basis
in which H becomes real, and the corresponding random
matrix ensemble is the Gaussian orthogonal ensemble
(GOE). If ðC1KÞ2 ¼ −1, the Hamiltonian is a self-dual
quaternion up to an H-independent unitary transformation
which corresponds to the Gaussian symplectic ensemble.
In this case, the eigenvalues of H are a multiple of the
quaternion identity and are thus doubly degenerate.

If C1KC2K ¼ �iΓ5, the projection operator is given by

Pi ¼
1

2
ð1� iC1KC2KÞ; ðA10Þ

and

½Pi;H� ¼ 0; ðA11Þ

but because of the i, this projection operator does not
commute with C1K or C2K. So there are no antiunitary
symmetries when H is block diagonal, and we are in the
universality class of the Gaussian unitary ensemble. In
this case, the charge conjugation matrices anticommute
with γ5,

fC1;Γ5g ¼ 0; fC2;Γ5g ¼ 0; ðA12Þ
so that C1 and C2 are block off-diagonal,

C1K¼
�

0 c1K

c�1K 0

�
; C2K¼

�
0 c2K

c�2K 0

�
; ðA13Þ

with c�1;2c1;2 ¼ −1. If

H ¼
�
A 0

0 B

�
; ðA14Þ

then the antiunitary symmetries (A5) result in the
relation

B� ¼ −c�i Aci; i ¼ 1; 2: ðA15Þ

Because A and B are Hermitian and c�i ci ¼ −1, we find
from the secular equation that A and B have the same
eigenvalues.

APPENDIX B: CALCULATION OF THE
FOURTH AND SIXTH CUMULANTS

In this appendix, we calculate the normalized fourth and
sixth cumulants for the Hamiltonian of the SYK model.

1. The fourth-order cumulant

The normalized fourth cumulant is given by

κ4 ¼
M4ðNÞ
M2

2ðNÞ − 3: ðB1Þ

We now proceed to the calculation ofM4ðNÞ. The Gaussian
average is the sum over all pairwise contractions. Because
Γ2
α ¼ 1, with Γα a product of four different gamma

matrices, we find that the nested contractions are given by

2M2
2ðNÞ; ðB2Þ
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with the factor 2 corresponding to the two contractions 4a
and 4b in Fig. 11. For the intersecting contraction (see
Fig. 11, diagram 4c), we have to evaluate the trace

Tr
X
αβ

ΓαΓβΓαΓβ: ðB3Þ

We have that

ΓαΓβ ¼ ð−1ÞqΓβΓα; ðB4Þ

with q the number of gamma matrices that α and β have in
common. For the sum over α and β, we thus obtain (see
diagram 4c) in Fig. 11

T4c ¼ M2
2ðNÞ

�
N
4

�
−1X4

q¼0

ð−1Þq
�
N − 4

4 − q

��
4

q

�
: ðB5Þ

Note that, as a check of this result, without the factor ð−1Þq,
the sum over q just gives ðN

4
Þ. The result T4c can be

simplified to

T4c ¼ M2
2ðNÞN

4 − 38N3 þ 491N2 − 2566N þ 4608

NðN − 1ÞðN − 2ÞðN − 3Þ :

ðB6Þ

This results in the normalized fourth-order cumulant

κ4ðNÞ ¼ T4c

M2
2ðNÞ − 1

¼ −
32ðN − 4ÞðN2 − 11N þ 36Þ
NðN − 1ÞðN − 2ÞðN − 3Þ : ðB7Þ

2. The sixth-order cumulant

In this subsection, we evaluate the normalized sixth-
order cumulant, which in terms of the moments is given by

κ6 ¼
M6ðNÞ
M3

2ðNÞ − 15
M4ðNÞ
M2

2ðNÞ þ 30: ðB8Þ

Since M4ðNÞ was computed in the previous section, we
focus on M6ðNÞ. The Gaussian integral for the sixth
moment is again evaluated by summing over all pairwise
contractions. In this case, there are fifteen diagrams, and
five of them are nested; see Fig. 11, diagrams 6a–6e. The
nested diagrams are simply given by M3

2ðNÞ. The next
simplest class of diagrams are those where two neighboring
Hamiltonians are contracted, while the contractions of the
remaining factors are intersecting; see Fig. 11, diagrams
6f–6k. Their contribution to the sixth moment is given by

T6f ¼ T6g ¼ T6h ¼ T6i ¼ T6j ¼ T6k ¼ M2ðNÞT4c: ðB9Þ

By a cyclic permutation of the factors in TrH6, it is clear
that diagrams 6l–6n in Fig. 11 are the same. If we fix the
index of the second factor in diagram 6l, it is clear that by
commuting the factors as

ΓαΓβΓαΓγΓβΓγ → ΓαΓαΓβΓβΓγΓγ; ðB10Þ

we obtain the same combinatorial factor for the sum over α
and γ as in diagram 4c. We thus find

T6l ¼ T6m ¼ T6n ¼ M3
2ðNÞ

�
N
4

�
−2

×

�X4
q¼0

ð−1Þq
�
N − 4

4 − q

��
4

q

��2
: ðB11Þ

The most complicated diagram is diagram 6o, corre-
sponding to the trace

Tr½ΓαΓβΓγΓαΓβΓγ�: ðB12Þ
The simplest way to do combinatorics is to think of ΓβΓγ as
a product of eight gamma matrices with q gamma matrices
in common, while Γα share l gamma matrices with ΓβΓγ ,
and of those l there are l −m in the common factors. The
result for this diagram is given by

6k

6a

4a 4b 4c

6b 6c

6d 6e

6g6f 6h

6i 6j

6l 6m 6n

6o

FIG. 11. Contractions contributing to the fourth- and sixth-
order cumulants.
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T6o ¼ M3
2ðNÞ

�
N
4

�
−2X4

q¼0

X4
l¼0

Xl

m¼0

ð−1Þqþm

�
N − 8þ q

4 − l

��
8 − 2q
m

��
N − 4

4 − q

��
4

q

��
q

l −m

�
: ðB13Þ

Again, as a check of this result, if the phase factor ð−1Þqþm is set to 1, we find M3
2ðdÞ.

Combining all contributions, we find the normalized sixth cumulant:

κ6ðNÞ ¼ 512ðN − 4Þð11N5 − 304N4 þ 3535N3 − 21302N2 þ 65856N − 82656Þ
ðN − 3Þ2ðN − 2Þ2ðN − 1Þ2N2

: ðB14Þ
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