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Brownian motion of a heavy charged particle at zero and small (but finite) temperature is studied in the
presence of finite density. We are primarily interested in the dynamics at (near) zero temperature which is
holographically described by motion of a fundamental string in a (near-)extremal Reissner-Nordström
black hole. We analytically compute the functional form of the retarded Green function for small
frequencies and extract the dissipative behavior at and near zero temperature.
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I. INTRODUCTION

AdS=CFT or more generally gauge/gravity duality [1–4]
has been serving as a great weapon in a theoretician’s
armory to study strongly coupled systems analytically
for almost the last two decades. Although for most of
the cases its predictions are qualitative, there are instances
(see for example the famous η=s computation in Ref. [5])
when it relates the very formal theoretical framework to
real life experiments. Since its discovery this duality has
glued many phenomena appearing in apparently different
branches of physics together. Studying Brownian motion of
a heavy particle using the classical gravity technique is one
such example [6,7] where holography relates a statistical
system to a gravitational one. The dual gravity description
involves a long fundamental string stretching from the
boundary of the anti-de Sitter (AdS) space into the black
hole horizon (see Fig. 1). Numerous works [8–18] have
been done by elaborating on different aspects of this setup.
Integrating out1 the whole string in that background

gives an effective description of the heavy particle at
the boundary. Its dynamics is governed by a Langevin
equation. For a particle with mass2 M which is moving with
velocity v, the Langevin equation reads

M
dv
dt

þ γv ¼ ξðtÞ ð1:1Þ

with hξðtÞξðt0Þi ¼ Γδðt − t0Þ; ð1:2Þ

where γ is the viscous drag, ξ is the random force on
the particle, and Γ quantifies the strength of the “noise”
(i.e, random force). The second equation is one of the
many avatars of the celebrated fluctuation-dissipation

theorem. One can write down a generalized version3 of
this equation

M0

d2xðtÞ
dt2

þ
Z

t

−∞
dt0GRðt; t0Þxðt0Þ ¼ ξðtÞ

hξðtÞξðt0Þi ¼ iGsymðt; t0Þ: ð1:3Þ

GRðt; t0Þ is thus the same as γðt − t0Þ for the choice of the
lower limit of the integral, t0 ¼ −∞, and iGsymðt; t0Þ is the
same as Γðt − t0Þ.
In frequency space, the generalized Langevin equation

takes the following form:

½−M0ω
2þGRðωÞ�xðωÞ¼ ξðωÞ hξð−ωÞξðωÞi¼ iGsymðωÞ:

ð1:4Þ
If the retarded Green function, GRðωÞ, is expanded

for small frequencies, the coefficient of ω2ði:e; d2xðtÞdt2 Þ adds

FIG. 1. Gravity set up describing Brownian motion.

*pinakib@imsc.res.in
1We mostly follow the Green function language of Ref. [7] to

describe Brownian motion.
2We will see that this is actually “renormalized” mass. The

correction to the bare mass (M0) of the Brownian particle will
come from the retarded Green function.

3See, for example, Refs. [7,9] for a review of path integral
derivation of this generalized Langevin equation. Also notice that
this equation is written in terms of the bare mass (M0) of the
Brownian particle.
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to the bare mass of the particle, and the coefficient of

ωði:e:; dxðtÞdt Þ will show off as the drag term4

GRðωÞ ¼ −iγω − ΔMω2 þ � � � ð1:5Þ

After defining the renormalized mass as

M≡M0 þ ΔM;

these generalized Langevin equations (1.4) [up to Oðω2Þ]
take the standard form (1.1) and (1.2).
From the above discussion, it is quite clear that if we are

interested in studying dissipation for a Brownian particle
we just need to compute the retarded Green function,
GRðωÞ. We can calculate this quantity using different
holographic techniques [19,20] depending on the physical
systems.
In Ref. [9], Brownian motion for a heavy quark in 1þ 1

dimensions was studied following Ref. [7] which used
the prescription of Refs. [19,21] to compute the boundary
Green function. The calculation of Ref. [9] was performed
in the BTZ black hole background where the system is
exactly solvable. The main result was to obtain dissipation
for the heavy quark even at zero temperature. The result
might look very counterintuitive and unphysical at first
sight because at zero temperature the thermal fluctuations
go to zero and therefore the Brownian particle should stop
dissipating energy. But this zero temperature dissipation
has its origin in radiation of an accelerated charged particle.
The force term5 in the Langevin equation at zero temper-
ature was of the form

FðωÞ ¼ −i
ffiffiffi
λ

p

2π
ω3xðωÞ: ð1:6Þ

Therefore, the integrated energy loss is given by

ΔE ¼
ffiffiffi
λ

p

2π

Z
dta2: ð1:7Þ

It is known from classical electrodynamics that the energy
loss6 due to radiation is proportional to the square of the
acceleration (a). See Refs. [10,26–37] for related works.
Dissipation at zero temperature is a fascinating phe-

nomenon. Its emergence from the retarded Green function
signifies that GRðωÞ actually contains information at the
quantum level (by “quantum” here, we mean dynamics at
T ¼ 0). Brownian motion of a particle is usually studied at
finite temperature. The system is driven by fluctuations
which are thermal in nature, and therefore if the temper-
ature is taken to zero then GRðωÞ must vanish, too. But the
GRðωÞ we obtain from holography contains information of
both thermal and quantum fluctuations for the boundary
theory. Although at finite T thermal fluctuations dominate
over the quantum ones at very small T, the latter ones are
much more important. The main aim of this paper is to
understand how a heavy particle’s (quark’s) motion at finite
density (chemical potential μ ≠ 0) is described at and near
T ¼ 0. The dual gravity theory should contain a (near-)
extremal7 charged black hole. (See Refs. [38,39] for some
results in this setup).
For high temperature regime (μ ≪ T), the effect of the

charge of the nonextremal black hole can be neglected at
the leading order, and GRðωÞ can be computed in small μ
and small ω expansions using the methods followed in
Refs. [7,19].
In this paper, we would like to see how the system

behaves near T ¼ 0. Therefore, the other limit μ ≫ T, i.e,
the low temperature regime, is of more interest to us.
We will see that in this regime usual perturbation tech-
niques for small T and small ω will not work because of a
double pole for the ω2 term in the string equation of motion
in the extremal black hole background. Due to this double
pole, near horizon dynamics is extremely sensitive to ω.
To get around this problem, we will adopt the matching
technique8 described in Ref. [20] where the authors studied
non-Fermi liquids using holography.
The rest of the paper is organized as follows. In Sec. II,

we quickly review the Reissner-Nordström (RN) black hole
in asymptotically AdS space time. The main purpose is

4More terms with higher powers in ω will also be generated in
this small frequency expansion. Their interpretations are outside
the scope of standard Langevin equation (1.1). But from proper-
ties of the Green functions, it is well known that imaginary part of
the retarded Green function causes dissipation. Thus, odd powers
in ω are responsible for dissipation. Actually, the ω3 term
signifies dissipation at zero temperature [9,18] in the absence
of matter density.

5This force formula is the same as the “Abraham-Lorentz
force” [22] in classical electrodynamics. For electromagnetic
theory the coupling constant is q2

6πϵ0
where q is the charge of the

accelerating particle and ϵ0 is the vacuum permittivity. In our case
the coupling is given by

ffiffi
λ

p
2π. This similarity is remarkable since in

our holographic context the boundary theory is highly nonlinear
unlike electrodynamics.

6This formula for an accelerated quark was obtained first
by Mikhailov in Ref. [23] by a very different approach. The
factor

ffiffi
λ

p
2π is essentially the Bremsstrahlung function Bðλ; NÞ

(2πBðλ; NÞ ¼
ffiffi
λ

p
2π ) identified in Ref. [24] as occurring in many

other physical quantities (such as the cusp anomalous dimension
introduced by Polyakov [25]).

7The zero temperature dissipation for a theory dual to pure
AdSdþ1 and black holes in AdSdþ1 has been calculated in
Ref. [18]. Just on dimensional grounds, GRðωÞ ∼ −iω3. The
coefficient depends on the background. The cause of this
dissipation is the radiation due to the accelerated quark.

8This matching technique is familiar to string theorists from
the brane absorption calculations that led to the discovery of AdS/
CFT correspondence. For example, see Refs. [40,41]. Maldacena
used a similar technique in his famous decoupling argument [1].
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to spell out the notations and conventions that we will be
following through out the article. Section III contains the
analytic computation of the retarded Green function at zero
temperature using the matching technique. We also list
some of its properties in detail. The retarded Green function
at small but finite temperature is analyzed in Sec. IV.
We mainly discuss how GRðωÞ gets small T corrections.
Section V summarizes the main results and their interpre-
tations, assumptions we make, and some future directions.
Section VI contains some concluding remarks.

II. ADS-RN BLACK HOLE BACKGROUND

The AdS-RN black hole9 is a solution to the Einstein-
Maxwell equation with a negative cosmological constant,

SEM¼ 1

2κ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
Rþdðd−1Þ

L2
dþ1

þL2
dþ1

g2F
FMNFMN

�
:

ð2:1Þ

R is the Ricci scalar, and gF is the dimensionless gauge
coupling in the bulk. Ldþ1 is a length scale (known as the
AdS radius), and κ2 is Newton’s constant. Notice that we
can always redefine the gauge field by absorbing the
dimensionless coupling g2F into FMN . Thus, we can fix
gF to 1 without loss of generality. The (dþ 1)-dimensional
metric and gauge field that satisfy the corresponding
equations of motion are given by

ds2 ¼ L2
dþ1

z2
ð−fðzÞdt2 þ d~x2Þ þ L2

dþ1

z2
dz2

fðzÞ ; ð2:2Þ

where

fðzÞ ¼ 1þQ2z2d−2 −Mzd

AtðzÞ ¼ μ

�
1 −

zd−2

zd−20

�
:

Q, M, and z0 are constant parameters which are the black
hole charge, black hole mass, and horizon radius, respec-
tively. μ is the chemical potential, ~x≡ ðx1; x2…xd−1Þ,
and z is the radial coordinate in the bulk such that the
boundary of this space is at z ¼ 0.
Notice that if we put fðzÞ ¼ 1 we get back pure AdSdþ1

in the Poincaré patch. This nontrivial function fðzÞ
indicates that the physics changes as we move along the
radial direction.
At the horizon, fðz0Þ ¼ 0. Therefore, we can express

M as

M ¼ z−d0 þQ2zd−20 : ð2:3Þ

Now, Q can be expressed in terms of chemical
potential (μ),

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 2Þ
d − 1

r
μ

zd−20

: ð2:4Þ

And the Hawking temperature

T ¼ d
4πz0

�
1 −

d − 2

d
Q2z2d−20

�
: ð2:5Þ

Actually, Q, M, and z0 are related to charge density,
energy density, and entropy density in the boundary theory,
respectively. Q is charge density up to some numbers. Let
us introduce a new length scale z� to express Q as

Q ≔
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r
1

zd−1�
: ð2:6Þ

We also define μ� ¼ 1
z�
. Note that z� ≥ z0 to avoid the naked

singular geometry. (This is equivalent to the M ≥ Q
condition.)
There are two distinct situations possible: extremal

(T ¼ 0) and nonextremal (T ≠ 0).

A. Extremal black hole

When the Hawking temperature is zero, the black hole
is called extremal. An extremal black hole contains the
maximum possible charge. The “blackening function”
becomes

fðzÞ ¼ 1þ d
d − 2

z2d−2

z2d−2�
−
2ðd − 1Þ
d − 2

zd

zd�
: ð2:7Þ

The near horizon region for the extremal black hole
becomes AdS2 ×Rd−1,

ds2 ¼ L2
2

ζ2
ð−dt2 þ dζ2Þ þ μ2�L2

dþ1d~x
2 ð2:8Þ

AtðζÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dðd − 1Þp 1

ζ
; ð2:9Þ

where ζ ≔ z2�
dðd−1Þðz�−zÞ and L2 is the radius10 of the AdS2

and is related to Ldþ1 by the following relation:

L2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd − 1Þp Ldþ1:

B. Non-extremal black hole

Generically, charged black holes (BHs) have nonvanish-
ing temperature. We will be interested in studying
Brownian motion at finite density and finite temperature9The solution we will be working with has a planar horizon

with topology Rd−1. Therefore, it is really a black brane rather
than a black hole. 10Note that L2 < Ldþ1 for d ≥ 3.

HOLOGRAPHIC BROWNIAN MOTION AT FINITE DENSITY PHYSICAL REVIEW D 94, 126008 (2016)

126008-3



(T) but with T ≪ μ. We want to be in this regime because
the near horizon geometry will become AdS2-BH ×Rd−1,

ds2 ¼ L2
2

ζ2

�
−gðζÞdt2 þ dζ2

gðζÞ
�
þ μ2�L2

dþ1d~x
2 ð2:10Þ

AtðζÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dðd − 1Þp 1

ζ

�
1 −

ζ

ζ0

�
; ð2:11Þ

where gðζÞ ≔ ð1 − ζ2

ζ2
0

Þ, ζ0 ≔
z2�

dðd−1Þðz�−z0Þ, and the corre-

sponding temperature T ¼ 1
2πζ0

. For T ≈ μ, this nice struc-
ture breaks down.

III. BROWNIAN MOTION AT ZERO
TEMPERATURE

To understand Brownian motion of a heavy charged
particle in some strongly coupled field theory in
d dimensions which has a gravity dual, one needs to study
the dynamics of a long string in the dual gravity back-
ground [6,7]. Therefore, to explore the same Brownian
motion at zero temperature and finite density, one needs to
study a string in an extremal charged black hole. This
section contains the main analysis and results of the paper.

A. Green’s function by matching solutions

In this Einstein-Maxwell theory, an elementary string
cannot couple to the gauge field, AM. It can only couple
to the background metric GMN . We consider geometries
with vanishing Kalb-Ramond field, BMN . For this zero
temperature case, GMN can be read off from the extremal
BH background (2.2) with fðzÞ given in (2.7).
The string dynamics is given by the standard Nambu-

Goto action

SNG ¼ −
1

2πl2s

Z
dτdσ

ffiffiffiffiffiffi
−h

p
; ð3:1Þ

where ls is the string length and hab is the induced metric
on the world sheet,

hab ¼ GMN∂aXM∂bXN .

We choose to work in static gauge,

τ≡ t and σ ≡ ζ:

Also, we can choose one particular direction, say, x1 (we
call this simply x for brevity), along which the world sheet
fluctuates,

x≡ xðτ; σÞ ¼ xðt; ζÞ:

To understand the dynamics of the string, we need to use
the full background metric (2.2) with the “blackening
factor” given in (2.7). Varying the Nambu-Goto action

SNG ¼ −
1

2πl2s

Z
dtdz

Ldþ1

z2

�
1þ 1

2
fðzÞx02 − 1

2fðzÞ _x
2

�
;

ð3:2Þ
we obtain the equation of motion (EOM) in frequency
space,

x00ωðzÞ þ
d
dz ðfðzÞz2 Þ

fðzÞ
z2

x0ωðzÞ þ
ω2

½fðzÞ�2 xωðzÞ ¼ 0; ð3:3Þ

where we have used xðz; tÞ ¼ R
dω
2π e

−iωtxωðzÞ
Now, to obtain GRðωÞ, the standard procedure would be

to solve this equation and obtain it from the on-shell action.
But this procedure involves a few subtleties [20]. First, this
differential equation is not exactly solvable. Even if we are
interested inGRðωÞ for very small frequencies (ω ≪ μ), we
cannot directly perform a perturbation expansion in small ω
since at zero temperature the fðzÞ has a double-zero at the
horizon (in the extremal limit) and consequently ω2 term in
the equation of motion generates a double-pole at the
horizon. Thus, this singular term dominates at the horizon
irrespective of however small we choose ω to be.
To get around this difficulty, we closely follow the

matching technique in Ref. [20]. At first, we isolate the
“singular” near horizon region from the original back-
ground. We already know that the near horizon geometry is
given by AdS2 × Rd−1 (2.8). This is referred to as the
IR/inner region, and the rest of the space time is referred to
as the UV/outer region. We can solve the string EOM
exactly in this IR region, and therefore the treatment will be
nonperturbative in ω. On the other hand, the ω dependence
in the UV region can be treated perturbatively as there is no
more ω-sensitivity. The main task is to match the solutions
over these two regions. The overlap between these to
regions is near the boundary (ζ → 0) of the AdS2 where

1

μ
≪ ζ ≪

1

ω

with z2�
ω2

fðzÞ ∼ ω2ζ2 is very small

and μζ ∼
z�

z� − z
remains large:

The last two expressions ensure that the ω-dependent
term becomes small in EOM and we are still near the
horizon, respectively.

1. Inner region

For the string in AdS2 ×Rd−1 (2.8),

ffiffiffiffiffiffi
−h

p
¼ L2

2

ζ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

dþ5

L2
2

μ2�ζ2ðx02 − _x2Þ
s

≈
L2
2

ζ2

�
1þ 1

2
dðd − 1Þμ2�ζ2ðx02 − _x2Þ

�
: ð3:4Þ
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The Nambu-Goto action

SNG ¼ −
L2
2

2πl2s

Z
dtdζ

�
1

ζ2
þ 1

2
dðd − 1Þμ2�ðx02 − _x2Þ

�
:

ð3:5Þ
Varying this action, we get a very simple EOM for the

string which is that of a free wave equation,

x00 − ẍ ¼ 0: ð3:6Þ
To solve this linear EOM, the standard way is to go to the

Fourier space,

xðζ; tÞ ¼
Z

dω
2π

e−iωtxωðζÞ: ð3:7Þ

The equation of motion reduces to

x00ωðζÞ þ ω2xωðζÞ ¼ 0: ð3:8Þ
This is a very well-known differential equation with two

independent solutions,

xωðζÞ ¼ e�iωζ:

As we are interested in calculating the retarded Green
function, we need to pick the one which is ingoing at the
horizon (ζ → ∞). It is easy to see that eþiωζ is ingoing at
the horizon.
Once we pick the right solution at the horizon, we need

to expand that near the boundary(ζ ¼ 0) of the IR geometry
i.e, AdS2 ×Rd−1

xωðζÞ ¼ 1þ iωζ; near ζ ¼ 0: ð3:9Þ
The ratio of normalizable to non-normalizable modes

fixes the Green function for the IR geometry

GRðωÞ ¼ iω: ð3:10Þ
[We will see in (3.14) that for a string in AdSdþ1 non-

normalizable and normalizable modes go as z0 and z3,
respectively, whereas in AdS2 ×Rd−1 (3.9), they go as z0

and z1.]

2. Outer region

For the outer region, we need to solve the full EOM
(3.3). But now, as we are away from the “dangerous” near
horizon region, we can do a small frequency expansion.
At the leading order, we can put ω ¼ 0. Let us say that the

(3.3) has two independent solutions ηð0Þþ and ηð0Þ− for ω ¼ 0.
We can fix their behavior near the horizon (z ¼ z�) and near
the boundary (z ¼ 0) by solving this equation near those
regions.

Near horizon.—Near z ¼ z�,

fðzÞ ≈ dðd − 1Þ ðz� − zÞ2
z2�

:

The EOM reduces to

x00ωðzÞ −
2

z� − z
x0ωðzÞ ¼ 0: ð3:11Þ

The two independent solutions are

c and
z�

z� − z
:

Here, c is some constant which can be chosen to be 1.
Since we need to match the inner and the outer solutions
near z ¼ z� let us express these independent solutions in
terms of ζ,

ηð0Þþ →

�
ζ

z�

�
0

; ηð0Þ− →

�
ζ

z�

�
1

: ð3:12Þ

Near boundary.—Near the boundary, z ¼ 0, we can
approximate fðzÞ ≈ 1 and consequently the EOM,

x00ωðzÞ −
2

z
x0ωðzÞ ¼ 0: ð3:13Þ

The solutions near z ¼ 0 will behave as

ηð0Þþ ≈ að0Þþ

�
z
z�

�
0

þ bð0Þþ

�
z
z�

�
3

ð3:14Þ

ηð0Þ− ≈ að0Þ−

�
z
z�

�
0

þ bð0Þ−

�
z
z�

�
3

: ð3:15Þ

Notice that að0Þ� and bð0Þ� are not independent but related
by the Wronskian. Wewill use this information below to fix
one of those coefficients.
Matching the solutions.—We have some solutions to the

full EOM in patches. All we need to do to obtain the Green
function is to determine the outer solution by matching it to
the inner solution in the overlap region. Then, expand that
solution near z ¼ 0 to compute the ratio of the normalizable
to the non-normalizable mode.
Let us do the matching first. From (3.9) and (3.12), we

can express the outer solution as

xωðzÞ ¼ ηð0Þþ ðzÞ þ GRðωÞz�ηð0Þ− ðzÞ: ð3:16Þ
Notice that so far we have been using solutions to the

UV equation which are zeroth order in ω (as we have
put ω ¼ 0). But in principle, we can systematically add
higher-order corrections in ω. In that improved version, the
outer solution will be given by

xωðzÞ ¼ ηþðzÞ þ GRðωÞz�η−ðzÞ ð3:17Þ
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where η�ðzÞ ¼ ηð0Þ� ðzÞ þ ω2ηð2Þ� ðzÞ þ ω4ηð4Þ� ðzÞ þ � � �
ð3:18Þ

And as discussed before (Eqs. 3.14 and 3.15) near
boundary (i.e. z ¼ 0)

η� ≈ a�

�
z
z�

�
0

þ b�

�
z
z�

�
3

ð3:19Þ

where a� ¼ að0Þ� þ ω2að2Þ� þ ω4að4Þ� þ � � � ð3:20Þ

b� ¼ bð0Þ� þ ω2bð2Þ� þ ω4bð4Þ� þ � � � ð3:21Þ

Note that a� and b� are all real coefficients because the
UV equation (3.3) and the boundary condition (3.12) at
z ¼ z� are both real. Also, the perturbations in the fre-
quency are in even powers in ω as (3.3) contains only ω2.
Finally, to obtain the retarded Green function, we expand

the outer solution (3.17) near the boundary (z ¼ 0),

xωðzÞ ¼ AðωÞ
�
z
z�

�
0

þ BðωÞ
�
z
z�

�
3

ð3:22Þ

AðωÞ ¼ aþ þ GRðωÞz�a−
BðωÞ ¼ bþ þ GRðωÞz�b−:

The Green function of the boundary theory is given by
(see Refs. [7,9,18])

GRðωÞ ≔ lim
z→0

T0ðzÞ
�
−

z2

L2
dþ1

�
x0ωðzÞ
xωðzÞ

; ð3:23Þ

where

T0ðzÞ¼
1

2πl2s

L4
dþ1

z4

�
1þ d

d−2

�
z
z�

�
2d−2

−
2ðd−1Þ
d−2

�
z
z�

�
d
�

is identified as local string tension which comes from the
z-dependent normalization of the boundary action. Since
we are interested in the boundary Green function,

T0ðzÞ ≈
1

2πl2s

L4
dþ1

z4
;

and consequently the retarded Green function

GRðωÞ ≈ lim
z→0

−
1

2πl2s

L2
dþ1

z2
ηþ0ðzÞ þ GRðωÞz�η−0ðzÞ
ηþðzÞ þ GRðωÞz�η−ðzÞ

¼ lim
z→0

−
L2
dþ1

2πl2s

1

z2
3bþð zz�Þ2 1

z�
þ GRðωÞ3b−ð zz�Þ2

½aþ þ GRðωÞz�a−� þ ½bþ þ GRðωÞz�b−�ð zz�Þ3

¼ −
ffiffiffi
λ

p

2π

3

z3�

�
bþ þ GRðωÞz�b−
aþ þ GRðωÞz�a−

�
: ð3:24Þ

We have introduced a dimensionless quantity λ ≔ L4
dþ1

l4s
which behaves like a coupling constant in the boundary field
theory. Since we are working in the supergravity limit in the
bulk, Ldþ1 ≫ ls, and therefore λ ≫ 1; i.e, the boundary
theory is strongly coupled. The expression (3.24) is the main
result of this paper. Below, we analyze this in detail.

B. Properties of the Green function

The following are properties of the Green function:
(1) The expression (3.24) depends on two sets of data:

(a) fa�; b�g: These constants come from solving
the EOM in the outer region. Therefore, they
depend on the geometry of the outer region. In
this sense, they are nonuniversal UV data.

(b) GRðωÞ: This depends only on the IR region
which always contains AdS2 independent of the
full UV theory. This is universal IR data.

(2) As we have already pointed out, the UV data (a�; b�)
are always real, whereas the IR data [GRðωÞ] are in
general complex. Therefore, the dissipation is always

controlled by the IR data. Actually, all nonanalytic11

behavior enters into GRðωÞ from GRðωÞ.
(3) In principle, að2nÞ� and bð2nÞ� are fixed by (numeri-

cally) solving the EOM in UV region in ω2

perturbation.
(4) The interesting thing to notice is that the (3.3) with

ω ¼ 0 allows a constant solution. From the boun-
dary condition (3.12) at z ¼ z�, we see that

ηð0Þþ ¼ 1:

This value of ηð0Þþ will continue to solve the EOM
(3.3) with ω ¼ 0 for the outer region z� ≥ z ≥ 0. So,
near the boundary (z ¼ 0), we have [from (3.19)]

ηþ ≈ að0Þþ

�
z
z�

�
0

þ bð0Þþ

�
z
z�

�
3

¼ 1: ð3:25Þ

11There are no noninteger powers of ω for the system we are
considering. Therefore, there are no branch cuts, but GRðωÞ can
only have poles at particular ω-values.
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This fixes
að0Þþ ¼ 1

bð0Þþ ¼ 0:

Actually, we can fix one more coefficient by
equating the generalizedWronskian12 at the boundary
and at the horizon. We get (see Appendix for details)

bð0Þ− ¼ 1

3
:

The zeroth-order Green function reduces13 to

Gð0Þ
R ðωÞ ¼ −

L2
dþ1

2πl2s

3

z3�

bð0Þþ þ GRðωÞz�bð0Þ−

að0Þþ þ GRðωÞz�að0Þ−

¼ −
ffiffiffi
λ

p

2π

iμ2�ω
ð1þ i ω

μ�
að0Þ− Þ : ð3:26Þ

The form of Gð0Þ
R ðωÞ ensures14

Gð0Þ
R ðωÞ ¼ 0 as ω → 0:

The real and imaginary parts of Gð0Þ
R ðωÞ are

plotted (see Figs. 2 and 3) for particular values of
the parameters: λ ¼ 50; μ� ¼ 5 and að0Þ− ¼ 10.

For small frequency,

Gð0Þ
R ðωÞ ¼ −i

ffiffiffi
λ

p

2π
μ2�ω

�
1 − i

ω

μ�
að0Þ− þ � � �

�

≈ −i
ffiffiffi
λ

p

2π
μ2�ω − að0Þ−

ffiffiffi
λ

p

2π
μ�ω2: ð3:27Þ

This is also consistent with the Langevin equa-
tion (1.5) as GRðωÞ expansion starts with −iω. Note
that, for small frequencies, the zero temperature
dissipation goes linear in ω (see Fig. 3) unlike the

μ ¼ 0 case [9,18] where this goes as ω3. The fact that
GRðωÞ is linear in ω comes from the fact that the
effective AdS2 dimension [which can be read off from
(3.12)] of the “quark operator” is 1 (i.e., Δ ¼ 1).
The leading dissipative force is proportional to μ2�

which indicates that energy loss for the charged
Brownian particle is more for medium with higher
charge density.

IV. BROWNIAN MOTION AT FINITE
TEMPERATURE

To study Brownian motion at finite but very small
temperature, we need to follow the same steps as before.
But now the inner region will become a nonextremal (rather
near extremal) black hole (2.2) background.

A. Green’s function by matching solutions

In this section, we will go through the same procedure of
the matching functional form of the solutions in the inner
and outer regions. There will be a few modifications to the
zero temperature GRðωÞ.
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FIG. 2. Real part of Gð0Þ
R ðωÞ with μ� ¼ 5.
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FIG. 3. Imaginary part of Gð0Þ
R ðωÞ with μ� ¼ 5.

12The generalized Wronskian of a second-order homogeneous
ordinary differential equation with two independent solutions ϕ1

and ϕ2 is defined as

WðzÞ≡ e
R

z PðtÞdt½ϕ1∂zϕ2 − ϕ2∂zϕ1�
¼ ffiffiffiffiffiffi

−g
p

gzz½ϕ1∂zϕ2 − ϕ2∂zϕ1�:
13There is no principle that tells us that the all the coefficients

of Green function (even in zeroth order in ω) should be
determined by analytic methods. Due to the simplicity of this
particular differential equation, we can fix a few of them
analytically. In general, one needs numerical techniques to fix
all of them.

14Instead of a fluctuating string, if one considers the bulk
Fermionic field (not the world sheet field) in the same geometry,
aðnÞ� and bðnÞ� are functions of momentum k. For a certain value of
k ¼ kF, say, a

ð0Þ
þ ¼ 0. At this value of momentum, Gð0Þ

R ðω; kFÞ
becomes singular at ω ¼ 0. This indicates the Fermi surface.
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1. Inner region

The metric in this region is a black hole15 in
AdS2 ×Rd−1 (2.10).
The Nambu-Goto action

SNG ¼ −
L2
2

2πl2s

Z
dtdζ

×

�
1

ζ2
þ 1

2
dðd − 1Þμ2�

�
gðζÞx02 − 1

gðζÞ _x
2

��
: ð4:1Þ

Varying this action, we obtain the EOM in frequency
space,

x00ωðζÞ þ
2ζ

ζ2 − ζ20
x0ωðζÞ þ

ζ40ω
2

ðζ2 − ζ20Þ2
xωðζÞ ¼ 0: ð4:2Þ

This EOM can be solved exactly. The two independent
solutions16 are

xωðζÞ ¼ e�iζ0ωtanh−1ð ζ
ζ0
Þ:

Again, we are interested in the retarded Green function,
so we pick the solution which is ingoing at the horizon
(ζ ¼ ζ0),

eþiζ0ωtanh−1ð ζ
ζ0
Þ:

Once we have the ingoing solution, we need to expand it
near the boundary(ζ ¼ 0) of near horizon geometry,

xRωðζÞ ¼ 1þ iωζ: ð4:3Þ
We can now read off the Green function in the IR region:

GR;TðωÞ ¼ iω: ð4:4Þ
This is identical to the zero temperature case (3.10).
We discussed earlier that the dissipative part of

GRðωÞ comes solely from the IR Green function. For this
particular problem, GR;TðωÞ ¼ GRðωÞ ¼ iω. Therefore,
T-dependence can only creep in via the expansion coef-
ficients (a�; b�).

2. Outer region

This outer region analysis will be almost identical to that
of the zero temperature case. One just has to be careful
about the coefficients (a� and b�), which are now temper-
ature dependent, in general. Therefore, we can skip

repeating the analysis and directly write down the Green
function at finite temperature following the zero temper-
ature case (see Sec. III),

GR;TðωÞ ¼ −
ffiffiffi
λ

p

2π

3

z3�

�
bþðω; TÞ þ GR;TðωÞz�b−ðω; TÞ
aþðω; TÞ þ GR;TðωÞz�a−ðω; TÞ

�

¼ −
ffiffiffi
λ

p

2π

3

z3�

�
bþðω; TÞ þ iωz�b−ðω; TÞ
aþðω; TÞ þ iωz�a−ðω; TÞ

�
: ð4:5Þ

If we consider only the leading order in ω (i.e, putting
ω ¼ 0 in the EOM), even for the nonextremal case,
xω ¼ const is again a solution. As before, we can normalize
it to 1. By the same argument as in the zero temperature
case,

að0Þþ ¼ 1

bð0Þþ ¼ 0:

Therefore, the leading-order Green function is identical
to that of the zero temperature case (3.26),

Gð0Þ
R;TðωÞ ¼ −

ffiffiffi
λ

p

2π

iμ2�ω
ð1þ i ω

μ�
að0Þ− Þ : ð4:6Þ

This Green’s function can be improved by solving the
(3.3) perturbatively in ω and T. Actually, the corrections
will be in powers of ω

μ�
and T

μ�
. The corresponding real

coefficients can also be obtained numerically in a system-
atic fashion.

V. DISCUSSIONS

We have studied in detail the important properties of the
retarded Green function we obtained from the matching
technique. It has a nice structure in terms of frequency (and
also in temperature). We discussed that the dissipative
(in general nonanalytic) part of the system is determined by
the near horizon behavior, i.e, the IR data of the system.
On the other hand, the near boundary behavior, i.e., the
UV data, is always some analytic expansion in nature.
Actually, these facts are compatible with our field theoretic
and geometric intuitions.
For generic many-body systems, we know that IR

physics can show nonanalytic behavior but UV physics
can only give analytic corrections to that. From the
renormalization group point of view, this matching tech-
nique can be thought of as matching UV to IR physics at
some intermediate energy scale fixed by the chemical
potential (μ�).
Geometrically, also this is expected. Dissipation is

caused due to energy or “modes” disappearing into “some-
thing.” In the bulk picture, this can only happen near the
horizon of a black hole where the modes fall into the black
hole and never come back, whereas near boundary

15This black hole is related to AdS2 geometry by a coordinate
transformation [42,43] (combined with a gauge transformation)
that acts as a conformal transformation on the boundary of AdS2.
So, correlators can be obtained directly from AdS2 correlators via
conformal transformation.

16Notice the same ζ0tanh−1ð ζζ0Þ factor appears in the conformal
transformation from AdS2 to AdS2-BH (see Ref. [43]).
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geometry is very smooth, and therefore no nonanalytic
behavior can be expected from that UV region.
It is worth mentioning that the leading-order dissipative

term at zero temperature is linear17 in frequency unlike the
zero density situations [9,18] where it starts with the cubic
term (ω3). Therefore, this is actually the drag term
associated to the velocity of the charged particle rather
than the acceleration of the same. A particle moving at
constant velocity at zero temperature can dissipate energy
for this setup since the presence of finite charge density
breaks Lorentz symmetry of the boundary theory explicitly.
Nevertheless, there will be dissipation due to acceleration
of the charged particle as radiation at the subleading order.

Expanding Gð0Þ
R ðωÞ (3.26) in small frequency, one can

obtain the Bremsstrahlung function BðλÞ by collecting the
coefficient of ω3,

BðλÞ ¼
ffiffiffi
λ

p

2π
ðað0Þ− Þ2:

að0Þ− can be fixed by numerical technique. But this is
obtained solving the string EOM (3.3) only up to Oðω0Þ. It
will get corrections for higher orders in ω2 that can be taken
into account systematically.
For a particular theory at finite density but at zero

temperature, if one can independently compute the
Bremsstrahlung function, then that can be compared with
the result obtained in our method. The standard and well-
known method of computing the Bremsstrahlung function
is using the supersymmetric localization technique (see,
e.g, Refs. [24,36,37]). But one would face the following
challenges18 to apply this technique at finite density. First,
one needs to, if possible, turn on background fields
corresponding to finite density while preserving enough
supersymmetry. Second, and more specific to the compu-
tation of the Bremsstrahlung function, finite density breaks
conformal invariance. Some of the steps in computing the
Bremsstrahlung function use explicitly conformal sym-
metry. Although the Bremsstrahlung function must exist for
nonconformal theories, it may no longer be controlled by
localization.
The method we have used to obtain the Green function

only required an AdS2 factor near the horizon. Therefore, it
should work even if the UV theory is nonconformal (not

asymptotically AdS) but the IR geometry has an AdS2
factor. For example, instead of D3 branes, one can look at
D2 or D4 brane geometries. They are nonconformal [44]. If
for some charge density they flow to some AdS2, then this
procedure can be applied. Also, by the same argument, it
can possibly work for some rotating extremal black hole
backgrounds, too.
All our results are valid for large chemical potential and

small temperature. If one is interested in studying Brownian
motion in the opposite regime, this technique cannot be
used. The reason is that for μ ∼ T the “nice” inner region
structure breaks down. In that case, the small μ corrections
can be computed using the same techniques used in
Refs. [7,9] but for a charged black hole background in
AdS with very small charge.

VI. CONCLUSIONS

In this paper, we have used the holographic technique to
study Langevin dynamics of a heavy particle moving at
finite charge density. We have studied this by computing
the retarded Green function via a solution matching
technique. Here are the main results:

(i) An analytic form of the retarded Green function for
small frequencies has been obtained at zero tem-
perature.

(ii) The drag force at zero temperature shows up as the
leading contribution at small frequencies.

(iii) How the retarded Green function gets corrections
due to small (but finite) temperature has also been
sketched. The leading dissipative part (drag) remains
identical to that in the zero temperature case.

(iv) The drag force on the heavy particle grows quad-
ratically with the chemical potential i.e, loss in
energy of the Brownian particle is more for medium
with higher charge density.

(v) The leading contribution to the Bremsstrahlung
function BðλÞ is obtained with an unknown coef-
ficient að0Þ− which can be fixed by a numerical
method. Its corrections in ω

μ�
and T

μ�
can be computed

systematically.
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APPENDIX: FIXING COEFFICIENT USING
GENERALIZED WRONSKIAN

A field ψðzÞ satisfying a second-order linear homo-
geneous differential equation

17This linear dependence in frequency comes from the fact that
effective AdS2 dimension [see (3.12)] of the quark operator is 1
(i.e., Δ ¼ 1) and is very crucial. Due to this particular low
frequency behavior, the dissipative structure is qualitatively the
same at zero and finite temperatures. If the dimension has been
different from 1, the small ω expansion in (3.27) at zero
temperature would have started with a different power (i.e.,
not linear), and the story would have been different from the
T ≠ 0 result.

18The author would like to thank Tomeu Fiol for pointing out
this possibility and also the possible challenges.
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ψ 00ðzÞ þ PðzÞψ 0ðzÞ þQðzÞψðzÞ ¼ 0; ðA1Þ

where PðzÞ andQðzÞ are real the generalized Wronskian, is
defined as

Wðψ1;ψ2; zÞ ≔ e
R

z PðtÞdt½ψ1∂zψ2 − ψ2∂zψ1� ðA2Þ

¼ ffiffiffiffiffiffi
−g

p
gzz½ψ1∂zψ2 − ψ2∂zψ1�; ðA3Þ

where ψ1 and ψ2 are two solutions of (A1). The interesting
fact about this WðzÞ is it is independent of z,

∂zWðψ1;ψ2; zÞ ¼ 0:

Therefore, we can write

Wðψ1;ψ2; zÞ≡Wðψ1;ψ2Þ:

Equation (3.3) is exactly of the form (A1). We know how
its two independent solutions behave at the horizon
(z ¼ z�) and at the boundary (z ¼ 0). The generalized
Wronskian

Wðψ1;ψ2Þ ¼
�
L2
dþ1

z2

�dþ1
2 fðzÞ
L2
dþ1

z2ðψ1∂zψ2 − ψ2∂zψ1Þ

ðA4Þ

¼
�
Ldþ1

z

�
d−1

ðψ1∂zψ2 − ψ2∂zψ1Þ ðA5Þ

is independent of z. Therefore,

Wðψ1;ψ2Þjz¼0 ¼ Wðψ1;ψ2Þjz¼z� ðA6Þ

Now, for extremal case,

fðzÞ ¼ 1þ d
d − 2

�
z
z�

�
2

−
2d − 2

d − 2

�
z
z�

�
d

(i) fðzÞjz¼0 ¼ 1
(ii) fðzÞjz¼z� ≈ dðd − 1Þ ðz�−zÞ2z2�

lhs of ðA.6Þ∶ Wðψ1;ψ2Þjz¼0 ¼
1

z2
ðηð0Þþ ∂zη

ð0Þ
− − ηð0Þ− ∂zη

ð0Þ
þ Þ

¼ 3

z3�
ðað0Þþ bð0Þ− − að0Þ− bð0Þþ Þ

ðA7Þ
rhs of ðA.6Þ∶ Wðψ1;ψ2Þjz¼z�

¼ dðd − 1Þðz� − zÞ2
z2z2�

ðηð0Þþ ∂zη
ð0Þ
− − ηð0Þ− ∂zη

ð0Þ
þ Þ

¼ dðd − 1Þðz� − zÞ2
z2z2�

�
1.∂z

�
ζ

z�

�
−
�
ζ

z�

�
∂zð1Þ

�
:

¼ 1

z3�
ðA8Þ

Equating (A7) and (A8),

að0Þþ bð0Þ− − að0Þ− bð0Þþ ¼ 1

3
;

and substituting bð0Þþ ¼ 0 and að0Þþ ¼ 1, we get

bð0Þ− ¼ 1
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