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The Schwinger pairs production rate is calculated numerically in the soft-wall model with the help of a
simpler method in determining the soft-wall’s position beyond which probe strings connecting the
Schwinger pairs do not fall into. The critical behavior of the production rate and linear part in the middle
region are both studied carefully. The latter manifests interesting new features. The results are compared
with those in previous hard-wall models.
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I. INTRODUCTION

Quantum field theory (QFT) tells us that the vacuum is
nonempty but full of virtual particles. The Schwinger effect
[1] refers to the phenomenon that virtual particle pairs
becoming real under strong external field backgrounds.
Although it has not been observed directly in laboratories
due to its high requirement of the field strength, the
production rate of particle pairs (Schwinger pairs) in this
effect could be one important observable in the near future.
One of the motivations to study the Schwinger effect is

its similarity to the Hawking radiation, i.e., charged particle
pairs production by electric field versus general particle
pairs production by gravitational field [2–4]. It is intuitively
worthwhile to compare the production rate of these two
different phenomena. Another motivation comes from the
analogue in condensed matter physics. It is known that the
Schwinger effect only occurs above some critical electric
field [5]. This is similar to electric breakdowns in insulators
which also occur above some critical field [6] values. In this
sense, we can treat the vacuum as some kind of an insulator.
We expect that the study of the Schwinger pairs production
rate may reveal some more information.
Since its high requirements of strong electric field

imposed, the Schwinger pairs production is a typical non-
perturbative phenomenon. A corresponding nonperturbative
tool is heavily needed if we want to calculate the production
rate exactly. Gauge/gravity duality, or AdS/CFT (anti-de
Sitter/conformal field theory) correspondence [7–11] is a
good choice due to its functionality of translating such
problems into classical gravitational ones in weakly curved
space-times. In this background, Semenoff and Zarembo for
the first timecalculated theSchwinger pairs production rate in
a quantum electrodynamics (QED) -like gauge theory using
AdS/CFT [12]. They build up an AdS5 × S5 gravitational
system with a probe D3-brane embedded in. The position of
this probe D3-brane codes the mass of the Schwinger pair.
The corresponding pairs production rate P is obtained as:

P ∼ e−SNG−SB2 ð1Þ
where SNG is the area of a minimal surface with a circular
boundary on the probeD3-brane. SB2

is the contribution from
some NS-NS 2-form, which represents the external field in
the Schwinger effect.
The Schwinger effect is also possible to occur in

confining gauge theories such as quantum chromodynam-
ics (QCD). Schwinger pairs production rate in a confining
gauge theory is calculated using AdS/CFT by D. Kawai, Y.
Sato, and K. Yoshida in [13]. They use the same method as
[12] but change the background into an AdS soliton one
which is intended to be dual with confining gauge theories.
Besides this AdS soliton background, there are many other
kinds of gravitational systems that can be used as the dual
of confining gauge theories. The first of them is proposed
by J. Polchinski and M. J. Strassler in [14]. They introduce
an infrared cutoff on the dual AdS5 background to imple-
ment confinement. Including the AdS soliton background
mentioned above, such kind of modes are called hard-
wall models [5,13–18]. In 2006, O. Andreev, V. I. Zakharov,
A. Karch, K. Katz, D. T. Son, and M. A. Stephanov
(AZKKSS) propose a new kind of model dual to confining
theories in [19–21]. They introduce a dilaton to replace
the infrared cutoff in hard-wall models. O. Andreev and
V. I. Zakharov find out that there is an equivalent “wall” in
these new kind models [21]. Such new kind of models are
called soft-wall models [20–24]. The existence of a “wall” is
a universal feature of the gravitational systems dual to
confining gauge theories.
This paper is devoted to the calculation of Schwinger

pairs production rate in the soft-wall model of AZKKSS
[19–21] using the method of [12]. It is a simple but
nontrivial imitating of [13], with the hard-wall there
replaced by a soft-wall in this paper. The organization of
this paper is as follows. The next section gives a simple
review of calculation routines [13] in the hard-wall model
with the goal of establishing necessary symbol conventions
for our calculations in the soft wall model. Section III
presents our calculation details in the soft-wall model
of [19–21]. Numerical results and comparisons with the
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hard-wall model will also be presented in this section. The
last section is the conclusion and discussion.

II. REVIEW OF SCHWINGER PAIRS’
PRODUCTION RATE IN HARD-WALL MODELS

This section is a review of [13] in which the Schwinger
pairs production rate is calculated in a hard-wall model.
The gravitational system is built on the basis of an AdS
soliton background composed of D3-branes [25]:

ds2 ¼ L2

z2

�
ðdx0Þ2 þ

X2
i¼1

ðdxiÞ2 þ fðzÞðdx3Þ2 þ dz2

fðzÞ
�

þ L2ds2
S5

fðzÞ ¼ 1 −
�
z
zt

�
4

: ð2Þ

This is written in the Euclidean signature. L is the AdS
radius. The singularity z ¼ zt defines a pseudo “horizon”
on which one spatial dimension vanishes. It is also the
wall’s position where the dual probe string terminates,
hence zt notation. The AdS boundary locates at z ¼ 0 and
the inner space is S5, which is not relevant in the
calculation.
Just as Semenoff and Zarembo’s proposes [12], the probe

D3-brane locates at some intermediate position z ¼ z0
between the AdS boundary z ¼ 0 and the wall z ¼ zt,
namely 0 ≤ z0 ≤ zt, in order to describe Schwinger pairs
with finite masses. The bigger z0 is, the smaller mass will
be, when fixing zt. The minimal surface with a circular
boundary (a circle on the x0 − x1 plane) on the probe D3-
brane can be regarded as a world sheet of some string
whose ends locate at z ¼ z0. Since coordinates x0, x1 have
equal rights in the line element (2), the minimal surface
should have rotational symmetry, just as a cup. Please refer
to Fig. 1 and the parametrization (3).

x0 ¼ r cos θ; x1 ¼ r sin θ; z ¼ zðrÞ: ð3Þ

The external field is introduced as a NS-NS 2-form. The
total action of the string can be written as:

Stot ¼ SNG þ SB2

¼ TF

Z
dθ

Z
dr

ffiffiffiffiffiffiffiffiffi
det γ

p
− TF

Z
B01dx0∧dx1: ð4Þ

In this action formula, SNG is the Nambu-Goto (NG) action
of the string, which is just the area of the string world sheet;
TF is the string tension; γ is the induced metric on the string
world sheet while SB2

comes from the NS-NS 2-form, in
which E ¼ TFB01 corresponds to the external field in the
Schwinger effect. The equation of motion (EOM), which
describes the world sheet configuration, can be derived by
δStot=δzðrÞ ¼ 0 as follows:

z0 þ 2rfðzÞ
z

þ rz00 −
rðz0Þ2
2fðzÞ

df
dz

ðzÞ þ ðz0Þ3
fðzÞ þ

2rðz0Þ2
z

¼ 0:

ð5Þ
According to [12], the radius of this minimal surface’s

boundary, written as x (Fig. 2), should be fixed to such a
value that the classical (on-shell) action Scltot extremes. This
means that x is not a free parameter. According to [26], this
requirement can be replaced by a boundary condition:

z0jr¼x ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðz0Þ

�
E2
c

E2
− 1

�s
ð6Þ

where Ec ¼ TFL2=z20 is the critical electric field coming
from potential analysis, above which the potential barrier
preventing the production of Schwinger pairs vanishes [5].
It implies that Schwinger pairs can be produced freely
when the external field strength is bigger than Ec.
Referring to Fig. 1 and Fig. 2, the remaining boundary

conditions besides (6) can be listed as follows:

zjr¼x − z0 ¼ 0;

zjr¼0 − zc ¼ 0;

z0jr¼0 ¼ 0: ð7Þ

Now fixing the relevant parameters the same way as [13],
2πTFL2 ¼ 10, then solving Eq, (5) numerically with the

FIG. 1. The parametrization for the cup-like minimal surface.

FIG. 2. The radius of the minimal surface’s boundary is denoted
as x. zc is the maximal value of z on the string world sheet. The
size relationship between z0; zc and zt is also shown here.
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above boundary conditions (6) and (7), then the total action
Scltot of (4) can be calculated on the numerical configuration.
Finally, using ideas from Ref. [12], the Schwinger pairs
production rate P can be obtained as follows

P ∼ e−S
cl
tot : ð8Þ

All necessary numerical results in hard-wall model [13]
will be reproduced in the next section in comparisons with
those in the soft-wall model.

III. CALCULATIONS IN SOFT-WALL MODELS

In this section we turn to the discussion of Schwinger
pairs production rate in soft-wall models. Unlike hard-wall
models, positions of the “wall” in soft-wall models are not
characterized by explicit coordinating singularity or probe
field cutoff boundary conditions. So the determination of
the wall’s position contains technique wisdoms for the
calculation of pair production rate in this model. We will
provide in this section a simple method to achieve this goal
using just asymptotic analysis of the probe strings’ equa-
tion of motion. This is a little different from that of
Ref. [21], but the conclusions are similar. As long as the
soft-wall’s position is determined, the following calcula-
tions is completely parallel with those in hard-wall models.
Our numerical results for the soft-wall model’s calculation
and comparisons with those in hard-wall models will be
given in the second subsection. Some relevant and new
physics explanation will also be given there.

A. Schwinger pairs in soft-wall models

Consider the following soft-wall model geometry in
Euclidean signatures [19,21]:

ds2 ¼ L2

z2
e
cz2
2

�
ðdx0Þ2 þ

X3
i¼1

ðdxiÞ2 þ dz2
�
; ð9Þ

where L is the space-time radius and c > 0 is a deformation
parameter. Space-time is a pure AdS when c → 0. The
space-time boundary locates at z ¼ 0.
Because there are no coordinate singularities in the

background geometry of this soft-wall model, the position
of the wall, noted as z ¼ zt by Ref. [13], cannot be read out
from (9) directly. In the calculation of heavy quark
potentials, Ref. [21] provides a method basing on first
integrations of the probe strings’ equation of motion. We
provide here a more simpler one than [21] to locate the
wall’s position. What we need is just the EOM. Using the
similar idea and parametrizations as those in hard-wall
models, we derive out the EOM controlling the string world
sheet configuration in the soft-wall model as follows:

rzz00 þ zðz0Þ3 þ rð2 − cz2Þðz0Þ2 þ zz0 þ rð2 − cz2Þ ¼ 0:

ð10Þ

We also use zc to denote the maximal value of z on the
string world sheet. Please refer to Fig. 2. Now imposing
“bottom conditions” zjr¼0 ¼ zc, z0jr¼0 ¼ 0 and z00jr¼0 < 0
(Refer to Fig. 1 and Fig. 2) on the EOM (10), we will have:

EOM ð10Þ
z0jr¼0 ¼ 0

�
⇒ rzz00 þ rð2 − cz2Þjr¼0 ¼ 0 ð11Þ

⇒ zz00 þ ð2 − cz2Þjr¼0 ¼ 0

zjr¼0 > 0; z00jr¼0 < 0

)
⇒ ð12Þ

2 − cz2jr¼0 > 0 ⇒ zjr¼0 ≡ zc <

ffiffiffi
2

c

r
: ð13Þ

The above derivation tells us that zc, the maximal value of z
on the string world sheet, cannot reach the value

ffiffiffiffiffiffiffiffi
2=c

p
. It

means that the configuration of the string whose ends
locating at z ¼ z0 cannot exceed the position z ¼ ffiffiffiffiffiffiffiffi

2=c
p

.
So we can identify

ffiffiffiffiffiffiffiffi
2=c

p ¼ zt as the wall’s position in this
model. Since we divide both sides of the equation by a 0
(r ¼ 0) to get the 2nd “⇒”, this is not a strict proof.
However, the conclusion zc <

ffiffiffiffiffiffiffiffi
2=c

p
here is consistent

with [21]. In practical numerics, when a cutoff ϵ on r ¼ 0 is
introduced, the “bottom condition” would be replaced by
zjr¼ϵ ¼ zc, z0jr¼ϵ ¼ 0, and z00jr¼ϵ < 0. In this case, the
above derivations will be more acceptable.
As soon as the wall’s position is located, we can perform

the same procedure for numerical calculations as that in the
hard-wall model. Imposing the transformation z ¼ z0ζ,
r ¼ z0ρ, we can rewrite the EOM as:

ρζζ00 þ ζðζ0Þ3 þ 2ρ

�
1 −

z20
z2t
ζ2
�
ðζ0Þ2 þ ζζ0

þ 2ρ

�
1 −

z20
z2t
ζ2
�

¼ 0; ð14Þ

where ζ0 ¼ dζ=dρ, ζ00 ¼ d2ζ=dρ2. The soft-wall version of
boundary conditions (6) and (7) are

ζ − 1jρ¼ x
z0
¼ 0;

ζ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
c

E2
− 1

r ����
ρ¼ x

z0

¼ 0;

ζ −
zc
z0

����
ρ¼0

¼ 0;

ζ0jρ¼0 ¼ 0; ð15Þ

where Ec ¼ TFL2ez
2
0
=z2t =z20 is the critical electric field from

[27]. Be aware that the critical electric field Ec in the soft-
wall model is different from that in the hard-wall model.
We will choose the parameter 2πTFL2 ¼ 10 the same as
that in the hard-wall model [13] and solve the boundary
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value problem (14)–(15) numerically. As long as this is
done, we calculate the production rate using Eq. (8)
directly.

B. Numerical results and physic analysis

Our numerical results for the Schwinger pairs production
rate are displayed in Figs. 3–5 exclusively. Figure 3 is
mainly a comparison between the soft wall and hard wall
models. From the figure, we easily see that the P − E line in

this two models has only small quantitative but no
qualitative differences. For example, both the two models
display two critical values of field strength Ec and Es.
Above Ec the production rate asymptotes to 1 while below
Es, the production rate vanishes approximately.
One quantitative difference between two models is, as

the external field strength decreases from the upper critical
value, the production rate in soft-wall models decreases
more quickly than that in hard-wall models with equal
parameter z0=zt. Embodying on the critical fittings

FIG. 3. The upper part is the production rate of Schwinger pairs in the soft-wall model. The lower part is that in the hard-wall
model. Critical behavior is shown on the right side. The vertical axis is the production rate P. The horizontal axis is the normalized field
strength E=Ec.

FIG. 4. Production rate vs. abstract field strength relation. The left is for soft-wall model, while the right, hard- wall model. In both
models, more smaller z0=zt corresponds to more heavier Schwinger pairs and more larger upper-critical field strength.
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PjE→Ec
¼ e−Að1−

E
Ec
Þγ ; ð16Þ

the fitting value of A in the soft-wall models are (almost)
always greater than that in hard-wall models when z0=zt
takes the equal values. See Table I for concrete numerics.
However, as z0=zt → 0, the fitting value ofA in both models
approaches the same asymptotical valueAasym ≈ 5. This and
the fact that γ ¼ 2 in this two models form supporting
evidence for the universality conjecture of [13].
Noting that the upper critical field strength Ecs in Fig. 3

are functions of z0, we cannot compare production rates of
different z0=zts at the same abstract field strength from this
figure. Such comparisons are useful for our understanding
physics behind the pair production but are missed in
previous works. To do so, we redraw this figure with the

horizontal axis E=Ec replaced by E=ðTFL2

z2t
Þ in Fig. 4, where

TFL2

z2t
takes equal values for all lines. By the standard

dictionary of AdS/CFT, the value of z0=zt or z0 − zt has
one to one correspondence with the mass of particle
members in the Schwinger pair. Especially, bigger z0=zt
means to smaller masses of the Schwinger pair. Figure 4
tells us that heavier Schwinger pairs are more difficult to be
produced than the lighter ones. This is obviously consistent
with our physic intuition. From Fig. 4, we can also see in
addition to the upper critical Ec, the low critical value Es in
the soft-wall model seems also larger than that in the hard-
wall model. That is, Schwinger pairs are more difficult to be
produced in the soft-wall model.
The P−E relation in both Figs. 3 and 4 can also be

regarded as a “current-field strength” relation when the field
strength exceeds the lower critical value Es. Physically, this
is because when the Schwinger pairs are produced, external

fields will drive them to form a conducting current. The
bigger the production rate is, the bigger the current will be.
Examining these two figures carefully, we easily note that
the linear part (P-E curves betweenP ¼ 0.2 andP ¼ 0.8) of
this relation could be rather precisely interpreted as a sort of
Ohm’s laws when the vacuum conducts

J½∝ P� − Js ¼ σðE − EsÞ: ð17Þ
In previous works [5,13], the lower critical field strengthEs’
determination is a controversy question. For example, when
the parameter z0=zt takes the same value 0.25, numeric
calculation and potential analysis could cause difference as
remarkable as

numeric∶
Es

Ec
¼ 0.40ðswÞ; 0.35ðhwÞ; ð18Þ

potential∶
Es

Ec
¼ 0.16ðswÞ; 0.06ðhwÞ: ð19Þ

However, through linear fittings of the P−E relations in the
middle part of Fig. 4, we find that almost all P−E lines with
different z0=zt intersect on one common point. See Fig. 5 for
references. The horizontal coordinate of this point seems to
provide a relatively objective lower critical value of the field
strength

fitting∶ Es ¼ 2.5ðswÞ; 1.0ðhwÞ � TFL2

z2t
for all

z0
zt
:

ð20Þ

After comparing with corresponding expressions following
from potential analysis [5]:

Es ¼ e � TFL2

z2t
ðswÞ; 1 � TFL2

z2t
ðhwÞ for all

z0
zt

ð21Þ

we can easily believe that the prediction of potential analysis
should be adopted while that of direct figure readingmethod
[13] should be given up.

FIG. 5. The linear fitting of P−E relations as P ∈ ½0.2; 0.8�. The vertical axis is the production rate P. The horizontal axis is

dimensionless field strength E=ðTFL2

z2t
Þ. The left-hand side is for the soft-wall model, in which all fitting lines intersect at

ðE;PÞ ¼ ð2.5;−1.2Þ. The right is for the hard-wall model, in which all fitting lines intersect at ð1;−1.2Þ.

TABLE I. Fitting parameters for the critical behavior (16).

z0=zt;fixed 0.7 0.6 0.4 0.2 0.1 0.03 0.005
γsoft-wall 2.02 2.02 2.02 2.04 2.07 2.02 2.01
γhard-wall 2.02 2.02 2.01 2.01 2.01 2.01 2.02
−Asoft-wall 35.97 19.62 9.29 6.64 6.69 5.61 5.39
−Ahard-wall 7.60 6.48 5.47 5.19 5.23 5.23 5.50
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IV. CONCLUSION AND DISCUSSION

We calculated the Schwinger pairs production in the
soft-wall model [19–21] of confining gauge theories.
Numerical results indicate that the production rate in
this model is qualitatively the same but quantitatively
different from that in the hard-wall models. Around the
upper critical field strength E ¼ Ec, the production rate
in both models asymptotes to P ∼ eAð1−E=EcÞγ with the
same critical exponent γ ¼ 2. However, as the parameter
z0=zt → 0, the coefficient A in the soft-wall approaches
the asymptotical value more quicker than that in the
hard-wall model.
Relative to quantitative comparing of Schwinger pairs

production rate in the soft- and hard-wall model, the
more important innovation point of this work is (i) by
redrawing the production rate vs. abstract field strength,
i.e., P − Eabs figure, we more directly reveal that the
more heavier Schwinger pairs are more difficult to be
produced than the lighter ones are, see Fig. 4 and
captions there for references; (ii) by linear fitting of
middle parts of the P−E relation in both models, we
find that all the fitting lines intersect at a common

point, the horizontal coordinate of which provides a
rather objective determination of the lower critical
field strength Es below which the pair production rate
could be reasonably considered zero. This forms a
very strong support for the prediction of potential
analysis [5].
As discussion, the following two points could be

prospected in the future. The first is, finding more
definite physical interpretation for the common point
of linear fitted P−E lines. The second is, Schwinger pairs
production in finite temperatures is also a valuable
research goal. As is known, directly introducing temper-
ature in a soliton background is difficult. However, such
doing in the soft-wall model is relatively simple and
directive.
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