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Lorentz symmetry violations can be described by an effective field theory framework that contains both
general relativity and the Standard Model of particle physics called the Standard Model extension (SME).
Recently, postfit analysis of Gravity Probe B and binary pulsars led to an upper limit at the 10−4 level on the
time-time coefficient sTT of the pure-gravity sector of the minimal SME. In this work, we derive the
observable of very long baseline interferometry (VLBI) in SME and then implement it into a real data
analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we
compare estimates of sTT and errors obtained with various analysis schemes, including global estimations
over several time spans, and with various Sun elongation cutoff angles, and by analysis of radio source
coordinate time series. We obtain a constraint on sTT ¼ ð−5� 8Þ × 10−5, directly fitted to the observations
and improving by a factor of 5 previous postfit analysis estimates.
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Historically, the measurement of the bending of light due
to the gravitational mass of the Sun is one of the most
important and precise tests of general relativity (GR).
Within the parametrized post-Newtonian (PPN) formalism
]1 ], this effect has been constrained by very long baseline
interferometry (VLBI) observations [2,3], space astrometry
with Hipparcos [4], and the Cassini radioscience experi-
ment [5], the latter being the most stringent constraint on
the PPN γ parameter.
The SME framework has been developed to be an

extensive formalism that allows a systematic description
of Lorentz symmetry violations in all sectors of physics,
including gravity [6–8]. If the motivations came first from
string theory [9,10], which can possibly produce Lorentz
violations, this statement also appears in loop quantum
gravity, noncommutative field theory, and others [11,12].
A hypothetical Lorentz violation in the gravitational

sector naturally leads to an expansion at the level of the
action [8,13], which in the minimal SME is written

Sgrav ¼
Z

d4x
ffiffiffiffiffiffi−gp

16πG
ðR − uRþ sμνRT

μν þ tαβμνCαβμνÞ

þ S0½sμν; tαβμν; gμν�; ð1Þ

with G the gravitational constant, g the determinant of the
space-time metric gμν, R the Ricci scalar, RT

μν the trace-free
Ricci tensor, Cαβμν the Weyl tensor, and u, sμν and tαβμν the
Lorentz violating fields. To avoid conflicts with the

underlying Riemann geometry, we assume spontaneous
symmetry breaking so the Lorentz violating coefficients
need to be considered as dynamical fields [13]. The last part
of the action S0 contains the dynamical terms governing the
evolution of the SME coefficients. Examples of matches
between fundamental theories and the SME framework can
be found in, e.g., Refs. [14–16]. In the linearized gravity
limit, the metric depends only on u and sμν, which are the
vacuum expectation values of u and sμν [13]. The coef-
ficient u is unobservable since it can be absorbed in a
rescaling of the gravitational constant. The so-obtained
post-Newtonian metric differs from the one introduced in
the PPN formalism [13]. In addition to Lorentz symmetry
violations in the pure-gravity sector, violations of Lorentz
symmetry can also arise from gravity-matter couplings
[17], but we do not consider them in this work. Hence SME
is an effective field theory, making possible confrontations
of fundamental theories and experiments. Indeed, over
the last decade, there have been several studies aimed at
finding an upper limit on SME coefficients by searching
possible signals in postfit residuals of experiments. This
was done for pure-gravity SME coefficients with lunar
laser ranging [18,19], atom interferometry [20], Gravity
Probe B [21], binary pulsars [22,23], Solar System plan-
etary motions [24,25], cosmic ray observations [26], or
even very recently, with gravitational wave detection [27].
However, all these works are postfit analyses based
originally on pure GR, and consequently, their approach
is not satisfactory in the sense that correlations in the
determination of SME coefficients and other global param-
eters (masses, position and velocity…) cannot be assessed.
Then, in the best case, a simple modeling of extra terms
containing SME coefficients is least-square fitted in the
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residuals of the experiment, which is an attempt to fit a
testing function in residual noise obtained from a pure GR
analysis. In addition, one has to highlight that the resulting
formal errors are overestimated, as we will demonstrate
later.
In a more correct approach, SME modeling must be

included in the complete data analysis, and its coefficients
must be determined as global parameters. This is exactly
what we present here in the case of VLBI observations.
VLBI is a geometric technique which measures the time

difference in the arrival of a radio wavefront emitted by a
distant radio source (typically a quasar), between at least
two Earth-based radio telescopes, with a precision of a
few picoseconds. VLBI tracks the orientation of the Earth
in an inertial reference frame provided by the very distant
quasars, determining accurate terrestrial and celestial refer-
ence frames.
Let us write the VLBI group delay in the International

Celestial Reference Frame (ICRF) as defined by the
International Astronomical Union (IAU) [28], with coor-
dinates ðxμÞ ¼ ðxT; xÞ, where xT ¼ ct, t being a time
coordinate, and x ¼ ðxIÞ is the spatial position. We con-
sider a quasar as the source with coordinates of the
emission event ðte; xeÞ. This signal is received by two
different VLBI stations at events ðt1; x1Þ and ðt2; x2Þ,
respectively. Using the same notations as in [29], we
introduce three units vectors,

k ¼ xe
jxej

; nij ≡ xij
rij

¼ xj − xi
jxijj

; and ni ¼
xi
jxij

: ð2Þ

We denote by tr − te ¼ T ðxe; te; xrÞ the coordinate
propagation time of a photon between an emission event
whose coordinates are given by ðte; xeÞ and a reception
event whose coordinates are given by ðtr; xrÞ. We simply
deduce the VLBI group delay Δτ from

Δτðxe; te; x1; x2Þ ¼ T ðxe; te; x2Þ − T ðxe; te; x1Þ: ð3Þ

For the observation of a quasar, we then use the limit
re ≡ jxej → ∞, and the VLBI time delay is given by

Δτðk; x1; x2Þ ¼ lim
re→∞

½T ðxe; te; x2Þ − T ðxe; te; x1Þ�: ð4Þ

The coordinate propagation time can be computed from
the linearized SME metric from [13,30], using the time
transfer functions formalism [31]. In SME, it has been
computed in [32] [see Eq. (24)] for the pure gravity sector
and is given by

T ðxe; te; xrÞ ¼
rer
c

þ GM
c3

ðsTJpJ
er − sJKnJerpK

erÞ
re − rr
rerr

þ 2
GM
c3

½1þ sTT − sTJnJer� ln
re − ner:xe
rr − ner:xr

þGM
c3

½sTJnJer þ sJKp̂J
erp̂K

er − sTT �
× ðnr:ner − ne:nerÞ; ð5Þ

where the terms a1 and a2 from [32] are taken as unity
(which corresponds to using the harmonic gauge, the one
used for VLBI data reduction) and where

per ¼ ner × ðxr × nerÞ ¼ xr − ðner:xrÞner
¼ ner × ðxe × nerÞ ¼ xe − ðner:xeÞner; ð6Þ

with p̂er ¼ per
jperj.

We can now give the expression of the group delay
between two VLBI stations. We use the assumptions that
the source is located at infinity (re → ∞). We need to
introduce (5) into (4), which leads to

ΔτðgravÞðk; x1; x2Þ ¼ 2
GM
c3

½1þ sTT þ sTJkJ� ln r1 þ k:x1
r2 þ k:x2

þGM
c3

½sTT − sJKkJkK�ðn2:k − n1:kÞ

þGM
c3

½sTJ þ sJKkK�ðnJ2 − nJ1Þ

þGM
c3

½sJKp̂J
1p̂

K
1 ðn1:k − 1Þ

− sJKp̂J
2p̂

K
2 ðn2:k − 1Þ�; ð7Þ

where the subscript (grav) refers to the gravitational part of
the group delay and where

pi ¼ k × ðxi × kÞ ¼ xi − ðk:xiÞk; ð8Þ

and p̂i ¼ pi
jpij. Moreover, a simplified formula can be used

for practical utilisation considering a typical accuracy
of a VLBI observation of the order of 10 ps and that
GM=c3 ∼ 5 × 10−6 s. Since the coefficients sTJ are already
constrained and are smaller than ∼10−7 [25,33], all terms
GM=c3sTJ are too small to be detected and can be
neglected. The coefficients sIJ with I ≠ J are also con-
strained by previous studies and are smaller than 10−10

[22,25,33]. Therefore, we can also neglect terms that are
proportional to GM=c3sIJ with I ≠ J. Finally, since we
know that jsXX − sYY j < 10−10 and jsXX þ sYY − 2sZZj <
10−10 [33], we can safely say that at the level of accuracy
required sXX ≈ sYY ≈ sZZ in Eq. (7). Under these assump-
tions and using the fact that sμν is traceless, the VLBI group
delay can be written
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ΔτðgravÞ ¼ 2
GM
c3

ð1þ sTTÞ ln r1 þ k:x1
r2 þ k:x2

þ 2

3

GM
c3

sTTðn2:k − n1:kÞ: ð9Þ

It is important to notice that the bare GM parameter
appearing in the post-Newtonian metric does not corre-
spond to the observed gGM parameter measured with orbital
dynamics (using planetary motion for the Sun). There
is a rescaling between the two parameters given by gGM ¼
GMð1þ 5=3sTTÞ (see Sec. IVof [21] or [13,25]). Using the
observed mass parameter and assuming sTT ≪ 1, one gets

ΔτðgravÞ ¼ 2
gGM
c3

�
1 −

2

3
sTT

�
ln
r1 þ k:x1
r2 þ k:x2

þ 2

3

gGM
c3

sTTðn2:k − n1:kÞ: ð10Þ

This last formula is the one used to fit the sTT coefficient
using VLBI observations.
From August 1979 to mid-2015, almost 6000 VLBI

24-hr sessions (correspondingly, 10 million delays) have
been scheduled for the primary goal of monitoring the
Earth’s rotation and determining reference frames. The
International VLBI Service for Geodesy and Astrometry
(IVS) [34]1 imposed a minimal distance to the Sun of 15°
after 2002 in order to avoid potential degradation of
geodetic products due to radio wave crossing of the
Solar corona. This limit was recently removed (Fig. 1).
In our analysis, all VLBI delays were corrected from

delay due to the radio wave crossing of dispersive regions
in the signal propagation path in a preliminary step that
made use of 2 GHz and 8 GHz recordings. Then, we only
use the 8 GHz delays to fit the parameters listed hereafter.
We use the CALC/SOLVE geodetic VLBI analysis soft-
ware developed at NASA Goddard Space Flight Center, in
which the astrometric modeling of VLBI time delay is
compliant with the latest standards of the International
Earth Rotation and Reference Systems Service (IERS) [36].
We added the partial derivative of the VLBI delay with
respect to sTT from Eq. (10) to the software package using
the USERPART module of CALC/SOLVE.
As preliminary work, we first performed a postfit

analysis, of 8 million delays, fitting sTT from Eq. (10) in
the residual noise after a previous data reduction in pure
GR. We obtained sTT ¼ð−0.6�2.1Þ×10−8 with χ2 ¼ 0.7.
It improves previous postfit analyses by at least 3 orders of
magnitude.
Then we performed a complete analysis including the

SME time delay directly in the data reduction, therefore
directly fitting Eq. (10) simultaneously with all VLBI

standard parameters (positions of stations, Earth rotation
parameters,…) to real data. We ran a first solution in which
we estimated sTT , all source and station coordinates, and all
five Earth orientation parameters once per session. A priori
zenith delays were determined from local pressure values
[37], which were then mapped to the elevation of the
observation using the Vienna mapping function [38]. Wet
zenith delays and clock drifts were estimated at intervals
of 10 and 30 minutes, respectively. Troposphere gradients
were estimated at intervals of 6 hours. Suitable loose
constraints were applied to source and station coordinates
to avoid global rotation of the celestial frame and global
rotation and translation of the terrestrial frame. Sites
undergoing strong nonlinear motions due to, e.g., post-
seismic relaxation were excluded from the constraint. This
preliminary solution allowed us to identify a half dozen
sessions with abnormally high postfit rms (generally higher
than 1 ns). The distribution sTT scaled by its error also
reveals a few points clearly lying outside the distribution
(see Fig. 2). These data correspond to the 26 sessions of the
CONT08 campaign (August 2008), representing 1.1% of
the data set. Without the CONT08 sessions, we obtained
sTT ¼ ð−5� 11Þ × 10−5. Keeping the CONT08 sessions
moves the mean value to 7 × 10−5.
A spectral analysis of the time series revealed no

significant peak. We computed sTT over 1000 random
subsets containing three-quarters of the 5895 sessions to
check the stability of the mean value. Note that sTT stays
around 0 within 8 × 10−5. We also addressed the sensitivity
to Solar activity. To do so, we used the Sun spot number
(SSN) monthly data to separate VLBI sessions into two
groups: Each group contains sessions occurring when the
SSN is higher or lower than its median value computed over
our observational time span, that is, 2947 sessions in each
group. We obtained sTT ¼ ð3� 16Þ × 10−5 for the high
activity periods and sTT ¼ ð−12� 15Þ × 10−5 for the low
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FIG. 1. Observational history of the sources at less than 20° to
the Sun (blue dots) and Sun spot number (red curve, rescaled to fit
in the plot [35]).

1The IVS operates regular geodetic VLBI sessions since 1998.
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activity periods, giving no clue about the influence of Solar
activity.
We turned to a global solution in which we estimated

sTT as a global parameter together with radio source
coordinates. Station coordinates were left as session

parameters. Constraints remain unchanged. We obtained
sTT ¼ ð−5� 8Þ × 10−5, with a global postfit rms of 28 ps
and a χ2 per degree of freedom of 1.15. Correlations
between radio source coordinates and sTT remain lower
than 0.02. The global estimate is consistent with the mean
value obtained with the session-wise solution with a
slightly lower error.
In this paper, we have presented a test of Lorentz

symmetry performed using 36 years of VLBI data.
Contrary to previous studies of Lorentz symmetry in the
gravity sector, our result is not based on a postfit analysis
on residuals obtained after a GR analysis but rather on a full
SME modeling in the VLBI data reduction process. Our
analysis leads to a constraint on the sTT coefficient at the
level of 10−5. This coefficient is particularly important
since it controls the speed of gravity in the SME framework
[27]. Our result improves the best current constraint on this
coefficient [23] by a factor of 5. We have also performed a
postfit analysis in the residual noise coming from a GR
data reduction. This leads to the estimate sTT ¼ ð−0.6�
2.1Þ × 10−8, showing that postfit analysis leads to over-
estimating the constraint on sTT . In the future, the accu-
mulation of VLBI data in the framework of the permanent
geodetic monitoring program lets us expect improvements
of this constraint as well as extended tests, for example,
in the context of Einstein-Aether theory parametrized by
another framework (see, e.g., Ref. [39]).
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