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In this work, we study the boson stars and boson shells in a theory involving massive complex scalar
fields coupled to the U(1) gauge field and gravity in a conical potential in the presence of a cosmological
constant Λwhich we treat as a free parameter taking positive and negative values and thereby allowing us to
study the theory in the de Sitter and anti-de Sitter spaces respectively. Boson stars are found to come in two
types, having either ball-like or shell-like charge density. We have studied the properties of these solutions
and have also determined their domains of existence for some specific values of the parameters of the
theory. Similar solutions have also been obtained by Kleihaus et al. in a theory involving massless complex
scalar fields coupled to the U(1) gauge field and gravity in a conical potential in the absence of a
cosmological constant Λ.
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I. INTRODUCTION

Boson stars and boson shells representing the localized
self-gravitating solutions were introduced long ago [1–3],
and they have been studied very widely in the literature
[4–28]. Such theories are being considered in the presence
of positive [14–17] as well as negative [15,17–21] values of
the cosmological constant Λ. The theories with positive
values of Λ [corresponding to the de Sitter (dS) space] are
relevant from the observational point of view as they
describe a more realistic description of the compact stars
in the Universe since all the observations seem to indicate
the existence of a positive cosmological constant. Such
theories are also being used to model the dark energy of the
Universe. However, the theories with negative values of Λ
[corresponding to the anti-de Sitter (AdS) space] are
meaningful in the context of AdS=CFT correspondence
[29–31].
In Ref. [16], we studied the boson stars and boson shells

in a theory of complex scalar field coupled to the Uð1Þ
gauge field Aμ and the gravity in the presence of a positive
cosmological constant Λ (i.e. in the dS space), and in
Ref. [15], we studied the boson stars in a theory of complex
scalar field coupled to the Uð1Þ gauge field Aμ and the
gravity in the presence of a positive as well as negative
cosmological constant Λ, allowing us to study the theory in
the dS as well as in the AdS space.
In the present work, we study not only the boson stars

but also the boson shells in this theory of complex scalar
field coupled to theUð1Þ gauge field Aμ and the gravity and

a cosmological constant Λ, which we treat as a free
parameter and which takes positive as well as negative
values, thereby allowing us to study the theory in the dS as
well as in the AdS space. As in Ref. [15], for our present
investigations, also we study the theory in the presence of a
potential: VðjΦjÞ ≔ ðm2jΦj2 þ λjΦjÞ (with m and λ being
constant parameters). We investigate the properties of the
solutions of this theory and determine their domains of
existence for some specific values of the parameters of the
theory.
Similar solutions have also been obtained by Kleihaus

et al. in a theory involving massless complex scalar fields
coupled to the U(1) gauge field and gravity in a conical
potential in the absence of a cosmological constant Λ
[10,11]. They have obtained explicitly the domain of
existence of compact boson stars and boson shells. They
have also considered the boson shells, which do not have
an empty inner region r < ri, but instead they harbor a
Schwarzschild black hole or a Reissner-Nordström black
hole in the region r < ri [10,11]. Boson stars have also
been studied in the presence of polynomial potentials
[22–25].
In the present work, we construct the boson star and

boson shell solutions of this theory numerically, and we
study their properties, where we assume the interior of the
shells to be empty space (dS-like or AdS-like). The action
and the equations of motion are given in Sec. II. In Sec. III,
the equations of motion are reexpressed in terms of the
rescaled variables. The boundary conditions and the
global charges are considered in Sec. IV. The numerical
solutions for boson stars and boson shells are studied in
Sec. V, and finally the summary and conclusions are given
in Sec. VI.
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II. ACTION, ANSÄTZE, AND EQUATIONS
OF MOTION

The action of the theory under consideration reads

S ¼
Z �

R − 2Λ
16πG

þ LM

� ffiffiffiffiffiffi
−g

p
d4x;

LM ¼ −
1

4
FμνFμν − ðDμΦÞ�ðDμΦÞ − VðjΦjÞ;

DμΦ ¼ ð∂μΦþ ieAμΦÞ; Fμν ¼ ð∂μAν − ∂νAμÞ: ð1Þ

Here, R is the Ricci curvature scalar, G is Newton’s
gravitational constant, and Λ is the cosmological constant.
Also, g ¼ detðgμνÞ where gμν is the metric tensor, and the
asterisk in the above equation denotes complex conjuga-
tion. Using the variational principle, equations of motion
are obtained as

Gμν ≡ Rμν −
1

2
gμνR ¼ 8πGTμν − Λgμν;

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ −ie

ffiffiffiffiffiffi
−g

p ½Φ�ðDνΦÞ − ΦðDνΦÞ��;

Dμð
ffiffiffiffiffiffi
−g

p
DμΦÞ ¼ 2m2 ffiffiffiffiffiffi

−g
p

Φþ λ

2

ffiffiffiffiffiffi
−g

p Φ
jΦj ;

½Dμð
ffiffiffiffiffiffi
−g

p
DμΦÞ�� ¼ 2m2 ffiffiffiffiffiffi

−g
p

Φ� þ λ

2

ffiffiffiffiffiffi
−g

p Φ�

jΦj : ð2Þ

The energy-momentum tensor Tμν is given by

Tμν ¼
��

FμαFνβgαβ −
1

4
gμνFαβFαβ

�

þ ðDμΦÞ�ðDνΦÞ þ ðDμΦÞðDνΦÞ�

− gμνððDαΦÞ�ðDβΦÞÞgαβ − gμνVðjΦjÞ
�
: ð3Þ

To construct spherically symmetric solutions, we adopt a
static spherically symmetric metric with Schwarzschild-
like coordinates [10,11]:

ds2 ¼ ½−A2Ndt2 þ N−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ�: ð4Þ

This leads to the components of the Einstein tensor (Gμν),

Gt
t ¼

�
−½rð1 − NÞ�0

r2

�
; Gr

r ¼
�
2rA0N − A½rð1 − NÞ�0

Ar2

�
;

Gθ
θ ¼

�
2r½rA0N�0 þ ½Ar2N0�0

2Ar2

�
¼ Gφ

φ: ð5Þ

Here, the arguments of the functions AðrÞ and NðrÞ have
been suppressed. For solutions with vanishing magnetic
field, the Ansätze for the matter fields have the form [10,11]

ΦðxμÞ ¼ ϕðrÞeiωt; AμðxμÞdxμ ¼ AtðrÞdt: ð6Þ

With these Ansätze, the Einstein equations

Gt
t ¼ 8πGTt

t − Λ; Gr
r ¼ 8πGTr

r − Λ;

Gθ
θ ¼ 8πGTθ

θ − Λ; Gφ
φ ¼ 8πGTφ

φ − Λ ð7Þ

with the arguments of AðrÞ, NðrÞ, ϕðrÞ, and AtðrÞ being
suppressed, reduce to

−1
r2

½rð1 − NÞ�0 ¼ −8πG
2A2Ne2

�
N½ðωþ eAtÞ0�2 þ ðωþ eAtÞ2ð

ffiffiffi
2

p
eϕÞ2;

þ A2N2ð
ffiffiffi
2

p
eϕ0Þ2 þ A2N

�
m2ð

ffiffiffi
2

p
eϕÞ2 þ 2eλffiffiffi

2
p ð

ffiffiffi
2

p
eϕÞ

��
− Λ ð8Þ

2rA0N − A½rð1 − NÞ�0
Ar2

¼ 8πG
2A2Ne2

�
−N½ðωþ eAtÞ0�2 þ ðωþ eAtÞ2ð

ffiffiffi
2

p
eϕÞ2;

þ A2N2ð
ffiffiffi
2

p
eϕ0Þ2 − A2N

�
m2ð

ffiffiffi
2

p
eϕÞ2 þ 2eλffiffiffi

2
p ð

ffiffiffi
2

p
eϕÞ

��
− Λ ð9Þ

2r½rA0N�0 þ ½Ar2N0�0
2Ar2

¼ 8πG
2A2Ne2

�
N½ðωþ eAtÞ0�2 þ ðωþ eAtÞ2ð

ffiffiffi
2

p
eϕÞ2;

− A2N2ð
ffiffiffi
2

p
eϕ0Þ2 − A2N

�
m2ð

ffiffiffi
2

p
eϕÞ2 þ 2eλffiffiffi

2
p ð

ffiffiffi
2

p
eϕÞ

��
− Λ: ð10Þ
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Here, the prime denotes differentiation with respect to r,
and the equation Gφ

φ ¼ 8πGTφ
φ − Λ also leads to an

equation identical with Eq. (10).

III. EQUATIONS OF MOTION IN TERMS
OF RESCALED VARIABLES

We redefine ϕðrÞ and AtðrÞ as

hðrÞ ¼
ffiffiffi
2

p
eϕðrÞ
m

; bðrÞ ¼ ωþ eAtðrÞ
m

: ð11Þ

We introduce new dimensionless constant parameters:

α ¼ 4πGm2

e2
; ~λ ¼ λeffiffiffi

2
p

m3
; ~Λ ¼ Λ

m2
: ð12Þ

Introducing a dimensionless coordinate r̂ defined by
r̂ ¼ mr (implying d

dr ¼ m d
dr̂), Eq. (11) reads as

hðr̂Þ ¼
ffiffiffi
2

p
eϕðr̂Þ
m

; bðr̂Þ ¼ ωþ eAtðr̂Þ
m

: ð13Þ

Equations of motion in terms of hðr̂Þ and bðr̂Þ [where the
primes denote differentiation with respect to r̂] read

ðANr̂2h0Þ0 ¼ r̂2

AN
½A2Nðhþ ~λsignðhÞÞ − b2h�; ð14Þ
�
r̂2b0

A

�0
¼

�
r̂2h2b
AN

�
; ð15Þ

where

signðhÞ ¼
��1 h > 0; h < 0

0 h ¼ 0:

With the above Ansätze (with the primes denoting the
differentiation with respect to r̂), we obtain

1

r̂2
½r̂ð1 − NÞ�0 ¼

�
~Λþ α

A2N
ðb2h2 þ Nb02 þ A2N2h02 þ A2Nðh2 þ 2~λhÞÞ

�
; ð16aÞ

2r̂A0N − A½r̂ð1 − NÞ�0
Ar̂2

¼
�
− ~Λþ α

A2N
ðb2h2 − Nb02 þ A2N2h02 − A2Nðh2 þ 2~λhÞÞ; ð16bÞ

2r½rA0N�0 þ ½Ar2N0�0
2Ar2

¼
�
− ~Λþ α

A2N
ðb2h2 þ Nb02 − A2N2h02 − A2Nðh2 þ 2~λhÞÞ

�
; ð16cÞ

h00 ¼
�
A2Nðhþ ~λsignðhÞÞ − b2h

A2N2
−
2h0

r̂
− h0

�
A0

A
N0

N

��
; ð16dÞ

b00 ¼
�
bh2

N
þ b0A0

A
−
2b0

r̂

�
: ð16eÞ

Simplifying Eqs. (16a) and (16b) for A0 and N0 and also
using Eqs. (16d) and (16e), we get

h00 ¼
�
αr̂h0

A2N
ðA2h2 þ 2A2h~λþ b02Þ − h0ð1þ N − ~Λr̂2Þ

r̂N

þ A2Nhþ A2N ~λsignðhÞ − b2h
A2N2

�
; ð17aÞ

b00 ¼
�

α

A2N2
r̂b0ðA2N2h02 þ b2h2Þ − 2b0

r̂
þ bh2

N

�
; ð17bÞ

N0 ¼
�
1 − N − ~Λr̂2

r̂
−

αr̂
A2N

ðA2N2h02 þ Nb02 þ b2h2

þ A2Nh2 þ 2A2Nh~λÞ
�
; ð17cÞ

A0 ¼
�
αr̂
AN2

ðA2N2h02 þ b2h2Þ
�
: ð17dÞ

To solve Eqs. (17a), (17b), (17c), and (17d) numerically, we
introduce a new coordinate x as follows [10,11],

r̂ ¼ r̂i þ xðr̂o − r̂iÞ; 0 ≤ x ≤ 1; ð18Þ

implying that r̂ ¼ r̂i at x ¼ 0 and r̂ ¼ r̂o at x ¼ 1. Thus, the
inner and outer boundaries of the shell are always at x ¼ 0
and x ¼ 1 respectively, while their radii r̂i and r̂o become
free parameters.

IV. BOUNDARY CONDITIONS
AND GLOBAL CHARGES

For the metric function AðrÞ, we choose the boundary
condition
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Aðr̂oÞ ¼ 1; ð19Þ

where ro is the outer radius of the shell. For constructing
globally regular ball-like boson star solutions, we choose

Nð0Þ ¼ 1; b0ð0Þ ¼ 0; h0ð0Þ ¼ 0;

hðr̂oÞ ¼ 0; h0ðr̂oÞ ¼ 0: ð20Þ

For the boson stars, for the positive ~Λ, we match the
exterior region r̂ > r̂o with the Reissner-Nordström de
Sitter solutions, and for the negative ~Λ, we match with the
Reissner-Nodrstroöm anti-de Sitter solutions.
For globally regular boson shell solutions with empty

space-time in the interior of the shells, r < ri, we choose
the boundary conditions

Nðr̂iÞ ¼ 1 −
Λ
3
r̂2i ; b0ðr̂iÞ ¼ 0; hðr̂iÞ ¼ 0;

h0ðr̂iÞ ¼ 0; hðr̂oÞ ¼ 0; h0ðr̂oÞ ¼ 0; ð21Þ

where r̂i and r̂o are the inner and outer radii of the shell.
For the boson shells, for the positive ~Λ, we match the

interior region r̂ < r̂i with the de Sitter vacuum solution
and the exterior region r̂ > r̂o with the Reissner-Nordström
de Sitter solutions. However, for the negative ~Λ, we match
the interior region r̂ < r̂i with the anti-de Sitter vacuum
solution and the exterior region r̂ > r̂o with the Reissner-
Nordström anti-de Sitter solutions.
The conserved Noether current is given by

jμ ¼ −iefΦðDμΦÞ� − Φ�ðDμΦÞg; Dμjμ ¼ 0: ð22Þ
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FIG. 1. Figures (a) to (c) depict the phase diagrams of the theory showing respectively the plots of hð0Þ vs bð0Þ, Að0Þ vs bð0Þ, and Að0Þ
vs hð0Þ [where hð0Þ, bð0Þ, and Að0Þ denote the values of these fields at the center of the star], and Fig. (d) depicts a plot of r̂o vs bð0Þ.
Also, all these four figures show the plots for different values of ~Λ ranging from ~Λ ¼ −0.020 to ~Λ ¼ þ1.000 (covering the AdS as well
as dS spaces). The figures shown in the insets in Figs. (a)–(d) represent particular sections of these figures with better precision.
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The charge Qsh of a boson shell is given by

Qsh ¼ −
1

4π

Z
r̂0

r̂i

jt
ffiffiffiffiffiffi
−g

p
dr̂dθdϕ; jt ¼ −

h2b
A2N

:

For a boson star, the integration interval starts from zero.
For all the gravitating solutions, we obtain the mass

parameter M (in the units employed):

M ¼
�
1 − Nðr̂oÞ þ

αQ2

r̂2o
−
Λ
3
r̂2o

�
r̂o
2
: ð23Þ

V. NUMERICAL SOLUTIONS FOR BOSON
STARS AND BOSON SHELLS

In this section, we consider the numerical solutions for
the boson stars and boson shells for the positive values of ~Λ

(corresponding to the dS space) as well as for the negative
values of ~Λ (corresponding to the AdS space).
For the present work, we study the numerical solutions of

Eqs. (17a), (17b), (17c), and (17d) [by introducing a
coordinate x defined by Eq. (18)] under the boundary
conditions given by Eqs. (19) and (20) for boson stars
and under Eqs. (19) and (20) for boson shells, and we
determine their domain of existence for some specific values
of the parameters of the theory. We wish to mention that for
our numerical investigations we have used the well-known
Newton-Raphson scheme with the adaptive step-size
Runge-Kutta method of order 4.
Our theory has three parameters, α, ~λ, and ~Λ, and we

study the theory by keeping α and ~λ fixed (namely
α ¼ 0.2 and ~λ ¼ 1.0), and we study the theory of boson
stars and boson shells for different values of ~Λ giving it
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FIG. 2. Figures (a) and (b) depict the phase diagrams of the theory showing respectively the plots of hð0Þ vs bð0Þ and Að0Þ vs bð0Þ
[where hð0Þ, bð0Þ, and Að0Þ denote the values of these fields at the center of the star]. Figure (c) depicts the phase diagram of the theory
involving Nðr̂oÞ and bð0Þ [where Nðr̂oÞ denotes the value of the field at the outer radius of the star], and Fig. (d) depicts a plot of r̂o vs
bð0Þ. Also, all these four figures show the plots for different values of ~Λ ranging from ~Λ ¼ −0.020 to ~Λ ¼ þ1.000 (covering the AdS as
well as dS spaces). The figures shown in the insets in Figs. (a)–(d) represent particular sections of these figures with better precision.
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positive as well as negative values, and we discuss the
corresponding physics. In the first place, we discuss in
details our results for the case of boson stars. For this,

we study and discuss the phase diagrams of our theory

for boson stars as shown in Figs 1(a), 1(b), and 1(c). In
Fig. 1(a), we study it for the fields hð0Þ and bð0Þ; in
Fig. 1(b), we study it for the fields Að0Þ and bð0Þ; and
in Fig. 1(c), we study it for the fields Að0Þ and hð0Þ
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FIG. 3. Properties of gravitating boson stars: Figs. (a), (b), (c), (d), (e), and (f) show the 3D plot (with six different viewing angles) of
the scalar field h and the U(1) gauge field b vs the metric field A at the center of the boson star for several values of the cosmological
constant ~Λ. For the viewing angles denoted by ðθ;ϕÞ, we use the convention such that θ denotes the angle of rotation about the ox axis in
the anticlockwise direction, and it can take values between 0 to π, and ϕ is the angle of rotation along the oz0 axis also in the
anticlockwise direction, and it can take values between 0 to 2π. Figures (a)–(f) correspond respectively to the values ðθ;ϕÞ≡ ð60; 60Þ,
(60,170), (60,240), (130,30), (130,70), and (130,350).
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[where hð0Þ, bð0Þ, and Að0Þ denote the values of these
fields at the center of the star]. Figure 1(d) depicts the
plot of r̂o vs bð0Þ for different values of ~Λ ranging
from ~Λ ¼ −0.020 to ~Λ ¼ þ1.000 (covering the AdS
as well as dS spaces). Also, the figures shown in the

insets in Fig. 1(a)–1(d) represent particular sections of
these figures with better precision. The asterisks shown in
Figs. 1(a)–1(d) corresponding to hð0Þ ¼ 0 represent
the transition points from the boson stars to the boson
shells.
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FIG. 4. Properties of gravitating boson stars: Figs. (a), (b), (c), (d), (e), and (f) show the 3D plot [with six different viewing angles) of
the scalar field h and the U(1) gauge field b at the center of the boson star vs the radius of the star r̂o for several values of the
cosmological constant ~Λ]. For the viewing angles denoted by ðθ;ϕÞ, we use the convention such that θ denotes the angle of rotation
about the ox axis in the counterclockwise direction, and it can take values between zero and π, and ϕ is the angle of rotation along the oz0
axis also in the counterclockwise direction, and it can take values between 0 to 2π. Figures (a)–(f) correspond respectively to the values
ðθ;ϕÞ≡ ð60; 100Þ, (112,17), (60,200), (35,245), (140,60), and (130,30).
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The phase diagram of the theory involving the fields
Nðr̂oÞ and bð0Þ is shown in Fig. 2(c) [where Nðr̂oÞ denotes
the value of the field at the outer radius of the star and bð0Þ
denotes the value of the gauge field at the center of the
boson star] for different values of ~Λ ranging from ~Λ ¼
−0.020 to ~Λ ¼ þ1.000 (covering the AdS as well as dS
spaces).
Our present studies involve investigations corresponding

to several properties of the boson stars and boson shells as
explained in details in this section. In the case of boson
stars, we study not only the phase diagrams of the theory
for the scalar vs vector fields at the center of the star (as
studied in the work of Ref. [15]) but also the phase
diagrams of this theory for (i) the case of the metric field
Aðr̂Þ at the center of the boson star [i.e. Að0Þ] vs the vector
field bðr̂Þ at the center of the star [i.e. bð0Þ] [depicted in
Fig 1(b)]; for (ii) the case of the metric field Aðr̂Þ at the
center of the boson star [i.e. Að0Þ] vs the scalar field hðr̂Þ at
the center of the star [i.e. hð0Þ] [depicted in Fig 1(c)]; and
for (iii) the case of the phase diagram of the theory

involving the metric field Nðr̂Þ at the outer radius of the
boson star [i.e. Nðr̂oÞ] vs bð0Þ [depicted in Fig 2(c)]. Also,
all these studies are done for different values of ~Λ ranging
from ~Λ ¼ −0.020 to ~Λ ¼ þ1.000 covering the AdS and dS
spaces.
As discussed in details in Ref. [15], some interesting

phenomena occur hear near some specific values of ~Λwhen
the system is seen to have four bifurcation points B1, B2,
B3, and B4 which correspond to four different values of the
cosmological constant ~Λ: ~Λc1 ≃ 0.22521, ~Λc2 ≃ 0.52605,
~Λc3 ≃ 0.54076, and ~Λc4 ≃ 0.541250 respectively. The

theory is seen to have rich physics in the domain ~Λ ¼
þ0.500 to ~Λ≃þ0.62.
For a proper understanding of the richness of the physics

observed in our phase diagrams obtained in the present
investigations, it is important to recapitulate some of the
related important points from our earlier investigation
(cf. the work of Ref. [15]). In fact, an understanding of
the physics contents of the phase diagrams depicted in
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FIG. 5. Figures (a)–(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ −0.200 (which corresponds to the AdS space).
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FIG. 6. Figures (a) and (b) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.000.
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FIG. 7. Figures (a) to (d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.100 (which corresponds to the dS space).
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Figs. 1(b) and 1(c) necessitates a proper recount of the
physics contents of the phase diagram depicted in Fig. 1(a).
In Fig. 1(a), we have divided our phase diagram into four

regions denoted by IA, IB, IIA, and IIB in the vicinity of
B1. The asterisks seen in Fig. 1(a) coinciding with the axis
bð0Þ [i.e. corresponding to hð0Þ ¼ 0] represent the tran-
sition points from the boson stars to boson shells.
The regions IA, IB, and IIA do not have any bifurcation

points; however, the region IIB is seen to contain rich
physics evidenced by the occurrence of more bifurcation
points in this region. For better details, region IIB is also
plotted in Fig. 1(b). Region IIB is further divided into
regions IIB1, IIB2, and IIB3 in the vicinity of B2 as seen in
Fig. 1(a).
Region IIB3 is seen to have further bifurcation point B3.

In the vicinity of B3, we further subdivide the phase
diagram into regions IIB3a, IIB3b, and IIB3c. Region
IIB3b is seen to have closed loops, and the behavior of the
phase diagram in this region is akin to that of region IIB2.
Also, the figures shown in the inset represent part of the
diagrams with better precision.

Region IIB3c is again seen to have a further bifurcation
point B4, and in the vicinity of B4, we again subdivide the
phase diagram in to regions IIB3c1, IIB3c2, and IIB3c3.
Region IIB3c2 is again seen to have closed loops, and the
behavior of the phase diagram in this region is akin to that
of regions IIB2 and IIB3b.
Regions IA and IB could be divided into two subregions

corresponding to positive and negative values of ~Λ,
implying the dS and AdS regions corresponding to positive

and negative values of ~Λ. In region IA, as we change the

value of ~Λ in the AdS region from ~Λ ¼ 0.000 to
~Λ ¼ −0.020, we observe a continuous deformation of
the curves in the phase diagram. In region IB, as we

change the value of ~Λ in the domain ~Λ ¼ 0.000 to
~Λ≃ −0.02, the theory is seen to have solutions for the
boson stars only, without having transition points from
boson stars to boson shells, and the curves corresponding to
the solutions disappear in the phase diagram of the theory

for the values ~Λ≲ −0.02 .
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FIG. 8. Figures (a) to (d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.400 (which corresponds to the dS space).
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As we change the value of ~Λ in the dS region from ~Λ ¼
0.000 to ~Λ ¼ 1.000, we observe a lot of new rich physics.
While going from ~Λ ¼ 0.000 to somecritical value ~Λ ¼ ~Λc1 ,
we observe that the solutions exist in two separate domains,
IA and IB (as seen in Fig. 1). However, as we increase ~Λ

beyond ~Λ ¼ ~Λc1 , the solutions of the theory are seen to exist
in regions IIA and IIB (instead of regions IA and IB).
As we increase the value of ~Λ from one critical value

~Λ ¼ ~Λc1 to another critical value ~Λ ¼ ~Λc2 , we notice that
region IIA in the phase diagram shows a continuous
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FIG. 9. Figures (a) to (f) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.540 (which corresponds to the dS space).
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deformation of the curves, and region IIB is seen to have its
own rich physics as explained above.
As we increase ~Λ beyond ~Λc2 , we observe that in region

IIA there is again a continuous deformation of the curves
all the way up to ~Λ ¼ 1.000. The occurrence of more
bifurcation points in region IIB and the associated nature of
the relevant phase trajectories in the subregions of domain

IIB of the phase diagram of the theory [cf. Figs. 1(a)
and 1(b)] has been discussed in details in the foregoing
(for many further details of our earlier work, we refer
to Ref. [15]).
We wish to emphasize here that a proper understanding

of the richness of the physics contents of the theory like
the occurrence of multiple bifurcation points in the phase
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FIG. 10. Figures (a) to (f) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.541 (which corresponds to the dS space).
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diagram shown in Fig. 1(a) is very crucial for several
reasons. This leads not only to a proper understanding of
the physics contents of the 2D phase diagrams shown in
Figs. 1(b) and 1(c) on the lines parallel to those of Fig. 1(a),
but it also leads to a proper understanding of the physics
contents of the 3D phase diagrams shown in Figs. 3. This,
in fact, has necessitated an appropriate mentioning here of
some of the important discussion given in our earlier work
(cf. Ref. [15]).
A plot of the vector field at the center of the star bð0Þ vs

the radius r̂o of the boson star is depicted in Fig. 1(d). As
before, the point B1 corresponds to the bifurcation point,
and the entire region depicted in Fig. 1(d) is divided into
four regions, IA, IB and IIA, IIB, in the vicinity of the
bifurcation point B1. The asterisks shown in Fig. 1(d)
represent the transition points from the boson stars to the
boson shells. The spiral behavior of the solutions is visible
in regions IA and IIB.
Figures 2(a) and 2(b) represent the simplified versions of

Figs. 1(a) and 1(b) and depict the phase diagrams of the
theory showing respectively the plots of hð0Þ vs bð0Þ and

Að0Þ vs bð0Þ [where hð0Þ, bð0Þ, and Að0Þ denote the values
of these fields at the center of the star]. Figure 2(c) depicts
the phase diagram of the theory involving Nðr̂oÞ and bð0Þ
[where Nðr̂oÞ denotes the value of the field at the outer
radius of the star]. Figure 2(d) again represents a simplified
version of Fig. 1(d) and depicts a plot of r̂o vs bð0Þ. We
wish to emphasize here that Figs. 2 show the plots for eight
different values of ~Λ ranging from ~Λ ¼ −0.020 to ~Λ ¼
þ1.000 (covering the AdS as well as dS spaces). It is
to be noted here that Figs. 2 are being plotted only for
eight different values of ~Λ, whereas Figs. 1 are being
plotted for 17 different values of ~Λ. In this sense, Figs. 2(a),
2(b), and 2(d) represent the simplified versions of
Figs. 1(a), 1(b), and 1(d). The figures shown in the insets
in Figs. 2(a)–2(d) represent particular sections of these
figures with better precision.
We have studied the properties of gravitating boson stars

as depicted in Figs. 3(a)–3(f) showing the 3D plots
involving the scalar field h and the U(1) gauge field b
and the metric field A at the center of the boson star for
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FIG. 11. Figures (a) to (d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for shown values of ~Λ (all of which correspond to the dS
space). Also, these figures correspond to the transition points of the theory from the bosons stars to the boson shells.
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several values of the cosmological constant ~Λ with six
different viewing angles. For the viewing angles denoted by
ðθ;ϕÞ, we use the convention such that θ denotes the angle
of rotation about the ox axis in the counterclockwise
direction and can take values between zero and π, and ϕ
is the angle of rotation along the oz0 axis also in the
counterclockwise direction and can take values between
zero and 2π. Figures 3(a)–3(f) correspond respectively to
the values ðθ;ϕÞ≡ ð60; 60Þ; ð60; 170Þ, (60,240), (130,30),
(130,70), and (130,350).
We have also studied the properties of gravitating boson

stars as depicted in Figs. 4(a)–4(f) showing the 3D plot of
the scalar field h and the U(1) gauge field b at the center of
the boson star and the radius of the star r̂o for several values
of the cosmological constant ~Λ (with six different viewing
angles). Figures 4(a)–4(f) correspond respectively to the
values ðθ;ϕÞ≡ ð60; 100Þ, (112,17), (60,200), (35,245),
(140,60), and (130,30).
In the following, we wish to explain that our 3D plots as

depicted in Figs. 3 and 4 with some arbitrary values for
ðθ;ϕÞ could be reduced to the 2D plots as depicted in Fig. 1

by choosing some appropriate values for ðθ;ϕÞ. For
example, a choice of ðθ;ϕÞ≡ ð0; 0Þ for Figs. 3 and 4
would reduce these 3D plots to the 2D plot shown in
Fig. 1(a) with bð0Þ being plotted on the x axis and hð0Þ
being plotted on the y axis [and Að0Þ and r̂o being along the
z axis]. Similarly, a choice of ðθ;ϕÞ≡ ð90; 0Þ for Figs. 3
and 4 would reduce these 3D plots to the 2D plots shown
respectively in Fig. 1(b) [with bð0Þ being plotted on the x
axis and Að0Þ being plotted on the y axis] and Fig. 1(d)
[with bð0Þ being plotted on the x axis and r̂o being plotted
on the y axis] [and hð0Þ being along the z axis]. Also, a
choice of ðθ;ϕÞ≡ ð90; 90Þ for Fig. 3 would reduce the 3D
plots of Fig. 3 to the 2D plot shown in Fig. 1(c) with hð0Þ
being plotted on the x axis and Að0Þ being plotted on the y
axis [and bð0Þ being along the z axis). Also, the asterisks
shown in Figs. 3 and 4 corresponding to hð0Þ ¼ 0 represent
the transition points from the boson stars to the boson
shells.
Further, we have investigated in details the variations of

all the four fields involved in our theory, namely hðr̂Þ,Nðr̂Þ,
Aðr̂Þ, and bðr̂Þwith r̂ for several values of the cosmological
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FIG. 12. Figures (a) to (d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ 0.010 (which corresponds to the dS space).
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constant ~Λ covering the AdS as well as the dS spaces.
The variations of our above investigations are plotted in
Figs. 5–13.
Here, Figs. 5(a)–5(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for ~Λ ¼ −0.200 (which corresponds to
the AdS space). In order to understand Figs. 5(a)–5(d)
more properly, we consider a hypothetical five-dimensional

parameter space spanned by ½ ~Λ; Nð0Þ; bð0Þ; hð0Þ; Að0Þ�.
We also remind ourselves that for a study of boson stars
we have fixed Nð0Þ ¼ 1 for all the cases under study. Next,

we pick up cases corresponding to different values of ~Λ.
In particular, for the case under study represented by
Figs. 5(a)–5(d), we choose the case corresponding to
~Λ ¼ −0.200 (which corresponds to AdS space). It is to
be noted here that this particular curve lies entirely in region
IA shown in Figs. 1(a) and 1(b). We then choose a
particular value of bð0Þ [namely bð0Þ ¼ 1.735], and from
the phase diagram shown in Fig. 1(a), we pick up four

different points (on the curve corresponding to ~Λ ¼
−0.200) corresponding to hð0Þ ¼ 1.30, hð0Þ ¼ 2.70,

hð0Þ ¼ 3.85, and hð0Þ ¼ 5.65 for Figs. 5(a)–5(d) respec-
tively. However, we remind ourselves here that, corre-
sponding to these four values of hð0Þ, the corresponding
value of Að0Þ gets automatically fixed by virtue of the
solutions of the nonlinear differential equations given by
Eqs. (17a)–(17d). We then investigate the variations of the
four fields involved in the theory, namely hðr̂Þ, Nðr̂Þ, Aðr̂Þ,
and bðr̂Þ with respect to r̂ for the ranges shown in Fig. 5.
This in a way gives us an idea not only about the values

of the fields inside as well as outside the boson star but also
the variations of these fields in the ranges shown in Fig. 5.
In turn, it also explains our motivations behind these
studies.
Figures 6(a) and 6(b) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for the case ~Λ ¼ 0.000 (which corresponds to
the case of the absence of cosmological constant ~Λ in
the theory). For Figs. 6(a) and 6(b), we choose two
points, (hð0Þ ¼ 1.70, bð0Þ ¼ 0.019532) and (hð0Þ ¼
1.70, bð0Þ ¼ 1.20812), which lie in regions IB and
IA respectively in the phase diagram of the theory
[cf. Fig. 1(a)] on the curves corresponding to ~Λ ¼ 0.0. It
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FIG. 13. Figures (a)–(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for ~Λ ¼ −0.010 (which corresponds to the AdS space).
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is to be noted here that the values of Að0Þ for these two
points get automatically fixed by virtue of the solutions of
Eqs. (17a)–(17d). The variations of the four fields involved
in the theory, namely hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ are then
investigated with respect to r̂ for the ranges shown in
Figs. 6(a)–6(b).
Figures 7(a)–7(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and

bðr̂Þ vs r̂ for ~Λ ¼ 0.100 (which corresponds to the dS
space). For the Figs. 7(a) and 7(b), we choose two points,
(hð0Þ ¼ 2.00, bð0Þ ¼ 1.071483) and (hð0Þ ¼ 2.00,
bð0Þ ¼ 0.07008), which lie in regions IB and IA respec-
tively. Also, for Figs. 7(c) and 7(d), we choose another
two points, (hð0Þ ¼ 2.600, bð0Þ ¼ 1.450) and
(hð0Þ ¼ 1.24925, bð0Þ ¼ 1.450), both of which lie in
region IA of the phase diagram [Fig. 1(a)]. We then study
the variations of the four fields involved in the theory,
namely hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for the range shown
in Figs. 7(a)–7(d). It may be important to emphasize here

that the cases corresponding to the dS space (having

positive values of ~Λ) would have some definite values
for the radius of the cosmological horizon r̂c as depicted in
Figs. 7–12.
Figures 8(a)–8(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for ~Λ ¼ 0.400 (which corresponds to the
dS space). For Figs. 8(a) and 8(b), we choose two
points: (hð0Þ ¼ 3.0, bð0Þ ¼ 0.05463) and (hð0Þ ¼ 3.0,
bð0Þ ¼ 1.29837). Both of these points lie in region IIB1
in the phase diagram: Fig. 1(a). Similarly for Figs. 8(c) and
8(d), we choose two points: (hð0Þ ¼ 0.50, bð0Þ ¼ 2.900
and hð0Þ ¼ 0.50, bð0Þ ¼ 1.15874. Both of these points lie
in region IIA. For these four cases, we then study the
variations of the fields of the theory hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and
bðr̂Þ vs r̂ for the ranges shown in the figures.
Figures 9(a)–9(f) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for ~Λ ¼ 0.540 (which corresponds to the
dS space). For Figs. 9(a) and 9(b), we choose two points,
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FIG. 14. Figures (a) and (b) show respectively the properties of the gravitating boson stars and boson shells depicting the plot of bðr̂iÞ
vs ~Λ for several values of α (where r̂i ¼ 0 for the boson stars). Figures (c) and (d) show respectively the properties of the gravitating
boson stars and boson shells depicting the plot of r̂o vs ~Λ for several values of α. The figures in the inset show a part of the plots with a
better precision for the depicted range of ~Λ.
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(hð0Þ ¼ 0.50, bð0Þ ¼ 1.4791) and (hð0Þ ¼ 0.50,
bð0Þ ¼ 2.700), which lie in region IIA in the phase
diagram: Fig. 1(a). Similarly for Figs. 9(c) and 9(d), we
choose two points, (hð0Þ ¼ 3.00, bð0Þ ¼ 1.0741) and
(hð0Þ ¼ 3.00, bð0Þ ¼ 0.78123), which lie in region IIB2.
Again, for Figs. 9(e) and 9(f), we choose two points,
(hð0Þ ¼ 5.00, bð0Þ ¼ 0.72877) and (hð0Þ ¼ 5.00,
bð0Þ ¼ 0.57149), which lie in region IIB3a.
Corresponding to these six points chosen, we then study
the variations of the four fields of the theory hðr̂Þ, Nðr̂Þ,
Aðr̂Þ, and bðr̂Þ vs r̂ for the ranges shown in the figures.
Figures 10(a) to 10(f) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for ~Λ ¼ 0.541 (which corresponds to the
dS space). For Figs. 10(a) and 10(b), we choose two
points, (hð0Þ ¼ 0.50, bð0Þ ¼ 1.48133) and (hð0Þ ¼ 0.50,
bð0Þ ¼ 2.700), which lie in region IIA in the phase diagram:
Fig. 1(a). Similarly for Figs. 10(c) and 10(d), we choose two

points, (hð0Þ ¼ 3.00, bð0Þ ¼ 0.28354) and (hð0Þ ¼ 3.00,
bð0Þ ¼ 1.07199), which lie in region IIB2. Again for the
Figs. 10(e) and 10(f), we choose two points, (hð0Þ ¼ 5.00,
bð0Þ ¼ 0.71695) and (hð0Þ ¼ 5.00, bð0Þ ¼ 0.58354),
which lie in region IIB3b. Corresponding to these six points
chosen, we then study the variations of the four fields of the
theory hðr̂Þ, Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for the ranges shown
in the figures. Figures 11(a) to 11(d) depict plots of hðr̂Þ,
Nðr̂Þ, Aðr̂Þ, and bðr̂Þ vs r̂ for four values of ~Λ, namely
~Λ ¼ 0.100, 0.400, 0.540, and 0.541 respectively (all of
which correspond to the dS space). Also, these figures
correspond to the transition points of the theory from the
boson stars to the boson shells, which implies hð0Þ ¼ 0.00
for all four figures. Also, these figures actually correspond to
bð0Þ ¼ 0.325587, 2.06006, 2.50273, and 2.50550 respec-
tively. The line hð0Þ ¼ 0.00 in fact, marks one of the
boundaries of regions IB and IIA.
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FIG. 15. Figures (a) and (b) show respectively the properties of the gravitating boson stars and boson shells depicting the plot of Aðr̂iÞ
vs ~Λ for several values of α (where r̂i ¼ 0 for the boson stars). Figures (c) and (d) show respectively the properties of the gravitating
boson stars and boson shells depicting the plot of Nðr̂oÞ vs ~Λ for several values of α. The figures in the inset show a part of the plots with
a better precision for the depicted range of ~Λ.
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Figures 12(a)–12(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,
and bðr̂Þ vs r̂ for the boson shells with different values of
the inner radius, namely r̂i ¼ 0.000, 0.001, 0.500, 1.000
respectively for ~Λ ¼ 0.010 (which corresponds to the
dS space).
Figures 13(a)–13(d) depict plots of hðr̂Þ, Nðr̂Þ, Aðr̂Þ,

and bðr̂Þ vs r̂ for the boson shells with different values of
the inner radius, namely r̂i ¼ 0.000, 0.001, 0.500, 1.000
respectively for ~Λ ¼ −0.010 (which corresponds to the
AdS space).
We now explain the physics contents of Figs. 14 and 15

and highlight some important points (albeit salient features)
of our investigations in the context of these figures.
Figures 14 and 15 depict the physical properties of the
compact boson star and boson shell solutions where the
case α ¼ 0 corresponds to the Q-shell solutions. We also
determine the domains of existence of these physical
properties for some specific values of the parameters of
the theory. In our numerical calculations, we have fixed the
value of the parameter ~λ to be equal to 1 for the boson stars
as well as the boson shells solutions. The value of the
parameter r̂i has been fixed to 1 for the boson shells, and
r̂i ¼ 0 for the boson stars.
Figures 14(a) and 14(b) show respectively the properties

of the gravitating boson stars and boson shells depicting the
plot of bðr̂iÞ vs ~Λ for several values of α (where r̂i ¼ 0 for
the boson stars), and Figs. 14(c) and 14(d) show respec-
tively the properties of the gravitating boson stars and
boson shells depicting the plot of r̂o vs ~Λ for several values
of α. The figures in the insets show a part of these plots with
a better precision for the depicted range of ~Λ.
It is apparent from these figures that the minimum value

of bðr̂iÞ for a particular value of ~Λ keeps decreasing with
the increasing value of α until the value of bðr̂iÞ reaches
zero. In fact, the plot for a particular value of α contin-
uously deforms itself as we increase the value of α. This
scenario is more transparent in the domain where the
cosmological constant ~Λ is negative (i.e. in the AdS space).
Actually, with the increase in the value of α, the solutions
cease to exist in the AdS region for α ≥ 0.150. For
α ≥ 0.150, the solutions do continue to exist, however,
only in the dS region. Also within the AdS region, the
damped oscillations of the cosmological constant ~Λ with
increasing bðr̂iÞ are seen in Figs. 14(a) and 14(b) for some
smaller values of α.
Figures 15(a) and 15(b) show respectively the properties

of the gravitating boson stars and boson shells depicting the
plot of Aðr̂iÞ vs ~Λ for several values of α (where r̂i ¼ 0 for
the boson stars), and Figs. 15(c) and 15(d) show respec-
tively the properties of the gravitating boson stars and
boson shells depicting the plot of Nðr̂oÞ vs ~Λ for several
values of α. Figures in the insets show a part of these plots
with better precision for the depicted range of ~Λ.

It is apparent from these figures that there is a continuous
deformation of the curves as we increase or decrease the
value of the cosmological constant ~Λ.

VI. SUMMARY AND CONCLUSIONS

The boson stars and boson shells representing the
localized self-gravitating solutions have been studied in
the literature in the presence of positive as well as negative
values of the cosmological constant Λ. The theories in the
dS space (corresponding to positive values of Λ) describe a
somewhat realistic description of the compact stars and are
relevant from observational point of view. They are also
used in the dark energy models of the Universe. However,
the theories in the AdS space (with negative values of Λ)
are important for the AdS/CFT theories.
In our earlier work (cf. Ref. [16]), we studied the boson

stars and boson shells in a theory of complex scalar field
coupled to the Uð1Þ gauge field Aμ and the gravity in the
presence of a positive cosmological constant (i.e. in the dS
space). However, in the present work, we have studied this
theory in the presence of positive as well as negative values
of the cosmological constant treated as a free parameter.
This allows us to study the theory in the dS as well as in the
AdS space. Also, in Ref. [15], we have studied the boson
stars in a theory of complex scalar field coupled to theUð1Þ
gauge field Aμ and the gravity in the presence of a positive
as well as negative cosmological constant, whereas in the
present work, we have studied not only the boson stars but
also the boson shells in this theory.
As in Ref. [15], in our present work also, we have studied

the theory in the presence of a potential: VðjΦjÞ ≔
ðm2jΦj2 þ λjΦjÞ (with m and λ being constant parameters).
We have investigated properties of the solutions of this
theory and determined their domains of existence for some
specific values of the parameters of the theory.
It is important to emphasize here as also explained in the

Introduction that similar solutions have also been obtained
by Kleihaus et al. in a theory involving massless complex
scalar fields coupled to the U(1) gauge field and gravity in a
conical potential in the absence of a cosmological constant
Λ [10,11]. They have obtained explicitly the domain of the
existence of compact boson stars and boson shells. They
have also considered the boson shells, which do not have
an empty inner region r < ri, but instead they harbor a
Schwarzschild black hole or a Reissner-Nordström black
hole in the region r < ri [10,11].
As mentioned in the foregoing, polynomial potentials

have also been used in the literature for a study of the boson
stars. For a study of the compact boson stars, presence of
the conical piece of the potential is very crucial. However,
the choice of the massless scalar fields (instead of the
massive scalar fields as considered in the present work) in
the theory reduces the number of free parameters of the
theory by one and is expected to produce the results
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conceptually somewhat similar to our present results
although with different numerical details (albeit, with
different domains of existence). These studies are currently
underway and will be reported later. The inclusion of the
quartic and/or sextic terms in the potential is expected to
bring in some new additional features in the results. We
propose to undertake such studies in the near future.
In the present work, we have constructed the boson star

and boson shell solutions of this theory numerically, and we
have studied their properties by assuming the interior of the
shells to be empty space (dS like or AdS like).
In this work, we have shown that these charged shell-like

solutions persist in the presence of not only the positive
cosmological constant (corresponding to dS space) but also
for the negative cosmological constant (corresponding to
AdS space).
The self-gravitating compact boson shells constructed in

our present work possess an empty dS-like or AdS-like

interior region, r̂ < r̂i, and a Reissner-Nordström-dS or
Reissner-Nordström-AdS exterior region, r̂ > r̂o.
In our future work, we also propose considering the

possibility of the filling of the interior region of the boson
shells with black holes, analogous to the study in Ref. [11].
It would also be interesting to extend our present studies of
the charged compact boson star and boson shell solutions to
other dimensions.

ACKNOWLEDGMENTS

We thank Jutta Kunz, Burkhard Kleihaus, and James
Vary for several helpful educative discussions and encour-
agement. We also like to extend our sincere thanks to the
esteemed referee for his/her highly constructive comments
and suggestions. This work was supported in part by the
U.S. Department of Energy under Grant No. DE-FG02-
87ER40371 and by the U.S. National Science Foundation
under Grant No. PHY-0904782.

[1] D. A. Feinblum and W. A. McKinley, Phys. Rev. 168, 1445
(1968).

[2] D. J. Kaup, Phys. Rev. 172, 1331 (1968).
[3] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
[4] P. Jetzer, Phys. Rep. 220, 163 (1992).
[5] T. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[6] E. W. Mielke and F. E. Schunck, Nucl. Phys. B564, 185

(2000).
[7] S. L. Liebling and C. Palenzuela, Living Rev. Relativ. 15, 6

(2012).
[8] R. Friedberg, T. Lee, and A. Sirlin, Phys. Rev. D 13, 2739

(1976).
[9] S. R. Coleman, Nucl. Phys. B262, 263 (1985).

[10] B. Kleihaus, J. Kunz, C. Lammerzahl, and M. List, Phys.
Lett. B 675, 102 (2009).

[11] B. Kleihaus, J. Kunz, C. Lammerzahl, and M. List, Phys.
Rev. D 82, 104050 (2010).

[12] B. Hartmann, B. Kleihaus, J. Kunz, and I. Schaffer, Phys.
Lett. B 714, 120 (2012).

[13] B. Hartmann and J. Riedel, Phys. Rev. D 86, 104008 (2012).
[14] B. Hartmann, B. Kleihaus, J. Kunz, and I. Schaffer, Phys.

Rev. D 88, 124033 (2013).
[15] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, Phys.

Rev. D 93, 101501 (2016).
[16] S. Kumar, U. Kulshreshtha, and D. Shankar Kulshreshtha,

Classical Quantum Gravity 31, 167001 (2014).

[17] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, Gen.
Relativ. Gravit. 47, 76 (2015).

[18] D. Astefanesei and E. Radu, Nucl. Phys. B665, 594
(2003).

[19] E. Radu and B. Subagyo, Phys. Lett. B 717, 450
(2012).

[20] A. Prikas, Gen. Relativ. Gravit. 36, 1841 (2004).
[21] Y. Brihaye, B. Hartmann, and S. Tojiev, Classical Quantum

Gravity 30, 115009 (2013).
[22] D. Pugliese, H. Quevedo, Jorge A. Rueda H., and R. Ruffini,

Phys. Rev. D 88, 024053 (2013).
[23] Y. Brihaye, V. Diemer, and B. Hartmann, Phys. Rev. D 89,

084048 (2014).
[24] O. Kichakova, J. Kunz, and E. Radu, Phys. Lett. B 728, 328

(2014).
[25] V. Dzhunushaliev, V. Folomeev, C. Hoffmann, B. Kleihaus,

and J. Kunz, Phys. Rev. D 90, 124038 (2014).
[26] H. Arodz and J. Lis, Phys. Rev. D 77, 107702 (2008).
[27] H. Arodz and J. Lis, Phys. Rev. D 79, 045002 (2009).
[28] H. Arodz, J. Karkowski, and Z. Swierczynski, Acta Phys.

Polon. B 43, 79 (2012).
[29] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.

Theor. Math. Phys. 2, 231 (1998).
[30] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[31] S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, Commun.

Theor. Phys. 57, 641 (2012).

CHARGED COMPACT BOSON STARS AND SHELLS IN THE … PHYSICAL REVIEW D 94, 125023 (2016)

125023-19

http://dx.doi.org/10.1103/PhysRev.168.1445
http://dx.doi.org/10.1103/PhysRev.168.1445
http://dx.doi.org/10.1103/PhysRev.172.1331
http://dx.doi.org/10.1103/PhysRev.187.1767
http://dx.doi.org/10.1016/0370-1573(92)90123-H
http://dx.doi.org/10.1016/0370-1573(92)90064-7
http://dx.doi.org/10.1016/S0550-3213(99)00492-7
http://dx.doi.org/10.1016/S0550-3213(99)00492-7
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1016/j.physletb.2009.03.066
http://dx.doi.org/10.1016/j.physletb.2009.03.066
http://dx.doi.org/10.1103/PhysRevD.82.104050
http://dx.doi.org/10.1103/PhysRevD.82.104050
http://dx.doi.org/10.1016/j.physletb.2012.06.067
http://dx.doi.org/10.1016/j.physletb.2012.06.067
http://dx.doi.org/10.1103/PhysRevD.86.104008
http://dx.doi.org/10.1103/PhysRevD.88.124033
http://dx.doi.org/10.1103/PhysRevD.88.124033
http://dx.doi.org/10.1103/PhysRevD.93.101501
http://dx.doi.org/10.1103/PhysRevD.93.101501
http://dx.doi.org/10.1088/0264-9381/31/16/167001
http://dx.doi.org/10.1007/s10714-015-1918-0
http://dx.doi.org/10.1007/s10714-015-1918-0
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://dx.doi.org/10.1016/j.physletb.2012.09.050
http://dx.doi.org/10.1016/j.physletb.2012.09.050
http://dx.doi.org/10.1023/B:GERG.0000035955.07614.0d
http://dx.doi.org/10.1088/0264-9381/30/11/115009
http://dx.doi.org/10.1088/0264-9381/30/11/115009
http://dx.doi.org/10.1103/PhysRevD.88.024053
http://dx.doi.org/10.1103/PhysRevD.89.084048
http://dx.doi.org/10.1103/PhysRevD.89.084048
http://dx.doi.org/10.1016/j.physletb.2013.11.061
http://dx.doi.org/10.1016/j.physletb.2013.11.061
http://dx.doi.org/10.1103/PhysRevD.90.124038
http://dx.doi.org/10.1103/PhysRevD.77.107702
http://dx.doi.org/10.1103/PhysRevD.79.045002
http://dx.doi.org/10.5506/APhysPolB.43.79
http://dx.doi.org/10.5506/APhysPolB.43.79
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1088/0253-6102/57/4/21
http://dx.doi.org/10.1088/0253-6102/57/4/21

