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A detailed study of vortices is presented in Ginzburg-Landau (or Abelian Higgs) models with two
complex scalars (order parameters) assuming a general Uð1Þ × Uð1Þ symmetric potential. Particular
emphasis is given to the case in which only one of the scalars obtains a vacuum expectation value (VEV). It
is found that for a significantly large domain in parameter space vortices with a scalar field condensate in
their core [condensate core (CC)] coexist with Abrikosov-Nielsen-Olesen (ANO) vortices. Importantly, CC
vortices are stable and have lower energy than the ANO ones. Magnetic bags or giant vortices of the order
of 1000 flux quanta are favored to form for the range of parameters (“strong couplings”) appearing for the
superconducting state of liquid metallic hydrogen (LMH). Furthermore, it is argued that finite energy/unit
length 1VEV vortices are smoothly connected to fractional flux 2VEVones. Stable, finite energy CC-type
vortices are also exhibited in the case when one of the scalar fields is neutral.
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In a considerable number of physical theories describing
rather different situations, vortices often play an essential
role in understanding key phenomena. In gauge field
theories spontaneously broken by scalar fields, the vortex
of reference is undoubtedly the celebrated Abrikosov-
Nielsen-Olesen (ANO) one [1] associated to the breaking
of a U(1) gauge symmetry by a complex scalar doublet.
ANO vortices correspond to the planar cross sections
of static, straight, magnetic flux tubes, with an SO(2)
cylindrical symmetry. Their magnetic flux is quantized as
Φ ¼ nΦ0, where Φ0 is an elementary flux unit and n is an
integer. The integer n can be identified with a topological
invariant, the winding number of the complex scalar,
which is also responsible for their remarkable stability.
Rotationally symmetric ANO vortex solutions form fam-
ilies labeled by n and by the mass ratio β ¼ ms=mv, where
ms and mv denote the mass of the scalar and of the vector
field, respectively.
The ubiquity of vortices in different branches of physics,

ranging from condensed matter systems, such as super-
fluids, superconductors [2–4], and holographic supercon-
ductors [5,6] to cosmic strings in high-energy physics [7,8],
greatly contributes to their importance. By now, models of
superconductors with several order parameters (scalar
doublets) have become the subject of intense theoretical
and experimental studies [9–11]. Under extremely high
pressure, liquid metallic hydrogen (LMH) is expected to
undergo a phase transition to a superconducting state,
where two types of Cooper pairs are formed, one from
electrons and another one from protons [12–17]. For
experimental data on the existence of liquid metallic
hydrogen, see Refs. [18,19], and for numerical simulations,
Refs. [20,21]. Multicomponent order parameters have
also been considered in the context of Bose-Einstein

condensates (BECs) of trapped atoms [22–26] and even
for modeling of the interiors of neutron stars [27].
In multicomponent Ginzburg-Landau (MCGL) models a

number of vortex solutions differing from the ANO ones
have been found. Considering two-component Ginzburg-
Landau (TCGL) theories is already sufficiently interesting
for many applications in condensed matter systems, and we
shall also restrict our attention to such systems in the
present paper. In two-band superconductors, fractional flux
vortices have been found [28–33], with the quite remark-
able property that intervortex forces change their character
from attractive to repulsive as the separation decreases.
This phenomenon is related to type 1.5 superconductivity
[9–11,34–36]. Nonmonotonous and nonpairwise forces
also lead to the formation of vortex patterns [37,38].
The purely scalar version of the theory, the two-component
Gross-Pitaevskii equation, has been applied to atomic
BECs in Refs. [22–26]. The case with one field being
nonzero at the minimum of the potential was addressed for
BECs in Ref. [26], and for a TCGL with an additional Z2

symmetry in Ref. [38]. A similar, multicomponent theory
has also been applied to the physics of neutron star interiors
in Ref. [27], where the different fields correspond to
condensates of different particle species.
It has already proved fruitful to study “universal”

properties of vortices, which may turn out to be important
in rather different physical settings, bringing to light
analogies between condensed matter and high-energy
physics. Scalar fields with several components also appear
in the standard model (SM) of particle physics, as well as in
grand unified theories (GUTs), resulting in a rich catalogue
of vortices [7,39–45]. The important problem of existence
and stability of vortices in the standard electroweak model,
and its θW → π=2 limit, the semilocal model, have been
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considered in Refs. [42–49]. It has been found that ANO
strings can be embedded in the SM; however, for realistic
parameter values, these strings are unstable. Vortex sol-
utions different from the embedded ones have been con-
structed in Refs. [43,44,50–52]. It has been shown that in
the semilocal model for β > 1, the instability of the
embedded ANO vortex corresponds to its bifurcation with
a one-parameter family of solutions, which are, however,
still unstable [53–56]. The existence of a lowest energy
limit of this family of solutions with a less symmetric
potential has been demonstrated in Ref. [57], and a short
report on their stability properties can be found in Ref. [58].
The aim of the present paper is to present a detailed

investigation of vortices in a class of Abelian gauge models
with an extended scalar sector. In the literature such models
are referred to either as multicomponent Ginzburg-Landau
or extended Abelian Higgs (EAH) theories. As mentioned
we shall concentrate on two-component GL theories, which
already exhibit a number of interesting vortices and some
interesting physics related to them.Moreover we shall focus
on the case where in the minimum of the potential one of the
fields assumes a nonzero value, which has not been explored
in detail up to now. We consider the most general scalar
potential with a Uð1Þ × Uð1Þ symmetry. We expect the
presented vortex solutions to be of interest both to con-
densed matter and to high-energy physics. The 1VEV
vortices are of importance when the system is in between
two different symmetry-breaking transitions. The vortices
we investigate are also of relevance in a high-energy physics
setting when additional scalars without a VEV couple to the
fields of the SM. This is the case in some models of dark
matter known under the name of portal models [59,60],
when additional scalars are coupled to theHiggs sector of the
SM. The effect of an additional scalar on the stability of
semilocal and electroweak strings has been considered in
Ref. [61] and that of a dilatonlike coupling in Ref. [62]. The
opposite case, dark sector strings with coupling to standard
matter, was the subject of Refs. [63,64].
Some of our main results can be summarized as follows.

In purely scalar TCGL theories for a certain parameter
range of the scalar potential, global vortices for n > 1
exhibit stability (at the linear level) in sharp contrast to the
known splitting instability of the single-component case.
This implies that the character of vortex-vortex interaction
in TCGL theories changes from repulsive to attractive as
the separation between the vortices decreases.
In TCGL theories with a gauge field in the 1VEV case

we have investigated in detail vortex solutions and their
linear stability. The case when both scalars are charged (i.e.,
coupled to the gauge field) is particularly relevant for LMH
and two-band superconductors. We have found that the
genuinely two-component vortices with n > 1 are stable
for such parameter values when the embedded ANO one
exhibits the splitting instability. Moreover their energy is
always smaller than that of the embedded ANO solution.

In the case when the ratio of the effective masses of the
two kinds of Cooper pairs, M ¼ m2=m1, is large (e.g., in
LMH), the vortex with the smallest energy/flux ratio has a
remarkably large number of flux quanta. This number of
flux quanta is determined by the competition of two
phenomena: (i) the condensate in the vortex core lowers
the potential energy (shifting the behavior of the system
towards type I), and (ii) with the growth of the condensate
in the core, the interaction energy between the condensate
and the magnetic field becomes larger (analogously to
type II behavior). The resulting “giant” vortices or mag-
netic bags are a manifestation of neither type I nor type II
superconductivity.
Furthermore we explore the relationship of the 1VEV

vortices with the fractional flux 2VEV ones of
Refs. [28,29]. We have shown that the 1VEV and 2VEV
solutions are continuously connected as the parameters of
the potential vary, even though the energy of the 2VEVones
diverges.
There is another case of interest when only one of the

(complex) scalars is charged. We also analyze 1VEV and
2VEV vortices and their large flux limit in this case. It is
worth pointing out that in contrast to the case of two
charged fields, the energy of 2VEV vortices is finite.
In addition to numerical studies, we present a simple

analytic approximation for large flux vortices (magnetic
bags) for both 1VEV cases.
The plan of the paper is as follows. In Sec. I, we recall the

construction of the most general Uð1Þ ×Uð1Þ invariant
potential and study its vacuum manifold. Two classes,
1VEV and 2VEV, are introduced, depending on the nature
of the minimum. In Sec. II, we consider vortices and their
stability in the global model. In Sec. III, two-component
EAH models are introduced, and twisted vortices are
studied. In Sec. IV stable condensate core vortices are
studied numerically. Main stability results are contained in
Sec. V. Large flux vortices are studied in detail in Sec. VI.
In Sec. VII we present our results in the 2VEV case, with an
emphasis on the largeM limit. Conclusions are presented in
Sec. VIII. Details of the calculations are relegated to the
Appendix.

I. Uð1Þ × Uð1Þ INVARIANT POTENTIALS
AND THEIR VACUA

Considering two complex scalar fields the most general
Uð1Þ ×Uð1Þ symmetric self-interaction potential has
already been given in Ref. [39]:

V ¼ β1
2
ðjϕ1j2 − 1Þ2 þ β2

2
jϕ2j4 þ β0jϕ1j2jϕ2j2 − αjϕ2j2;

ð1Þ
containing four real parameters, β1, β2, β0, and α. In the rest
of our paper we shall consider theories where the potential,
V, is given by (1); moreover we require that V > 0 for
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jϕ1j2, jϕ2j2 → ∞, resulting in the following restriction of
the parameters: β1 > 0, β2 > 0, and β0 > −

ffiffiffiffiffiffiffiffiffi
β1β2

p
.

The following two types of minima of the potential (1)
shall be considered: either a state when only a single scalar
field has a VEV, referred to as the 1VEV case, or a 2VEV
case where both fields obtain a VEV. The conditions for a
2VEV state are

α > β0; β1β2 > αβ0. ð2Þ
In this 2VEV case, the two vacuum expectation values of
the scalar fields, η1, η2 satisfy

η21 ¼
β1β2 − αβ0

β1β2 − ðβ0Þ2 ; η22 ¼
β1ðα − β0Þ
β1β2 − ðβ0Þ2 ; ð3Þ

and the previous conditions guarantee that η21, η
2
2 > 0.

If at least one of the conditions in Eq. (2) fails to hold, the
system is in a 1VEV state, and the component having the
nonzero VEV is as follows:

β1β2 > β02 β1β2 < β02

Upper β0 > α
ffiffiffiffiffiffiffiffiffi
β1β2

p
> α

Lower β0 < α
ffiffiffiffiffiffiffiffiffi
β1β2

p
< α

: ð4Þ

The classification in Eqs. (2) and (4) is crucial. If
β1β2 > β02, then at α ¼ β0, there is a boundary between
the upper component 1VEV and the 2VEV cases. If, on
the contrary, β1β2 < β02, then at α ¼ ffiffiffiffiffiffiffiffiffi

β1β2
p

there is a
boundary between the upper component and lower com-
ponent 1VEV cases. There the lower component obtains a
VEV, η2 ¼

ffiffiffiffiffiffiffiffiffiffi
α=β2

p
.

To derive Eq. (4), for the global minimum of the
potential to be at the field values (1,0),

Vðϕ1 ¼ 0;ϕ2 ¼ η2Þ ¼
β1
2
−

α2

2β2
> 0 ð5Þ

has to hold with η22 ¼ α=β2. Condition (5) is that out of the
two possible local minima (1,0) and ð0; η2Þ, the first one
must be the global minimum. This can be assumed without
loss of generality (because otherwise the second compo-
nent would be the one obtaining a VEV, and the two
components could be interchanged).

II. GLOBAL VORTICES WITH A SINGLE VEV

Let us start by considering the two-component scalar
theory with interaction potential (1), admitting a global
Uð1Þ × Uð1Þ symmetry, defined by the Lagrangian

L ¼ ∂μΦ†∂μΦ − VðΦ†;ΦÞ; ð6Þ

where Φ ¼ ðϕ1;ϕ2ÞT and Φ† ¼ ðϕ�
1;ϕ

�
2Þ, and the potential

V is given by Eq. (1). We shall now consider global vortex

solutions of the theory (6) with rotational symmetry in
the plane, with the following (standard) ansatz for the
scalars,

ϕ1 ¼ f1ðrÞeinϑ; ϕ2 ¼ f2ðrÞeimϑ; ð7Þ

where n and m are integers and ðr; ϑÞ are the polar
coordinates in the plane. The radial equations read in
this case

1

r
ðrf01Þ0 ¼ f1

�
n2

r2
þ β1ðf21 − 1Þ þ β0f22

�
;

1

r
ðrf02Þ0 ¼ f2

�
m2

r2
þ β2f22 − αþ β0f21

�
; ð8Þ

and with the ansatz (7), the energy density from the
Lagrangian in Eq. (6) is

E ¼ ðf01Þ2 þ ðf02Þ2 þ
n2

r2
f21 þ

m2

r2
f22 þ V: ð9Þ

In the following we shall focus on vortices with m ¼ 0,
as they are expected to give solutions of “lowest” energy.
In the present 1VEV case, embedded global ANO-type

vortices, ðϕ1;ϕ2Þ¼ðϕðnÞ
1 ;0Þ, automatically satisfy Eqs. (8).

As it is known, the total energy of global vortices diverges:

EðRÞ ¼ 2π

Z
R

0

Erdr ∼ EðRcoreÞ þ 2πn2 log
�

R
Rcore

�
; ð10Þ

where Rcore is an arbitrary (core) radius, outside of which
all fields can be replaced with their asymptotic form. The
energy of the vortices diverges logarithmically with the
sample size.
As a nonzero ϕ2 lowers the potential energy in the vortex

core, it is natural to expect that Eqs. (8) may also admit
vortex solutions with a nontrivial ϕ2. A simple method to
search for such nontrivially two-component vortices is to
look for the instability of the embedded one. This can be
done by linearizing Eqs. (8) around an embedded vortex in
the small parameter ϵ ¼ f2ð0Þ as follows:

α ¼ αb þ ϵ2α2 þ…;

f1 ¼ fð0Þ1 þ ϵ2fð2Þ1 þ…;

f2 ¼ ϵfð1Þ2 þ…; ð11Þ

and fð1Þ2 satisfies the following linear Schrödinger-type
equation, with a “potential” determined by the embedded

vortex, fð0Þ1 ,

1

r
ðrfð1Þ02 Þ0 − β0fð0Þ21 fð1Þ2 ¼ αbf

ð1Þ
2 : ð12Þ
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To obtain a linearized vortex solution, one has to impose

fð1Þ2 → 0 for r → ∞. Then Eq. (12) can be interpreted as an
eigenvalue problem for the energy αb as a function of the
parameter β0. For the parameter range αb < α < β0,
embedded global vortices are unstable, and they bifurcate
with a new family of solutions with a nontrivial f2 as
α → αb, which we shall refer to as condensate core (CC)
vortices. A numerical solution for a global CC vortex is
depicted in Fig. 1. Although the energy of a CC vortex is
also divergent logarithmically, just as for an embedded one,
for a fixed sample size R, the energy difference between the
two types can be computed. It turns out that CC vortices
have lower energy than the embedded ones, and in some
cases the energy difference is remarkably large (Table I).
For n ¼ 1, remarkably good approximate solutions of

Eq. (12) are known for both large and small values of β0. In
the case when β0 ≫ β1, the lowest eigenfunction is con-
centrated close to the origin; therefore a good approxima-
tion of the potential term is only needed there. As noted in
Ref. [65], the potential to leading order is harmonic,
yielding a qualitatively good approximation of Eq. (12).
The harmonic approximation can be substantially improved
by taking into account the Taylor expansion of f21 up to the
r6 order via perturbation theory [26], yielding

α0b ≈ 2
ffiffiffiffi
β0

p
−
1

2
þ 5þ 16c20

32c0
β0−1=4;

�
β0 >

β1
3

�
; ð13Þ

where c0 ¼ f01ð0Þ. For small β0, a matching procedure at
the boundary of the vortex core yields the eigenvalue [26]

α0b≈β0−
4

β0
e−2γEc20exp

�
−

2ffiffiffiffi
β0

p arctan
2c20ffiffiffiffi
β0

p �
;

�
β0<

β1
3

�
;

ð14Þ

where γE ≈ 0.5772 is the Euler-Mascheroni constant. A
similar result has been obtained in Ref. [65] for the case of
gauged vortices, based on approximate eigenvalues of
shallow potentials in 2D [66].
In Ref. [67], it has been demonstrated numerically that

global vortices for n > 1 are unstable against splitting into
vortices of lower winding. This is in agreement with the
known repulsive interaction between global vortices at
large separations [2]. For CC vortices, the leading order
asymptotic behavior is unchanged; therefore at large
separation there should be a repulsive interaction between
them. On the other hand, for CC vortices close to each
other, the nonzero second component also contributes to
the intervortex force. We have performed a stability
analysis with the methods of Ref. [67]. We have found
that for parameter values of α away from the bifurcation
α ≫ αb, n ¼ 2, 3, CC vortices are stable at the linear level.
In the case of the embedded vortex, for n ¼ 2, there is an
energy-lowering perturbation (an eigenfunction of the
perturbation operator with a negative eigenvalue) in the
partial wave channel l ¼ 2, and for n ¼ 3 in l ¼ 2, 3, 4.
For the CC vortex, sufficiently far from the bifurcation,
these eigenvalues become positive. We denote by αs the
value of α where all of the eigenvalues become positive.
See Table II for numerical data. See also Sec. V and the
Appendix for details of the method.
It is remarkable that the character of the intervortex force

changes in the two-component theory, from attractive at
small separations to repulsive at large ones. This is
analogous to the behavior of vortices in type 1.5 super-
conductors. Interestingly, in the 2VEV case, a monotonous
potential between a pair of vortices has been found
for static and stable multiquantum vortices for rotating
superfluids [68,69].
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FIG. 1. A global CC vortex for β1 ¼ 1, β2 ¼ 2, β0 ¼ 2, and
α ¼ 1.24.

TABLE I. Energy difference between embedded and conden-
sate core global vortices, n ¼ 1, β1 ¼ 1. For reproducibility, we
have also added the initial data at the origin needed to integrate
radial equations Eq. (8).

β2 β0 α Ee − Ecc f01ð0Þ f2ð0Þ
1 1 0.94 2.161 0.2916 0.8750
2 2 1.24 8.795 × 10−3 0.5530 0.2716
50 10 6.2 0.8864 0.3580 0.3367

TABLE II. Stabilization of global CC vortices. For
αs < α < β0, no negative eigenvalues were found. Here
β1 ¼ 1, β2 ¼ β0 ¼ 2.

n αb αs

1 1.2052 Not applicable
2 0.601 43 1.3208
3 0.347 71 1.3454

PÉTER FORGÁCS and ÁRPÁD LUKÁCS PHYSICAL REVIEW D 94, 125018 (2016)

125018-4



III. TWISTED VORTICES IN EXTENDED
ABELIAN SCALAR MODELS

The Lagrangian of the two-component EAH model (the
relativistic version of the TCGL) is

L ¼ −
1

4
FμνFμν þ ðDμΦÞ†ðDμΦÞ − VðΦ;Φ†Þ; ð15Þ

where Dμϕa ¼ ∂μ − ieaAμ is the standard gauge covariant
derivative of the scalars, where for later use we assume
general couplings, ðe1; e2Þ, of Φ ¼ ðϕ1;ϕ2ÞT to the U(1)
gauge field, and V is defined by Eq. (1).
The Uð1Þ gauge symmetry acts on the fields as ϕa →

expðieaχÞϕa, Aμ → Aμ þ ∂μχ, where χ ¼ χðxÞ is the gauge
function. The other Uð1Þ symmetry is global, and it acts on
the fields as ϕ1 → expð−iαÞϕ1, ϕ2 → expðiαÞϕ2, where α
is a constant.
The field equations obtained from the Lagrangian (15)

read

∂ρFρμ ¼ i
X
a

eafðDμϕaÞ�ϕa − ϕ�
aDμϕag;

DρDρΦ ¼ −∂VðΦ†;ΦÞ=∂Φ†: ð16Þ

The theory defined in Eq. (15) is a member of the
family of semilocal models, i.e., gauge theories with
additional global symmetries [45]. A thoroughly studied
case is the SUð2Þglobal ×Uð1Þlocal semilocal model [45],
corresponding to the limit θW → π=2 of the standard
electroweak model corresponding to the parameter choice
β1 ¼ β2 ¼ β0 ¼ α.
Importantly, in the 1VEV case, solutions of the ordinary

one-component Abelian Higgs model can be embedded in
the theory, as ϕ1 ¼ ϕAH, ϕ2 ¼ 0, and Aμ ¼ Aμ;AH, where
ϕAH; Aμ;AH is a solution of the one-component model with
β ¼ β1. In this way, we can consider embedded ANO
vortices in the 1VEV two-component theory.
Conserved currents correspond to both Uð1Þ symmetries

(rotating the phases of ϕa separately) of the theory (15),
given by

jðaÞμ ¼ −iðϕ�
aDμϕa − ϕaðDμϕaÞ�Þ; ð17Þ

(with no summation over the repeated index a). The

electrical current in Eq. (16) is given by jμ ¼
P

aeaj
ðaÞ
μ ,

and to the additional symmetry of changing the phase
difference,

j3μ ¼ jð1Þμ − jð2Þμ ¼ −iðϕ�
1Dμϕ1 − ϕ�

2Dμϕ2

− ϕ1ðDμϕ1Þ� þ ϕ2ðDμϕ2Þ�Þ; ð18Þ

which agrees with the third isospin component of the global
SUð2Þ current of the semilocal theory [50,51].

The general stationary, cylindrically symmetric ansatz
introduces z-dependent phases for the scalars, and a
suitably reduced ansatz in the radial gauge can be
written as

ϕ1ðr; ϑ; zÞ ¼ f1ðrÞeinϑ; Aϑðr; ϑ; zÞ ¼ naðrÞ;
ϕ2ðr; ϑ; zÞ ¼ f2ðrÞeimϑeiωz; A3ðr;ϑ; zÞ ¼ ωa3ðrÞ;

ð19Þ

with A0 ¼ Ar ¼ 0 and ω is real; it shall be referred to as the
twist parameter. The ansatz (19) describes cylindrically
symmetric fields in the sense that a translation along the z
direction can be compensated by the application of internal
symmetries [50,51,70]. All twisted solutions, where the
spacetime dependence of the relative phase is timelike, can
be brought to the form of Eq. (19) by a Lorentz boost.
With the ansatz, Eq. (19), the field equations, Eq. (16),

become

1

r
ðra03Þ0 ¼ 2a3ðe21f21 þ e22f

2
2Þ − 2e2f22;

r

�
a0

r

�0
¼ 2f21e1ðe1a − 1Þ þ 2f22e2ðe2a −m=nÞ;

1

r
ðrf01Þ0 ¼ f1

�ð1 − e1aÞ2n2
r2

þ e21ω
2a23

þ β1ðf21 − 1Þ þ β0f22

�
;

1

r
ðrf02Þ0 ¼ f2

�ðe2na −mÞ2
r2

þ ω2ð1 − e2a3Þ2

þ β2f22 − αþ β0f21

�
: ð20Þ

The boundary conditions for regular, 1VEV solutions of
Eqs. (20) imply that f1ðr ¼ 0Þ ¼ 0, and for m ¼ 0
f2ðr ¼ 0Þ ¼ const:, while for r → ∞ we impose that f1,
a → 1 and f2, a3 → 0. In the 2VEV case, f1;2 → η1;2,
where ϕ ¼ ðη1; η2Þ is a minimum of V. In this latter case, a
twisted vortex solution would have infinite energy (propor-
tional to the sample volume), since one cannot satisfy for
(r → ∞) both D3ϕ1 → 0 and D3ϕ2 → 0 simultaneously.
We start with the description of finite-energy twisted vortex
solutions of Eqs. (20); therefore we impose f2 → 0 for
(r → ∞).
The energy density for the ansatz (19) is found to be

E ¼ 1

2

�
n2ða0Þ2

r2
þ ω2ða03Þ2

�
þ ðf01Þ2 þ ðf02Þ2

þ n2ð1 − e1aÞ2
r2

f21 þ
ðe2na −mÞ2

r2
f22

þ ω2ðe21a23f21 þ ð1 − e2a3Þ2f22Þ þ Vðf1; f2Þ; ð21Þ
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with Vðf1; f2Þ ¼ β1ðf21 − 1Þ2=2þ β2f42=2þ β0f21f
2
2 − αf22.

The total energy (per unit length), E, is given as the integral
over the plane of E,

E ¼ 2π

Z
∞

0

rdrE: ð22Þ

E is a monotonously increasing function of the parameters
β1, β2, β0, and of the twist, ω, while it is a monotonously
decreasing function ofα. This follows from the fact that, e.g.,

∂E
∂ω2

¼ 2π

Z
rdr

�
1

2
ða03Þ2 þ ðe21a23f21

þ ð1 − e2a3Þ2f22Þ
�
> 0; ð23Þ

where the terms due to the implicit ω dependence of f1, f2,
a, and a3 cancel, since these functions satisfy the Euler-
Lagrange equations, Eq. (20). Some curves depicting the
total energy as a function of the twist for some solution
families are shown in Fig. 2(a).
Plugging the ansatz (19) into (18), the relevant current

component is

j33 ¼ 2ωa3ðe1f21 − e2f22Þ þ 2ωf22: ð24Þ

The global current, IðωÞ, is depicted in Fig. 2(b), where the
SUð2Þ symmetric case, β1;2 ¼ β0 ¼ α ¼ 2, is compared to a
less symmetric one, for β1;2 ¼ α ¼ 2, β0 ¼ 2.1. In the
SUð2Þ symmetric case, IðωÞ diverges for ω → 0
[50,51], and there is no finite energy solution correspond-
ing to ω ¼ 0. As we shall demonstrate in the general,
nonsymmetric case, finite energy vortex solutions exist in
the ω → 0 limit.
The numerical solutions of Eqs. (20) have been calcu-

lated using the shooting method with a fitting point [71],
which is also used for the solution of the linearized

equations for the stability analysis. For higher winding
number vortices, we also use a minimization of the energy
functional (21) directly, in a finite difference discretization.

A. Bifurcation with embedded ANO strings

It is by now well known that embedded ANO vortices are
unstable to small perturbations of the f2 variable [43,44], and
that this instability corresponds to the aforementioned bifur-
cation [50,51]. Close to the bifurcation, a systematic expan-
sion of the solution in a bifurcation parameter ϵ has been
carried out in Ref. [54] in the SUð2Þ symmetric case. The
analysis of Ref. [54] can be repeated in the present case with
minimalmodifications.The systematic expansion of a twisted
vortex near the bifurcation point can be then written as

a ¼ að0Þ þ ϵ2að2Þ þ…

f1 ¼ fð0Þ1 þ ϵ2fð2Þ1 þ…

a3 ¼ ϵ2að2Þ3 þ…

f2 ¼ ϵfð1Þ2 þ ϵ2fð2Þ2 þ…

ω ¼ ωb þ ϵ2ω2 þ… ð25Þ

where að0Þ, fð0Þ1 denote theANOvortex, whose equations can
be read off from Eqs. (20) by putting f2 ¼ a3 ¼ 0. For
details, and the Taylor expanded equations, see [54].
The leading order equation is

ðDð0Þ
2 þ ω2

bÞfð1Þ2 ≔ −
1

r
ðrfð1Þ2

0Þ0 þ
�ðe2nað0Þ −mÞ2

r2

þ ω2
b − αþ β0ðfð0Þ1 Þ2

�
fð1Þ2 ¼ 0: ð26Þ

The expansion coefficients ωi are dictated by the conditions
for the cancellation of resonance terms. The procedure
yields ω1 ¼ 0, and thus
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FIG. 2. The energy E and the current I as a function of the twist ω.
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ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ω2

ðω − ωbÞ
s

þ…: ð27Þ

Energy difference Twisted vortices have lower energies
than embedded ANO ones (see Sec. III B for numerical
values), and in some cases, this energy difference is
remarkably large. The explanation is that in the core of
an embedded vortex, there is a false vacuum, which, in the
case of a twisted vortex, is filled with the second con-
densate, reducing the potential energy. This also has costs
in the form of derivative and interaction terms. In those
cases, where f2 ≪ 1 [e.g., close the bifurcation (ω ≈ ωb)],
this energy difference can be calculated approximately,
with the help of the bifurcation equation, Eq. (26) [26].
Neglecting the term quartic in f2 and the backreaction of f2
on f1 in the energy density (21) and performing a partial
integration yields

E − EANO ≈ 2π

Z
rdrf2

	
−f002 −

1

r
f02 þ f2

�ðe2na −mÞ2
r2

− αþ β0f21

�

¼ −ω2

b2π

Z
rdrf22: ð28Þ

B. Numerical solutions

Let us first consider the case of e1 ¼ e2 ¼ 1. The SUð2Þ
symmetric case has been considered in Refs. [42–45].
The range of solutions can be found by solving the

bifurcation equation, Eq. (26). In the SUð2Þ symmetric
case, for β1 > 1, an instability is found. In these cases,
twisted vortices exist for 0 < ω < ωb. For some parameter
values, ωb is shown in Table III.
In Fig. 2(a), the dependence of the vortex energy on the

twist is displayed, and the dependence of the global current
I on the twist ω is depicted in Fig. 2(b). See also the SUð2Þ
symmetric case in Refs. [50,51].
Numerically we have found that twisted string solutions

exist for 0 < ω < ωb, where the upper limit is a function of
the parameters β1, β2, β0, and α of the potential and the flux
n of the vortex, similarly to the SUð2Þ symmetric case
[50,51] (we have assumed m ¼ 0).
In the case of one charged and one neutral field, e2 ¼ 0,

as seen from Eqs. (20), a3 ¼ 0. In both the field equations
and the energy, Eq. (21), the same profile functions and

energy are obtained with the replacement ω → 0

and α → α − ω2, with the global current j32 ¼ 2ωf22.
Therefore, for e2 ¼ 0 twisted vortices can be considered
as trivial transformations of zero twist ones. [A similar
argument applies to the case of the global theory (Sec. II)
as well.]

IV. CONDENSATE CORE VORTICES

The ω → 0 limit of twisted vortices is quite remarkable:
as the energy is a monotonous function of the twist,
assuming its maximum at the embedded vortices,
ω ¼ ωb, the zero twist limit, i.e., condensate core, or
coreless [26] vortices are minimum-energy solutions,
coexisting with embedded ANO vortices, with energies,
in some cases, significantly lower.
If α < β0, they are exponentially localized,

f2 ∼ F2r−1=2 exp ð−
ffiffiffiffiffiffiffiffiffiffiffiffi
β0 − α

p
rÞ, where F2 is a constant,

determined by the global solution of the boundary value
problem [i.e., by the numerical solution of the radial
equations, Eq. (20)]. As minimum-energy solutions, they
are expected to be stable: n ¼ 1ANO vortices in this theory
are known to have one negative eigenvalue mode, the
one corresponding to the bifurcation [43,44,50,51]. For
n > 1, ANO vortices are also unstable for β1 > 1 against
decay into lower winding number ones; therefore, for CC
vortices, n > 1 requires a numerical investigation of the
linearized equations.
In the case of ANO vortices, the instability of higher

flux vortices for β > 1 is a consequence of the
repulsive interaction between unit flux ones. That
the change in the stability occurs at β ¼ 1 follows from
the fact that for β < 1, the scalar field has a slower
radial falloff, ∼Fr−1=2 expð− ffiffiffiffiffi

2β
p

rÞ, than the gauge field,
∼Ar1=2 expð− ffiffiffi

2
p

rÞ, whereas for β < 1, the scalar field falls
off more slowly, and the interaction is attractive. Here, for a
wide range of parameters, the second scalar has the slowest
radial falloff, and thus the interaction between two vortices
can be attractive even if β1 > 1.
The existence of zero twist vortices if β0 ¼ α is also

possible. In the SUð2Þ symmetric model, no such solutions
exist for β > 1, although a consistent asymptotic solution
can be found. As ω → 0, vortices become diluted [50,51].
In the β ¼ 1 case, there is a one-parameter family of
solutions with degenerate energy [43,44]. In the nonsym-
metric case, we have found that if β1β2 ≠ β02, zero twist CC
vortices still exist, with a power-law asymptotic behavior,
f2 ∼ F2=r, where F2 is a constant. See also Ref. [38] for the
Uð1Þ × Uð1Þ × Z2 symmetric case. In the latter case, due to
the high degree of symmetry of the potential, a domain
structure also exists.
If β1β2 ≠ ðβ0Þ2, the CC vortices, continued into the range

α > β0 (2VEV), become the 2VEV vortices with winding
in the upper component. If e2 ≠ 0, these are fractional flux
vortices of Refs. [28,29]. We shall briefly return to the

TABLE III. The value of the twist at the bifurcation for e2 ¼ 1.

β1 β0 α ωb

1.25 1.25 1.25 0.136 67
2 2 2 0.329 89
2.5 2.5 2.5 0.427 44
1.25 1.255 1.25 0.121 00
2 2.1 2 0.194 53
2.5 2.6 2.5 0.337 26
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2VEV case in Sec. VII. In the β1β2 ¼ β02, α ¼ β0 case,
there seems to be no limiting solution. In these cases, as the
twist ω decreases, the profile functions reach their asymp-
totic values farther from the origin. This way, the string
expands and its energy density becomes more dilute. In
Refs. [50,51], this behavior has been described with a
scaling argument in the SUð2Þ symmetric case, which can
be generalized to the β1β2 ¼ ðβ0Þ2 case without major
changes.
If β1β2 ¼ α2 (the boundary between upper and lower

component 1VEV), solutions with the upper and the lower
component having a nonzero VEV coexist. For the special
case of Uð1Þ ×Uð1Þ × Z2 symmetry, see Ref. [38]. The
domain structure observed there is a consequence of the
high degree of symmetry of their potential.
The energy difference between embedded ANO and CC

vortices can be calculated in a similar manner to that of
ANO and twisted vortices. Close to the bifurcation, α ≈ αb,

EANO − E ≈ 2πðα − αbÞ
Z

rdrf22: ð29Þ

According to Eq. (29), the energy of CC vortices is lower
than that of embedded ANO vortices.
Condensate core vortices, two charged fields The zero

twist limit of twisted vortices, condensate core vortices,
was calculated for a number of parameter values. One such
solution, with exponential radial localization (i.e., β0 > α)
is shown in Fig. 3(a). In Fig. 3(b), on the other hand, a CC
vortex with power-law localization is shown. The energies
of condensate core vortices are collected in Table IV. As
already mentioned, their energies are below that of the
embedded ANO vortex with the same value of β1.
For ANO vortices for β > 1, En=n assumes its minimum

for n ¼ 1, rendering higher flux vortices unstable.
Interestingly, for CC vortices this is not the case. The

minimum of En=n is assumed at a finite value of n. A plot
of En vs n is shown in Fig. 5.
Condensate core vortices: A charged and a neutral field

To obtain the range of parameters where solutions exist, we
need to solve the bifurcation equation, Eq. (26), again.
Results for some parameter values are displayed in Table V.
Here, as the twist ω is obtained with a trivial trans-
formation, we have collected αb. We have also calculated
full nonlinear solutions numerically. Their energy values
are shown in Table VI. We would like to draw attention to
the fact that the nature of En=n is in these cases a decreasing
function of n, in contrast to ANO vortices for β1 > 1. In
these cases, embedded ANO vortices are unstable both

 0  2  4  6  8  10  12
r

 a(r)

 f1(r)

 f2(r)

(a)

 0  2  4  6  8  10  12
r

 a(r)

 f1(r)

 f2(r)

(b)

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FIG. 3. Zero twist solutions.

TABLE IV. Energy per unit flux, En=ð2πnÞ, of CC vortices for
(a) β1;2 ¼ α ¼ 2, β0 ¼ 2.1; (b) β1 ¼ 2, β2 ¼ 8, β0 ¼ 4.2, α ¼ 4;
and (c) β1 ¼ 2, β2 ¼ 3872, β0 ¼ 87.4, α ¼ 83 compared to ANO
β ¼ 2. In the middle table, some data are shown for β1 ¼ 2,
β2 ¼ 3872, β0 ¼ 87.4, and α ¼ 83. For reproducibility, we also
display parameters at the origin in case (a). Some additional data
are collected in the Supplemental Material [72].

n (a) (b) (c) ANO

1 1.152 1.008 0.78 1.157
2 1.121 0.913 0.75 1.210
3 1.107 0.882 0.72 1.239

n E=ð2πnÞ
10 0.657
13 0.655
16 0.656

n fðnÞ1 =n! f2ð0Þ að2Þ=2

1 0.9576 0.4793 0.5068
2 0.2321 0.9262 0.079 46
3 0.037 39 0.9852 0.017 68
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against the formation of the condensate and against decay
into unit flux vortices.

V. LINEAR PERTURBATIONS AND STABILITY

To assess the stability of the solutions obtained, a linear
stability analysis of the solutions has been performed. The
formalism of Ref. [67] has been used, extended to the case
of two components. The SUð2Þ symmetric case has been
considered in Refs. [53–55]. Here, the Lagrangian of the
theory, Eq. (15), is expanded to second order in small
fluctuations of the fields, δϕa and δAμ, and then, the
resulting equations are solved with the help of a suitable
form of partial wave expansion and Fourier transformation
in t, z. An important part of the procedure is the choice of
gauge. The gauge condition is also perturbed, in a way that
removes first order derivatives from the first order equa-
tions [67]. The only drawback of this procedure is that the
spectrum of the gauge-fixing operator is also needed to
distinguish physical modes from ghost ones. However, in
our case, all ghost mode eigenvalues turn out to be positive;
i.e., all unstable modes are physical.
The resulting equations, for a mode in partial wave

channel l and z direction wave number k, can be written in
the form

MlðkÞΨl ¼ Ω2Ψl; ð30Þ

where Ω is the frequency eigenvalue, MlðkÞ a matrix
differential operator, and Ω2 < 0 corresponds to an insta-
bility. Here Ψl ¼ ðs1l; s�1;−l; s2l; s�2;−l; al; a�−l; a3l; a0;lÞT
are the radial functions of the perturbations. For the details
of this analysis, see the Appendix. The perturbations of a0;l
decouple in all cases.
The linearized problem and its application to assess the

stability of the solutions will be presented in Sec. III B for
the case of e1 ¼ e2 ¼ 1. For the embedded ANO string, the
following sectors of the perturbations decouple: δϕ1, δAi;
δA0; δA3; and that of δϕ2. The instability in the δϕ2 sector
signals the bifurcation; the perturbation operator in that
sector agrees with that in the bifurcation equation, Eq. (26).
The application of the expansion of the vortex solution

around the bifurcation to the stability problem has been
addressed in Ref. [54] in the SUð2Þ symmetric case.

The same argument can be repeated here, Ml ¼ Mð0Þ
l þ

ϵ2Mð2Þ
l . This shows that the perturbation problem of the

twisted vortices is a one-parameter deformation of that of the
embedded ANO vortices, and therefore, twisted vortices
close to the bifurcation are unstable. Vortices farther from
the bifurcation need to be treated numerically.
Let us also remark that the perturbation treatment of the

instability problem is a bit involved: for β1 > 1.5, a
contribution from the continuum spectrum of the embedded
ANO vortex perturbations (as intermediate states in
second order perturbation theory) needs to be taken into
account [54].

A. Stability of vortices with two charged fields

For twisted vortices, 0 < ω ≤ ωb, the results are similar
to those in the case of an SUð2Þ symmetric potential (see
Refs. [53–55]): firstly, the mode corresponding to the
lowest value of the squared frequency Ω2 is a one-
parameter deformation of the instability mode of the
embedded ANO vortex. Second, for all values 0 < ω ≤
ωb that were available to our numerical code, we have
found one unstable mode in the l ¼ 0 sector; i.e., the
instability of the embedded ANO vortex persisted for all
examined twisted vortices, and, for lower values of the
twist, ω, the value of jΩ2j also got smaller. The value of Ω2

is negative for a range of the wave number. Close to the
minimum k ¼ kmin (most negative Ω2), an approximate
dispersion relation

Ω2 ¼ Ω2
min þ Ω2

2ðk − kminÞ2 ð31Þ

holds. For the embedded ANO vortex, Eq. (31) is exact,
and kmin ¼ ωb. As ω becomes smaller, the errors grow; it is
likely that this is because of δA3 decoupling at ω ¼ 0. For
ω → 0, a very small δA3 has to be calculated, which is
weakly coupled to the other components. On the other
hand, for ω ¼ 0, the eigenvalues for δA3 are those of the
ghost mode.

TABLE V. The value of coupling α at the bifurcation for
e2 ¼ 0.

β1 β0 αb

1.25 1.25 1.1235
2 2 1.7610
2.5 2.5 2.1791
1.25 1.255 1.1272
2 2.1 1.8309
2 2.3 1.9669
2.5 2.6 2.2477

TABLE VI. Energy per unit flux, En=ð2πnÞ, of vortices with
e2 ¼ 0 for (a) β1 ¼ 2, β2 ¼ 3, β0 ¼ 2.3, and α ¼ 2.05 and
(b) β1 ¼ 2, β2 ¼ 9, β0 ¼ 3.98372, and α ¼ 3.5507. For repro-
ducibility, values at the origin are also displayed for case (a).

n (a) (b) ANO

1 1.152 1.113 1.157
2 1.102 1.054 1.210
3 1.055 1.011 1.239

n fðnÞ=n! f2 að2Þ=2

1 1.0242 0.3573 0.5807
2 0.4599 0.7213 0.2473
3 0.1739 0.7874 0.1563
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The ghost mode eigenvalues change slowly with param-
eters of the potential and ω. Their order of magnitude is
unity. Most importantly, the lowest energy modes relevant
for stability are not canceled by them.
Most importantly for our subject matter, in all examined

cases, the eigenvalues in the ω ¼ 0 case are 0 for k ¼ 0
within numerical precision. For zero twist (ω ¼ 0), the
dispersion relation (31) is exact with kmin ¼ 0 and Ω2

2 ¼ 1.
This implies that for any k ≠ 0, the eigenvalue is positive.
As any local perturbation necessarily contains modes with
k ≠ 0, it is a positive energy perturbation. This is strong
evidence for the stability of the zero twist vortices.
We have also examined the stability of higher flux

vortices. We have found that for many parameter values,
n ¼ 2, 3 vortices are stabilized by the addition of the
condensate in their core. This is in accord with the non-
monotonicity of the energy per unit flux as a function of the
flux. For vorticeswith a number of flux quanta below the one
with the strongest binding, it is energetically favorable to
avoid decay. This happens when the parameters are far
enough from the bifurcational value. See Table VII: CC
vortices exist for αb < α < β0, and they are stable forα > αs.
As we shall see in the large mass ratio limit, in Sec. VI, this
phenomenon is even more pronounced.

B. Stability of vortices with one charged and
one neutral field

We have also examined the stability of CC vortices
in the e2 ¼ 0 case. We have found qualitatively similar
results, as in the charged case: the eigenvalue of the
mode that is a deformation of the eigenmode of ANO
vortices corresponding to the bifurcation loses its energy-
lowering property for CC vortices. The corresponding
eigenvalue becomes zero within numerical precision, for
z-independent perturbations, and k2 for perturbations with z
direction wave number k, implicating that there are no
energy-lowering local perturbations in this sector.
For higher winding vortices, we have also observed the

stabilization in the case of a neutral second field. For some
numerical data, see Table VIII.

VI. MAGNETIC BAGS AND LARGE
MASS RATIO M

Large flux A remarkable limit of ANO vortices has been
considered in Refs. [73,74]. An approximate vortex con-
figuration has been constructed as

fðrÞ ¼
	
0; if r < R;

1; if r > R;
aðrÞ ¼

	
r2=R2; if r < R;

1; if r > R;

ð32Þ

with optimal radius R ¼ RA ¼ ffiffiffiffiffiffi
2n

p
β−1=4 and energy

En ¼ EAn ∼ 2πn
ffiffiffi
β

p
. It is straightforward to generalize this

approximation to the case of a neutral second field, e2 ¼ 0
with using Eq. (32) for f1 and a, and setting

f2ðrÞ ¼
( ffiffiffiffi

α
β2

q
; if r < R;

0; if r > R;
ð33Þ

yielding R ¼ RC0 ¼
ffiffiffiffiffiffi
2n

p ðβ1 − α2=β2Þ−1=4 and E ¼ EC0 ¼
2πnðβ1 − α2=β2Þ1=2. It is remarkable that in this limit, an
effective Ginzburg-Landau parameter, βeff ¼ β1 − α2=β2,
can be introduced. In the e2 ¼ 0 limit, the large flux limit of
the effective ANO vortex reproduces well the large flux
limit of CC vortices as well. However, the large flux
behavior is more delicate in the case of two charged fields:
in that case, we have observed numerically that for n → ∞,
En=n approaches the same limit for CC and ANO vortices.
For numerical data, see Figs. 5 and 4.
Large mass ratio,M The large mass ratio limit is another

interesting limit, and one that is also physically relevant. In
LMH, ϕ1 corresponds to Cooper pairs formed of electrons,
and ϕ2 to ones of protons.1 The GL free energy density is

F ¼ B2

2
þ
X2
a¼1

�
ℏ2

2ma
jDϕaj þ

λa
2
jϕaj4 − μajϕaj2

�

þ λ0jϕ1j2jϕ2j2; ð34Þ

where Dϕa ¼ ð∇ − eeaAÞϕa; λa, λ0, and μa are material
constants; ea is the charge of the field ϕa in some arbitrary
units e (e.g., for superconductors, twice the elementary
charge is suitable); and we have assumed that there is no
Josephson coupling, γðϕ�

1ϕ2 þ ϕ1ϕ
�
2Þ, which would fix the

relative phase of the fields at the minimum of the potential,
and disallow a 1VEV state. Such is the case if there is a
symmetry enforcing the separate conservation of the two
fields (e.g., conservation of particle numbers).

TABLE VII. Stabilization of two-flux (n ¼ 2) vortices, e2 ¼ 1.

β1 β2 β0 αb αs

1.25 1.25 1.255 1.1742 1.2350
2 2 2.1 1.6811 1.9335
2.5 2.5 2.6 1.9756 2.3984

TABLE VIII. Stabilization of two-flux (n ¼ 2) vortices,
e2 ¼ 0.

β1 β2 β0 αb αs

2 3 2.3 1.4325 1.8287
2 9 4 1.9490 2.7948

1Vortices in LMH have been considered in Ref. [32] assuming
λ0 ¼ 0. In Ref. [33], this assumption is not used. For another two-
component superconductor, MgB2, in the weak-coupling Bardeen-
Cooper-Schrieffer theory, λ0 ¼ 0 is obtained [9], and in later
calculations, beyond the weak coupling limit, λ0 ≠ 0 [10].
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With the help of a rescaling of the field ϕ1 by
ffiffiffiffiffiffiffiffiffiffiffi
μ1=λ1

p
,

ϕ2 by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m1

p ffiffiffiffiffiffiffiffiffiffiffi
μ1=λ1

p
, the vector potential A by

ℏη1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1=2=m1

p
, and distances by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1=ðμ0e21e2η1Þ

p
, the

penetration depth, λL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=ðμ0e21e2η1Þ

p
, is scaled to

1=
ffiffiffi
2

p
, and we obtain the GL free energy with the potential

in the form used in Eq. (1). The parameters are then related
to the microscopic parameters as

β1 ¼ 4λ1m2
1=ðℏ2e2μ0Þ;

β2 ¼ 4λ2m2
2=ðℏ2e2μ0Þ;

β0 ¼ 4λ0m1m2=ðℏ2e2μ0Þ;
α ¼ 4ν2m1m2=ðℏ2e2μ0η21Þ: ð35Þ

As for LMH, the mass ratioM ¼ m2=m1 ≈ 1836 (the mass
ratio of protons and electrons), β2 ≫ α, β0 ≫ β1. Suitable
parameters are introduced as

β2 ¼ M2 ~β2; β0 ¼ M ~β0; α ¼ M ~α: ð36Þ

The tilde parameters are expected to be of the same order of
magnitude. We shall consider here the limiting behavior of
CC vortices for M ≫ 1.
In Fig. 5, the energy per unit flux, En=n, is plotted for a

large range of fluxes, and some values of the mass ratio.
Remarkably, En=n is not a monotonous function of n, in
contradistinction with both the case of type I (β < 1) and
type II (β > 1) superconductors. As a result, in the two-
component theory with large mass ratio, “giant” vortices
exist. Even for moderate values of M (e.g., 20 or 100), the
minimum of En=n is shifted to 13 and 78, respectively.
Qualitative properties of the function En=n can be

reproduced with the following approximate vortex con-
figuration. Let us consider a bag-type vortex, with f1 ¼ 0,

f2 ¼
ffiffiffiffiffiffiffiffiffiffi
α=β2

p
(the lowest energy false vacuum with f1 ¼ 0)

in its core, from r ¼ 0 to ð1 − δÞR. It is assumed that the
vortex has a thin wall, with f1 and f2 having a linear
transition to their respective VEVs between r ¼ ð1 − δÞR
and R. The gauge field is a ¼ ðr=RÞ2 for r < R and a ¼ 1
otherwise.
The energy of such a configuration is approximately

minimized as R ¼ ffiffiffiffiffiffi
2n

p
β−1=4eff . In δ we expand the energy in

a series containing terms starting with 1=δ and ending with
δ3. We have found, with a numerical minimization, that a
good approximate minimum is obtained by minimizing
the δ−1 and δ3 terms, yielding δ ¼ ð5=2Þ−1=4ððβ2 þ αÞ=
ðβ2 − 3αÞÞ1=4n−1=2. With these, it is obtained that
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FIG. 4. Energy of vortices per unit flux, β1 ¼ 2, ~β2 ¼ 3,
~β0 ¼ 2.3, ~α ¼ 2.05, and e2 ¼ 0, compared to Abrikosov
(ANO) vortex energies.
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E ≈ 2πnβeff

þ 8π

3

�
2

5

�
1=4

�
1 −

1

4
ffiffiffiffiffi
10

p
�
7βeff −

~αð ~αþ ~β0Þ
βeff ~β2

��
n1=2

þ π ~α

M ~β2

�
1 −

27=451=4

3
n3=2 þ 3 · 51=2

21=2
n

�
: ð37Þ

The qualitative formula (37) gives an order of magnitude
correct value. It also shows that En=n is nonmonotonous,
with a minimum at a value of n growing with M. This
minimum is significantly below the energy/flux of
embedded ANO vortices (in the bag approximation of
Refs. [73,74], 2πβ1). The existence of the minimum is the
result of the competition of two phenomena, the expansion
of the vortices due to the magnetic energy, and the large M
behavior, fixing f2 to its minimal energy value in the core,
at the cost of the interaction energy between the second
scalar and the gauge fields. If n becomes much larger than
at the minimum of En=n, CC vortices approach embedded
ANO ones.
Boundary of upper and lower component 1VEV: Wall-

type vortices Close to α ¼ ffiffiffiffiffiffiffiffiffi
β1β2

p
, the potential energy in

the core becomes small, the vortices become large, and
their flux is localized closer to the outer end of their cores.
At the same time, the minimum of En=n is shifted to larger
values of n, and at α ¼ ffiffiffiffiffiffiffiffiffi

β1β2
p

, En ∝ n for large n. Here,
ANO vortices in the lower component also become
allowed. In this case, it is possible to exchange the role
of the two components, with the rescaling ϕa → η2ϕa,
x → x=η2, A → η2A, where η22 ¼ α=β2. In this way, we get
the same expression for the energy of the vortices with the
potential (1) and an overall multiplier α=β2. With the same
configuration as above, the estimated energy of these
vortices is E ¼ 2πð4α=β2 þ α=

ffiffiffiffiffiffiffi
3β2

p Þ, which isM0 asymp-
totically. However, using the large-β asymptotics of
Abrikosov vortex energy [2], we get E ∼ 2π α

β2
log

ffiffiffiffiffi
β2

p
,

i.e., ∼ðlogMÞ=M, telling us that at the transition, it is
energetically favorable for the vortices to break up into
n ¼ 1 lower component Abrikosov vortices. Linearizing
the equations in the other component shows that these
vortices are then stable against the formation of a con-
densate in their core. This can be seen as follows: the large-
β asymptotic form of the vortex profile is a small core with
size proportional to 1=

ffiffiffiffiffi
β2

p
∝ 1=M. The linearized equation

is of the form of an eigenvalue equation, and we have
verified numerically that it has no bound modes, so
therefore if α >

ffiffiffiffiffiffiffiffiffi
β1β2

p
, vortices in the lower component

do not have a condensate in their cores.

VII. THE CASE OF A TWO-COMPONENT
VACUUM EXPECTATION VALUE

Global 2VEV vortices Let us briefly consider global
2VEV vortices. These, in the context of atomic BECs, are
discussed in Refs. [22–25]. Let us note that as for r → ∞,
f1 → η1, and f2 → η2, the asymptotic behavior of the
energy density [see Eq. (10)] is E ∼ ðn2η21 þm2η22Þ=r2;
therefore, the energy of the vortex is

E ¼
Z

d2xE

¼ 2π

Z
Rcore

0

drrE þ 2πðn2η21 þm2η22Þ log
�

R
Rcore

�
: ð38Þ

An interesting case is the behavior close to the boundary
between 1VEV and 2VEV classes, at α ¼ β0. Unless
β1β2 ¼ ðβ0Þ2, a limiting vortex exists in the 1VEV case,
with power-law localization. It is also a smooth limit of
2VEV vortices: at the transition, η2 becomes 0. For the
comparison of a 1VEV and a 2VEV global vortex, both
close to the transition, see Fig. 8. Numerical data are
collected in Table IX.
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FIG. 7. Radius of 2VEV vortices [f1ðRcoreÞ ¼ 0.95η1], β1 ¼ 2,
~β2 ¼ 2.4, ~β0 ¼ 1.8, ~α ¼ 2.2, and e2 ¼ 1.
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α ¼ 2.011 2VEV.
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Two charged fields Let us note first that with two
nonzero VEVs, the energy per unit length of a twisted
vortex diverges quadratically in R, as there is only one
longitudinal gauge field component, A3, which would
either not cancel the longitudinal derivative of ϕ2 or lead
to a nonvanishing D3ϕ1. Also, as Aϑ cannot cancel the
angular derivatives of both fields unless n ¼ m, the energy
of 2VEV vortices is only finite in this case.
Vortices with a mildly, i.e., logarithmically divergent,

energy exist, however, for any pair of windings, n, m.
From minimizing the logarithmic energy contribution,
aðr → ∞Þ ¼ ðnη21 þmη22Þ=½nðη21 þ η22Þ�, agreeing with
the number of flux quanta in the vortices, is obtained; in
general, this is noninteger. In Refs. [28,29,34,35], these
vortices have been termed fractional flux vortices.
Let us now consider the case of n ¼ 1, m ¼ 0. Inserting

the limiting value of a and the VEVs into the energy
density, Eq. (21), the asymptotic form of the energy is
obtained, yielding

E ¼ 2π

Z
Rcore

0

drrE þ 2πEL log

�
R

Rcore

�

¼ Ecore þ 2πEL log

�
R

Rcore

�
; ð39Þ

where the coefficient of the logarithm is given as

EL ¼ η21η
2
2

η21 þ η22
: ð40Þ

In the 1VEV case, close to the transition, the radial falloff of
the second field component is ∼F2r−1=2 expð−

ffiffiffiffiffiffiffiffiffiffiffiffi
β0 − α

p
rÞ,

which gets slower if the system is closer to the 2VEV case.
For a finite size sample, at some point, 1VEV solutions and
2VEV fractional flux vortices become indistinguishable in
those cases when the zero twist limit exists for β0 ¼ α. For a
comparison of 1VEV and 2VEV vortices close to the
transition, see Fig. 9 and Table IX.
Let us also mention that in the large mass ratio (M) limit,

η1 is independent of M, and η22 ¼ ~η22=M. As a result, in the
large mass ratio limit, EL ¼ OðM−1Þ, and the dependence
of the energy on R becomes weak. The limit of the flux is

naðr → ∞Þ ¼ n
η21

η21 þ η22

¼ n

�
1 −

1

M
β1ð ~α − ~β0Þ
β1 ~β2 − ~α~β0

�
þOð1=M2Þ;

i.e., the deviation of the flux from the integer value in the
M ≫ 1 limit decreases with M, and in the case of LMH,
distinguishing between fractional flux and ANO vortices is
expected to require the measurement of the flux to a

TABLE IX. Comparison of 1VEVand 2VEV vortices close to the boundary: (a) e1 ¼ e2 ¼ 1; (b) e1 ¼ 1, e2 ¼ 0; and (c) global. The
coefficient of the 2π logðR=RcÞ term in the energy, EL, is always 1 for 1VEV global vortices. It is displayed for the e1 ¼ e2 ¼ 1 case in
the table, where Rcore is defined as aðRcoreÞ ¼ 0.95aðr → ∞Þ, and for the global case, f1ðRcoreÞ ¼ 0.95f1ðr → ∞Þ.

β1 β2 β0 α, 1VEV ~α, 2VEV E=ð2πÞ, 1VEV Rcore EL E=ð2πÞ, 2VEV Rcore

(a) 2 3 2 2 2.011 1.136 Not applicable 0.011 1.107 3.60
(b) 2 3 2 2 2.011 1.070 Not applicable Not applicable 1.035 Not applicable
(c) 1 4.5 2 1.99 2.011 1.71 9.13 0.956 1.67 10.7
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FIG. 9. Comparison of 1VEV and 2VEV vortices close to the
boundary: β1 ¼ β0 ¼ α ¼ 2, β2 ¼ 3 1VEV, and α ¼ 2.011
2VEV, e2 ¼ 1.
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precision of less than one part in a thousand. At the same
time, the coefficient of the logarithmic term [see Eq. (40)]
in the energy also becomes small,

EL ¼ 1

M
β2ð ~α − ~β0Þ
β1 ~β2 − ~β02

þOð1=M2Þ:

Also, f1 becomes similar to the scalar field of an ANO
vortex, with λeff and αeff effective couplings, as in the
1VEV case; see Sec. VI. Some numerically calculated
(core) energy values of 2VEV vortices with both fields
charged are shown in Fig. 6, and the corresponding radii in
Fig. 7. Note that there seems to be an energy contribution

proportional to n2, and En=n grows with n despite the fact
that βeff < 1.
One field charged, one neutral In the 2VEV case with

one neutral condensate, e2 ¼ 0, the m ¼ 0 case yields
finite-energy vortices with integer flux, aðr → ∞Þ → 1,
and the number of flux quanta agrees with n. For other
values of m, E ∼ 2πm2η22 logðR=RcoreÞ.
We have calculated some 2VEV vortices with n ¼ 1,

m ¼ 0 for a neutral scalar field numerically. The data are
collected in Table X. Note that there is a series of data for
β1 ¼ 2, ~β2 ¼ 3, ~β0 ¼ 2, ~α ¼ 2.1, and M ¼ 1, 2, 3. For
M → ∞, the lowest energy state with ϕ1 ¼ 0 is
jϕ2j ¼

ffiffiffiffiffiffiffiffiffiffi
α=β2

p ¼ Oð1= ffiffiffiffiffi
M

p Þ. With this assumption, the
leading terms in the equation of f2 in Eq. (20) are
β2f22 − αþ β0f21; neglecting the remaining terms yields
f22 ¼ ð ~α − ~β0f21Þ= ~β2=M. Substituting this into the equation
of f1 yields an ANO vortex profile equation with λeff ¼
β1 − ð~β0Þ2= ~β2 and αeff ¼ β1 − ~β0 ~α= ~β2. Rescaling this into
the usual ANO form yields an approximate energy
αeff=λeffEANOðβ ¼ λeffÞ. For comparison, for the case in
Table X, second to fifth rows yields E=ð2πÞ ≈ 0.8279
[with λeff ¼ 0.6667, αeff ¼ 0.6, and EANOðβ ¼ 0.6667Þ=
ð2πÞ ¼ 0.9199].
A comparison of 1VEV and 2VEV vortices close to the

transition is show in Fig. 10.
Some data for n ¼ 2 are collected in Table XI. For

the parameter values in Table XI, second to fifth row,
the approximation from the effective ANO vortex gives
E=ð4πÞ ≈ 0.8071 [with EANOðn¼2;β¼0.6667Þ=ð4πÞ¼
0.8967]. See also Fig. 11.
Numerically, f22 ≈ ðα − β0f21Þ=β2 holds with a good

accuracy even for M ¼ 4.
Some initial data (values at the origin) for the integration

of the radial equations are collected in Table XII for the
reproducibility of the results.

VIII. CONCLUSIONS

In the present paper, we gave a detailed study of vortex
solutions in a broad class of Uð1Þ × Uð1Þ symmetric, two-
component scalar field theories. We emphasize the hitherto
unexplored case in which one of the scalars obtains a
vacuum expectation value (1VEV), and we also consider
the case with both fields having a VEV (2VEV).

TABLE X. The energy of some 2VEV vortices for e2 ¼ 0,
n ¼ 1, m ¼ 0.

β1 β2 β0 α E=ð2πÞ
2 3 2 2.011 1.035 19
2 3 2 2.1 0.905 88
2 12 4 4.2 0.874 61
2 27 6 6.3 0.861 28
2 48 8 8.4 0.853 89

TABLE XI. The energy of some 2VEV vortices for e2 ¼ 0,
n ¼ 2, m ¼ 0.

β1 β2 β0 α E=ð4πÞ
2 3 2 2.011 0.986 06
2 3 2 2.1 0.869 58
2 12 4 4.2 0.842 19
2 27 6 6.3 0.831 59
2 48 8 8.4 0.825 93

TABLE XII. Initial data for the radial equations for 2VEV
vortices, β1 ¼ 2, β2 ¼ 3, β0 ¼ 2, and α ¼ 2.1.

n e1 e2 fðnÞ1 =n! f2 að2Þ=2 E=ð2πnÞ
1 0 0 0.4693 0.7688 Not applicable Not applicable
2 0 0 0.093 498 0.8296 Not applicable Not applicable
1 1 0 0.7426 0.6961 0.4302 0.9059
2 1 0 0.3462 0.7921 0.2037 0.8696
1 1 1 0.7522 0.6670 0.3477 Not applicable
2 1 1 0.3450 0.7609 0.1284 Not applicable
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FIG. 11. Energy of 2VEV vortices per unit flux, β1 ¼ 2,
~β2 ¼ 3, ~β0 ¼ 2, ~α ¼ 2.1, and e2 ¼ 0. For comparison, the energy
per unit flux of the corresponding effective ANO vortices for
large flux, ðαeff=λeffÞ2π
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In the 1VEV case of the purely scalar (Gross-Pitaevskii)
theory, vortices can lower their energy by the formation of a
condensate of the second field in their core. The result is a
condensate core vortex. We found that the condensate in the
core of the vortex can stabilize higher winding vortices
against the splitting instability, in strong contrast with the
ordinary GP theory.
In the 1VEV case of the gauged theory, two-component

Ginzburg-Landau theory (or in the relativistic case, the
extended Abelian Higgs model), CC vortices also exist.
They coexist with embedded Abrikosov vortices and have
significantly lower energy. Importantly, CC vortices are
stable. Higher flux CC vortices also stabilize against the
splitting instability, even in such cases when embedded
Abrikosov vortices split into unit flux ones. In a strong
coupling limit, relevant to, e.g., superconducting liquid
metallic hydrogen, we have demonstrated the existence of
stable giant vortices, i.e., vortices with Oð1000Þ flux
quanta. The physical implication is that these materials
are neither type II superconductors (which only have stable
unit flux vortices), nor type I (as the energy/flux of vortices
does have a minimum here). We obtained similar results in
the case when only one of the scalar fields is charged. In
this case, we have found a remarkably simple description of
the high flux limit of CC vortices, quite similar to that of
Abrikosov vortices.
In all three cases of the GP and GL models with one or

two charged fields, we have demonstrated that vortices in
the 1VEV case are smoothly connected with the ones in the
2VEV case with the winding in only one component. As in
the case of two charged fields, the energy of 1VEV vortices
is finite and that of the corresponding 2VEV ones is
logarithmically divergent. This connection is quite remark-
able. In the case of one charged and one neutral field, all
1VEV and 2VEV vortices have finite energy.
The fact that CC vortices with higher fluxes become

stable also implies a richer physics of intervortex forces.
For example, in the case of the GL theory, the stability of
higher winding vortices implies that the intervortex forces
become attractive as the distance between the vortices
decreases. This is analogous to the behavior of vortices in
certain neither type I nor type II superconductors.
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APPENDIX: DETAILS OF THE PERTURBATION
EQUATIONS

We have studied the stability of the solutions at the linear
level, writing the perturbed solution as ϕa ¼ ϕa;bg þ ϵδϕa

and Aμ ¼ Aμ;bg þ ϵδAμ. Here, the fields with index “bg”
denote the static solution. In what follows, the bg index will
be dropped. Here we repeat the analysis of Ref. [54], with
the modified potential, and using the methods of Ref. [67].
For the (in)stability analysis of the SU(2) symmetric case,
see also Refs. [53–55].
The linearized perturbation equations are cast into a form

DΨ ¼ 0; Ψ ¼

0
B@

δϕa

δϕ�
a

δAμ

1
CA ¼ 0; ðA1Þ

where the operator D is calculated from the linearized
field equations. Simply linearizing the field equations we
would get

D¼

0
B@

Dab −Va�b −Va�b� Bbμ

−Vab D�
ab −Vab� B�

bμ

~B�
aν

~Baν gμνð□þUAÞ− ∂μ∂ν

1
CA;

ðA2Þ

with (no summation over indices a, b implied)

Dab ¼ δabð−□þ e2aA2Þ þ 2ieaδabAμ∂μ; □ ¼ ∂μ∂μ;

UA ¼ 2
X
a

e2ajϕ2
aj; Bbμ ¼ 2iebDμϕb þ iebϕb∂μ;

~Bbμ ¼ ieb∂μϕb þ 2e2bAμϕb − iebϕb∂μ: Vab ¼
∂2V

∂ϕa∂ϕb
;

Va�b ¼
∂2V

∂ϕ�
a∂ϕb

; Vab� ¼
∂2V

∂ϕa∂ϕ�
b
; Va�b� ¼

∂2V
∂ϕ�

a∂ϕ�
b
:

ðA3Þ
However, the gauge condition can also be perturbed. In the
background field gauge,

FðAÞ ≔ ∂μδAμ þ i
X
a

eaðδϕ�
aϕa − ϕ�

aδϕaÞ ¼ 0: ðA4Þ

which is added to the matrix in Eq. (A2), to each line as
−ieaϕaF, ieaϕ�

aF, ∂μF (no summation over a), yielding

D0 ¼

0
BB@

D0
ab − Va�b −Va�b� þ eaϕaebϕb 2iDμϕb

−Vab þ eaϕ�
aebϕ�

b D�0
ab − Vab� −2iðDμϕbÞ�

−2iðDνϕaÞ� 2iDνϕa gμνð□þ UAÞ

1
CCA; ðA5Þ

where D0
ab ¼ Dab − eaϕaebϕ�

b.
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The temporal component of the gauge field, δA0,
satisfies a decoupled equation

ð□þ UAÞδA0 ¼ 0; ðA6Þ

which agrees with the equation satisfied by the generators
of infinitesimal gauge transformations,

δϕa → δϕa þ ieaχϕa;

δAμ → δAμ þ ∂μχ; ðA7Þ

that are still allowed by the gauge fixing (A4), correspond-
ing to ghost modes, obeying

ð□þUAÞχ ¼ 0: ðA8Þ

The ghost modes cancel the δA0 spectrum and a part of the
spectrum of the remaining components of Eq. (A1).
Equation (A1) can be brought to the form of an

eigenvalue equation by Fourier transforming in the t and
z variables. The resulting equations take the form

M ~Ψ ¼ Ω2 ~Ψ; ðA9Þ

where the z direction wave number k is a parameter in M.
By expanding the fields in Fourier components in the
angular variable, ϑ, separate eigenvalue equations

MlΨl ¼ Ω2Ψl ðA10Þ

are obtained for each partial wave l, where Ml is an
ordinary differential operator in the radial variable r.
Similar treatment is possible for the δA0 and ghost modes.
Here, Ω2 < 0 is the sign of an instability.
Equations (A10) possess a symmetry: replacing k → −k

and exchanging the positive and negative frequency field
components. This makes it possible to examine only the
k > 0 region. We have solved Eq. (A10) with a slightly
modified version of the shooting to a fitting point method
of Ref. [71].
We take one Fourier mode for the perturbations as

δϕ1ðz; t; xiÞ ¼ eiðΩt−kzÞδϕ1ðk;Ω; xiÞ
δϕ�

1ðz; t; xiÞ ¼ eiðΩt−kzÞδϕ�
1ð−k;−Ω; xiÞ

δϕ2ðz; t; xiÞ ¼ eiðΩt−ðk−ωÞzÞδϕ2ðk;Ω; xiÞ
δϕ�

2ðz; t; xiÞ ¼ eiðΩt−ðkþωÞzÞδϕ�
2ð−k;−Ω; xiÞ

δAμðz; t; xiÞ ¼ eiðΩt−kzÞδAμðk;Ω; xiÞ; ðA11Þ

with the index i running over 1, 2. The variables Aμ are real
functions, so therefore

Aμðk;Ω; xiÞ ¼ A�
μð−k;−Ω; xiÞ: ðA12Þ

Substituting these into Eqs. (A1) yields the perturbation
operator M of Eq. (A9):

M ¼

0
BBBBBBBBBBBB@

D1 U1 V1 V 0
1 A1k B1 0

U�
1 D�

1 V 0�
1 V�

1 A�
1k B�

1 0

V2 V 0
2 D2 U2 A2k B2 0

V 0�
2 V�

2 U�
2 D�

2 A�
2k B�

2 0

A�
1i A1i A�

2i A2i D3δik 0 0

B�
1i B1i B�

2i B2i 0 D3 0

0 0 0 0 0 0 D3

1
CCCCCCCCCCCCA
;

ðA13Þ

with

D1 ¼ k2 − ∂2
i þ e21ðA2

i þ A2
3Þ þ 2ie1Ai∂i þ 2ke1A3 þW1;

D�
1 ¼ k2 − ∂2

i þ e21ðA2
i þ A2

3Þ − 2ie1Ai∂i − 2e1kA3 þW1;

D2 ¼ ðk − ωÞ2 − ∂2
i þ e22ðA2

i þ A2
3Þ

þ 2ie2Ai∂i − 2e2ðω − kÞA3 þW2;

D�
2 ¼ ðkþ ωÞ2 − ∂2

i þ e22ðA2
i þ A2

3Þ
− 2ie2Ai∂i − 2e2ðωþ kÞA3 þW2;

D3 ¼ k2 − ∂2
i þ e21jϕ1j2 þ e22jϕ2j2;

and (with no summation over a, b)

Wa ¼
∂2V

∂ϕ�
a∂ϕa

þ e2aϕ�
aϕa W�

a ¼
∂2V

∂ϕ�
a∂ϕa

þ e2aϕ�
aϕa

Ua ¼
∂2V
∂ϕ�2

a
− e2aϕ2

a U�
a ¼

∂2V
∂ϕ2

a
− e2aϕ�2

a

V1 ¼
∂2V
∂ϕ�

1ϕ2

þ e1e2ϕ1ϕ
�
2 V2 ¼

∂2V
∂ϕ�

2ϕ1

þ e1e2ϕ2ϕ
�
1

V1
0 ¼ ∂2V

∂ϕ�
1ϕ

�
2

− e1e2ϕ1ϕ2 V 0
2 ¼

∂2V
∂ϕ�

2ϕ
�
1

− e1e2ϕ�
2ϕ

�
1

A1i ¼ 2e1ðe1Aiϕ1 þ i∂iϕ1Þ A2i ¼ 2e2ðe2Aiϕ2 þ i∂iϕ2Þ
B1i ¼ 2e21A3ϕ1 B2i ¼ 2e2ðe2A3 − ωÞϕ2:

The Fourier transform takes Eq. (A8) of the ghost
modes into

D3χ ¼ Ω2χ; ðA14Þ

while a gauge transformation takes the form [see also
Eq. (A7)]
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δAi → δAi þ ∂iχ;

δA3 → δA3 − ikχ;

δA0 → δA0 þ iΩχ: ðA15Þ

It is useful to introduce complex coordinates

Aþ ¼ e−iϑffiffiffi
2

p
�
Ar −

i
r
Aϑ

�
A− ¼ eiϑffiffiffi

2
p

�
Ar þ

i
r
Aϑ

�
:

ðA16Þ

Fourier expansion in the angle variable [in cylindrical
coordinates x1 ¼ r, x2 ¼ ϑ; see Eq. (A9)], omitting the
sum over l, yields

δϕ1ðk;ΩÞ ¼ s1;leiðnþlÞϑ;

δϕ�
1ð−k;−ΩÞ ¼ s�1;−le

−iðn−lÞϑ;

δϕ2ðk;ΩÞ ¼ s2;leiðmþlÞϑ;

δϕ�
2ð−k;−ΩÞ ¼ s�2;−le

−iðm−lÞϑ;

δAþðk;ΩÞ ¼ ialeiðl−1Þϑ;

δA−ð−k;−ΩÞ ¼ −ia�−leiðlþ1Þϑ;

δA0ðk;ΩÞ ¼ a0;leilϑ;

a�0;−lð−k;−ΩÞ ¼ a0;lðk;ΩÞ;
δA3ðk;ΩÞ ¼ a3;leilϑ;

a�3;−lð−k;−ΩÞ ¼ a3;lðk;ΩÞ: ðA17Þ

Substituting expansion (A17) into the linearized equations
of motion (A1), one obtains an eigenvalue problem of the
form (A10) with the operator

Ml ¼

0
BBBBBBBBBBBBB@

D1 U1 V V 0 A1 A0
1 B1 0

U1 D�
1 V 0 V A0

1 A1 B1 0

V V 0 D2 U2 A2 A0
2 B2 0

V 0 V U2 D�
2 A0

2 A2 B2 0

A1 A0
1 A2 A0

2 D3 0 0 0

A0
1 A1 A0

2 A2 0 D�
3 0 0

B1 B1 B2 B2 0 0 D4 0

0 0 0 0 0 0 0 D4

1
CCCCCCCCCCCCCA
;

ðA18Þ

with

D1 ¼ −∇2
r þ ðk − e1ωa3Þ2 þ

ðnð1 − e1aÞ þ lÞ2
r2

þW1

D�
1 ¼ −∇2

r þ ðk − e1ωa2Þ2 þ
ðnð1 − e1aÞ − lÞ2

r2
þW1

D2 ¼ −∇2
r þ ðk − ωþ e2ωa3Þ2 þ

ðm − e2naþ lÞ2
r2

þW2

D�
2 ¼ −∇2

r þ ðkþ ω − e2ωa3Þ2 þ
ðm − e2na − lÞ2

r2
þW2

D3 ¼ Da þ
ðl − 1Þ2

r2

D�
3 ¼ Da þ

ðlþ 1Þ2
r2

D4 ¼ Da þ
l2

r2
; ðA19Þ

with

Da ¼ −∇2
r þ k2 þ 2ðe21f21 þ e22f

2
2Þ;

and

W1 ¼ ð2β1 þ e21Þf21 − β1 þ β0f22
W2 ¼ ð2β2 þ e22Þf22 − αþ β0f21
U1 ¼ ðβ1 − e21Þf21
U2 ¼ ðβ2 − e22Þf22
V ¼ ðβ0 þ e1e2Þf1f2
V 0 ¼ ðβ0 − e1e2Þf1f2
A1 ¼ −

ffiffiffi
2

p
e1

�
f10 −

nf1
r

ð1 − e1aÞ
�

A2 ¼ −
ffiffiffi
2

p
e2

�
f20 −

m − e2na
r

f2

�

A1
0 ¼

ffiffiffi
2

p
e1

�
f10 þ

nf1
r

ð1 − e1aÞ
�

A2
0 ¼

ffiffiffi
2

p
e2

�
f20 þ

m − e2na
r

f2

�
B1 ¼ 2e21ωa3f1

B2 ¼ 2e2ωðe2a3 − 1Þf2:

The expansion of the gauge transformation generator
function can be chosen as

χ ¼ χleilϑ: ðA20Þ

Using this expansion, the ghost mode equation (A13)
assumes the form

D4χl ¼ Ω2χl: ðA21Þ
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Gauge transformations satisfying the above equation act on the fields as

sa;l → sa;l þ ieaχlfa; s�a;−l → s�a;−l − ieaχlfa; al → al −
iffiffiffi
2

p
�
χ0l þ

lχl
r

�
;

a�−l → a�−l þ
iffiffiffi
2

p
�
χ0l −

lχl
r

�
; a3;l → a3;l − ikχl; a0;l → a3;l þ iΩχl: ðA22Þ
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