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For a generic conformal field theory (CFT) in four dimensions, the scale anomaly dictates that on
conformally flat backgrounds, the universal part of entanglement entropy across a sphere [CunivðS2Þ] is
positive. Based on this fact, we explore the consequences of assuming a positive sign for CunivðS2Þ on such
backgrounds in a four-dimensional scale-invariant theory (SFT). In the absence of a dimension two scalar
operator O2 in the spectrum of a SFT, we show that this assumption suggests that SFT is a CFT. In the
presence of O2, we show that this assumption can fix the coefficient of the nonlinear coupling termR
d4x

ffiffiffi
g

p
RO2 to a conformal value.
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I. INTRODUCTION

The asymptotic structure of Poincaré invariant unitary
quantum field theories in deep UV and IR is of great
importance in physics. A deep understanding of this issue is
achievable via the profound idea of Wilson [1]. According
to this idea, the fixed points of a renormalization group
(RG) are the dwellings of those asymptotics, and therefore,
the asymptotic theories are scale invariant. Other new
dwellings are the renormalization group limit cycles which
also describe the scale-invariant field theories. Remarkably,
with a few known exceptions, unitary scale-invariant
theories (SFT’s) always exhibit full conformal symmetry.
A natural question is whether it is possible for a theory to be
scale invariant but not conformal invariant? The converse
question, i.e., whether a theory can be invariant under
conformal transformations but not under scaling, is easy to
answer. The commutator between the conserved generators
of translations and conformal transformations gives the
scaling generator together with the Lorentz ones. This
means that Poincaré plus conformal invariance comprises
scale invariance. The converse is still an open question
since Poincaré and scaling generators form a closed
algebra.
Recently, there were considerable efforts to answer

this question. The task has been done in some spacetime
dimensions, but the problem is still open for D ¼ 4.
Although some comprehensive arguments are available
in 4D, they still suffer from a serious loophole. In this paper
we study the problem of scale vs conformal invariance in
4D by making use of entanglement entropy. For a generic
conformal field theory (CFT) in 4D, the scale anomaly
dictates that on conformally flat backgrounds, the universal
part of entanglement entropy across a sphere [CunivðS2Þ]
is positive [2]. Based on this fact, we explore the

consequences of assuming a positive sign for CunivðS2Þ
on such backgrounds in a 4D SFT. In the absence of a
dimension two scalar operatorO2 in the spectrum of a SFT,
we show that this assumption suggests that the SFTactually
is a CFT. In the presence of O2, which is actually related
to the loophole in previous studies, we show that this
assumption fixes the coefficient of the nonlinear coupling
term

R
d4x

ffiffiffi
g

p
RO2 to a conformal value.

The paper is organized as follows. The first section is
devoted to a comprehensive review on previous studies on
the subject of scale vs conformal invariance by emphasiz-
ing on 4D. Since our work is highly based on using a scale
anomaly in SFT’s, we will dedicate some parts of the first
section to this topic and its crucial rule in the subject of
scale vs conformal invariance. Also in this section, the
remaining problem in previous studies is mentioned. In
Sec. II we study scale vs conformal invariance in 4D via
entanglement entropy. Finally in the last section, we will
discuss the possible appearance of a scale anomaly in other
measures of entanglement and their rule in the problem of
scale vs conformal invariance.

II. PREVIOUS ATTEMPTS ON SCALE VS
CONFORMAL INVARIANCE

In D ¼ 2, based on the argument of Zamolodchikov [3],
Polchinski proved that any unitary SFT exhibits full
conformal symmetry [4]. Polchinski assumed that a unitary
2D SFT has a well-defined energy-momentum tensor
together with a discrete spectrum and finite energy-
momentum two-point function. Later on, Riva and
Cardy presented a model with scale but without conformal
symmetry [5]. However, their model does not violate
Polchinski’s argument because it does not have reflection
positivity, the Euclidean version of unitarity, and, more
precisely, it does not have a discrete spectrum. An earlier
model by Hull and Townsend [6], which seems to be in
contradiction with the Polchinski proof, is not also a*naseh@ipm.ir
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counterexample, because this model violates the
assumption of having well-behaved energy-momentum
two-point function. More recent proposed counterexamples
also violate one of the assumptions of the theorem
(unitarity, existence, and finiteness of correlators) [7,8].
For D ≥ 3, the situation was unclear until 2011.

Actually, all of the perturbative fixed points, which were
introduced in the preexisting literature, belonged to two
general categories. In the first category, the fixed points
come from the RG flow in theories that do not have any
candidate for virial current and, therefore, that fixed points
were automatically conformal invariant [9,10]. In the
second category, which is more interesting, although the
studied theories have a nontrivial candidate for virial
current, at the fixed points no virial current appears and
therefore they also exhibit full conformal symmetry [4,11].
Consequently, a general conjecture seemed to be that the
Zamolodchikov-Polchinski theorem is even true in D ≥ 3,
even though a proof has not been available. Interestingly, in
2011 it was demonstrated that this conjecture is false, at
least in D ¼ 3 and in D ≥ 5 [12]. The counterexample is
simply the free Maxwell theory. This scale-invariant field
theory is unitary—it has a well-defined energy-momentum
tensor and also has a discrete spectrum, but it is not a CFT.
Therefore, we remain with D ¼ 4. First, it is shown that

at all 4D perturbative fixed points, the scale symmetry is
enhanced to the full conformal symmetry [13,14]. Indeed,
the approach of [13] is based on the idea of Komargodski-
Schwimmer’s a-theorem, while [14] is based on the concept
of the local Callan-Symanzik equation. The argument in
[13] holds even for theories with gravitational anomalies.
Furthermore, it is argued that perturbative scale-invariant
trajectories correspond to rare RG flows, namely limit
cycles with nonvanishing beta functions [15], also enjoy the
benefit of conformal symmetry [18–21]. Moreover in [13]
it was proposed that a scale anomaly can be used to
understand the scale vs conformal invariance at a non-
perturbative level. Anomalies are caused by quantum
effects. At the classical level a general SFT has a local
conserved scale current Sμ [22]

Sμ ¼ xνTμ
ν þ Vμ; ð1Þ

where Tμν denotes the energy-momentum tensor and Vμ is
the so-called “virial current.” Conservation of scale current
gives

0 ¼ ∂μSμ ¼ Tμ
μ þ ∂μVμ; ð2Þ

which means that for scale-invariant theories Tμ
μ ¼ −∂μVμ.

Note that we have used the fact that the energy-momentum
tensor is conserved. Obviously, if the virial current in a SFT
is conserved, that SFT is actually a CFT. The less obvious
case in which a unitary SFT would be a CFT is when the
virial current is a total derivative, i.e.,

Vμ ¼ ∂μL: ð3Þ

In such a case, one can find an improved energy-momentum
tensor

~Tμν ¼ Tμν þ
1

3
ð∂μ∂ν − ημν□ÞL; ð4Þ

which is conserved and traceless [4,23,24]. In the following,
by SFTwe mean a theory in which its virial current is neither
conserved nor a total derivative. At the quantum level, in
general, scale invariance may be broken by anomalies. The
anomalies can be represented in terms of the Wess-Zumino
action. In order to proceed, a convenient formalism is to
introduce background fields gμν and Cμ as a source for Tμν

and Vμ, respectively. In this way,

eW½gμν;Cμ� ¼
Z

d½φ�e−S½φ;gμν;Cμ�;

Tμν ¼ 2ffiffiffi
g

p δS
δgμν

; Vμ ¼ −
1ffiffiffi
g

p δS
δCμ

; ð5Þ

where W is the generating functional of connected graphs.
Under the generalized Weyl transformation [25]

δσgμν ¼ 2σgμν; δσCμ ¼ ∂μσ; ð6Þ

we have

δσW ¼
Z

d4x

�
−2σgμν

δ

δgμν
þ ∂μσ

δ

δCμ

�
W;

¼
Z

d4x
ffiffiffi
g

p
σhTμ

μ þ∇μVμi: ð7Þ

If the SFT is nonanomalous, δσW vanishes. But in the
presence of an anomaly in general, we have

δσW ¼ SWZjσ; ð8Þ

which results in

Z
d4x

ffiffiffi
g

p
σhTμ

μ þ∇μVμi ¼ SWZjσ: ð9Þ

Here, SWZjσ denotes those terms in a Wess-Zumino action
(SWZ), which are linear in σ. The most general parity even
Wess-Zumino action involving the metric and the gauge field
Cμ for a 4D SFT is given by [13,26]
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SWZ½gμν; Cμ; σ� ¼
Z

d4x
ffiffiffi
g

p �
−a

�
σE4 þ 4

�
Rμν −

1

2
Rgμν

�

× ∂μσ∂νσ − 4ð∂σÞ2□σ þ 2ð∂σÞ4
�

þ cσW2 − eσΣ2 þ fσCμνCμν

�
; ð10Þ

where E4 and W2 are the Euler density and square of the
Weyl tensor, respectively, and

Σ¼1

6
Rþ∇μCμ−CμCμ; Cμν¼∂μCν−∂νCμ: ð11Þ

The coefficients a and c are the standard conformal anomaly
coefficients of a CFT, while the e and f terms appear only
in a SFT [27]. It should be noted that in the presence of a
dimension two scalar operator O2, the term ξ

R
d4x

ffiffiffi
g

p ΣO2

can be added to the action, which only shifts the anomaly
coefficient e [26,28].
According to Eqs. (9) and (10), under the global scale

transformations we have

Z
d4x

ffiffiffi
g

p
σhTμ

μ þ∇μVμijCμ¼0

¼
Z

d4x
ffiffiffi
g

p
σð−aE4 þ cW2 − ~eR2Þ; ð12Þ

where the normalized ~e≡ e
36
is introduced. The e anomaly

plays a crucial role in the problem of scale vs conformal
invariance at a nonperturbative level which can be under-
stood as follows. From (12), the two-point function of the
trace of energy-momentum tensor in a 4D flat anomalous
scale-invariant theory is given by [26,29]

hTðqÞTð−qÞi ¼ −~eq4 log
q2

μ2
þ BðμÞq4; ð13Þ

where μ is an arbitrary renormalization scale and BðμÞ is a
scheme-dependent constant. It is shown that unitarity
imposes ~e ≥ 0 [26,31]. Note that the Fourier transformation
of the q4 term in (13) is a derivative of the delta function, so
if ~e ¼ 0 we have

hTðxÞTð0Þi ¼ 0; x ≠ 0: ð14Þ

This means that in a unitary theory, T must be equal to
zero as an operator identity, and the scale-invariant theory
becomes fully conformal. It should be noted that to have a
CFT in the presence of O2, ~e is not necessarily zero and
should satisfy another condition [31]. When this condition
holds, one may improve T such that the new T vanishes.
Based on these observations, it was argued that the
structure of a special anomalous 3-point function in any
SFT is not compatible with operator product expansions

(OPEs); this implies that the e term must vanish, and thus
all unitary SFTs are CFTs [26]. Later on, the authors of [31]
pointed out a subtlety in the relation between OPEs and the
large momentum limit which invalidates this argument.
While the OPE controls the leading nonlocal contribution
in the large momentum limit, there are semilocal contri-
butions which dominate over the OPE contribution in the
relevant case, and therefore, the statement in [26] is false.
After that, based on the proof of the a-theorem and using
the concept of dilaton scattering amplitudes, it is argued
that unitary SFTs must be either CFTs, or the trace of the
energy-momentum tensor behaves like a generalized free
field [23]. Moreover, it is shown that if no scalar operator of
dimension precisely 2 appears in the spectrum of a SFT, in
which its energy-momentum tensor is a generalized free
field, that theory would be conformal [24]. In the presence
of a scalar operator with dimension precisely 2, which
can mix with T, one can show that there is at least one
improvement such that an improved T is not a generalized
free field [24]. Thus the only loophole that remains in the
proof of [24] is the case where the energy-momentum
tensor is a generalized free field and the scalar operator with
dimension precisely 2 exists in the spectrum [32].
In the next section we explore some consequences of

assuming a positive sign for CunivðS2Þ in the subject of scale
vs conformal invariance, specially in the case where a
dimension two scalar operator exists in the spectrum of
a SFT.

III. ENTANGLEMENT ENTROPY AND
SCALE VS CONFORMAL

The properties of nonlocal quantities are important as
the correlation functions of local operators in a given
quantum field theory. In particular, they are important
for the understanding of quantum phase structures. One of
the important nonlocal physical quantities is the Wilson
loop operator in gauge theories, which is a very useful order
parameter for the understanding of the confinement [34].
Quantum entanglement (QE) is also a momentous nonlocal
quantity in more generic QFTs. QE has made an increas-
ingly dominant impression on the understanding of quan-
tum complex systems in a diverse set of areas including
condensed matter physics [35–39], quantum information
theory [40–42], and quantum gravity [43–50]. One of the
measures of QE is entanglement entropy (EE). Considering
a pure state of a relativistic SFT defined on a 3þ 1
dimensional manifold M, EE is defined by tracing out
those modes which reside outside an entangling region ϒ.
This entangling region is a submanifold of M at a fixed
time. The result of the trace-out action is a mixed state ρϒ.
In order to calculate EE, one should first obtain the TrϒðρnϒÞ
and find the Rényi entropy

SnðρϒÞ ¼
1

1 − n
log TrϒðρnϒÞ; ð15Þ
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where n is a positive integer. Upon analytically continuing
n to positive real values, one can take the limit n → 1 to
obtain the entanglement, or von Neumann entropy as

SEE ¼ lim
n→1

Sn ¼ −∂n log TrϒðρnϒÞjn¼1: ð16Þ

Furthermore, the TrϒðρnϒÞ can be computed from the
partition function Zn on a n-sheeted 3þ 1 dimensional
manifold Mn as

log TrϒðρnϒÞ ¼ logZn − n logZ1: ð17Þ

Thus Eq. (16) becomes

SEE ¼ −∂nðlogZn − n logZ1Þjn¼1: ð18Þ

For the closed connected surface ϒ, we can define a length
scale s. Therefore by using Eq. (6) together with (17) and
(7) we have

s
d
ds

log TrϒðρnϒÞ ¼
Z
Mn

d4x
ffiffiffi
g

p hTμ
μ þ∇μVμijCμ¼0

− n
Z
M1

d4x
ffiffiffi
g

p hTμ
μ þ∇μVμijCμ¼0:

ð19Þ

The above result together with (18) and (12) gives

s
d
ds

SEE ¼ −∂n

Z
Mn

d4x
ffiffiffi
g

p ð−aE4 þ cW2 − ~eR2Þjn¼1

þ
Z
M1

d4x
ffiffiffi
g

p ð−aE4 þ cW2 − ~eR2Þ: ð20Þ

The n-sheeted 3þ 1 dimensional manifoldMn, in general,
contains conical singularities. The procedure of calculating
the integral of metric curvatures on manifolds with conical
singularities has been developed in [51,52]. According to
that procedure, we have

Z
Mn

d4x
ffiffiffi
g

p
E4 ¼ n

Z
M1

d4x
ffiffiffi
g

p
E4 þ 8πð1 − nÞ

×
Z
∂ϒ

d2χ
ffiffiffi
γ

p
R½γ� þOð1 − nÞ2

Z
Mn

d4x
ffiffiffi
g

p
W2 ¼ n

Z
M1

d4x
ffiffiffi
g

p
W2 þ 8πð1 − nÞ

×
Z
∂ϒ

d2χ
ffiffiffi
γ

p
K½g; t; s;Kα

ij� þOð1 − nÞ2;
Z
Mn

d4x
ffiffiffi
g

p
R2 ¼ n

Z
M1

d4x
ffiffiffi
g

p
R2 þ 8πð1 − nÞ

×
Z
∂ϒ

d2χ
ffiffiffi
γ

p
R½g� þOð1 − nÞ2; ð21Þ

where

K½g; t; s;Kα
ij� ¼ 2Wμναβtμsνtαsβ − ½Kα

ijK
αij −

1

2
ðKαi

i Þ2�;
ð22Þ

and g is the full 4D metric. Furthermore, γij and Kα
ij are the

intrinsic metric and the extrinsic curvature of ∂ϒ, α ¼
ft; sg indexing the two normal directions (one timelike tμ

and one spacelike sμ) and the first term on the right-hand
side of (22) is nothing but the pullback of the Weyl tensor
onto ∂ϒ. Using the relations (21) in (20) one arrives at [53]

s
d
ds

SEE¼−8π
Z
∂ϒ

d2χ
ffiffiffi
γ

p ðaR½γ�−cK½g;t;s;Kα
ij�þ ~eR½g�Þ:

ð23Þ

The right-hand side of (23), in the absence of the e term,
is indeed the Graham-Witten anomaly [56] for a two-
dimensional submanifold ∂ϒ on the D-dimensional CFT
[57]. The holographic realization of these anomalies comes
from studying the Einstein spaces in the bulk, which are
asymptotically locally AdS manifolds (AlAdS). The former
statement means that in the presence of the e term, the
right-hand side of (23) could be considered as (generalized)
Graham-Witten anomalies for a two-dimensional submani-
fold on the D-dimensional SFT. To check this proposition
one could redo the machinery of Graham and Witten for
non-AlAdS manifolds, such as geometries in the foliation
preserving diffeomorphic theory of gravity [58].
The point which should be stressed here is that SEE is a

UV divergent quantity in a continuum QFT. It has a
universal part (Cuniv), which is defined as its cutoff-
independent term, which contains nontrivial physical
information, including central charges and RG monotones
[59–62]. Furthermore, s d

ds SEE is equal to the minus of
the Cuniv [63]. In many respects, these universal terms
are the natural counterparts of quantum-mechanical entro-
pies, which suggest that, in QFT, the Cuniv is also positive
definite. Indeed, for spherical entangling surfaces
(∂ϒ ¼ S2) in the vacuum state of CFTs in flat (conformally
flat) spacetime, this appears to be true [2,60–62]. Note that
one can always pick complex enough entangling surfaces
to violate this positivity [2]. In this paper, we would
especially like to study the effect of an e anomaly on
the sign of CunivðS2Þ. We take a conformally flat metric,
gμν ¼ e−2τημν, as a background metric. Because the
K½g; t; s;Kα

ij� is a Weyl invariant, it does not contribute
to CunivðS2Þ. Moreover by noting that

Z
S2
d2χ

ffiffiffi
γ

p
R½g�jg¼e−2τη ¼ 6

Z
S2
d2χ

ffiffiffiffi
γη

p ½□τ − ð∂τÞ2�; ð24Þ

from (23) we have
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CunivðS2Þ ¼ 16π

�
aþ 3~e

Z
S2
d2χ

ffiffiffiffi
γη

p ½□τ − ð∂τÞ2�
�
: ð25Þ

Remember that in a unitary SFT, ~e ≥ 0. By assuming ~e > 0,
one can check that for any positive value of a,
there exists a function τ for which the CunivðS2Þ becomes
negative. On the other hand, for a generic CFT in 4D,
the scale anomaly dictates that on conformally flat back-
grounds, CunivðS2Þ is positive [2]. By assuming that CunivðS2Þ
on such backgrounds is also positive for a SFT [64], Eq. (25)
implies that ~e ¼ 0. Thus, in the absence of a dimension two
scalar operator O2 in the spectrum of a SFT, we have shown
that the positivity of CunivðS2Þ suggests that a SFT is a CFT.
Furthermore, as we mentioned in the previous section,

the only loophole in the proof of [24] is related to the
case where the trace of an energy-momentum tensor is a
generalized free field and a scalar operator with dimension
of precisely 2 exists in the spectrum. Also we noted that, in
the presence of O2, one can add the term ξ

R
d4x

ffiffiffi
g

p
RO2 to

the action in order to change the trace of an energy-
momentum tensor. This means that the universal part of EE
can be changed by adding this nonlinear coupling term. To
be more precise, this nonlinear term just shifts the e
anomaly coefficient [26] in Eq. (25)

CunivðS2Þ ¼ 16πðaþ 3ð~e− αξÞ
Z
S2
d2χ

ffiffiffiffi
γη

p
× ½□τ− ð∂τÞ2�Þ;

ð26Þ

where α is a positive number. For example, for a free scalar
theory, the universal part of EE is calculated by using a
heat Kernel method [52] which leads to ~e ¼ 1

72
and α ¼ 1

12
.

Interestingly, the positivity of CunivðS2Þ fixes the coefficient
of the nonlinear coupling term to ξ ¼ ~e

α, where for the free
scalar theory it becomes ξ ¼ 1

6
. This value for ξ is exactly

the one to have a conformal scalar theory. This means that
in free scalar theory, the positivity of CunivðS2Þ suggests that
the theory can be improved to a CFT.

IV. DISCUSSION

In the previous section,we have shown that the existence of
an e anomaly can affect the sign of CunivðS2Þ, which plays a
crucial role in the subject of scale vs conformal invariance in
D ¼ 4. For a generic CFT in four dimensions, the scale
anomaly dictates that the CunivðS2Þ on conformally flat
backgrounds is positive. Based on this fact, we have explored
the consequences of assuming a positive sign for CunivðS2Þ on
such backgrounds in a four-dimensional SFT. In the absence
of a dimension two scalar operator O2 in the spectrum of a
SFT,we have shown that this assumption suggests that SFT is
aCFT. In the presence ofO2 in a SFT,we have shown that this
assumption fixes the coefficient of the nonlinear coupling
term

R
d4x

ffiffiffi
g

p
RO2 to a conformal value.

The e anomaly may have an effect on strong subaddi-
tivity (SSA) inequalities. SSA inequalities state that, given
a tripartite quantum system A, B, C and a joint density
matrix ρðABCÞ, the EEs of the subsystems obey the
following inequalities:

SEEðABÞ þ SEEðBCÞ − SEEðABCÞ − SEEðBÞ ≥ 0;

SEEðABÞ þ SEEðBCÞ − SEEðAÞ − SEEðCÞ ≥ 0: ð27Þ

SSA is a general theorem that depends only on basic facts
about Hilbert spaces and the definition of the von Neumann
entropy [45]. It is obeyed as long as the bulk spacetime
satisfies the null energy condition (NEC) [65,66]. In
general, it is believed that the NEC is related to unitarity
[60]. Therefore, if in the presence of an e anomaly SSA
inequalities are violated, the theory is nonunitary and
therefore any unitary 4D SFT is a CFT.
The e anomaly can also affect other measures of QE. For

a mixed state, the EE is no longer a good measure of
entanglement since it mixes quantum and classical corre-
lations. An interesting computable measurement of entan-
glement for the mixed states is the logarithmic negativity
(LN) [67–69], which gives an upper bound on distillable
entanglement in quantum mechanics, and is thus strictly
greater than the EE. It is argued that the universal part
of LN is also related to the scale anomalies, and for CFTs, it
is positive definite across spherical entangling surfaces
[2,70–72]. Therefore a natural question would be what
happens to the sign of the universal part of LN in the
presence of an e anomaly? To answer this question one
should calculate Rényi entropies in SFTs. This might be
done using the method of [73].
The e anomaly may also appear in nonlocal measures of

quantum phase transitions (QPT). One of these nonlocal
measures is EE. In the vicinity of QPTs, EE obeys a scaling
behavior [74–76] and its universal properties have been
investigated in a family of models [74,75]. Many other
studies of different measures of QPTs have been presented
recently. For example QPTs are characterized in terms of
the overlap (fidelity) function between two ground states
obtained for two close values of external parameters
[77–79]. At the critical point, fidelity shows a peak.
This overlap suggests that fidelity may capture some
information about finite size scaling and universality
classes. Interestingly, the holographic counterpart of the
fidelity is proposed very recently in [80,81]. For sure,
studying the effect of an e anomaly on critical exponents
and comparing them with simulations may help us to
have a better understanding of scale vs conformal
invariance.
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